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—— Abstract

The physically motivated quantum generalisation of k-SAT, the k-Local Hamiltonian (k-LH) problem,
is well-known to be QMA-complete (“quantum NP”-complete). What is surprising, however, is that
while the former is easy on 1D Boolean formulae, the latter remains hard on 1D local Hamiltonians,
even if all constraints are identical [Gottesman, Irani, FOCS 2009]. Such “translation-invariant”
systems are much closer in structure to what one might see in Nature. Moving beyond k-LH, what is
often more physically interesting is the computation of properties of the ground space (i.e. “solution
space”) itself. In this work, we focus on two such recent problems: Simulating local measurements on
the ground space (APX-SIM, analogous to computing properties of optimal solutions to MAX-SAT
formulae) [Ambainis, CCC 2014], and deciding if the low energy space has an energy barrier (GSCON,
analogous to classical reconfiguration problems) [Gharibian, Sikora, ICALP 2015]. These problems
are known to be P@MALEl. 5nd QCMA-complete, respectively, in the general case. Yet, to date, it
is not known whether they remain hard in such simple 1D translationally invariant systems.

In this work, we show that the 1D translationally invariant versions of both APX-SIM and
GSCON are intractable, namely are P?MAEXP- and QCMAgxp-complete (“quantum PNXP” and
“quantum NEXP”), respectively. Each of these results is attained by giving a respective generic “lifting
theorem”. For APX-SIM we give a framework for lifting any abstract local circuit-to-Hamiltonian
mapping H satisfying mild assumptions to hardness of APX-SIM on the family of Hamiltonians
produced by H, while preserving the structural properties of H (e.g. translation invariance, geometry,
locality, etc). Each result also leverages counterintuitive properties of our constructions: for APX-
SIM, we compress the answers to polynomially many parallel queries to a QMA oracle into a single
qubit. For GSCON, we show strong robustness, i.e. soundness even against adversaries acting on all
but a single qudit in the system.
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The Complexity of Translationally Invariant Problems Beyond Ground State Energies

1 Introduction

The quantum generalisation of a Boolean constraint satisfaction problem such as a 3-SAT
formula is known as a k-local Hamiltonian, H =, H;. Here, a Hermitian operator H acts
on N quantum systems of dimension d € O(1), so that H is a d” x d" complex matrix. Yet,
H has a succinct description of poly(N) bits, in that each H; acts non-trivially! on only
k € O(1) qudits, and hence requires O(1) bits to specify. Any Hamiltonian H captures the
static and dynamic properties of some many-body quantum system (via the Schrodinger
equation), such as its ground state energy, spectral gap, and time-evolution.

For this reason, the complexity of computing properties of local Hamiltonians has seen
intense interest in the last two decades (e.g., [32, 15] for surveys). The “benchmark” problem
here has been the quantum generalisation of MAX-k-SAT — approximating the ground state
energy of H (i.e. smallest eigenvalue \yin(H) of H, which represents the energy level the
system settles into when cooled to low temperature). This is the Local Hamiltonian Problem
(LH), known to be QMA-complete [26]. (Quantum-Merlin Arthur (QMA) is a quantum
generalisation of Merlin-Arthur (MA), with a quantum proof and verifier.) LH remains hard
on physically motivated setups, such as qubits on a 2D lattice [31] and 1D chains of local
dimension 8 [2, 30, 22]. Amazingly, it is QMAgxp-complete? even for 1D translationally
invariant, nearest neighbour systems [21], meaning on a line of N qudits, with each constraint
H; ;11 being identical for i € [N — 1] and each constraint only acting between neighbouring
pairs of qudits. This in stark contrast to 1D classical constraint satisfaction, which can be
efficiently solved via divide-and-conquer in time polynomial in the length of the chain (even
in non-translationally invariant systems).

Beyond ground state energies. From a physical perspective, what is often more interesting
than ground state energies is computing properties of the ground space itself — a problem
analogous to computing properties of optimal MAX-k-SAT assignments. In this direction,
recent works have studied determining a system’s density of states [10, 34]; minimising
interaction terms yielding frustrated ground spaces [16]; deciding if a ground space has an
energy barrier [18, 20]; simulating local measurements on ground spaces [3, 19, 17]; estimating
spectral gaps of local Hamiltonians [3, 12, 19]; and “universal” Hamiltonian models simulating
other quantum many-body systems [8, 11, 33, 27]. Here, we focus on two of these problems:
Simulating local measurements on ground spaces (APX-SIM) [3] and deciding if a ground
space has an energy barrier (GSCON) [18].

APX-SIM. The first problem, Approzimate Simulation (APX-SIM), asks: How difficult is
it to simulate a local measurement on a ground state of a local Hamiltonian? Given that
much of condensed matter physics is devoted to determining the low-energy properties of
materials, and that local measurements are the only tools available to experimentalists to
examine these systems, this is an extremely important problem.

» Definition 1 (APX-SIM(H, A, k,l,a,b,0) [3]). Given k-local Hamiltonian H =, H; on
N qubits, l-local observable A, and a,b,d € R such that b—a > N~° and § > N‘Cl, for
¢, > 0 constant, decide:

YES. If H has a ground state |) satisfying (¢| A ) < a.

NO. If for all |¢) satisfying (Y| H [¢) < Amin(H) + 8, it holds that (1| A|¢) > b.

1 Formally, if H; acts on a subset S; of qudits, it is specified via H; ® Iinps,, for [N] ={1,...,N}.
2 QMAgxp (Definition 20) is a quantum analogue of NEXP, meaning an exp-length quantum proof and
exp-time quantum verifier.
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We will also be interested in the version of the problem with a translationally invariant
Hamiltonian.

» Definition 2 (TI-APX-SIM(N, H;, A, k,l,a,b,9) [3]). Defined similarly to Definition 1
except the input is now the systems size N described in n = O(log(N)) many bits, and a local
interaction term H;. The overall Hamiltonian is a translationally invariant Hamiltonian on
N qudits H =", H;, with parameters b —a > N~°¢ = 0(27"), 6 > N= =0(27¢"), for
c,c > 0.

APX-SIM was originally shown PQMAlegl_complete for 5-local Hamiltonians with 1-local

o] ' meaning all

measurements [3, 19]. Here, PQMAgl i the quantum analogue of pNPI
languages decidable by a P machine making logarithmically many queries to a QMA oracle. It
was subsequently shown that APX-SIM remains PQMAogl_complete on physically motivated
2D models, and on (non-translationally invariant) 1D chains [17]. While it is unlikely
that QMA = PQMAllog] (since PAMANE] trivially contains co-QMA), P@MAleg] is “not too
much harder” than QMA, in that P@MAllee] € PP [19]. Finally, in this work we use
pQMAlflog] — PIQMA [17] where PIQMA allows polynomially many parallel queries to the

QMA oracle.

GSCON. The second problem we study is Ground State Connectivity (GSCON) [18], which
asks: given two ground states |¢) and |§) of a local Hamiltonian, is there a low energy path
connecting |1) to |¢)? Physically, this captures the question of determining if a ground space
has an energy barrier.

» Definition 3 (Ground State Connectivity (GSCON (H,n1,12,m3,M4,0,b,m,Uy, Uy,
V), |9)))[18]). Let H = . H; be a k-local Hamiltonian on N qubits. Consider para-
meters m1,12,1M3,M4,0 € R, and m € Z*, with na —ni,na —n3 > 6. Let Uy and Uy be
poly(NN)-size quantum circuits generating “start” and “target” states |¢p) = Uy |0---0) and
|¢) = Uy |0---0), respectively, satisfying (| H [¢) < m and (¢| H |¢) < 1. Output:
YES: If there exists a sequence of b-local unitaries (U;)!™, such that:

1. (Intermediate states remain in low energy space) For all i € [m] and intermediate

states ;) == U;-- - UUy |9), one has (;| H |1;) < m1, and

2. (Final state close to target state) ||Up, ---Up [¥0) — |9)]l, < 13-
NO: If for all b-local sequences of unitaries (U;)7%,, either:

1. (Intermediate state obtains high energy) There exists i € [m] and an intermediate state

[t;) = Uy --- UaUy |9, such that (;| H |1;) > n2, or

2. (Final state far from target state) ||Up, --- Uy [¢0) — |@) |y > na.
The translationally invariant version of GSCON can be specified in a similar way, where
instead the Hamiltonian is specified by a TT local interaction terms and the systems size.

GSCON is QCMA-complete for 5-local Hamiltonians [18], and remarkably (and in contrast
to LH) remains hard even for commuting Hamiltonians (i.e. when H; and H; commute for
all pairs) [20]. (Quantum-Classical Merlin Arthur (QCMA) is QMA, except with a classical
witness.) GSCON is motivated via quantum memories and stabilizer codes. For example,
a Hamiltonian H for a YES instance of GSCON has a short sequence of local unitaries
mapping between low energy states |¢) and |¢) through the low energy space of H. In a
quantum memory, |¢) and |¢) may encode logical states. As errors in physical systems are
often local, this implies H might not be a good quantum memory — not only can a short
adversarial circuit corrupt |1) to |¢) (since there is no energy barrier “separating” |¢) from
|@)), but this corrupting process takes place completely in the low energy space, meaning
such errors are not easily detectable.
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When are these problems relevant to physics? From a quantum complexity theoretic stand-
point, a key goal is to show that even local Hamiltonian systems mirroring those in Nature
can encode “hard” problems. Translationally-invariant Hamiltonians, in particular, not only
possess symmetries seen in Nature, but are also believed simpler than general Hamiltonians.
Intuitively, due to the spatial invariance of the system, the degrees of freedom available to
encode complex behaviour appears limited. A second physically motivated restriction is
spatial structure, such as one-dimensional systems, which can sometimes be more tractable
[7,29, 1, 36, 28, 14]. Combining these two properties, we arrive at one of the simplest systems
imaginable — 1D, translationally-invariant (TT) systems. Are these “more tractable” than
their higher-dimensional counterparts? As mentioned earlier, LH on such systems surprisingly
turns out to be QMAgxp-complete [21], and the question of existence of a spectral gap
undecidable [5]. Yet for natural problems such as APX-SIM and GSCON, the verdict is still
open.

1.1 Results

In this work, we give generic “lifting frameworks”, which we then apply to show (a) that
APX-SIM and GSCON remain “hard” in the 1D TT setting and (b) the Local Hamiltonian
problem determines the complexity of these problems. We now discuss these results in depth.

A lifting framework for APX-SIM

We begin with a generic framework for “lifting” hardness results about ground state ener-
gies (i.e. LH) to hardness results for APX-SIM. Formally achieved via our Lifting Lemma
(Lemma 10) and applications thereof in Section 2.3, the general premise is informally:

» Theorem 4 (LH to APX-SIM (informal)). If a family of Hamiltonians F admits a circuit-
to-Hamiltonian mapping Hy, such that approzimating the ground state energy for F is C-hard
(for complexity class C), then APX-SIM for F is PCloel_ o PC_hard for non-TI and TI
Hamiltonians, respectively.

The key point of the lifting map underlying Theorem 4 is that it automatically preserves
structural properties of F, such as locality, geometry, translational invariance, etc. This has
two advantages: First, it obviates the need to reprove hardness for APX-SIM each time a
new physically motivated circuit-to-Hamiltonian construction Hy, is discovered (modulo mild
assumptions on Hy, as per Definition 9). Second, it reveals that LH itself fundamentally
characterises the complexity of computing properties, such as simulating measurements on
the low energy states of a family of Hamiltonians.

For clarity, throughout this work, 1D TI versions of computational problems assume the
input size is n, whereas the length of the 1D chain is N € O(exp(n)). This is because in the
TI setup, it is standard for the input to be given succinctly by (1) the length of the chain in
binary and (2) a description of the single H; ;41 term to be repeated along the chain [21].

» Theorem 5. APX-SIM is POMAexe_complete for 1D TI, nearest neighbour, Hamiltonians
on N qudits of local dimension 44, for § = Q(1/poly(N)), b — a = Q(1/ poly(N)).

We also obtain PSPACE-completeness for 1D TT APX-SIM when §,b — a € Q(1/ exp(N)).
We thus find the first known hardness result for APX SIM in the TI setting. Two points
worth highlighting: First, counter-intuitively, our construction “stores” the answers to m
QMA queries into a single qubit. A similar phenomenon is trivially impossible classically.
This “compression” is what allows us to make our setup so generic. Second, one of the steps
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to establishing Theorem 5 is to show EXP!IQMA — pQMAexr Ty other words, an exp-time
Turing machine making exponentially many parallel QMA queries is equivalent to a poly-time
machine making poly-many adaptive queries to QMAgxp.

Hardness of Ground State Connectivity (GSCON)

Via different techniques, we next give a Lifting Lemma for GSCON (Lemma 15), obtaining
the first GSCON hardness result in a physically motivated setting:

» Theorem 6. GSCON is QCMAEgxp-complete for 1D TI Hamiltonians on N qudits of
constant local dimension, for m € poly(N), 6 € ©(1/poly(N)), and any b€ {2,...,N —1}.

Here, QCMAgxp (Definition 21) is to QCMA as QMAgxp is to QMA, i.e. one has an
exp-long classical proof and exp-time quantum verifier. Worth highlighting is that, perhaps
surprisingly, Theorem 6 holds even for b = N — 1. In words, even if an adversary can act
jointly on all but a single qudit per time step, our construction remains sound. This is
significantly more robust than [18], and is tight, since an adversary acting on all N qudits
can trivially cheat by mapping [1)) to |¢) via a single N-qudit unitary. We remark that the
applicability of our lifting theorem for GSCON is not as wide as that for APX-SIM; details
in Section 1.2.

1.2 Techniques
Circuit-to-Hamiltonian Mappings

We begin with a brief overview of circuit-to-Hamiltonian mappings. In the literature, a
circuit-to- Hamiltonian mapping roughly means a map which takes as input any quantum
circuit U = UpUp—_;...U; (e.g. consisting of 2-qubit gates U;), where U acts on some
Hilbert space H,, and outputs a so-called “history state Hamiltonian” H, whose low energy
space “encodes” U. The prototypical example is Kitaev’s construction [26], which outputs
H = Hin + Hprop + Hout + Hstab, where Hjy, forces the input of U to be initialised correctly,
Hpop that each gate of U follows correctly after all previous gates are applied, Hoyt checks
that U accepts, and Hgap, ensures the clock register is encoded correctly. (The Cook-Levin
theorem has analogous Boolean formulae for Hi,, Hprop, Hout, but does not require Hgap,
as time is explicitly encoded via rows of the table.) Of these, the most relevant to our
discussion is

Hprop = i hi where hy:= Z (1t)le) — [t + 1) Uple) ) ((¢] (e] — (t+ 1] (e U;f)7
t=0 le)

where we sum over a basis {|e)} for H,. The “history states” are then any state |¢) of the
following form (which span the null space of Hpyop)

T
) = % DI I)  where - [uh) = Ui - Us o) e

for any |¢) € H,. For our purposes, we formulate precise definitions of such mappings
(Definition 9 and Definition 26) in order to rigorously prove our lifting theorems with as
broad generality as possible.

54:5
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For APX-SIM

To make our lifting framework as general as possible, instead of focusing on PIRMA (which
equals PQMA[log] [17]), we consider arbitrary classes DIQ. Briefly, D is any “deterministic
class” (e.g. P, EXP; Definition 22), Q any “existentially quantified quantum verification
classes (QVClass)” Q (e.g. NP, QCMA, QMA; Definition 23). We allow almost arbitrary
“local circuit-to-Hamiltonian mappings” Hy, (e.g. Kitaev [25]; Definition 9), the primary
requirement of which is that a measurement in the standard basis on the first and second
output qubits of any unitary U can be simulated by a measurement on the low energy space
of Hamiltonian Hy,(U). Formal requirements with all minor assumptions in Definition 9.

With just this basic property of measuring two qubits of the ground state in hand, we
give a Lifting Lemma (Lemma 7) which takes any DI computation and embeds it in an
APX-SIM instance, while automatically preserving structural properties of the circuit-to-
Hamiltonian mapping Hy,. At a high level, we begin with an idea similar to the 1D non-TI
PQMA[log]_hardness result of [17] by replacing all parallel oracle calls to Q with explicit
verification circuits for Q. In contrast to [17], we then “count” the number of YES Q-queries
via a single qubit — each time a Q-verifier outputs YES, we rotate a designated “flag qubit”
by a small fixed amount. We then push this entire “bootstrapped” computation through the
circuit-to-Hamiltonian mapping H,,, followed by use of the “primary requirement” above
to simulate a penalty on the flag qubit. Remarkably, by carefully adjusting the weight on
this one flag qubit, with high probability we can force all Q-queries to simultaneously be
answered correctly. A priori, this is perhaps surprising; for example, Holevo’s theorem [23]
says that n qubits cannot transmit more than n bits of information, and yet here we are
cramming polynomially many query answers into a single flag qubit, while still meaningfully
utilising the information therein.

This flag qubit construction now allows us to circumvent the 1D TT restrictions (since
there is only a single flag qubit to keep track of, we are not worried about how it is arranged
geometrically within the final system). Additionally, a key part of the soundness analysis
is an exchange argument (Lemma 11), which may be of independent interest: given a
joint entangled proof |wj...,,) to m Q-verifiers V;, if the i*" local component of |w;....,) is
e-suboptimal for verifier V;, we give a rigorous lower bound on the deviation from the optimal
“counted sum” on the flag qubit.

For GSCON

Using different techniques, we next give a generic Lifting Lemma for GSCON (Lemma 15),
although less generic than what we are able to achieve for APX-SIM. Namely, we restrict
attention to quantum verification classes such as QCMA or QCMAEgxp (since we require the
ability to prepare low energy/history states efficiently in the YES case), and to general 1D
TT circuit-to-Hamiltonian mappings (again, with mild restrictions; see Definition 26). We
then apply Lemma 15 to the 1D TI Gottesman-Irani construction [21] to obtain QCMAgxp-
hardness of GSCON on 1D TI systems (Theorem 6).

At a high level, the starting setup for our lifting framework is similar to [18], which we
briefly review: given a QCMA verification circuit V', apply Kitaev’s circuit-to-Hamiltonian
construction to obtain local Hamiltonian H = ), H;, such that if V is a YES (NO) instance,
Amin (H) is small (large). Then, attach a “switch gadget” to H to obtain a new Hamiltonian
H’, so that any polynomial-length traversal of the low energy space of H’, from start state
|1} to target state |¢), forcibly “switches on” all terms of H. In the NO case, switching on
H incurs a large energy penalty, i.e. we hit the claimed energy barrier.
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Extending this to the 1D TT setting presents various challenges. First, the construction
of [18] is highly non-local geometrically, as each switch qubit is coupled to all local terms H;
of H. In order to maintain this level of coupling in 1D, we first use an idea reminiscent of the
space-time circuit-to-Hamiltonian construction of Breuckmann and Terhal [9], and instead
endow each qudit on the 1D chain with its own “local switch qudit”. We then wish to add
“string constraints” on these “local switch qubits” to force a prover to “switch on” each term
H; ;41 of the 1D Hamiltonian one at a time on the chain. But here we face an additional
pair of challenges: first, any naive implementation of string constraints allows a cheating
prover to switch on only N — b of the chain’s local terms H; ;11 — this is because the prover
is allowed to apply arbitrary b-local unitaries in each step, allowing it to “shortcut” the last
b switch qudits in one step. Second, we cannot satisfy the desired completeness properties
for GSCON by simply switching on local terms H; ;11 iteratively from left to right. Rather,
we must allow a non-linear order of activation.

It turns out that, not only can both the second and third challenges above be addressed
in a unified black-box fashion, but the unified fix will also make the construction remarkably
robust from a soundness perspective. Specifically, we first increase the local switch Hilbert
space dimension to 7, which roughly will allow non-linear activation orders when switching
on the local constrain terms. We then carefully construct our string constraints so that any
ground space evolution satisfying said constraints becomes “trapped” in a low-dimensional
joint switch subspace on all qudits. This low-dimensional space is precisely set up to achieve
two things: (1) force all local terms of H to be simultaneously switched on, and (2) be
“logically protected” from any switch subspace deviating from property (1) by a “string” of
local unitaries of length ©(N). The formal proof of correctness uses, among other tools, the
Traversal Lemma (Lemma 14) of [18, 20]. Perhaps counterintuitively, soundness holds even
if a cheating prover can apply (/N — 1)-local unitaries in each step, i.e. can act on all but one
qudit of the chain per step.

1.3 Open questions

For APX-SIM, our lifting framework not only simplifies existing PQMAN8]_hardness proofs
of APX-SIM [3, 19, 17], but also yields new hardness results, notably for 1D TT systems:
PQMABxr_completeness and PSPACE-completeness for inverse polynomial and inverse expo-
nential precision (with respect to the length of the chain), respectively. Can our techniques,
such as “compressing” multiple queries into a single qubit (Lemmas 7) and 11, find use
elsewhere in studying quantum oracle classes? Can our APX-SIM results be generalised to
yet more physical Hamiltonians (e.g. using Hamiltonian simulation techniques [17])? For
GSCON, does our “logically protected” switch subspace design have applications beyond
complexity theory, e.g. to robust quantum memories? Can our GSCON lifting framework be
generalised to the broader class of “local circuit-to-Hamiltonian constructions” (Definition 9),
as in APX-SIM? Most interestingly, do there exist non-trivial classes of Hamiltonians for
which GSCON is easy?

Organisation

Section 2 and Section 3 give detailed proof sketches of our main results.

Notation

Herm (X) and U (&X) denote the sets of linear and unitary operators acting on space X,
respectively. For H € Herm (X), Apin(H) is its smallest eigenvalue, and A(H) its spectral
gap (i.e. gap between two smallest distinct eigenvalues of A), i.e. A(A) = A1(A) — Amin(4).
Null (A) is the null-space/kernel of A.

STACS 2023
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2 Hardness via Lifting for APX-SIM

We now prove our lifting results for APX-SIM. Where appropriate, full proofs are deferred
or can be found in [35].

2.1 Reducing PII@VMA o a single quantum verification circuit

While it is instructive to view PIQMA ag the “guiding example” for this section, our statements
below apply more generally to classes of form DIQ. Namely, let D be a Deterministic Decision
Class if the set of languages it contains can be deterministically decided with some time and
space resources as a function of the input length (e.g. P, PSPACE, EXP, etc., Definition 22).
Let Q be an Existentially quantified quantum wverification class (QVClass) if it consists
of promise problems verifiable by a uniform family of quantum verifiers given access to a
quantum proof |¢), and with some completeness/soundness parameters ¢ and s (e.g. NP,
QMA, QMAgxp. Definition 23 makes no restrictions on ¢, s, uniformity resources, etc).

The first step of our construction is to map an arbitrary DIQ computation to a single
“verification circuit”.

» Lemma 7. Let x € {0,1}" be an instance of a problem in DIQ, which is decided by DI
machine U. There exists an efficiently computable (in encoding sizes of x and U) quantum
circuit V' satisfying:

1. V takes as input m+2 registers: input register A containing x € {0,1}", m proof registers
B; containing joint quantum proof |w1...,), with register B; to be verified by a Q-circuit
Vi (Figure 1). Without loss of generality, each verifier V; has the same completeness and
soundness parameters ¢ and s, respectively.

2. V has two designated output wires: gout encodes the output of U, and gaag, the state of
which encodes the number of Q queries made by U which were YES instances. Let |1)
denote the output state of V', given joint proof |wi...m).

Let So and S; partition {0,1}™ such that the D machine underlying U rejects
(accepts) given a string of query responses y € So (y € Si). Define py. =

Pr </\Z’11 V; outputs y;

T (jo)wl U, ) = D Prw 2)

y€S1

w1m>) . Then,

o (V3
T (W00l 10,,) = 3 pesin? (32 W) ®
ye{0,1}™
where HW (y) is the Hamming weight of y € {0,1}™.

Proof. As depicted in Figure 1, V is constructed by translating the D machine underlying
U into a quantum circuit U’ and then “simulating” the m (parallel) oracle calls U makes as
sub-routines by executing their Q-verification circuits V; on the relevant subsets of |wy....,,).
Note U’ is diagonal in the standard basis, and U computes the inputs |¢;) to Q-verification
circuits V; on-the-fly given z. Gate R(6) in Figure 1 denotes 2 x 2 the rotation matrix
R(0) = (cos @, —sin B;sin 4, cos h).

Let X,Y, Z denote the input registers to U’ holding input z € {0,1}"™, query response
string y = y1 - - - Ym, and ancilla (initialised to all zeroes), respectively. Since U’ is a classical
circuit, without loss of generality it maps any |x) y |y)y [0---0), — |z) ¢ |y)y [0---0f(y))
where f(y) is the output of U’ given query response string y € {0,1}"™. If F' denotes the flag
qubit register, the output |¢) of V is given by
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lq1) ——

verifier Vi
[wi) ——

I \ I
UI

|qm> — oulyy

verifier V,,,
(W) ———

n
|JC> . |quul>

0) R(V3/(2m)) — -+~ @7 |gmag)

Figure 1 The circuit V constructed in Lemma 7. The V; are Q-verifiers, each taking input |¢;)
and proof/witness |w;). For simplicity, states |w;) are illustrated in tensor product, but our proofs
treat the general case of entangled joint proof |wi...,,). U’ denotes the host postprocessing circuit in
the original DII® ¢ircuit U, which takes the Q-query responses and outputs U’s final answer. We
omit any preprocessing needed by U to compute inputs |¢;) and ancilla register C.

V3 (V3
y="D_ ayladxly)y[0--0fW), < (2m HW(y) ) [0) +sin | 5= -HW() | 1)) (4)
ye{0,1}3m F
where we omit registers such as those containing proof |ws....,), HW(y) is the Hamming weight
of y, and |a,|* = Pr </\Z'11 V; outputs y;

and (3). <

|w1...m>) . This immediately yields Equations (2)

» Remark. The flag qubit ¢,y does not use binary to store the number of queries which
output YES, but rather the number is stored in the angle the qubit is rotated by from its
initial state.

» Remark. It is not true in Figure 1 that the optimal strategy of a dishonest prover is to
send the optimal proof |w}) for each verifier V;. This is because intentionally sending a
rejecting proof |w;) to V; (even if ¢; is a YES instance) sets y; = 0, which may cause U’ to
incorrectly output 1 (whereas setting y; = 1 might cause U’ to output 0). Indeed, if sending
|w?) was the malicious prover’s optimal strategy, then Lemma 7 itself maps an arbitrary
PIQMA computation to a single QMA instance V, implying PIQMA = QMA.

2.2 Generic Hardness Constructions via a Lifting Lemma
We will in particular be interested in Hamiltonians which satisfy the following condition:

» Definition 8 (Conformity). Let H be a Hamiltonian with some well-defined structure S
(such as k-local interactions, all constraints drawn from a fized finite family, with a fized
geometry such as 1D, translational invariance, etc). We say a Hermitian operator P conforms
to H if H+ P also has structure S.

For example, if H is a 1D translationally invariant Hamiltonian on qubits, then P conforms
to H if H 4+ P is also 1D translationally invariant.

» Definition 9 (Local Circuit-to-Hamiltonian Mapping). Let X = (C?)®™ and ) = (C%)®". A
map Hy, : U(X) — Herm () is a local circuit-to-Hamiltonian mapping if, for any T > 0
and any sequence of 2-qubit unitary gates U = UpUp_1 --- Uy, the following hold:
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1. (Owerall structure) Hy(U) > 0 has a non-trivial null space, i.e. Null (Hy(U)) # {0}.
This null space is spanned by (some appropriate notion of) “correctly initialised compu-
tation history states™, i.e. with ancillae qubits set “correctly” and gates in U “applied”
sequentially.

2. (Local penalisation and measurement) Let q1 and qo be the first two output wires of U
(each a single qubit), respectively. Let Spre C X and Spost C Y denote the sets of input
states to U satisfying the structure enforced by Hy(U) (e.g. ancillae initialised to zeroes),
and null states of Hy(U), respectively. Then, there exist projectors My and Pr, projector
My conforming to Hy(U), and a bijection f : Spre > Spost, such that for alli € {1,2}
and |@) € Spre, the state |¢) = f(|@)) satisfies

Tr (10Y0]; (UrUr—1 ... U1) [¢Xo| (UrUr—y ... U)') = Tr ([or)er| M), (5)

where |7) = Pr|y) /|| Pr|[¥)|ly is [1) postselected on measurement outcome Pr (we
require Pp ) # 0). Moreover, there exists a function g : N x N — R such that

|Pr [9)|I5 = g(m,T) for all |¢) € Null (Hy(U)), (6)
M; = PrM;Pr. (7)

The map Hy,, and all operators/functions above (My,Ms,Pr,f,q) are computable given U.

We next embed the circuits V' constructed in Lemma 7 into a “local circuit-to-Hamiltonian
construction”, and carefully penalise the flag qubit — not the output qubit — to encourage the
ground space of Hy (V) to encode correct query answers made by the D machine to the Q
oracle. The latter is necessary since the reduction of Lemma 7 is not sound, meaning a NO
instance of PIQMA is not necessarily mapped to a “NO QMA circuit” V. For this, we formalise
and use a broad notion of “local circuit-to-Hamiltonian mapping” Hy, in Definition 9.

Coupling our single-qubit flag register setup from Lemma 7 with generic black-box usage
of “local circuit-to-Hamiltonian mappings H,” allows us to give the main workhorse of this
section, the Lifting Lemma for APX-SIM. Crucially, Definition 8 and Definition 9 ensure H
below automatically maintains desirable structural properties of Hy, (such as translational
invariance, geometric constraints, etc).

» Lemma 10 (Lifting Lemma for APX-SIM). Let z € {0,1}" be an instance of an arbitrary
DI problem, U a DIQ machine deciding x, and V the verification circuit output by Lemma, 7.
Fiz a local circuit-to-Hamiltonian mapping Hy, and assume the notation in Definition 9.

Fiz any o : N — N such that a > max (A&ﬁz‘u)), A:a(ﬁ»‘;z(\‘l/;)’

0<e<i (é + i?ﬂtff‘ﬂj)) (3;(;;2,2)) . the Hamiltonian H = a(n)Hy (V') + My satisfies:

If & is a YES instance, then for all [t) with (| H |0) < Muwia(H) + gz, (6] My [9) <
g(m,T)-m-max(l —c+e,s)+ %

If z is a NO instance, then for all |1) with (1| H [¢b) < Amin(H) + 5

a2’

1). Then, for any € satisfying

12 || M|

(W1 M [) > g(m, T) (1= m - max(1 - e+ ,5)) = =

3 We are intentionally being vague here, as the only formal requirement on the null space of Hy, (U) is
that of the following bullet on “local penalisation and measurement”. Intuitively, this would appear
to necessitate the null space of Hw(U) to indeed encode “correct initialisations” and “correct gate
applications”, as do all known circuit-to-Hamiltonian constructions.
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Table 1 Completeness of APX-SIM for families of many-body systems. Measurement precision
is relative to system size N, not input size n. NN = 2-local nearest-neighbour interactions. TI =
translationally-invariant.

circuit-to-Ham. interaction topology measurement completeness
construction precision

[31] 2D planar, NN, local dim 2 1 pllana

2] 1D line, NN, local dim 12 poly

[13] 3-local, local dim 2 1/ exp PSPACE

[4] TI, 1D line, NN, local dim 44 1 EXPplQMA
6] TI, 3D fcc lattice, 4-local, local dim 4  poly EXploMa
[27] TI, 1D line, NN, local dim 42 1/ exp PSPACE

Note the Lifting Lemma’s sole degree of freedom is the function «. All other quantities stem
from the choices of Hy, D, and Q). M plays the role of observable A from Definition 24.

Proof sketch. We proceed via three steps: (i) We first use the Extended Projection
Lemma (Lemma 25) to show that for o as in the lemma claim, for any |¢) such that
(W| H |¢) < Amin(H) + J, there exists a uniform history state |¢) € Null (Hy,(V)) such that

l)w] = [6Xl I, < 221 and where |¢) has energy (9] H [6) < Amin(H) + 8 + 2221
(#i) These history states correctly simulate V' from Lemma 7 (as given in Equation (1)) on
any claimed proof |w;....,,) to the parallel Q-verifiers. However, the Ms term in H, which
simulates penalising the flag qubit of V', enforces that any such low energy history state must
in fact send the locally optimal proofs |wy...,,) = |w}) @ - -+ ® |w},), ensuring all Q-queries
are answered correctly. The main technical ingredient behind rigorously proving this is the
following lemma.

» Lemma 11. Assume the notation of Lemma 7, which showed Tr(|w)1| - |0)0] =

dflag
> yefo,13m Pyw cos? (HW(y)v/3/(2m)), where |¢) denoted the output of V given joint
proof |Wi...m), and py., = Pr(A\[~, Vi outputs y; | |wi..,)). Suppose there exists an i €
{1,...,m} and € > 0 such that |wy...,) is “e-suboptimal on proof i”, meaning there exists
a local proof |wi)such that Pr(V; outputs 1 | |wy...m)) = Pr(V; outputs 1 | |w})) —e. Then
there exists a proof |wi..,,) = |w})) & -+ @ |wl,) which causes V to output |¢') satisfying

T (J0)1 - 10K0l,,,, ) 2 Tr (165071 040, ) + e

Lemma 11 ties the energy penalty on the flag qubit of V' to the optimality of all Q-queries.

It is proven via a careful exchange argument involving a pair of recursions — the delicacy lies
in the fact that we require a rigorous deviation bound (i.e. 3¢/8m?), and for this we must
take conditional probabilities into account due to potential entanglement between proofs. A
full proof is provided in the full version of the paper [35]. <

2.3 Applying the Lifting Lemma

With Lemma 10 in hand, we show the hardness results depicted in the rightmost column of
Table 1. Technically, our construction gives a slightly stronger result, namely hardness for
V-APX-SIM (Definition 24), for which the YES case reads “for all |t} satistying (¢| H |¢) <
Amin(H) + 6, (] Ay < a”. This immediately implies hardness for APX-SIM as well, since
V-APX-SIM trivially reduces to it.
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» Corollary 12. V-APX-SIM is complete for the Hamiltonians and respective classes in
Table 1. In particular, V-APX-SIM (and hence APX-SIM) is EXPIMA _hard for a 1D
TI Hamiltonian on qudits of local dimension 44, 1-local observable A, § = 1/poly(N),

b—a=Q(1/poly(N)).

» Remark. (1) In TT settings, one need be slightly careful in how Lemma 10 is applied, as
we cannot explicitly write out the full circuit of Figure 1. (2) We also obtain PSPACE-
completeness for inverse exponential promise gap (relative to system size N). Previously,
LH with such promise gap was shown PSPACE-complete [13]. (3) We also recover existing
PIOMA pardness results of [3, 19, 17] except for PIS©IMA_completeness [17] (Lemma 10
requires error reduction, not known to hold for StogMA).

3 Hardness via Lifting for GSCON

We now show Theorem 6, which recall says GSCON is QCMAgxp-complete for 1D TI
Hamiltonians on N qudits. To begin, we require the following tools.

» Definition 13 (b-orthogonal states and subspaces [18]). For b > 1, a pair of states
v}, [w) € (CH)®N 4s b-orthogonal if for all b-qudit unitaries U, we have {(w|U |v) = 0.
We call subspaces S, T C (C?)®N b-orthogonal if any pair of vectors |v) € S and |w) € T are
b-orthogonal.

» Lemma 14 (Traversal Lemma [18, 20]). Let S, T C (C4)®N be b-orthogonal subspaces. Fix
arbitrary states [v) € S and |w)y € T, and consider a sequence of b-qudit unitaries (U;)7%,
such that |||w) — Uy, --- Uy [v) ||y < € for some 0 < € < 1/2. Define |v;) :==U;---Uy |v) and
P :=1—Tg —1Ilp. Then, there exists an i € [m] such that (v;| P |v;) > ((1 —€)/m)>.

3.1 Generic hardness constructions via a Lifting Lemma

We now give a black-box mapping for “lifting” 1D TT circuit-to-Hamiltonian constructions
to QCMAgxp-hardness results for GSCON. While the goal is similar to the Lifting Lemma
for APX-SIM, here we restrict attention to a broad class of 1D TI circuit-to-Hamiltonian
mappings we denote TI-standard (Definition 26), with two primary properties: (1) In the
YES case, there exists a low energy state [¢j.y) preparable in time poly(N), for N the
length of the chain (hence our focus on QCMAEgxp, not QMAgxp), and (2) the local H;
need not be positive, but the set of H; with (¢iow| H; |tow) < 0 is computable in time
poly(N). Again, these assumptions are rather mild, and satisfied by most, if not all known
circuit-to-Hamiltonian constructions.

» Lemma 15 (Lifting Lemma for GSCON). Let V be a verifier for a QCMAgxp prom-
ise problem. Fix any TI-standard circuit-to-Hamiltonian mapping which produces 1D TI
Hamiltonians on qudits of local dimension d, and any b € {2,..., N — 1}. Then, there exists
a poly(log N)-time many-one reduction mapping any instance x for V to a 1D TI GSCON
instance H on N qudits of local dimension 7d with b-local unitaries U;, such that m € poly(N)
and § € ©(1/ poly(N)).

3.1.1 Proof of Lemma 15

The construction is stated below — Definition 16 gives the Hamiltonian, and the remaining
parameters are set subsequently. The intuition was outlined in Section 1, and is fleshed out
in the full version in multiple steps. Here, we recount the most crucial points, and point the
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0 1 2 3 4 5 6 Phase Switch register contents

0l v X X X X X ‘Warm up 0000 — 1000 + 1010

v v v X X X X Full blast 1010 — 1110+ 1111

X x v x x x x Lf_:ﬂdeke 111 1112 1122 - 1222 2222
Right deke 2222 > 3222 > 3322 > 3332 > 3333

3|k XL Left deke 3333 > 3334 > 3344 > 3444 > 4444

dx XX x /XX Right deke 4444 1 5444 1 5544 > 5554 1 5555

S5\ X x x v /7 Cool down 5555 — 5556 > 5656

6| X X X X X vV V Complete shutdown | 5656 +— 5666 +— 6666

Figure 2 Left: A v/ (X) at position (7,j) means symbol i can (cannot) appear immediately to
the left of j in joint clock space B. Right: An honest prover’s sequence of states in B, organised by
phase, and for N = 4. In this example, for concreteness we assume F = {1,3} (see Definition 26).

reader to the completeness analysis of Appendix C.2 for further insight: (1) Each qudit in our
system is given its own “clock register” to permit a 1D construction, and (2) the Hamiltonian
H, start/end states |1)) and |¢) are designed to force any low-energy space evolution to
effectively “wind through” a pre-defined path in the “clock space”, along which lies a carefully
placed “bottleneck” which “switches” on a simulation of the QCMAgxp verifier V.

» Definition 16 (Lifted Hamiltonian). Let x be an instance of a QCMAgxp promise problem,
with verification circuit V. such that for any YES instance x, V accepts some classical proof
with probability at least 1 —¢€, and for all NO instances x, V' accepts all proofs with probability
at most €. Let H' = Zf:ll Hz{7i+1’ be the Hamiltonian generated by applying a TI-standard
construction (Definition 26) to V. Define E as the 2-local projector onto the set of forbidden
2-local nearest-neighbour substrings in figure 2 (left), where the B; are the local clock registers.
Define the lifted Hamiltonian as H = Zfi}l H; i1, where:

Hiir = (Hiip1)anam, ® (X4 12)X2] + [3)3] + [4X4] + [5)5])5, + AEp, 5,,, (8)
for A € R to be chosen as needed. Note each A; ® B; is viewed jointly as qudit i.

The start and final states are |¢)) = ®fv:1 0) 4,
Set m = a, o = B/(8m?), 13 =0, ny = 1/2, and m = 2L + 7N, where L € poly(N) is the
size of the circuit preparing the ground state of H' in the YES case. Set 6 = (1 + n2)/2,
which by definition of TI-standard is at least inverse polynomial in N (since § is at least
inverse polynomial in ). Finally, set any b € {2,..., N — 1} (b the locality of each U,);
b = 2 suffices to show completeness, and soundness holds for all b € {2,..., N — 1}.

Completeness

Suppose z is a YES instance. The following lemma shows there is a short path through the
low energy subspace between states [1)) and |¢), as desired.

» Lemma 17 (Completeness). Let Apin(H') < a. There exists a circuit U = Uy, ... UsUy
of 2-local gates U; such that U ) = |@), and all intermediate states |¢;) = U; ... UsUy |4)

satisfy (il H |1hi) < m.

Proof sketch. The full analysis is given in Appendix C. The high-level idea is as follows:
Since z is a YES instance, H' has a low energy history state |1}y ), which by Definition 26
can be prepared in poly(N) time. To traverse the low-energy space of H from [¢)) to |¢),

0)5, and [¢) = ®fv:l |0) 4, |6) 5., respectively.
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prepare |Yiow) in A, map the clock registers from [0)® ™ to |6)® " according to the rules of
Figure 2 (left); an N = 4 example is in Figure 2 (right). Roughly, the Warm up and Full
blast (and by symmetry, Cool down, Complete shutdown) phases allow the honest prover to
“switch on” local terms of H; in an arbitrary order, required since we cannot assume H/ > 0
for all ¢ in Definition 26 (necessary for [21]). The remaining four phases are for soundness
(Lemma 18). |

Soundness. Suppose z is a NO instance. The following lemma shows that any short path
from [¢) to |¢) must leave the low-energy subspace.

» Lemma 18. Let Apin(H') > B3, and fix any b € {2,...,N — 1}. Consider any sequence
U=U,, Uy of b-local unitary operators acting on ®ZVZ1 A; @ B;. Then, either there exists

i € [m] such that intermediate state |1;) == U; - -~ UsUy |¢) satisfies ;| H |1;) > 3 (422) =
2, or [[m) — @)y = 1/2 = ma.

Proof sketch. The full analysis is given in Appendix C. At a high level, in the NO case, H'
does not have a low-energy state |1)ow) to prepare in .A. Thus, the aim is to force the cheating
prover to switch on all terms H/, which inflicts energy penalty at least 8 on register A. The
catch is that the prover can apply b-local unitaries, potentially attempting to bypass the last
b switches on the chain via a single unitary. Via a careful application of the Traversal Lemma,
we show that there exists a time step ¢, such that intermediate state [¢;) has non-trivial
overlap in By_p ® - - - ® By on regular expression 33*(2* U4*). By the rules of Figure 2 (left),
we deduce that all switch qudits to the left of By_; are also set to |3); but this guarantees
all terms of H/ are switched on, as desired. Note the Traversal Lemma alone cannot ensure

that all H] are turned on; it is the delicate combination of the rules of Figure 2 (left) and
the Traversal Lemma which make this possible. |

3.2 Proof of QCMAEgxp-completeness

With the Lifting Lemma for GSCON (Lemma 15) in hand, we obtain our QCMAEgxp-
completeness result.

» Theorem 19. GSCON is QCMAgxp-complete for 1D, nearest neighbour, translationally
invariant Hamiltonians on N qudits, for m € poly(N), 6 € ©(1/poly(N)), and any b €
{2,...,N —1}.

Proof sketch. Containment in QCMAgxp for § € Q(1/poly(N)) is immediate since
GSCON € QCMA for any interaction graph [18]. QCMAgxp-hardness of GSCON fol-
lows from plugging GI into Lemma 15. Note GI itself is not TI-standard, as it does not satisfy
the requirement 8 > 16(2L + 7N)a > 0, but this is easily addressed via energy shifts. <
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A  Additional Definitions

» Definition 20 (QMAgxp [21]). A promise problem II = (Ayes, Ano) s in QMAgxp if
and only if there exists a k € O(1) and a Quantum Turing Machine M such that for any
input x € {0,1}", and any proof 1) € (C2)®2nk, on input (x,|v)), M halts in on* steps.
Furthermore,

(Completeness) If x € Ayes, 3 [¢0) € ((C2)®2nk such that M accepts (x,|v)) with probability

> 2/3.

(Soundness) If v € Apo, then ¥V |b) € (C2)®2nk , M accepts (x, |1)) with probability < 1/3.
We take care to distinguish QMAgxp from the class QMAq, of [13] which is for an expo-
nentially small promise gap in the input size, but polynomial length run time, also called
PreciseQMA.

Next, QMA with a classical witness yields the complexity class QCMA.
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» Definition 21 (QCMAgxp). A promise problem I = (Ayes, Ano) s in QCMAgxp if and
only if there exists k € O(1) and an exponential-time uniform family of quantum circuits

7Lk o
{Qr}, where Q,, takes as input a string x € X", a classical proof y € {0, 1}2 , and on*
’Vlk
ancilla qubits in state [0)%* | such that:

nk
(Completeness) If x € Ayes, Jy € {0, 1}2 such that Q,, accepts (z,y) with probability
> 2/3.

nk
(Soundness) If x € Apo,Vy € {0, 1}2 , Qn accepts (x,y) with probability < 1/3.

» Definition 22 (Deterministic Decision class). A set C of languages is a deterministic
decision class if, for any language L € C, there exists a deterministic Turing machine M
which can decide L under the resource constraints specified by C. Formally, given any input
x € {0,1}", M halts after using R(n) resources (where R may specify bounds on time or
space), and accepts if x € L or rejects if x & L.

Standard examples of deterministic classes include P, PSPACE, and EXP.

» Definition 23 (Existentially quantified quantum verification class (QVClass)). A set C of
promise problems is an existentially quantified quantum verification class if any promise
problem A = (Ayes, Ano, Ainv) in C satisfies the following. There exist computable functions
f,9,h : NN, as well as a deterministic Turing machine M which, for any input x € {0,1}",
uses R(n) resources to produce a quantum verification circuit V. (consisting of 1- and 2-qubit
gates) and thresholds ¢, s € R" such that ¢ —s > 1/h(n). Here, R(x) refers to resources such
as time, space, etc, as required by C. The circuit V takes in a quantum proof [1) on f(n)
qubits, g(n) ancilla qubits initialised to all zeroes, and has a designated output qubit, such
that:
(YES case) If x € Ayes, there exists a quantum proof |1) on f(n) qubits such that
measuring the output qubit of V' |)|0---0) in the standard basis yields 1 with probability
at least c.
(NO case) If x € Ano, for all quantum proofs |1) on f(n) qubits, measuring the output
qubit of V |1) |0---0) in the standard basis yields 1 with probability at most s.
Without loss of generality, we assume the output qubit of V is the first wire exiting V.

In this way, classes such as NP, NEXP, QCMA, QMA, and so forth are examples of a
QVClass.

» Definition 24 (V-APX-SIM(H, A, k,1,a,b,0) [17]). Given a k-local Hamiltonian H =), H;
acting on N qubits, an [-local observable A, and real numbers a, b, and § such that b—a > N~¢
and 6 > N_C/, for c,d > 0 constant, decide:

YES. If for all |¢) satisfying (| H |) < Amin(H) + 8, it holds that (| A |¢) < a.

NO. If for all |¢) satisfying (| H |¢) < Amin(H) + 0, it holds that (| A|) > b.

B Complexity of APX-SIM

B.1 Useful Lemmas

» Lemma 25 (Extended Projection Lemma ([24, 19])). Let H = Hy + Ho be the sum of two
Hamiltonians operating on some Hilbert space H = S + S8*. The Hamiltonian H, is such
that S is a zero eigenspace and the eigenvectors in S+ have eigenvalue at least J > 2 || Hz|| .
Let K = ||Hs||,. Then, for any 6 > 0 and |¢) satisfying (Y| H |¢) < Amin(H) + 0, there
exists a |YV') € S such that the ground state energy is bounded as Amin(Hzls) — % <
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Amin(H) < Amin(Hz|s), where Ain(Hz|s) denotes the smallest eigenvalue of Hy restricted to

2
space S. Furthermore, the ground state is perturbed as \(7,[1|1//)\2 >1- (W) ;

' K+\/K245(]_2K)
and satisfies (V'| H [{') < Ain(H) 46 + 2K —Y—5—5—.

C Complexity of GSCON
C.1 Definitions for GSCON

» Definition 26 (Tl-standard). A circuit-to-Hamiltonian mapping from verification circuits
V' to 1D, nearest neighbor, translationally invariant Hamiltonians H = Zfi}l H; 41 is
TI-standard if it satisfies the following conditions. Below, N denotes the number of qudits H
acts on, and o and 3 the completeness/soundness (a.k.a. “low energy” and “high energy”)
parameters for H, respectively:

1. H =0, although the local terms may satisfy H; ;11 # 0.

2. In the YES case, if the optimal proof to verifier V is a classical string y € {0, 1}pOIY(N),
then there exists a (potentially non-uniformly generated) quantum circuit of size L €
poly(NN) preparing a low energy state |iow) for H, i.e. (Yiow| H |iow) < a.

3. In the YES case, the subset of indices F C [N — 1] for which H; ;11 contributes negative
energy to the low-energy state, i.e. all i for which H; ;1 satisfies (Yrow| Hiit1 |P1iow) < 0,
is computable in poly(N) time®.

4. In the NO case, Ain(H) > (. Here, we require o — 3| > 1/ poly(N) (which is standard
in the literature) and f > 16(2L + TN)a > 0 (which is specific to our construction).

All of these assumptions are rather mild, as we now clarify.

Remarks regarding Definition 26.
Assumptions 1 and 4 must be taken together (otherwise, H > 0 can always be achieved
by adding a multiple of the identity).
The setting of H > 0 but H; 0 arises when applying our construction to the Gottesman-
Irani 1D TT mapping (henceforth GI) [21] in Section 3.2. Specifically, GI is not TI-standard
in its original form, since it violates the final requirement 8 > 16(2L + 7N )«, which is
crucial to our use of the Traversal Lemma.
Assumption 3 is vacuously true when all H; = 0. When H; ¥ 0 for some i, however,
this is also generally a mild assumption, since it only cares about energies against |10y ),
which is typically a history state of some form.

C.2 Proof of GSCON Lifting Lemma

We now prove the Lifting Lemma for GSCON, Lemma 15.

C.2.1 Completeness

Suppose x is a YES instance. The following lemma shows there is a short path through the
low energy subspace between states |¢)) and |¢), as desired.

4 One can replace the < 0 condition here with < —1/p(N) for some sufficiently small polynomial p; we
omit this for simplicity.
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» Lemma 27. Using the notation of Definition 16, let Amin(H') < «. There exists a circuit
U= U . UxUy of 2-local gates U; such that U |¢) = |¢), and all intermediate states

|1/Jz> - U2U1 |1/}> satzsfy <’(/}z| H Iwz> < -

Proof. By definition of TI-standard, since the optimal QCMAgxp proof is a classical string
of size poly(N), there exists a poly(NN)-length sequence U’ = Uy, --- Uy of L 1-and 2-qudit
unitaries (acting on ®fi1 A;) which prepares a low energy state |11ow) of H'. The circuit U
of the claim now acts as follows (see Figure 2 for an explicit example when N = 4).

1. Prepare low energy state. Compute Uy ® I |w>A,B’ i.e. perform the mapping

|¢>A,B = [Piow) 4 [0+ 0) 5.

2. “Warm up”. Let F C [N — 1] denote the set of indices ¢ for which (¢1ow| H] z+1 [thiow) < 0,
which is efficiently computable by definition of TI-standard. One at a time, map |0) B,
|1), for each i € F', in any order.

“Full blast” One at a time, map [0)5 + [1)g, for all i € [N]\ F', in any order.
“Left deke” Map [1)g + |2)5, for all i in sequence (N,...,1) (i.e. right to left).
“Right deke”. Map [2)5 |3> for all ¢ in sequence ( .., N) (i-e. left to right).

“Left deke” Map [3)5 > |4)5, for all ¢ in sequence (N ,1) i.e. right to left).
“Right deke” Map [4)5 |5> for all ¢ in sequence ( N) (i.e. left to right).
“Cool down”. One at a time, map 15)5, = 16), for all i € [ ]\ F, in any order.

9

LN RW

“Complete shut down” One at a time, map [5)5 + [6)5 for each i € F', in any order.
10. Uncompute low energy state. Apply (U')j4 ® I to our state.

Analysing each step above shows that for each step satisfy (v;| H |¢;) < n;. |

C.2.2 Soundness

Suppose x is a NO instance. The following lemma shows that any short path from |¢) to |¢)
must leave the low-energy subspace, as desired.

» Lemma 28. Using the notation of Definition 16, let Anin(H') > B, and fix any
b e {2...,N—1}. Consider any sequence U = U,,---Uy of b-local unitary operators
acting on ®5V1.A» ® B;. Then, either there exists i € [m] such that intermediate state

[s) = Uy UaUs ) satisfies (il H ) = & (522 ) = 12, o7 [[m) = [0}l = 1/2 = na.

Proof. Assume, for sake of contradiction, that |||¢y,) — )|, < 1/2, and that (1;| H |10;) < 12
for all ¢ € [m]. Define b-orthogonal subspaces

Soiz = Lasi yo @Span ({Is)s, ,, |5€{0,1,2)""'})
Sise = Iap, n~_, . @Span ({|S>BN4’,N | s e {4,5,6}b+1}) 7
and recall that we set
Hijivr = Hj ;1 @ (L] + [2)2] + [3)X3] + [4X4]| + [5)5])5, + AEB, 5,4, (9)

for E the projector forbidding the 2-local substrings depicted in Figure 2 (left). We first

show that, for sufficiently large A, |1);) has almost all its amplitude on a state in the null
N

space of Hg =AY ." | Eg,

i+1c
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» Lemma 29. Assume (¢;| H |1;) < n2 for all i € [m]. Then, there exists i € [m] such that
[ti) can be written as |1;) =1 |71) + 72 [v2), with (y1|y2) =0, |11) € Null (Hg), and

n
el = il < 2/, (10
1 /n
<71| I— H5012 - HS456 ‘71> > m -2 Z2 (11)

The proof of Lemma 29 follows from Lemma 14. We draw the following conclusions:
1. Recalling that Sp12 (Sus6) projects onto {0,1,2}" ({4,5,6}") in By_s,...n, respectively,
Equation (11) implies |y1) = x1|x1) + X2 |x2) for orthonormal vectors {|x1),|x2)},
Ix1]? > (4m=2) — 21/ /A, such that |x1) has registers Bn—s,...,n supported solely on
the intersection of two sets:
All strings in the null space of Hg (since |vy;) € Null (Hg) implies |x1) € Null (Hg)),
and
all strings in the null space of I —Ilg,,, — Ig,., (by Equation (11)).

But the intersection of these two sets has precisely the regular expression

33*(2* U 4%), (12)

where the first 3 is located in By_;. This follows since by Figure 2 (left), a 3 can only
have a 2, 3, or 4 to its right, and once we put down a 2 to the right (resp. 4), we can
only put down more 2’s (resp. 4’s).
Similarly, |x2) is supported in registers By_y,... n solely on the span of strings from set
{0,1,2}°1 U {4,5,61""" (note Figure 2 (left) disallows a digit from set {0, 1,2} to be
neighbours with a digit from {4,5,6}). Thus, |x1) and |x2) are orthogonal on the last
b+ 1 switch qudits (since the former must have a |3) on these qudits, but the latter
cannot).

2. Again since |x1) € Null (Hg), combining Equation (12) with Figure 2 (left) now implies,
in fact, that all switch qudits “to the left” of By_; are also set to |3), i.e

Ix1) =13---3)p5, s O IXD A8y yer o

for some unit vector |x}). Together with Equation (12), this implies the entire register B
of |x1) is supported only on symbols from {2,3,4}.

3. Since all of B is now supported on symbols from {2, 3,4}, it follows from Equation (9)
that all terms of H' are switched on (thus resolving Obstacle 2). Hence,

Ml H ) = 71|Z L1 ® (XL [2)2] + 3)3] + [4)4] + [5)X5]) s, [71)

(4;2 _ 2\/77;2) (il H [x1)
_ (;ﬂz¢§)ﬂurﬂaummm

1 2
(g -2/%) 5 (13)

where the first statement follows since |y1) € Null (Hg), the second since (1) H' > 0 and
(2) since

V

Ol Hi i @ (0L + [2)2] + BX3] + [4)(4] + [5)(5])5, [x2) =0
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since |x1) and |x2) are orthogonal on the last b+1 switch qudits (even when projected down
onto Span(|1),]2),]3),[4),|5))), the third statement since all of register B is supported
on symbols {2, 3,4}, and the last statement since Apin(H’) > 8 by assumption.

We conclude that |v;) is high energy against H. We now show a similar result for |1);), giving

the desired contradiction. To do so, we follow the proof of the Projection Lemma of [24].

For brevity, define H; = SN Hj o @ (JO(L] + [2)2] + [3X3] + [4)(4] + [5)X5])5, so that
H = H, + Hg. Then, for A > 2||H'||, = 2||H:||,, recalling that Hg |y1) =0,

(Wil H i) > [(1 = |v2l*) (mal Hi [n) + 2Re(yiyz (v1] Hi |72) + [v2]* (v2| Hi [y2)] + A ||
> (yi| Hi ) + (A = 2| Hiloo) el = 2| Hal o, [yel

> (nl Him) = 2| Hill /%

1 ’
ot -2 2 (5 ]|H])

where the first statement follows since |71 |* + |y2|* = 1 and Hg |y1) = 0, the second since
|71| < 1, the third when A > 2||H; ||, and since Iv2? < 12/A, and the last by Equation (13)
and since ||H:||,, = [[H'|| . Crucially, note that H' is independent of A (recall H' is the
TI-standard Hamiltonian we have plugged in as a black-box). Thus, we may set A to a

sufficiently large fixed polynomial in N so that (y;| H [1h;) > % ( B ) = n5. This yields the

4m?2
desired contradiction. <

>

‘ 2
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