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Abstract
Vectorial programming, the combination of SIMD instructions with usual processor instructions, is
known to speed-up many standard algorithms. Simple regular languages have benefited from this
technology. This paper is a first step towards pushing these benefits further. We take advantage of
the inner algebraic structure of regular languages and produce high level representations of efficient
vectorial programs that recognize certain classes of regular languages.

As a technical ingredient, we establish equivalences between classes of vectorial circuits and logical
formalisms, namely unary temporal logic and first order logic. The main result is the construction
of compilation procedures that turns syntactic semigroups into vectorial circuits. The circuits we
obtain are small in that they improve known upper-bounds on representations of automata within
the logical formalisms. The gain is mostly due to a careful sharing of sub-formulas based on algebraic
tools.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Automata theory, Semigroups, Vectorisation

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.51

Related Version Full Version: https://hal.archives-ouvertes.fr/hal-03831752v2

Acknowledgements We would like to thank the anonymous referees for helping to improve the paper
a lot, Howard Straubing for proof-reading the main algebraic proofs of this paper, Michaël Hauspie
for his advice, his support and his knowledge about SIMD and compilation and Corentin Barloy to
have helped proof-read the paper.

1 Introduction

Finite state machines abstract the simplest class of programs. They are used everywhere:
basic string manipulation functions of the C standard library like memchr, strlen or strstr
are based on simple finite state automata, but also text-processing related tasks; checking the
validity of encodings; text-mining; etc. As finite state machines are pervasive, implementing
them efficiently is key in many softwares. The string related functions of the C standard
library we mentioned earlier have greatly benefited from SIMD instructions built into modern
CPUs. These functions can now process several characters per CPU cycle.

Single Instruction, Multiple Data (SIMD) executes an operation on several data in
parallel, offering a form of low-level parallelism akin to Lamport’s [13]. A function like
memchr searches the first occurrence of a character in a string. SIMD instructions can check
whether this character appears among several consecutive characters of the string in one
go: each individual character is compared in parallel with the others. Other vectorized
algorithms (see [11] for examples) benefit from these instructions. In the context of text-
processing, impressive handcrafted SIMD based implementations have been proposed for
string pattern matching [12], classical regular expression matching [33], Json parsing [14],
checking correctness UTF-8 encoding [10], or DNA alignement in bioinformatics [6].
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51:2 An Algebraic Approach to Vectorial Programs

Though many efforts have been put into compilers to solve the problem of auto-
vectorization [18, 32, 19, 20, 8], these optimization methods rarely succeed in accelerating
text algorithms with SIMD instructions. Finding auto-vectorization methods that deal with
text algorithms would have a high impact. The challenge would be to produce, among others,
the clever handcrafted code in the C standard library from the description of its underlying
regular expression. Text processing, however, requires some form of sequentiality simply
because, in many cases, information needs to be passed sideways. In this paper we consider
two of them: prefix-or and addition.

The unreasonable power of binary addition. For sideways information passing, addition is
very interesting: carry propagation can be used to compute long distance relations words.
Moreover, Big Int instructions of modern processors compute it efficiently over large vectors.

Several papers already explored the use of addition in relation to regular languages:
Myers [17] uses it to solve approximate string matching; Bergeron and Hamel [2, 1] show
that counter-free automata can also benefit from addition; Serre [26] then characterizes
counter-free languages in terms of addition; on the practical side, Cameron et al. [4] use
explicitly addition when compiling parts of regular expressions of the form B∗ when B is a
set of letters.

This work starts with the definition of a notion of vectorial circuit that abstracts away
from the details of CPU operations. Circuits make clear which operations are independent
from one another and are objects of choice when it comes to introduce parallelism in some
computation. We are confident that vectorial circuits can be compiled to obtain efficient
programs that use SIMD instructions. As a first step in that direction, the main focus of the
paper is then to construct small vectorial circuits from various presentations of counter-free
regular languages.

The results of [2, 1] heavily rely on Krohn-Rhodes’ Theorem. In this paper, the con-
struction goes through Past-LTL logic and uses the equivalence between the Yesterday-Since
operation and binary addition. The relation between these two operations is actually formal-
ized in coq [21] (for technical reasons, in this formalization, we consider Forward-LTL and
Next-Until instead of Past-LTL and Yesterday-Since). A consequence is that we can obtain
concise vectorial circuits from Past-LTL formulae in the sense that they have the same size
as the initial formula.

We also consider how to obtain concise vectorial circuits directly from automata. With
Serre’s result, it is theoretically possible to produce vectorial circuits for counter-free automata.
However, only a double exponential upper bound in the size of the automaton is known
on the size of Past-LTL formulas. This would make circuits far too large in practice. This
upperbound comes from a construction of Wilke [35, Corollary 1] that builds formulas by
induction over the structure of the syntactic monoids of the input automata. On other classes
of automata, such as FO2[<] [5, 31], known transformations of automata into formulas are
indirect and not constructive. They are of no use to actually compile automata into formulas
or circuits.

Main contributions. We study a notion of vectorial circuits as an abstraction of SIMD
programs. Vectorial circuits describe the shape of actual circuits for arbitrary size of inputs.
In particular they are a uniform fragment of AC0 (constant depth polysize boolean circuits).
As for circuits, their expressivity depends on the set of authorized gates. Our main goal is
to produce small vectorial circuits for particular classes of regular languages: the class of
counter-free or FO[<]-languages and the class DA or FO2[<]-languages. We measure the
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size of output circuits with respect to the size of the syntactic monoids. Were we to consider
automata as inputs that we would need to exponentiate our bounds (e.g. the languages of
the form AkaA∗ have syntactic monoids of size 2k with minimal automata of size O(k)).

Concerning counter-free languages, we revisit Serre’s result. We propose an algorithm
that produces vectorial circuits (using bitwise boolean operations and addition) that are
polynomial in the size of the input aperiodic monoid. Serre’s result ensures here that the class
of vectorial programs expressed with addition and bitwise boolean operations are equivalent
to counter-free languages.

For the class DA, we replace addition with prefix-or to obtain a class of circuits that
captures exactly that class. When transforming syntactic monoids of DA into vectorial
circuits, the use of prefix-or makes circuits larger than they would be with addition. The
transformation that we propose gives vectorial circuits which have exponential size in the
J -depth (see 3.1 for the definition of J -depth) of the syntactic monoid.

We begin by presenting vectorial circuits in Section 2. We also show the links between
vectorial circuits and fragments of logic. In Section 3, we introduce general strategies of
evaluation of words. Then, in Section 4, we construct small programs that compute our
strategies of evaluation. Sketches of all the main proofs can be found in the appendices. For
the complete version, see [22].

2 Compiling regular languages into vectorial circuits

2.1 Algebraic preliminaries
We write [n] for the set {0, . . . , n − 1}. Given a set E, we denote by |E| its cardinality.
Given some finite set Σ, the alphabet, words on Σ are finite sequences of elements of Σ. We
write |x| for the length of the word x. We denote by Σ∗ the set of words on Σ.

Semigroups. A semigroup is a pair consisting of a set S and an associative binary operation
·S on S, called the inner operation of S. We usually write that the set S is a semigroup. A
monoid is a triple (M, ·M , 1), where (M, ·M ) is a semigroup and 1 ∈ M is an identity (or a
neutral element) of M . We usually write that the set M is a monoid. We only work with
finite semigroups and monoids. We thus designate finite semigroups (resp. finite monoids)
when we mention semigroups (resp. monoids). Given a semigroup S, any element e of S

satisfying e ·S e = e is called an idempotent. In a finite semigroup S, any element s of S

admits an idempotent power, which is an element sn (where n > 0 is an integer) that is
idempotent, where sn denotes the iterated product of s by itself n times. We use the usual
notation sω to denote the idempotent power of s (ω is the minimum integer such that, for any
element s, sω is the idempotent power of s). Given a semigroup S, we define S1 = S ∪ {1}
as the monoid formed by the semigroup to which an identity is added if necessary. For any
subsets X and Y of S, we denote by X ·S Y the set {x ·S y | x ∈ X, y ∈ Y }. Similarly, for any
x ∈ S and Y ⊆ S, we write x ·S Y and Y ·S x respectively for {x} ·S Y and Y ·S {x}. Given a
finite set Σ, we call Σ+ the free semigroup over Σ with the concatenation as the associative
binary operation. This is the only infinite semigroup that we consider. Given a semigroup S,
we will denote by S+ the free semigroup with the underlying set of S as alphabet.

Canonical morphism. We denote concatenation implicitly: given two words u, v, their
concatenation is written uv. For instance, taking two elements x, y of S, xy denotes a word of
S+ of length 2. This notation must not be confused with x ·S y that denotes the element of S

obtained by multiplying x and y with the inner operation of S. We never use concatenation
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51:4 An Algebraic Approach to Vectorial Programs

to mark the product within S. However, we relate words of the free semigroup S+ to their
value in S by means of the canonical morphism: πS : S+ → S. It is the unique associative
morphism verifying both the following properties: for every x ∈ S, πS(x) = x and, for every
u, v ∈ S+, πS(uv) = πS(u) ·S πS(v).

Languages and semigroups. A link can be established between logics and semigroups by
taking the syntactic semigroup of a language. This semigroup is defined as follows: given a
language L on an alphabet Σ, the syntactic congruence of L in Σ∗ is the relation ∼L defined
on Σ∗ such that, for any words u, v ∈ Σ∗, u ∼L v if and only if, for all words x, y ∈ Σ∗,
xuy ∈ L ⇔ xvy ∈ L. The syntactic semigroup of L is the quotient Σ+/ ∼L, and the syntactic
monoid of L is the quotient Σ∗/ ∼L.

The link between logic and semigroups has already been well studied and gave birth
to very nice algebraic characterizations of some well-known classes of languages. For more
information on this topic, see the survey [30] along with the books [28] and [23]. Notably, the
class of starfree languages is equivalent to the variety of aperiodic semigroups, the semigroups
satisfying an equation of the form πS(xω+1) = πS(xω), for any x ∈ S. We can also mention
the class FO2[<], which is equivalent to the variety DA of semigroups, the semigroups
satisfying an equation of the form πS((xy)ωx(xy)ω) = πS((xy)ω), for any x, y ∈ S. For an
explanation of the name DA, see Section 3.1. We refer to [29] for a complete exposition of
this class and its relationship to various logics.

2.2 Vectorial circuits
We call the words on the alphabet {0, 1} vectors. For a vector x, we may use the term
dimension to refer to its length |x|. We refer to vectors of dimension n as n-vectors. We let
1n and 0n respectively denote the sequence of n 1’s and the sequence of n 0’s. When n is
irrelevant or obvious for the context, we may write 1 and 0. Two vectors x = x0 . . . xn−1
and y = y0 . . . yn−1, of dimension n ∈ N, are said to be disjoint if, for any index i ≤ n − 1,
xi ∧ yi = 0.

Vectorial circuits and their semantics. Vectorial circuits are labeled directed acyclic graphs.
The nodes that have no input edge are called input nodes. The nodes with incoming edges are
called gates and are labeled with commutative operations. The in-degree of a gate should be
equal to the arity of its labeling operation while the out-degree can be arbitrary. We usually
write input nodes and terms in bold-face fonts: v, v1, . . . Output nodes are distinguished
nodes of the circuit. Generally they include the nodes that have no output edge. The size of
a circuit is the number of its nodes.

Vectorial circuits can be seen as circuit templates that, for each n, instantiate a concrete
circuit working on vectors of dimension n. Once the dimension is fixed to n, associating
n-vectors to the input nodes and flowing the values through the gates (where the right
function operating on n-vectors is used) yields output values in the output nodes. Take
a circuit C with input nodes i1, . . . , ip and output nodes o1, . . . , or, given p n-vectors x1,
. . . , xp, we write C(x1, . . . , xp) for the tuple of n-vectors y1, . . . , yr that are respectively
yielded in the output nodes o1, . . . , or when evaluating the C with the vector x1, . . . , xp
respectively associated to the input nodes i1, . . . , ip.

Operations for labeling gates. We use bitwise Boolean operations: the unary negation ¬
and the binary operations ∧ and ∨, respectively the bitwise conjunction and disjunction.
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Given a function f : {0, 1}+ → {0, 1}, we define the unary operation pref-f (resp. suf-f):
given a n-vector x = b0 . . . bn−1, with b0, . . . , bn−1 in {0, 1}, pref-f(x) (resp. suf-f(x)) is
the n-vector z = c0 . . . cn−1 where for each i ∈ [n], ci = f(b0 · · · bi) (resp. ci = f(bi · · · bn−1)).
In this paper, we use the unary operations pref-∨, suf-∨, pref-∧ and suf-∧.

Binary vectors x of dimension n naturally represent numbers in [2n]. We write nb(x) for
the number represented by x with the convention that its least significant bit is the left-most
one. For a natural number k, we write binn(k) to denote the vector of dimension n that
represents k modulo 2n.

The unary operations LSB (Least Significant Bit) and MSB (Most Significant Bit) replace
by 0 respectively the left-most 1 and right-most 1 of their argument vector. For these two
operations, when the argument vector is 0n, the resulting vector is also 0n. The binary
operation + is defined by the family (plusn)n∈N so that for any two vectors of dimension n,
denoted by x and y, plusn(x, y) = binn(nb(x) + nb(y)).

We study two families of vectorial circuits:
Sweeping-vectorial circuits, circuits built only with the operations, ∧, ∨, ¬, pref-∨, pref-∧,
suf-∨, suf-∧, LSB, MSB,
and ADD-vectorial circuits, circuits built only with the operations of Sweeping-vectorial
circuits and +.

Term notation for vectorial circuits. Trees are a particular kind of directed acyclic graphs.
Circuits that are tree shaped are those where nodes have at most one out-going edge and
exactly one output node. These particular circuits can be advantageously denoted by terms
built with operations (respecting their arity) and input nodes. The term (v1∧¬v2)∨(¬v3∧v4)
represents the left-most circuit of Figure 1. Allowing input nodes to have several occurrences
in terms gives access to some limited kind of sharing. This is exemplified with the central
and right-most circuits of Figure 1. So as to fully capture such sharing capabilities with the
term notation, we use equations: a term t that is to be shared is associated to a node v with
the equation v = t and, when v is used in another term, this refers to the shared circuit
t. For example, we write v = pref-∨(suf-∨(v1)), (¬v ∧ v2) ∨ (v ∧ v3) to denote the third
circuit in Figure 1.

∨

∧

v1

¬

v2

∧

¬

v3 v4

∨

∧

v1

¬

v2

∧

¬

∨

∧

¬

pref−∨

suf-∨

v1 v2

∧

v3

Figure 1 Graph representation of terms: (v1 ∧ ¬v2) ∨ (¬v3 ∧ v4); (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2); and
v = pref-∨(suf-∨(v1)), (¬v ∧ v2) ∨ (v ∧ v3).

Terms also offer a convenient way for reusing certain circuits in several places: it suffices
to change the input nodes at their leaves. We adopt a notation that denotes parametrized
circuits: c(v1, . . . , vn) := t where t is a term built with the nodes v1, . . . , vn. For circuits
t1, . . . , tn, we write c(t1, . . . , tn) the circuit described by the term obtained by replacing
v1, . . . , vn respectively with t1, . . . , tn in t. For example, we define the bitwise exclusive-or
as v1 ⊕ v2 := (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2). We can compose parametrized circuits to define
others et construct complex circuits.
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51:6 An Algebraic Approach to Vectorial Programs

Parameterized circuits. We can compose parametrized circuits to define others:
NotZero(v) := pref-∨(suf-∨(v))
IsZero(v) := ¬NotZero(v)
IfThenElse(v1, v2, v3) := v = NotZero(v1), (v ∧ v2) ∨ (¬v ∧ v3)
Thr2(v) := NotZero(LSB(v))

The parametrized circuits NotZero(v), IsZero(v), Thr2(v) perform tests on their input: on
an n-vector, they return 1n when the test succeeds and 0n when it fails. NotZero(v) tests
whether its input vector contains an occurrence of 1, IsZero(v) tests whether its input vector
is 0 and Thr2(v) tests whether its input vector contains at least two occurrences of 1. The
parametrized circuit IfThenElse(v1, v2, v3), tests whether v1 is 0 and in this case outputs
v2. Otherwise, it outputs v3. With parameterized circuits, we can construct complex circuits.
An example is the circuit IfThenElse(v1 ⊕ v2, v3, v2 ⊕ v3) which is depicted in Figure 2.

v1v2 v3

¬ ¬ ¬ ¬

∧ ∧ ∧ ∧

∨ ∨

∨

∧

∧¬

pref−∨

suf-∨

Figure 2 Circuit represented by IfThenElse(v1 ⊕ v2, v3, v2 ⊕ v3) .

The addition Lemma. We say that a vector x is contained in a vector y if for any position
i, xi = 1 implies yi = 1. Let x, y be two disjoint vectors of dimension n and z a vector of
dimension n that contains both x and y. We denote by v = Successor (x, y, z) the vector
such that for all i < n, vi = 1 if and only if xi = 1, there exists j < i such that yj = 1 and,
for all k ∈ N such that j < k < i, zk = 0. In other words, Successor (x, y, z) indicates the
positions marked in x that follow a marked position of y, with no other position marked by
z in-between.

▶ Lemma 1 (Addition lemma). Let x, y be two disjoint vectors of dimension n and z a vector of
dimension n that contains both x and y. Then, we have Successor (x, y, z) := (y+(y∨¬ z))∧x

This lemma has a rather tedious proof. So as to relieve the reader from checking its details,
we provide a formalization and a proof this Addition Lemma in Coq [21]. The proof consists
of two steps. First, we show that vectorial circuits built with the Next-Until modality of LTL,
aka XU, and logical gates, are equivalent to circuits built with addition and logical gates.
This equivalence is proved by constructing circuits based on XU and logical gates to encode
addition and circuits based on addition and logical gates to encode XU. The intuition behind
this equivalence is that carry propagation and XU both propagate information sideways.
Second, encoding XU in first order-logic and using the previous equivalence allows us to
relate the computation of the circuit of Lemma 1 to the specification of Successor (x, y, z)
and prove the relation correct.
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Vectorial circuits as language recognizers and functions from words to finite sets. Given
a fixed alphabet Σ, we say that a vectorial circuit C recognizes a set of words in Σ+ when it
has a unique output node and there is a bijection between the letters a1, . . . , ap of Σ and
its input nodes a1, . . . , ap. We consider a particular bijection: given a word u of length
n, we write 1a(u) for the n-vector x so that xi = 1 if and only if ui = a for every i in
[n]. We say that u is accepted or recognized by the circuit when C(1a1(u), . . . ,1ap(u)) ̸= 0.
As a shorthand, we write enc(u) for the tuple (1a1(u), . . . ,1ap

(u)) and thus C(enc(u)) for
C(1a1(u), . . . ,1ap(u)).

Vectorial circuits can also represent functions f from Σ+ to a finite domain E. It suffices
to consider circuits C which have a bijection between their input nodes and the letters of Σ,
but also a bijection between the elements e1, . . . , er of E and their output nodes e1, . . . , er.
We say that C represents f when for every u, the output (z1, . . . , zr) = C(enc(u)) is such
that, for every i in {1, . . . , r}, zi ̸= 0 if and only if f(u) = ei.

Example. Consider the alphabet Σ = {a, b, c}. The language c∗aΣ∗ is recognized by
the Sweeping-vectorial circuit C = ¬(suf-∨(pref-∨(suf-∨(Fa) ∧ b))), where the circuit Fa =
LSB(a)⊕a gives the position of the first occurrence of a. The language Σ∗ac∗aΣ∗ is recognized
by the ADD-vectorial circuit C = (a + ¬b) ∧ a, which is equal to (a + (a ∨ ¬(a ∨ b))) ∧ a =
Successor (a, a, a ∨ b). An example is showed in Table 1; note that every 1 in the last vector
indicates, as we want, each letter a such that there is no letter b between this position and
the previous letter a, and no other letter is indicated.

Table 1 Example of application of the operation (1a + ¬1b) ∧ 1a.

1b 0 0 1 0 0 0 0
1a 0 1 0 1 0 1 1

1a + ¬1b 1 0 1 0 0 1 1
(1a + ¬1b) ∧ 1a 0 0 0 0 0 1 1

2.3 Going through first-order logic
The computational model we propose is actually very close to some classical fragments of
logic over words. For a full exposition of this subject, we refer to [5]. Informally, we can
describe some regular languages with the help of first-order formulas. In those formulas,
quantifications range over positions of the word and atomic predicates can check either
numeric constraints between positions (typically their order) or the label of the position. For
instance, the formula ∃x, y, a(x) ∧ a(y) ∧ ∀z, ((x < z ∧ z < y) ⇒ c(z)) describes the language
over the alphabet Σ = {a, b, c} which words belong to D = Σ∗ac∗aΣ∗.

In this context, linear temporal logic (LTL for short) has an interesting role that we will
rely on. LTL, even restricted to future or past operators, allows to define the same languages
as full first-order logic [9]. For instance, the language D can be described with the following
LTL formula: F(a ∧ X(cUa)).

This class of languages has many equivalent characterizations. In [25], Schützenberger
proved for regular languages the equivalence between aperiodic languages and star-free
languages. Later, McNaughton and Papert proved that star-free languages are equivalent
with LTL and first-order logic [15, 5]. In a similar fashion to McNaughton and Papert, we can
prove that languages computed by ADD-vectorial circuits are exactly the starfree languages.
Both directions of the equivalence have been proved by Serre [26, Theorem 1.] by relying on
a syntactic logical rewriting of LTL formulas.
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51:8 An Algebraic Approach to Vectorial Programs

▶ Proposition 2. Let L be a regular language. The following propositions are equivalent.
1. L is computed by an ADD-vectorial circuit.
2. L is starfree.
3. L is definable in Forward-LTL.

Proof. The equivalence between 1 and 2 is from [26], Corollary 1. In this paper, the vectorial
computational model consists of straight-line expressions over a basis which includes addition,
Boolean operations and right shift. This basis is equivalent to ADD-vectorial circuits. The
equivalence between 2 and 3 is standard. It can be proved by combining theorems proved
by Kamp [9] and McNaughton and Papert [15]. The former proves the equivalence between
being definable in Forward-LTL and First-Order logic for regular languages and the later the
equivalence between First-Order logic and star-free languages. ◀

Another fragment of interest is the class of languages definable by two-variable first-order
logic, or equivalently by LTL without the Until operation but with neXt and Yesterday
operations. This fragment has been studied a lot and is well understood [9, 5, 34, 36].

In the proof of the next result, we rely on the known equivalence between FO2[<] and
a logic called TL[Xa, Ya]. More formally, the languages describable in FO2[<] are exactly
the languages describable by the logic TL[Xa, Ya] presented in [5]. This logic uses only two
kinds of operators: Xa, for a any letter, verifies that there exists a position greater than the
current one which holds an a, and if so, it sets the new current position at the position of
the closest a. If no occurrence of a is found, the word is not recognized. The operator Ya,
for any letter a, is the symmetrical operator: it operates the same way except for the fact
that it searches for the closest occurrence of a before the current position.

▶ Proposition 3. A language is recognized by a Sweeping-vectorial circuit if and only if it is
definable in TL[Xa, Ya].

Proof. We rely on the equivalence between FO2[<] and TL[Xa, Ya], to prove the result.
First, we show that TL[Xa, Ya] is captured by Sweeping-vectorial circuits, i.e. that any
formula of TL[Xa, Ya] defines a function from words to Boolean vectors that can be modeled
by these circuits; here we interpret a formula of TL[Xa, Ya] as a function from words to
Boolean vectors, by considering the truth vector of a formula on every position of the
input word. Clearly, Boolean operations are equivalent in both models. Now, suppose
that we have a Sweeping-vectorial circuit Cα that is equivalent to a TL[Xa, Ya] formula
α, i.e. given a word u ∈ Σ+ and a vector pos (of the same dimension as u) that has a
unique 1 in some position x, we have Cα(pos, enc(u)) ̸= 0 if and only if u, x |= α. Then,
for any letter a ∈ Σ, the formula β = Xaα can be modeled by the circuit Cβ defined as
follows: for any word u ∈ Σ∗ and any vector pos having a unique 1, we begin by finding
the first letter a strictly after the position marked by pos, by sequentially computing the
following vectors: authorizedPos = LSB(pref-∨(pos)), next = authorizedPos ∧ 1a(u)
and nextPos = next⊕LSB(next). This gives us the new position vector to give as parameter
to the new circuit. Then we can define Cβ(pos, enc(u)) := Cα(nextPos, enc(u)), which is
equivalent to β. Finally, we can model the formula γ = Yaα using the same formulas, except
for the vector authorizedPos, which is computed as authorizedPos = MSB(suf-∨(pos)),
in order to get the positions situated strictly before the position x marqued by pos.

Now, we prove that Sweeping-vectorial circuits are captured by formulas in FO2[<]. Since
Sweeping-vectorial circuits output a truth vector indicating if some property is true for each
position in the input word, we must consider FO2[<] formulas which can take into account
a starting position. Thus, we consider only FO2[<] formulas with one free variable, which
represents the position in which we begin to evaluate the formula in the input word.
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Clearly, Boolean operations are equivalent in both models. We can also interpret pref-∨
as an FO2[<] formula: consider an FO2[<] formula φ with one free variable and suppose that
it is computed by a circuit Cφ. Then, the formula φpref-∨ with one free variable defined by
φpref-∨(y) := ∃x ≤ y, φ(x) has its truth vector equal to the output of pref-∨(Cφ). The other
prefix and suffix operations can be dealt with in a similar way. Finally, we can interpret LSB
and MSB as FO2[<] formulas. Indeed, consider an FO2[<] formula φ with one free variable
and suppose that it is computed by a circuit Cφ. Then, the formula φLSB with one free
variable defined by φLSB(y) := φ(y) ∧ ∃x < y, φ(x) has its truth vector equal to the output
of LSB(Cφ). MSB is equivalent to the same formula where x < y is replaced by x > y. ◀

▶ Remark 4. We can always build a vectorial circuit of size linear in the size of the equivalent
formula. Conversely, if we consider formulas with sharing of sub-formulas, we can also build
an equivalent circuit of size linear in the size of the formula.

2.4 Direct compilation scheme
In the previous section, we have seen the relationship between vectorial circuit classes and
LTL logic formulas. However, the proofs of those results do not give satifying algorithms for
building a vectorial circuit recognizing a given formula. Indeed, the proofs going from the
automata to the formulas are either indirect and not constructive, and they do not give any
upperbound on the sizes of the formulas, or they are constructive but give formulas (and thus
circuits) of too large sizes. Our goal is to reduce the size of the formulas we obtain through
semigroups, so that we can obtain tractable algorithms for the languages that have a small
syntactic monoid. Because of this point of view, all complexity measures of our circuits are
provided in terms of the semigroup size.

▶ Theorem 5. Let S be a semigroup in DA of J -depth d (see Section 3.1 for the definition
of J -depth). We can construct a Sweeping-vectorial circuit of size O(2d|S|2) that computes
the operation πS.

Moving from Sweeping-vectorial circuits to Unary-LTL could cost an exponential blowup,
which in total gives a doubly-exponential blowup for constructing a Unary-LTL formula from
a semigroup in DA. Note that the classical constructions do not provide upperbounds on
the minimum size of a Unary-LTL formula equivalent to a given semigroup in DA. However,
these constructions already have considerable sizes of formulas.

We conjecture that no Sweeping-vectorial circuit of polynomial size exists and believe
that it is an interesting open question to provide lowerbounds for those circuit models.

▶ Theorem 6. Let S be an aperiodic semigroup of J -depth d. We can construct an ADD-
vectorial circuit of size O(d|S|3) that computes the operation πS.

Proofs’ organisation. We chose to separate the proofs into two main parts. In the first
one, we introduce the notion of evaluation program, which is a very generic tool allowing
to replace a sub-word by a single letter equal to its product, and we define two generic
evaluation strategies which are evaluation programs. These strategies were chosen according
to the properties of the classes of semigroup that will be considered later but, supposing that
we can provide an efficient encoding of those strategies, they are valid on any semigroup.
Then, in the second part, we provide vectorial circuits encoding the two evaluation strategies
on the classes of semigroups that we are interested in.
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3 Semigroups evaluation strategies

3.1 Green’s relations

We refer the reader to [24, 23] for a complete exposition of algebraic automata theory. We
remind here some more basic notations and definitions about semigroups. Consider a
function F : S → P(S), where P(S) denotes the power set of S. We write x F y when
F (x) = F (y); x ≤F y when F (x) ⊆ F (y); and x <F y when x ≤F y and F (x) ̸= F (y).
The relation F is an equivalence relation and ≤F is a partial pre-order. We also write
F(x) = {y | y F x}, the F-class of x. We say that a semigroup is F-trivial when F(x) is a
singleton for any element x ∈ S. Green’s relations are defined with the following functions:
R : x 7→ x ·S S1, L : x 7→ S1 ·S x, J : x 7→ S1 ·S x ·S S1, H : x 7→ R(x) ∩ L(x). Note that the
respective relations obtained from R, L, J and H are denoted by R, ≤R, <R, L, ≤L, <L,
J , ≤J , <J ,H, ≤H and <H. In finite semigroups, the relation J is equal to the relation D,
which is the union of L and R. From this relation D comes the name of the class DA, which
indicates the class of semigroups which regular D-classes are aperiodic semigroups.

The J -depth of a semigroup. Let S be a semigroup. The J -depth of a J -class is the length
of a maximal strictly decreasing sequence of J -classes to it. Formally, given a semigroup S

and a J -class J , we say that J is of J -depth i if there exist i J -classes J1 >J J2 . . . >J Ji

such that Ji = J , but there exists no decreasing sequence J ′
1 >J J ′

2 . . . >J J ′
i+1 such that

J ′
i+1 = J . The J -depth of a semigroup is the maximum J -depth of its J -classes. For any

semigroup, there exists a unique J -class of maximum J -depth. Given d the J -depth of S,
for each integer i such that 1 ≤ i ≤ d, we denote by Di(S) the union of all the J -classes of
depth i and we denote by Si the sub-semigroup composed exactly of all the elements of S of
J -depth at least i.

J -constant words. Let S be a semigroup. A word s0 · · · sk in S+ is left J -constant if, for
any index i such that 0 ≤ i ≤ k, we have πS(s0 · · · si)J s0. Symetrically, s0 · · · sk is right
J -constant if, for any index i such that 0 ≤ i ≤ k, πS(si · · · sk)J sk. Finally, a word in S+

is J -constant if it is both left and right J -constant. The latter property is equivalent to
having a left J -constant word such that s0J sk.

3.2 Evaluation programs

In this paper, we consider words over some semigroup S. Our goal is to compute the product
in S of the letters composing these words. For any word u ∈ S+, this amounts to computing
πS(u). This computation can be performed by vectorial circuits. Instead of directly building
these circuits, we first pay attention to evaluation strategies that we call evaluation programs.
These strategies form an overlay of abstraction over the intricacy of circuits. They are meant
to modularize the construction of vectorial circuits.

Given a semigroup S, an evaluation program over S transforms words in S+ by replacing
some of the factors by their values (through the canonical morphism) in S. In this section,
we consider a fixed semigroup S.

▶ Definition 7 (Partial evaluation). A partial evaluation step over S is a relation over S+

denoted by →S and defined as uvw →S uπS(v)w for any v in S+ and u, w ∈ S∗. We denote
by →+

S the transitive closure of →S. We say that v is a partial evaluation of u when u →+
S v.
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Note that if v is a partial evaluation of u over S, then πS(u) = πS(v). Usually, the
context makes it clear which semigroup is considered. Thus, we generally leave the semigroup
implicit and only say that v is a partial evaluation of u. Note that each word u is a partial
evaluation of itself.

▶ Definition 8 (Partial evaluation programs). A partial evaluation program over S is a partial
function P : S+ → S+ such that, for any word u ∈ S+ that is in the domain of P , P (u) is a
partial evaluation of u. If the domain of P is S+, then we say that P is total.

The function πS is an example of a partial evaluation (which is, in this case, total).
Another example is the function LProdS : S+ → S+ that performs the product of the first
two elements of the input, if there are at least two elements, and otherwise returns the
input word. In symbols, it is defined by LProdS(s0 · · · sn) = πS(s0s1)s2 · · · sn for any word
u = s0 · · · sn of length at least two, and LProdS(s0) = s0 for any element s0 ∈ S. Similarly,
we define RProdS as the partial evaluation program which performs the product of the
two last elements, if there are at least two elements, and otherwise returns the input word.
Evaluation programs are closed under composition.

3.3 Waterfall evaluation programs
In this section, we are designing a first set of specific evaluation programs. These programs
work by evaluating the semigroup in a top-down fashion (with respect to the J -order). We
first detect each maximal subword whose product is maximal for the J -order, evaluate those
subwords and multiply the results with the letters that immediately follow.

▶ Definition 9 (J -maximal falling words). A word u in S+ is J -maximal falling whenever
for every p, s ∈ S∗ and v, w ∈ S+ so that u = pvws, we have πS(vw) ∈ S2.

Note that when u is J -maximal falling and |u| > 1, πS(u) ∈ S2.

▶ Definition 10 (J -maximal decomposition). Consider a word u ∈ S+. If u ̸∈ S+
2 , let

t ∈ N and some words w0, . . . , wt+1 ∈ S∗, v0, . . . , vt ∈ S+, that define a decomposition
u = w0v0w1 · · · vtwt+1. This decomposition is called J -maximal if we have

for any integer i such that 0 ≤ i ≤ t + 1, wi is a word in S∗
2

for any integer i such that 1 ≤ i ≤ t, vi is a maximal subword of u verifying πS(vi) ∈
D1(S). More formally, if we consider the decomposition u = pavibs, with p, s ∈ S∗, and
a, b ∈ S ∪ ϵ (a is the letter preceding vi, if it exists, and b is the letter following vi, if it
exists) then, if a ̸= ϵ, πS(avi) <J πS(vi) and, if b ̸= ϵ, πS(vib) <J πS(vi)

We call t + 1 the size of the decomposition.
If u ∈ S+

2 , the J -maximal decomposition of u is composed of only one element equal to u

itself. In this case, the decomposition is unique and by convention of size 0.

▶ Remark 11. The property of the (vi)’s implies that each vi is a word of D1(S)+. Indeed,
the product of a word is at most J -equivalent to the letter of greatest J -depth, so all the
letters must be of J -depth 1 for the product to be in D1(S).

We will use the following useful technical lemma.

▶ Lemma 12. Let S be a semigroup. Let x, y be J -equivalent elements of S and z another
element of S.

If πS(xy)J x and πS(zxy) <J x, then πS(zx) <J x.
If πS(xy)J x and πS(xyz) <J x, then πS(yz) <J x.
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We are now proving the existence and uniqueness of J -maximal decomposition. The proof
works by considering a variant of J -maximal decomposition by enforcing the maximality
constraint only at the right and showing that the two variants are actually equivalent.

▶ Lemma 13. Let S be a semigroup. For any finite word u ∈ S+, there exists a unique
J -maximal decomposition of u.

Proof. We focus on proving the existence of such a decomposition. Unicity follows from
the proof of existence. First, note that S = D1(S) ⊎ S2. Thus, for any word u ∈ S+,
there necessarily exists a unique decomposition of u of the form u = w0v0w1 · · · wtvtwt+1
such that w0, wt+1 ∈ S∗

2 , for each integer i such that 1 ≤ i ≤ t, wi ∈ S+
2 , and, for each

i ∈ [t + 1], vi ∈ D1(S)+. Informally, this is a decomposition of u based only on the J -depth
of each letter. Thanks to Remark 11, we know that the words wi that are not empty in any
J -maximal decomposition of u correspond exactly to the words wi of this decomposition.
Thus, we only need to prove that any word over D1(S) can be decomposed into a unique
sequence of maximal subwords whose product is in D1(S).

Consider a fixed word u ∈ D1(S)+. We prove that there exists a decomposition of u of
the form u = v0 · · · vs, where each word vi is maximal in u such that πS(vi) ∈ D1(S).

If πS(u) ∈ D1(S), then both existence and unicity follow from the definition.
Suppose now that πS(u) ∈ S2. Then we define a decomposition of u with weaker properties

than the J -maximal decompositions, and we prove that it is a J -maximal decomposition of
u (with empty words as the (wi)’s). This decomposition is of the form u = v0v1 · · · vt for
some integer t ∈ N and is defined from left to right such that, for each integer i ∈ [t + 1],
πS(vi) ∈ D1(S) and, for each integer i ∈ [t], πS(vixi+1) ∈ S2, where xi+1 is the first letter
of vi+1. By construction, this decomposition exists and is unique. We prove that this
decomposition satisfies the properties of the (vi)’s given in Definition 10, that is, we prove
that each word vi is maximal such that πS(vi) ∈ D1(S). To do that, we only need to prove
that, for each integer i such that 1 ≤ i ≤ t, πS(yi−1vi) ∈ S2, where yi−1 is the last letter of
the word vi−1.

Thus, consider some integer i ∈ [t]. We focus on the subword vivi+1 in order to prove that
πS(yivi+1) ∈ S2, where yi is the last letter of vi. This fact is a consequence of Lemma 12. Since
we know that πS(vixi+1) ∈ S2, where xi+1 is the first letter of vi+1, and that πS(vi) ∈ D1(S),
Lemma 12 implies that πS(yixi+1) ∈ S2. Thus, πS(yivi+1) ∈ S2. Thus, this decomposition
is the unique J -maximal decomposition of u. ◀

Now, we need to refine the J -maximal decomposition. Keeping the same notation for u,
and its J -maximal decomposition u = w0v0 · · · vtwt+1, we set, for any 0 ≤ i ≤ t, vi = xiv

′
i

(xi ∈ S is the first letter of vi), w′
i = wixi and w′

i = yiw
′′
i (yi ∈ S is the first letter of w′

i). The
evaluation program CollapseS takes a word u ∈ S+ and performs at once all the products
πS(v′

iyi+1), the operation πS(v′
t) if wt+1 = ϵ, or πS(v′

tyt+1) otherwise, with w′
t+1 = yt+1wt+1

(yt+1 ∈ S is the first letter of wt+1). In symbols:
CollapseS(u) = w′

0πS(v′
0y1)w′′

1 · · · πS(v′
iyi+1)w′′

i+1 · · · w′′
t z, where z denotes either πS(v′

t)
if wt+1 is the empty word, or πS(v′

tyt+1)w′
t+1. The image of any word u ∈ S+ by CollapseS

is a J -maximal falling word.
Given an element s ∈ D1(S), we also define the partial evaluation program FallingS(s)

which takes a word u ∈ S+ which is a J -maximal falling word such that the last letter of u is
in S2, and returns a partial evaluation of u in which there is no occurrence of s. Given a word
u, we call s-decomposition of u the decomposition of the form u = w0sk0x0w1 · · · sktxtwt+1
where the ki’s are positive integers, the xi’s are non-s elements of S, except for xt which
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can also be equal to ϵ if wt+1 = ϵ, and the wi’s are words without any occurrence of s. The
s-decomposition of a word always exists and is unique. Given the s-decomposition of some
word u ∈ S+, keeping the same notation, we define

FallingS(s)(u) = w0πS(sk1x1) · · · πS(sktxt)wt

▶ Lemma 14. Let S be a semigroup of J -depth d. The evaluation program πS is equal to
the composition of O(|S|) evaluation programs among RProdS, CollapseSi

and FallingSi
(s)

for all 1 ≤ i ≤ d and s ∈ D1(Si).

▶ Remark 15. Waterfall evaluation programs have some ressemblance with the factorizations
forest of Simon [3]. Indeed, our programs create a factorization forest for each word they are
applied to. Moreover, the proof of the factorization forests theorem uses an induction on
J -classes, as we do for our programs. However, they are not quite the same. A waterfall
evaluation program can be applied to any word on the right alphabet, whereas the factorization
forests theorem proves the existence of a forest of bounded depth for a fixed word. This
theorem is used to prove the existence of a formula corresponding to a given semigroup in
two cases: the classes BΣ1 and Σ1. To our knowledge, there are no proofs for the class DA
or the class of aperiodic semigroups. Lastly, such proofs amount to consider all the formulas
of some quantifier depth that depends on the forest depth, a technique that resembles Wilke’s
proof for DA [35, Corollary 1] and also gives awful upper bounds.

3.4 Sweeping evaluation programs
We introduce an evaluation program which processes words in a more lateral fashion – from
left to right or right to left. In this subsection, S is a semigroup of J -depth d.

In the proofs of Section 4, we will perform evaluations that produce left (resp. right) J -
constant prefixes (resp. suffixes). We define those programs depending on the J -depth of the
semigroup that is considered. First, we introduce a left splitting higher order operation that
applies an evaluation program over a prefix of the input word defined by some constraints over
Green’s relations. Formally, for any integer i ≤ d, we define the operation LSplitS,i as follows.
Consider a word u = s0 · · · sk ∈ S+ and an evaluation program P defined at least on all left
J -constant words of depth i. If s0 is not of J -depth i, we set LSplitS,i⟨P ⟩(u) = u. Otherwise,
there exist two uniquely defined words p ∈ S+, s ∈ S∗ such that u = ps, where p is left
J -constant and either s is empty or, if we denote by x ∈ S its first letter, πS(px) <J πS(p).
In this case, LSplitS,i⟨P ⟩(u) = P (p)s. We define similarly the symmetric operation RSplitS,i.
Finally, we define the partial function JProdS , that is the restriction of πS over words that
are J -constant. Formally, JProdS is defined only on J -constant words and, given u ∈ S+

such a word, JProdS(u) = πS(u).
A sweeping evaluation program is an evaluation program built with the following op-

erations: LProdS , RProdS , the partial function JProdS , and the higher order operations
LSplitS,i and RSplitS,i for any integer i such that 1 ≤ i ≤ d.

Example. Consider a semigroup S and the sweeping evaluation program P = LProdS ◦
LSplitS,1⟨JProdS⟩. The program P first executes the operation LSplitS,1⟨JProdS⟩. To do
so, it begins by looking at the beginning of the input word w. If the first letter of w is not in
D1(S), then P computes only LProd(w), which is the word obtained by multiplying the two
first letters of w. Otherwise, P decomposes w into two words p ∈ D1(S)+, s ∈ S∗ such that
u = ps and, if s is not the empty word, πS(px) ∈ S2, where x is the first letter of s. Then, P

applies the operation JProdS to the prefix p. Then, the result of LSplitS,1⟨JProdS⟩(w) is
the word πS(p)s. Finally, P applies the operation LProdS to the previous result, multiplying
the first two letters of πS(p)s, if s is not empty.

STACS 2023



51:14 An Algebraic Approach to Vectorial Programs

▶ Lemma 16 (Sweeping evaluation programs). Let S be a semigroup. There exists a sweeping
evaluation program computing πS. Moreover, there exists such a program that is equal to the
composition of O(2d) operations.

4 Proof of the main results

We recall the proof strategy. Given a regular language which is aperiodic (resp. in DA), we
prove that we can compute πS with a ADD- (resp. Sweeping-) vectorial circuit. To build
such circuits, we rely on respectively waterfall and sweeping evaluations programs. As the
considered vectorial circuit classes are closed under functional composition, it is sufficient to
prove that every basic operation in our evaluation programs is computable with the desired
vectorial circuit class. We provide those arguments in this section and the corresponding
section of the appendix.

Vectorial encoding of a partial evaluation of a word. Our sweeping and waterfall evaluation
programs perform operations on partial evaluations of a word, so we need to provide an
explanation on how we encode these partial evaluations. From now on, a partial evaluation
will always designate a partial evaluation of a word, usually the initial word that needs to be
processed with the evaluation program. Informally, a vectorial representation of a partial
evaluation is a set of vectors, each vector corresponding to a semigroup element. The size of
the vectors is equal to the size of the initial word on which we apply the evaluation program.
We need the vectors we employ to always have the same size throughout the execution, so
our definition needs to be more general than indicator vectors. Each bit set to one denotes
the presence of the element in the partial evaluation, and the order of the bits set to one
determines the order of the letters in the word. As in the case of characteristic functions
of letters, in the vector encoding of a word, vectors in an encoding do not overlap, however
their union may not cover all the positions. More formally, a vectorial encoding of a partial
evaluation is a mapping c : S → {0, 1}n, for some integer n ≥ 1, such that we have the
following constraint: for any s, t ∈ S such that s ̸= t, we have c(s) ∧ c(t) = 0. Note that,
by definition, a word is a partial evaluation of itself, so enc(u) is a vectorial encoding of a
partial evaluation, with the additional property that

∨
a∈S 1a(u) = 1.

Given such a function c outputting vectors of dimension n, we can interpret it as a
word of length at most n by respecting the order of appearance of the bits. Formally,
a word s0 · · · sk ∈ S≤n is represented by a vectorial encoding c of dimension n if, for
every index j ≤ k, there exists some integer i such that 0 ≤ i < n, c(sj)i = 1 and
|{t ∈ N | t < i and

∨
s∈S c(s)t = 1}| = j − 1.

In this section, we use only circuits of the following form: the input is a vectorial encoding
of a partial evaluation c : S → {0, 1}n (for some n ∈ N+) representing some word u ∈ S≤n,
and the output is a vectorial encoding out : S → {0, 1}n representing the partial evaluation
of u obtained by applying the operation corresponding to the circuit. To prove our theorems,
we construct vectorial circuits using this encoding that implement the partial evaluation
functions we presented earlier.

Example. For example, consider the semigroup S = {a, b, c} with the inner multiplication
as follows: πS(ac) = πS(ca) = c, πS(bc) = πS(cb) = c, πS(aa) = b. The word w = aaabac

has the vectorial encoding a = 111010, b = 000100, c = 000001. With our circuits, if we
multiply the last two letters of w using this encoding, we will obtain the encoding a = 111000,
b = 000100, c = 000001. As expected, it represents the word w′ = aaabc: the first four
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elements of the vectors are the same and still represent the word aaab, the fifth element is a
0 in all vectors so it represents no letter, and the sixth element is a 1 in c, so it represents
the letter c. Since we started from a word of length 6, the length of the vectors is still 6 but
some of the indices do not represent a letter anymore.

Sketch of proof of Theorem 6. To prove Theorem 6, we consider a fixed aperiodic
semigroup S, and we denote by d its J -depth. Thanks to Lemma 14, it is sufficient to
provide ADD-vectorial circuits computing the operations CollapseS , RProdS and FallingS(s)
(for any aperiodic semigroup S and s ∈ D1(S)) over some vectorial encoding of any partial
evaluation of a word. Once we have those, we proceed as in Lemma 14, in which we prove
that, for any integer i such that 1 ≤ i ≤ d, πSi is equal to the composition of πSi+1 and
O(|S|) operations among CollapseSi

, RProdS and FallingS(s) (for any s ∈ Di(S)). More
precisely, the evaluation program for πS uses |S| operations of the form FallingS′(s) (where
s ∈ S), d operations of the form RProdS and d operations of the form CollapseSi

(recall that
d is the J -depth of S). Now, we can obtain the result by using the following lemmas:

▶ Lemma 17. For any aperiodic semigroup S, we can compute CollapseS over any vectorial
encoding of a partial evaluation with an ADD-vectorial circuit of size O(|S|3).

▶ Lemma 18. For any aperiodic semigroup S, we can compute RProdS on any vectorial
encoding of a partial evaluation of a word over S with an ADD-vectorial circuit of size
O(|S|2).

▶ Lemma 19. Let S be an aperiodic semigroup of J -depth d. For any element s ∈ D1(S),
we can compute FallingS(s) over any vectorial encoding of a partial evaluation in its domain
with an ADD-vectorial circuit of size O(d|S|).

With this, we can conclude that πS can be computed with an ADD-vectorial circuit of
size O(d|S|3).

Sketch of proof of Theorem 5. To prove Theorem 5, we consider a fixed semigroup
S ∈ DA, and we denote by d its J -depth. Thanks to Lemma 16, it is sufficient to provide
Sweeping-vectorial circuits computing the base operations over some vectorial encoding of
any partial evaluation of a word. Those operations are LProdS , RProdS , JProdS and, for
each integer i such that 1 ≤ i ≤ d, the operations LSplitS,i and RSplitS,i. Once we have
those, we proceed as in Lemma 16, in which we prove that πS is equal to the composition
of O(2d) operations among JProdS , LProdS , RProdS and LSplitS,i⟨E⟩ (for any integer i

such that 1 < i ≤ d and some sweeping program E composed of the same operations, that
are taken into account in the O(2d)). To prove this, we have πS = Pd,l = Pd,r where, for
each integer i such that 1 ≤ i ≤ d, the program Pi,l computes πS on the maximal prefix
of J -depth at most i (included), and the symmetric program Pi,r which acts on suffixes
instead of prefixes. Our proof constructs Sweeping-vectorial circuits for those programs, by
induction on the depth i. Now, we can obtain the result by using the following lemmas:

▶ Lemma 20. For any semigroup S ∈ DA, we can compute JProdS over any vectorial
encoding of a partial evaluation in its domain with a Sweeping-vectorial circuit of size O(|S|2).

▶ Lemma 21. For any semigroup S ∈ DA, we can compute LProdS and RProdS over any
vectorial encoding of a partial evaluation in their domains with Sweeping-vectorial circuits of
size O(|S|2).
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▶ Lemma 22. Let S be a semigroup in DA of J -depth d, i be an integer such that 1 ≤ i ≤ d,
let P be a sweeping evaluation program defined at least on all left J -constant words of
depth i, and suppose that we have a Sweeping-vectorial circuit of size sP that computes P

over any vectorial encoding of a partial evaluation. Then we can compute LSplitS,i⟨P ⟩ and
RSplitS,i⟨P ⟩ over any vectorial encoding of a partial evaluation in their respective domains
with Sweeping-vectorial circuits of size O(|S|2 + sP ).

Thus, following the construction in the proof of Lemma 16, for each integer i such
that 1 ≤ i < d, we have a Sweeping-vectorial circuit computing Pi+1,l (or Pi+1,r, these are
symmetrical operations) given some circuits computing Pi,l and Pi,r, and its size is equal
to O(|S|2 + 2ci), where ci is the size of the circuits computing Pi,l and Pi,r. Since, by the
construction of Lemma 16, we also have c1 = O(|S|2), we then have ci = (2i − 1)|S|2 for each
integer i such that 1 < i ≤ d. Thus, the circuit computing πS = Pd,l is of size O(2d|S|2).

5 Conclusion

We introduce vectorial circuits as abstractions of low level hardware architectures. As circuits,
they put forward dependencies between steps of computation and thus opportunities of
parallelism. Taking stock on previous work [16, Theorem 1], the next step is then to adapt
these circuits to a streaming context. This streaming setting is closer to text processing
problems as only small chunks of input data can hold at the level of CPUs. We shall then
study how to take advantage of SIMD instructions to implement these machines. The
vast number of SIMD instructions give many possibilities to compile vectorial circuits for
streaming text. The challenge is then to find the right set of instructions, combine them
sufficiently well together and obtain efficient programs. Here again, we hope that algebra
can back our efforts up.

Concerning the circuits themselves, we can consider extensions with operations that have
natural correspondence in CPU instructions such as shifts, prefix-xor, etc. The question
is then to understand what classes of regular languages we can describe. Hopefully, the
combinations of particular sets of operations could correspond to well-studied algebraic
operations [27]. Instead of operations, we can also consider the use of arbitrary constants,
(i.e. particular vectors that can be used as gates inputs). We think that using constants in
circuits can be related to that of arbitrary monadic advices [7].

In the paper, we limit ourselves to consider vectorial circuits as recognizers. As these
circuits produce outputs, they should be more adequately viewed as transducers. On the
theoretical side, there is a need to explore their expressivity. This requires an adaptation of
the algebraic tools we use, i.e. an understanding of classes of logical transducers. On the
practical side, in the context of streaming, this point of view calls for composing stream
processing programs. This probably requires to explore ideas from synchrone programming
in combination with vectorial circuits.

This paper also calls for more foundational work concerning circuit complexity. In
particular we conjecture that the bounds provided in Theorem 5 are tight. However, finding
an adequate lower bound is a challenging open problem.
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A Proofs for Section 3 (Semigroups evaluation strategies)

Every word in S+ admits a unique J -maximal decomposition of a word. This property
hinges on the Localisation Theorem of Clifford and Miller [24, Proposition 1.6, page 48].

▶ Lemma 23 (Localisation Theorem). Let S be a semigroup and x, y be in S. We have xyJ x

if and only if there exists an idempotent e in R(y) ∩ L(x).

▶ Lemma 12. Let S be a semigroup. Let x, y be J -equivalent elements of S and z another
element of S.

If πS(xy)J x and πS(zxy) <J x, then πS(zx) <J x.
If πS(xy)J x and πS(xyz) <J x, then πS(yz) <J x.

Proof. Both cases are symmetric, so we only prove the first one. Suppose that πS(zx)J x,
πS(xy)J x and πS(zxy) <J x. Lemma 23 implies that there is no idempotent in R(y)∩L(zx).
But, as πS(zx)J x, by definition of L, we have L(zx) = L(x). Therefore R(y) ∩ L(x) does
not contain an idempotent. Finally Lemma 23 entails xy <J x, a contradiction. ◀
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▶ Lemma 14. Let S be a semigroup of J -depth d. The evaluation program πS is equal to
the composition of O(|S|) evaluation programs among RProdS, CollapseSi

and FallingSi
(s)

for all 1 ≤ i ≤ d and s ∈ D1(Si).

Proof. For any integer i such that 1 ≤ i ≤ d, we define Oi = (s1, . . . , sk) to be any
enumeration of D1(Si). Given such an enumeration, we define the following operation:

FallingSi
[Oi] = FallingSi

(sk) ◦ · · · ◦ FallingSi
(s1)

We define an intermediate partial evaluation program fi which is a restriction of πS to the
domain S+

i ∪ S. In symbols, for any word u ∈ S+
i ∪ S, fi(u) = πS(u). Note that f1 is equal

to πS on any word of S+. We prove by induction over j = d − i, with i ∈ [d], that

fj = fj+1 ◦ FallingSj
[Oj ] ◦ RProdS ◦ CollapseSj

with the convention that fd+1 is the identity. The base case (fd+1) being fixed, we only need
to prove the result by induction on i for 0 ≤ i ≤ d−1. We remark that the image of CollapseSj

produces a J -maximal falling word, and then the application of RProdS guarantees that
the last element is not in D1(S). Finally, the application of FallingSi

(si) on the resulting
elements produces new elements that are only in Si+1 and removes all occurrences of the
element si. Hence by applying FallingSi

[Oi] we obtain a word in S∗
i+1, which concludes the

proof. ◀

▶ Lemma 16 (Sweeping evaluation programs). Let S be a semigroup. There exists a sweeping
evaluation program computing πS. Moreover, there exists such a program that is equal to the
composition of O(2d) operations.

To prove Lemma 16, we introduce an intermediate operation. Let i be an integer such that
1 ≤ i ≤ d. We denote by Pi,l the left sweeping evaluation program of J -depth i, which
computes πS on the maximal prefix of J -depth at most i (included). Formally, given a word
u = s0 · · · sk ∈ S+, Pi,l(u) is equal to u if s0 is of J -depth strictly greater than i. Otherwise,
there exist p ∈ S+, q ∈ S∗ such that u = pq, where either q is empty, or x ∈ S is its first
letter and then πS(p) is of J -depth at most i and πS(px) is of J -depth strictly greater than
i. In this case, Pi,l(u) = πS(p)q. We define symmetrically Pi,r, the right sweeping evaluation
program of J -depth i.

The next lemma allows to conclude the proof of Lemma 16 since πS = Pd,l = Pd,r.

▶ Lemma 24. For any integer i such that 1 ≤ i ≤ d, there exist sweeping evaluation programs
computing Pi,l and Pi,r.

Proof of Lemma 24. We will prove by induction on the J -depth i that we can implement a
left (resp. right) sweeping evaluation program Pi,l (resp. Pi,r). In this proof, we consider a
word u = s0 · · · sk−1 over S. For the base case, we first suppose that i = 1, i.e. we consider
maximal J -classes. Thus, if s0 is of J -depth 1, we will compute the product of the unique
prefix s0 · · · sp of u such that πS(s0 · · · sp)J s0 and πS(s0 · · · sp+1) <J s0. If sp+1 does not
exist, we want to compute πS(u). Note that s0 · · · sp is J -constant, hence we can apply
JProdS to it. Thus, we can compute the base case P1,l using the program LSplitS,1⟨JProdS⟩.
Note that this program is well defined since JProdS is in particular defined on all J -constant
words of depth 1, which are exactly the left J -constant words of depth 1. Symmetrically,
P1,r = RSplitS,1⟨JProdS⟩. To prove the induction case, we will rely on the following fact
(see 3.1 for the definition of a left J -constant word):
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▶ Fact. For any left J -constant word v ∈ S+ of J -depth i, the word RProdS ◦ Pi−1,r(v) is
J -constant.

Proof. The result is obtained from the fact that the last element of w = RProdS ◦ Pi−1,r(v)
is necessarily of J -depth i. Indeed, by definition, the word x = Pi−1,r(v) is such that the
product of its last two elements (if there are at least two elements) is at least of J -depth i.
Since we supposed that v is left J -constant of J -depth i, it is garanteed that this product
is defined and is exactly of J -depth i. Thus, both the first and last elements of w are of
J -depth i, as well as πS(w). Thus the product of any prefix or suffix of w will be of J -depth
i, and in the same J -class as the first and last elements of w, which corresponds to the
definition of J -constant. ◀

For the induction step, we assume to have sweeping evaluation programs Pi,r and Pi,l

for any integer i < d. We prove the result for Pi+1,r and Pi+1,l. These two cases being
symmetrical, we only show the result for Pi+1,l. Let v = LProdS ◦ Pi,l(u). If |Pi,l(u)| ≠ 1,
we have necessary that the first letter of v is of J -depth strictly greater than i. Otherwise
v = Pi,l(u) = πS(u). We are going to split v with respect to the J -depth i and apply the
program E = JProdS ◦ RProdS ◦ Pi,r to the prefix. Indeed, after the split, and thanks
to the previous Fact, we can apply JProdS over the factor RProdS ◦ Pi,r(p), where p

is the prefix obtained after the split. Indeed, this factor is J -constant. To conclude,
Pi+1,l = LSplitS,i+1⟨E⟩ ◦ LProdS ◦ Pi,l. Thus, each Pi is defined using O(2i) operations. ◀

B Proofs for Section 4 (Proof of the main results)

We introduce two vectors that we will use extensively in our circuits: given S a semigroup and
c a vectorial encoding of a partial evaluation, we define the universe vector U =

∨
s∈S c(s)

We also define the vector marking the end of the vectors: End = ¬MSB(1).

Proofs for Theorem 6. In our proofs involving aperiodic semigroups, we will rely on some
classical equivalent characterizations of this variety of semigroups.

▶ Proposition 25 ([25]). Let S be a semigroup. The following conditions are equivalent:
S is aperiodic
there exists an integer ω such that for all s ∈ S, πS(sω) = πS(sω+1)
All H-classes of S are trivial

Here is a technical property of aperiodic semigroups that will be useful in the proofs.

▶ Lemma 26. Let S be an aperiodic semigroup. Suppose that u = s0 · · · sk ∈ S+ is a
J -constant word. Then, πS(u) is the unique element of R(s0) ∩ L(sk). If k > 0, this also
implies that πS(u) = πS(s0sk).

▶ Lemma 17. For any aperiodic semigroup S, we can compute CollapseS over any vectorial
encoding of a partial evaluation with an ADD-vectorial circuit of size O(|S|3).

Proof. Consider a word u ∈ S+ and its J -maximal decomposition u = w0v1x1 · · · vtxtwtvt+1.
Our goal is to compute a vectorial encoding of the partial evaluation u′ = w0πS(v1x1)w1
· · · wi−1πS(vixi)wi · · · wtπS(vt+1). We proceed as follows. We start by computing, for
each s ∈ D1(S), the vector SecondEl(s) marking the positions that indicate an s at the
beginning of some sub-word vi. This is done using the operation Successor and the fact that
the first letter of each vi either is the first letter of the word or is such that the product with
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the previous letter stays in D1(S). Similarly, for each s ∈ D1(S), we compute the vector
BlockFall(s) marking each letter xi that follows an occurrence of s. This is done using the
operation Successor and the fact that each xi is after a block of letters which product stays
in D1(S). We then compute the products in the vectors Prod(p), for any p ∈ S2. To do
so, we define the set Fp = {(s, t, x) ∈ (D1(S))2 × S | πS(α · x) = p, where α = R(s) ∩ L(t)}.
This set is exactly what we need since, thanks to Lemma 26, we know that the product of
each subword vi is only determined by s and t. Thus, this set gives all the triplets (s, t, x)
such that, if a subword vi has s as its first letter, t as its last letter, and if xi = x, then
πS(vixi) = p. We compute Prod(p) as a union of calls to Successor over the set Fp. Note
that each triplet (s, t, x) ∈ (D1(S))2 × S can only appear in at most one set Fp, so the size
of the union of all these sets is only O(|D1(S)|2 ∗ |S|) ≤ O(|S|3). Finally, we compute the
output vectors by adding the products computed earlier and removing all the letters used in
these products. ◀

▶ Lemma 18. For any aperiodic semigroup S, we can compute RProdS on any vectorial
encoding of a partial evaluation of a word over S with an ADD-vectorial circuit of size
O(|S|2).

Proof. Let u ∈ S+ be a partial evaluation such that u is a J -maximal falling word. To
compute the vectorial encoding of RProdS(u), we begin by labeling the last element by its
value: the vector LastEl(t) is equal to End if and only the last letter of u is a t. Then, we
use O(|S|2) calls to Successor to determine the value of the product of the last two elements.
We replace the last two elements by that value if the size of u is at least 2, using the vector
Thr2(U) and the IfThenElse circuit we presented earlier in the article. Since that circuit is
of constant size, the circuit for RProdS is of size O(|S|2). ◀

Before proving Lemma 19, we prove the following technical lemma.

▶ Lemma 27. Let S be an aperiodic semigroup and u ∈ S+ a J -maximal falling word over
S such that its last letter is not an element of D1(S). Consider a fixed element s ∈ D1(S)
and write u as its s-decomposition w0sk1x1w1 · · · wt−1sktxtwt. Then, we can use an ADD-
vectorial circuit of size O(|S|) which takes the vectorial encoding as input and produces a
vectorial encoding of the word w0sk1−1πS(sx1) · · · skt−1πS(sxt)wt.

Proof. With a call to Successor and O(|S|) conjunctions, we can obtain the vectors Last(t),
for t ∈ S \ {s}, that mark the occurrences of t preceeded by an occurrence of s. Then, we
can replace thos elements by the product πS(st). Instead of removing the corresponding
occurrences of s, we remove the first s of each block, which is equivalent but far easier to do
in our model. Those occurrences of s can be marked using a single call to Successor. ◀

▶ Lemma 19. Let S be an aperiodic semigroup of J -depth d. For any element s ∈ D1(S),
we can compute FallingS(s) over any vectorial encoding of a partial evaluation in its domain
with an ADD-vectorial circuit of size O(d|S|).

Proof. Let u be a word of S+ and the set (c(t))t∈S be a vectorial encoding of u. Since we
know that the last element of u is not in D1(S), we know that each block of occurrences of s

is followed by at least one element. By applying Lemma 27, we can reduce by 1 the size of
each of these blocks. Moreover, the semigroup S is aperiodic, so by Proposition 25 there
necessarily exists an integer ωs such that πS(sωs+1) = πS(sωs). Thus, if we apply Lemma 27
ωs times, the only occurrences of s that will be left will be any letter s that was originally
followed by at least ωs other occurrences of s. Since πS(sωs+1) = πS(sωs), we can just forget
those occurrences without changing anything else. Note that, for any t ∈ S, we have ωt ≤ d,
where d in the J -depth of S, so we apply Lemma 27 at most d times. ◀
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Proofs for Theorem 5 In our proofs involving semigroups in DA, we will rely on some
classical equivalent characterizations of the variety DA.

▶ Proposition 28 ([29, Theorem 2]). Let M be a monoid. The following are equivalent:
M is in the variety DA
if J is a regular J -class of M , then J is an aperiodic semigroup
∀x, y, z ∈ M, (xyz)ωy(xyz)ω = (xyz)ω (this is the algebraic characterization of DA)

Any semigroup in DA is aperiodic, so we will also be able to use Proposition 25. Moreover,
the class DA admits the following nice property that we will rely on in the proofs.

▶ Lemma 29 (Algebra folklore). Let S be a semigroup in DA and R an R-class of S. Then
there exist two sets T, K ⊆ S such that S = T ⊎ K and, for all x ∈ R, we have ∀s ∈ T, xsRx

and ∀s ∈ K, xs <J x. Moreover, both T and K are sub-semigroups of S such that, if we
denote by J is the J -class containing R, J ⊆ T if R is regular and J ⊆ K otherwise. It
follows that if S is a monoid, then T is also a monoid.

Before proving the lemmas necessary for Theorem 5, we define some intermediary opera-
tions. These operations will all be of the same form: for any i ∈ N, we define the operation
Valuei,S that identifies the ith semigroup element that occurs in the word represented by the
input vectors. Formally, we define this operation as follows:

▶ Definition 30. Let S be a semigroup in DA and let (c(s))s∈S be a vectorial encoding of
some word u ∈ S+. For each s ∈ S and i ∈ N, we define the vector Valuei,S(s) that is equal
to 1 if and only if there exists an integer j such that the jth element of c(s) is a 1 and the
position j is the ith position of the vector U to hold a 1. Otherwise, Valuei,S(s) = 0.

▶ Lemma 31. For any integer i ≥ 1, we can compute the function Valuei,S over any vectorial
encoding of a partial evaluation with a Sweeping-vectorial circuit of size O(i + |S|).

Proof. Given a set of input vectors I = (c(s))s∈S , Valuei,S(I) is a set of vectors (out(s))s∈S

such that, for each element s ∈ S, out(s) is computed as follows. We begin by removing
the first i − 1 bits set to 1 in the union of the inputs by defining the vectors U0 = U
and, ∀j < i − 1, Uj+1 = LSB(Uj). Then, for each x ∈ S, we set to 0, in c(x), the i − 1
first bits set to 1 in U by computing the vector rm(x) = c(x) ∧ Ui−1. Now, to detect the
element associated to the ith bit set to 1 in U, we only need to detect the value associated
to the first bit set to 1 in

∨
x∈S rmx, which is done as follows: for any s ∈ S, we compute

the vector out(s) that is full of ones if and only if the position of the first bit set to 1
in Ui−1 (that is the union of the vectors rm(x)) is set to 1 in the vector rm(s). Thus,
out(s) = Eq(pref-∨(rm(s)), pref-∨(Ui−1)). ◀

▶ Lemma 20. For any semigroup S ∈ DA, we can compute JProdS over any vectorial
encoding of a partial evaluation in its domain with a Sweeping-vectorial circuit of size O(|S|2).

Proof. Let u = u0 · · · uk be a word of S+. To compute JProdS(u), we want to detect the
first and last bits set to 1 in U in order to compute an encoding of the word composed only
of the element πS(u0uk). The first element is directly indicated by the vectors Value1,S(s)
for each element s ∈ S. Now we detect the last element by computing the similar vectors
Last(s) for each s ∈ S: Last(s) = Eq(suf-∨(c(s)), suf-∨(U)). With these vectors, we know
the value of the product: the product is s ∈ S if and only if Value1,S(t) ∧ Last(p) is equal to
1 for some (t, p) ∈ S2 such that R(t) ∩ L(p) = {s}. We set the last bit of the corresponding
output vector to 1, and the rest to 0. ◀
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▶ Lemma 21. For any semigroup S ∈ DA, we can compute LProdS and RProdS over any
vectorial encoding of a partial evaluation in their domains with Sweeping-vectorial circuits of
size O(|S|2).

Proof. The two operations are symmetrical, so we present only the circuit for LProdS . Let u

be a word of S+. We can use Value1,S and Value2,S to compute vectors that give the values
of the first and second elements. If ∀s ∈ S, Value2,S(s) = 0, then |u| = 1 and there is nothing
to do. Thus, we use a circuit IfThenElse. If |u| > 1, we perform the product by computing
a vector PosSec with a unique 1 at the position of the second letter, which takes only a
constant number of gates, then we remove the first two elements of the input vectors and
add PosSec to the vector corresponding to the product. This last operation takes O(|S|2)
gates since we need to check all the pairs of elements of S to compute the product. ◀

▶ Lemma 22. Let S be a semigroup in DA of J -depth d, i be an integer such that 1 ≤ i ≤ d,
let P be a sweeping evaluation program defined at least on all left J -constant words of
depth i, and suppose that we have a Sweeping-vectorial circuit of size sP that computes P

over any vectorial encoding of a partial evaluation. Then we can compute LSplitS,i⟨P ⟩ and
RSplitS,i⟨P ⟩ over any vectorial encoding of a partial evaluation in their respective domains
with Sweeping-vectorial circuits of size O(|S|2 + sP ).

Proof. The two operations are symmetrical, so we only present the circuit for LSplitS,i⟨P ⟩.
Let u = u0 · · · uk be a word of S+. We want to detect the first element ui such that
πS(u0 · · · ui) is of J -depth at least i + 1 in order to replace the prefix of u0 · · · ui−1 by its
image through P . To do that, we begin by checking if the first element of the word is of
J -depth i by computing the vectors Value1,S(s) for all s ∈ Di(S). The union of those vectors
is then used in a circuit IfThenElse: if the union is 0, nothing is done. Otherwise, we want
to find the first position such that the product of the prefix is of J -depth at least i + 1.
Thanks to Lemma 29, we know that the set of elements that make that product fall in a
J -class of greater J -depth depends only on the R-class of the prefix, which is uniquely
determined by the first element, since that element is necessarily of J -depth i. Using the
vectors Value1,S(s) we computed, we can determine the R-class of the prefix. Depending on
this R-class, we search for the first letter of the word that belongs to the set K defined by
Lemma 29, using calls to pref-∨, and we mark all letters before its position: these letters are
exactly the prefix we need to consider. Computing all these masks for each R-class takes
O(|S|) gates. Then, we mask the input vectors and use the results as inputs for the circuit
CP . Finally, we reassemble the results with the suffixes that were not considered in CP to
get an encoding of LSplitS,i⟨P ⟩(u). ◀
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