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—— Abstract

We consider the Maximum-weight Matching (MWM) problem in the streaming sliding window model
of computation. In this model, the input consists of a sequence of weighted edges on a given vertex
set V of size n. The objective is to maintain an approximation of a maximum-weight matching in
the graph spanned by the L most recent edges, for some integer L, using as little space as possible.
Prior to our work, the state-of-the-art results were a (3.5 4 ¢)-approximation algorithm for MWM by
Biabani et al. [ISAAC’21] and a (3 + €)-approximation for (unweighted) Maximum Matching (MM)
by Crouch et al. [ESA’13]. Both algorithms use space O(n).

We give the following results:

1. We give a (2 + ¢)-approximation algorithm for MWM with space O(v/nL). Under the reasonable
assumption that the graphs spanned by the edges in each sliding window are simple, our algorithm
uses space O(n+/n).

2. In the O(n) space regime, we give a (3 + ¢)-approximation algorithm for MWM, thereby closing
the gap between the best-known approximation ratio for MWM and MM.

Similar to Biabani et al’s MWM algorithm, both our algorithms execute multiple instances of
the (2 + ¢)-approximation O(n)-space streaming algorithm for MWM by Paz and Schwartzman
[SODA’17] on different portions of the stream. Our improvements are obtained by selecting these
substreams differently. Furthermore, our (24 ¢)-approximation algorithm runs the Paz-Schwartzman
algorithm in reverse direction over some parts of the stream, and in forward direction over other parts,
which allows for an improved approximation guarantee at the cost of increased space requirements.
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1 Introduction

The data streaming model is a well-established computational model that provides a framework
for studying massive data set algorithms. The defining features of the model are restricted
access to the input data and sublinear space. A data streaming algorithm processes its input
sequentially in a single pass while maintaining only a small summary of the input in memory.

In this paper, we study the Maximum-weight Matching (MWM) problem in the (streaming)
sliding window model. In this variant of the streaming model, the input consists of a
potentially infinite sequence eq,es, ... of weighted edges on an underlying vertex set V' of
size n. The objective is to maintain a matching of large weight in the graph spanned by
the L most recent edges, for some integer L, using as little space as possible. In more
detail, after having processed the current edge e;, for every 4, the objective is to report an
approximation of a maximum-weight matching in the graph spanned by the current sliding
window E; := {e; : max{i — L+ 1,1} < j < ¢}. Many of the known sliding window
algorithms for graph problems operate within semi-streaming space [12], i.e., within space
O(npolylogn) = O(n). In this paper, we will work both with the semi-streaming space
regime and also consider algorithms that use more space.

While sliding window algorithms have been studied for two decades [10], sliding window
algorithms for graph problems were first considered by Crouch et al. [7] in 2013. Amongst
other results, they showed that there is a (3 + ¢)-approximation semi-streaming sliding
window algorithm for unweighted Maximum Matching (MM) and a 9.027-approximation
semi-streaming sliding window algorithm for MWM. While no improved results are known
for MM, Crouch and Stubbs [8] subsequently improved upon the result for MWM and gave a
(6 + €)-approximation semi-streaming algorithm, and, very recently, Biabani et al. [4] gave a
(3.5 + €)-approximation in the semi-streaming space regime. The state-of-the-art results for
MM and MWM in the semi-streaming sliding window model therefore do not yet line up.

Our Results

In this paper, we give two sliding window algorithms for MWM that both improve upon the
state-of-the-art approximation guarantee of 3.5 + €.

As our first result, we give a substantial improvement and obtain an approximation factor
of 2 4+ ¢ at the expense of increased space requirements:

» Theorem 1 (simplified version). There is a deterministic (2 + €)-approzimation sliding
window algorithm for Maximum-weight Matching that uses space O(v/nL) (with dependency
on € and logarithms suppressed), for any & > 0.

Some remarks are in order. First, we observe that going beyond the approximation
factor of 2, even using space O(n!'?%?), would answer a long-standing open problem in
graph streaming research, namely, whether there is a one-pass (2 — Q(1))-approximation
streaming algorithm for MM with space O(n'99). We thus cannot expect to obtain further
improvements in the approximation guarantee with current techniques. Second, the space
requirements of our algorithm depend on the sliding window length L. This is in contrast
to the (3.5 + ¢)-approximation algorithm by Biabani et al. [4] and our second algorithm
described below. Under the natural assumption that the graphs described by all sliding
windows are simple, we have L = O(n?), which yields a space bound of O(n\/n).

As our second result, we close the gap between MM and MWM in the semi-streaming
space regime. To this end, we give a semi-streaming sliding window algorithm for MWM that
matches the approximation guarantee of the best-known sliding window algorithm for MM.



C.-M. Alexandru, P. Dvorak, C. Konrad, and K. K. Naidu

Table 1 Known sliding window algorithms for MM and MWM.

Approximation Factor Space Reference
MM 3+¢€ O(n) Crouch et al. [7]
MWM 9.027 O(n) Crouch et al. [7]
6+¢ O(n) Crouch and Stubbs [§]
35+¢ D(n) | Biabani et al. [4]
3+e¢ O(n) This paper (Theorem 2)
2+4¢ O(v/nL) | This paper (Theorem 1)

» Theorem 2 (simplified version). There is a deterministic semi-streaming sliding window
algorithm for Maximum-weight Matching with approximation factor 3 + €, for any € > 0.

Table 1 summarizes all results known for MM and MWM in the sliding window model.

Techniques

Both our algorithms make use of the one-pass (2 + €)-approximation streaming algorithm
for MWM by Paz and Schwartzman [19]. Since we make use of the inner workings of the
algorithm, we will discuss this algorithm first.

Paz and Schwartzman's MWM Algorithm. Paz and Schwartzman’s original algorithm [19]
uses space O(% -nlog? n) and is based on the local ratio technique (see [3] for further details
on this technique). Ghaffari and Wajc [13] gave a simplified version and improved the space
complexity to the (optimal in n) bound O(% -nlog n)

The Paz and Schwartzman algorithm with Ghaffari and Wajc’s improvement works as
follows. For every vertex v € V, it maintains a potential ¢(v) that is initialized with 0, and uses
a stack data structure Stack. When an edge e = {u, v} arrives in the stream, e is pushed onto
Stack if its weight w(e) exceeds the sum of the potentials of its incident vertices by a factor of
at least (14-¢), i.e., w(e) > (1+€)(p(u)+¢(v)). The discrepancy between w(e) and ¢(u)+p(v)
is denoted the reduced weight of e and is abbreviated by w'(e) := w(e) — (¢(u) + ¢(v)). Then,

the potentials ¢(u) and ¢(v) are updated as p(u) = p(u) + w'(e) and p(v) = p(v) + w'(e).

Last, if either u or v is adjacent to at least 31%(1/5) + 1 edges in Stack then the oldest (and
thus lightest) edge incident to the vertex is removed from Stack, thereby limiting the number
of edges on Stack. After having processed all the edges in the stream, the output matching
M is computed in a post-processing step. The edges in Stack are popped one by one and
greedily inserted into M if possible, i.e., as long as M remains a matching. We denote the
Paz and Schwartzman algorithm by ALG%g. See Section 2 for a formal description.

(2 + ¢)-approximation Algorithm with Space O(v/nL). Our (2 + ¢)-approximation
algorithm processes the input in blocks of size s = ©(v/nL). Consider one such block Bj,
i.e., a substream of s consecutive edges. The key idea of our algorithm is to run multiple

instances of the Paz-Schwartzman algorithm ALG%g on Bj, however, in reverse direction.

We start with a single instance Z;. At various moments during the processing of B;, we fork
the current instance Z; to obtain an additional instance Z; 1, and then only continue to feed
further edges into Z;11; thus, in any moment of processing the block B;, we feed the edge
to only one instance of the Paz-Schwartzman algorithm. The fork happens when the sum
of reduced weights W'(Z;) of the edges on Stack in Z; exceeds the sum of reduced weights
of the previous instance by a 1 + ¢ factor, i.e., W/(Z;) > (14+¢) - W/(Z;_1). As a result, we
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obtain instances of Paz-Schwartzman that processed suffixes of different lengths of block
B; (remember that we process B; in the reverse direction), and adjacent instances have a
similar sum of reduced weights (up to a 1+ ¢ factor). As we will point out in Section 2, the
sum of reduced weights in an instance of Paz-Schwartzman is strongly related to the weight
of a maximum-weight matching among the edges observed thus far, and we heavily exploit
this property in our proofs.

In each block Bj, besides preparing the instances of Paz-Schwartzman as described
above, we also feed the edges of B; (in the forward direction) into those instances of Paz-
Schwartzman that were prepared during previous blocks Bj/, with j' < j, and that are still
alive, i.e., have only been fed edges from the current sliding window. As such, each instance
of Paz-Schwartzman is executed on a portion of the stream in the reverse direction, followed
by all the subsequent edges from more recent blocks in the forward direction until the current
edge. The output produced when processing the current edge is the output of the oldest
alive instance of Paz-Schwartzman.

Consider two adjacent instances Z; and Z;;1 of Paz-Schwartzman prepared in the same
block, where Z; has processed only a subset of the edges of Z;; and their sums of reduced
weights W' are such that W'(Z;11) =~ (14 &)W/'(Z;). The key benefit of executing Paz-
Schwartzman in the reverse direction as opposed to forward is that the edges processed
by Z;4+1 but not by Z; contribute to the sum of reduced weights only with an e-fraction
of W/(Z;) (since W'(Z;11) — W(Z;) = eW'(Z;)). When Z; is the oldest alive instance and
thus constitutes the output of our algorithm, we only miss an e-fraction in terms of reduced
weights of the edges in the sliding window that Z; has not considered. We remark that this
property could not be established if we run Paz-Schwartzman in the forward direction. This
property together with the fact that the sum of reduced weights is related to the weight of a
maximum-weight matching allows us to establish the approximation factor of our algorithm.

Since only the L most recent edges are relevant, our algorithm considers at most % =
©(4/L/n) blocks simultaneously. Each block consists of O(1) instances of Paz-Schwartzman.
Since each of these instances requires space O(n), we obtain the final space bound of

(3 + e)-approximation Semi-streaming Algorithm. Our (3 + ¢)-approximation algorithm
follows similar arguments as the (3.5 + ¢)-approximation algorithm by Biabani et al. [4]. We
will therefore first explain the techniques behind Biabani et al’s algorithm and then discuss
our new ideas which yield the improved approximation guarantee.

Biabani et al’s algorithm combines the smooth histogram technique for sliding window
algorithms by Braverman and Ostrovsky [6] with the Paz and Schwartzman algorithm.
Braverman and Ostrovsky showed that if a function f fulfills certain smoothness criteria!
then a sliding window algorithm for approximating f can be obtained from a traditional
(non-sliding window) streaming algorithm for f at the expense of only a logarithmic increase
in the space requirements (as long as the approximation factor of the streaming algorithm is
constant), and a slight increase in the approximation factor. In the context of MWM, the
smoothness criteria are captured by Biabani et al. [4] via the notion of lookahead algorithm.

L Informally, a function f : 2X — R is considered to be smooth if it satisfies the following: If f(A) is close
to f(B) for A, B C X, for a suitable notion of closeness, then the values f(AUC) and f(BUC) are
close for all C' C X.
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» Definition 3 ((f, @, 8)-lookahead algorithm [4]). Let 8 € (0,1) and o > 0 be real numbers.
Let X be a ground set, S a stream of items of X, and let f : 2X = RT be a non-decreasing
function. We say that a streaming algorithm ALG is a (f, a, B)-lookahead algorithm if, for
any partitioning of S into three substreams A, B, C with ALG(B) > (1 — ) - ALG(AB), the
following holds: f(ABC) < a- ALG(BC).

In this paper, the stream AB denotes the concatenation of streams A and B (as it is used
in the previous definition). We observe that the previous definition holds for real-valued
non-decreasing functions. In the context of MWM, the weight of a maximum-weight matching
rather than the matching itself fulfills these conditions. We will therefore consider the problem
of determining the weight of a maximum-weight matching instead, and, in order to be able to
output an actual matching as required in MWM), we will rely on the fact that the underlying
algorithm which we will consider also maintains the actual matching itself. Furthermore, we
will write MWM(S) to denote the weight of a maximum-weight matching in stream S.

Biabani et al. [4] showed that if there is a (MWM, «, 8)-lookahead algorithm that uses
space s then there exists a sliding-window algorithm with approximation ratio a and space
O(% -slog 0'), where o0 = % “Wmax/Wmin and Wpax and wpyi, are the maximum and minimum
weights of an edge in the input stream, respectively. Observe that, under the usual assumption
that Wmax/Wmin i polynomial in n, we have logo = O(logn).

The main part of their analysis is to show that a monotonic version of the Paz and
Schwartzman algorithm, denoted ALG o, constitutes a (MWM, (3.5 + ¢), 8)-lookahead
algorithm, for small values of € and 8 < £/9. Combined, this yields a (3.5 + ¢)-approximation
semi-streaming sliding window algorithm for MWM.

We first note (see Appendix A for details) that the analysis of Biabani et al. is best
possible in that the Paz and Schwartzman algorithm and its monotonic version are no better
than (MWM, 3.5, 3)-lookahead algorithms. The smooth histogram technique applied to
lookahead algorithms as defined in Definition 3 thus cannot give an improved approximation
guarantee when Paz and Schwartzman’s algorithm is used as the underlying algorithm.

To illustrate our improvement, we first provide insight into the structure of Biabani et
al’s analysis. In order to prove that ALG 0, is & (MWM, 3.5 + ¢, 8)-lookahead algorithm,
Biabani et al. relate MWM(ABC) to the output of ALG ., on various substreams of ABC"

MWM(ABC) < 2(1+e¢): (ALGmon(AB) + ALG mon(BC))
1
- W+ “ALG on(B) . (1)
They subsequently use the smoothness assumption from Definition 3 and a monotonicity prop-
erty of ALG ,0n to relate ALG on(AB) and ALG o0 (B) to ALG 1on(BC). This ultimately
yields the desired bound MWM(ABC) < (3.5 + ¢€) - ALG pon(BC).

To obtain our improvement, we observe that a similar inequality to Inequality 1 can be
obtained by considering sums of reduced weights of the respective runs of ALG ., instead of
the weights of the output matchings of ALG,,,, on the different substreams. This idea is
motivated by the fact that the sum of reduced weights is a lower bound on the weight of
the matching produced by the algorithm, which can therefore give a more precise analysis.
However, when departing from such an inequality involving sums of reduced weights, we
unfortunately cannot immediately complete our analysis since, unlike when considering the
outputs of ALG ., directly, we do not have a sufficient smoothness property regarding sums
of reduced weights at our disposal that would allow us to bound these quantities.

Our key idea is as follows. To establish the necessary smoothness properties, we employ
the smooth histogram technique directly on sums of reduced weights rather than on the
size of the output matching itself. To be consistent with the literature and to illustrate the
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increment over Biabani et al’s work, we encapsulate this idea via an alternative definition
of lookahead algorithms, denoted refined lookahead algorithms (see Definition 9 for details),
which enables us to incorporate the required smoothness property of sums of reduced weights
into the definition. We then prove that, similar to lookahead algorithms, refined lookahead
algorithms can still be turned into sliding window algorithms with a similar small increase
in the space complexity. Last, we finish our argument by proving that ALG%g is a refined
lookahead algorithm with an approximation factor of 3 4+ &, which establishes our result.

Further Related Work

The sliding window model can be regarded as a streaming insertion-deletion model with
highly structured deletions since, for each incoming edge, the oldest edge in the current
window is deleted. Interestingly, the complexities of MM and MWM in the sliding window
model are much closer to those in the insertion-only model, where no deletions are allowed,
as opposed to the insertion-deletion model, where arbitrary deletions are allowed. In the
insertion-only model, the currently best one-pass algorithm known for MM is the GREEDY
matching algorithm, which produces a 2-approximation and uses semi-streaming space O(n).
It is known that computing a (1 4 In 2)-approximation requires strictly more space than
O(n) [15], see also the previous lower bounds [14, 16]. It remains a key open problem to
close this gap. Regarding MWM, a series of works [12, 18, 21, 11, 8, 19, 13] culminated in
the Paz and Schwartzman algorithm, which closes the gap between MWM and MM from an
algorithmic perspective in the insertion-only model. In the insertion-deletion model, where
arbitrary previously inserted edges can be deleted again, it is known that space ©(n?/a3) is
necessary and sufficient for computing an a-approximation to MM, see [2] for the algorithm
and [9] for a matching lower bound (see also the previous works [17, 1]). MWM reduces easily
to MM in the insertion-deletion model, by, for example, grouping edges of similar weights
into groups and running the MM algorithm a logarithmic number of times in parallel at the
expense of only a marginal increase in the approximation factor.

The sliding window model is inspired by the problem of inferring statistics of data
occurring within a certain time frame over a continuous stream of data (e.g., maintaining the
number of distinct users who have accessed a social media page in the last 24 hours). The
model was introduced by Datar et al. [10], and Crouch et al. [7] were the first to consider
graph problems in the sliding window model. Among others, they showed that testing
Connectivity and Bipartiteness, and constructing (1 + ¢)-sparsifiers can be done in the sliding
window model using semi-streaming space. Furthermore, as previously mentioned, they also
gave the first sliding window algorithms for MM and MWM.

The smooth histogram technique used in our work was introduced by Braverman and
Ostrovsky [6] and can be regarded as an improvement of the exponential histogram tech-
nique [10] for smooth functions. This technique has successfully been applied to a wide range
of problems, including the computation of coresets [20] and for clustering problems [5].

Outline

We first give notation and a discussion of Paz and Schwartzman’s algorithm including
its properties in Section 2. The (2 + €)-approximation is presented in Section 3. The
semi-streaming (3 + €)-approximation via the refined lookahead algorithms is then given in
Section 4. Finally, we conclude with open questions in Section 5.
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2 Preliminaries

In this section, we start with some important notation and a formal description of the improved
version of Paz and Schwartzman’s algorithm by Ghaffari and Wajc (see Algorithm 1). This
is followed by some key insights about the algorithm.

Let S be an input stream representing an edge-weighted graph G = (V, E,w) with a
weight function w : E — RT. We assume that each edge, including its weight, can be
stored in a single word of memory; as such, all our space bounds are in terms of words
of memory. For any subset of edges F' C E, let w(F) = > .pw(e) be the sum of their
weights. Then, for any maximum-weight matching in G, denoted by M*(S), we have that
MWM(S) = w(M*(S))

Algorithm 1 ALG%g (Paz and Schwartzman’s algorithm with Ghaffari and Wajc’s improvements. )

Input: A stream S of weighted edges

Initialization:

1: Stack < an empty stack
2: for every vertex v € V do ¢(v) + 0

Streaming:

3: while a new edge e = {u, v} of the stream S is revealed do
4: if w(e) < (1+¢)- (o(u) + ¢(v)) then w'(e) + 0

5 else
6: w'(e) — (p(u) + ¢(v)) > w’(e) is the reduced weight of e
7: o(u) + <p( ) + w'(e); p(v) + p(v) +w'(e) > update potentials
8 Stack.Push(e)
9 for z € {u,v} do > optimizing space
10: if z is adjacent to > 31%(1/5) + 1 edges in Stack then
11: Remove the oldest edge adjacent to z from Stack
Postprocessing:

12: Let M be an empty matching

13: while Stack is not empty do

14: e < Stack.Pop()

15: if M U {e} is a matching then M « M U {e}

16: return M > a GREEDY matching of the edges in Stack

ALGSg (Algorithm 1) uses the notions of reduced weights and vertex potentials. These are
respectively represented by the functions wy : E — IR{EJ" and pg : V — ]Ra' when the algorithm

is executed on a stream 5. The sum of all reduced weights is denoted by Wg = > g wg(e).

For any edge in the stream, its reduced weight is non-negative and is unchanged by the
processing of any subsequent edges. In particular, for a stream AB and any edge e € A (i.e.,
the edge e is present in the stream A), we have w/y(e) = w'yz(e) > 0. Hence, the sum of
the reduced weights is a non-decreasing function, i.e., W) < W/, 5. The output matching of
ALG% on stream S is denoted by M (S).

Ghaffari and Wajc’s analysis of the algorithm reveals the following key observations and
results which we later use in our proofs.

» Observation 4 (Ghaffari and Wajc [13]). At any moment there are O (% n) edges
stored in Stack during the execution of ALG%g.
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» Proposition 5 (Ghaffari and Wajc [13]). For any edge e = {u, v} in a stream S, after the
execution of ALGpg, its weight is bounded as w(e) < (1+¢) - (ps(u) + ¢s(v)).

» Proposition 6 (Ghaffari and Wajc [13]). Let € > 0 and S be a stream of edges. Then, the
following inequalities hold:

w(M*(8)) = Wg,

~ 1

w(VI(S)) > !

! 1 *
1522 V5T st an v;“’s(“) 2 41 +9) (w(M(S)).

Note that Proposition 6 uses the important fact that W§ = 3> .1, ¢s(v) as the potential
of a vertex v is actually the sum of reduced weights of edges incident to v. Furthermore, its
last inequality is due to Proposition 5 since each vertex in a matching is incident to at most
one edge. Indeed, Proposition 6 shows that ALGSg is a (2 4 €)-approximation streaming
algorithm for MWM, and, by Observation 4, ALGSg uses space O(M -n) (in words).

€

3 (2 + e)-approximation Sliding Window Algorithm

In this section, we give a (2 4 ¢)-approximation sliding window algorithm for MWM with
space O(vnL), where L is the length of the sliding window.

Algorithm 2 MWM SLIDING WINDOW ALGORITHM.

Input: A stream S with a sliding window of length L
A: ALGSg with sum of reduced weights W’ and output matching M.

Initialization:

1: Stack < an empty stack
2.k« 0 > Number of blocks

\/n-L-log 1/€~10gUJ
€

n

3: Parameter s < { foro =3 - Wimax/ Winin-

Streaming:

4: while a new item e of the stream S is revealed do
5: Feed e to all existing instances of A

6: Delete all instances of A which have processed more than L edges

7: Stack.Push(e)

8: if |Stack| > s then > Create new instances of A
9: k+—k+1

10: Let ZF be a new instances of A

11: Let W/ e, < 0,i <1

12: while Stack is not empty do > Process all edges in reverse order of arrival
13: e’ + Stack.Pop and feed ¢’ to ZF

14: if W/(ZF) > (1+¢)- W/, then > W'(ZF) exceeds (1 +¢)- W/ (ZF )
15: Create a new instance ZF, | as a copy of I

16: Wiy & W/(ZF), i i+1

17: if any instance of A exists then

18: report output matching of the instance that has processed the most edges

19: else report the maximum-weight matching of the edges in Stack
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For brevity of notation, denote by A the Paz and Schwartzman algorithm ALG%g, which
our algorithm (see Algorithm 2 for a listing) maintains several instances of. When the current
edge e of the stream arrives, the algorithm feeds e to all existing instances of A, then deletes
any instance that has processed more than L edges, i.e., the ones that could return edges
outside the sliding window. The edge e is subsequently pushed onto Stack.

When Stack has accumulated s edges, Algorithm 2 uses it to create several instances of A:
It first creates a new instance Z; of A, then starts to pop the edges from Stack, processing
the edges in reverse order of their arrival. When an edge e is popped it is fed into the last
created instance Z; (initially Z;). At any given moment, the algorithm stores the sum of
reduced weights W’(Z;_1) of the previous instance (initially set to 0). If the sum of reduced
weights W(Z;) of the latest instance Z; exceeds (1 + ¢) - W'(Z;_1), then a new instance Z;;
is created as a copy of Z;. This procedure is repeated until Stack is empty again.

After processing edge e, the algorithm reports the matching computed by the instance of
A which has processed the most edges of the current sliding window. If no instances have
been created yet, then it reports an exact solution on the edges stored in Stack.

Overall, Algorithm 2 maintains multiple runs of A, each fed with different suffixes of the
sliding window. It uses Stack to implicitly partition the stream S into blocks By, Bs,... of s
edges each, thus processing it block by block. Each block B; is then processed, crucially in
reverse order of arrival, feeding each edge into an initially empty instance I{ of A. Then,
copies Iij are created whenever the sum of reduced weights exceed a (1 + ¢) factor of the
previous copy. Once the block B; has been processed entirely, the subsequent edges of the
stream are fed to the instances If,Ig, . ,Ig in the natural arrival order. Note that the
algorithm constructs the instances such that I{ only processes a single edge of the block B;
and IZ processes the entire block.

Intuitively, Algorithm 2 ensures that, as edges of the block start to fall outside of the
sliding window, the oldest remaining instance is still a good approximation of the solution on

the entire sliding window, i.e., consecutive runs of A are not too different in terms of output.

Moreover, immediately after processing block B;, it holds that W’ (If )>(1+e)- W (If_l)
for all 1 < i < {. Therefore, there are only logarithmically many runs of A per block.

In the following proofs, we use a notion S(Z) to denote a substream that is processed by
the instance Z of A.

L
+I5 1;4 r IS I 7 ‘ —l
- | —
T
F}
1
<F7 WF; > (1 +E)WF1
2
<« Wi, > (1+ )W,
(T 2 F > (1+e)Wrk

Figure 1 A schematic of a block of the algorithm. The notation here coincides with the notation
used in the proof of Theorem 7. The window of length L is marked between the square brackets.
There are five instances Zi,...,Zs created for the block of length s. The instance Z; processed
the stream F,T. Note that 7 and Ts are already expired, thus they were deleted. The algorithm
outputs the result of the instance Z3 meaning the stream F‘;:,T. The proof of Theorem 7 will show
that the omission of the remainder R does not compromise the output matching too much.
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» Theorem 7. There is a deterministic streaming sliding window algorithm for Maximum-

. . . L /nL- .
weight Matching with an approzimation factor 2 + ¢ that uses O (nLlogl/ElogU words of

€

memory for any € >0 and 0 = § - Winae/Wmin-

Proof. We will prove that Algorithm 2 satisfies the assertion of the theorem. Let B; be the
oldest block of the stream which is still partially contained in the current sliding window
E, i.e., E contains at least one edge of B; and no edge of B;_;. Let Z}],...,Z] be the
instances created during the processing of block B;. Note that each instance Ij processes
the edges of B; in reverse order. Thus, we consider B; as a stream of edges ordered in
reverse to the order in which they arrlved For clarity, we denote this as B and similarly for
all relevant substreams of B Let F be the substream of B fed into the instance Ij ie.,
F S(Ij) OB Note that F1 c-.-C F[ B

Approximation. Let T be the stream of edges that arrive after the stream Bj7 ie, B C B T.
First suppose that £ = B T. Then, Algorithm 2 returns the matching computed by the
oldest instance IJ which has processed the whole stream F, ¢T, i.e., all edges of E (as =B, ).
Thus, it returns a (2 + €)-approximation of the optimal solutlon

NOW suppose t that £ C B T. Let FT CFEC FzHT Note that such an i exists as
EnN B # () and |F1| =1 Algonthm 2 returns a matching computed by the instance IJ that
processed the stream S(Z7) = FT for F = F,. Let R be the substream of F1+1 \ F such
that F contains exactly the edges of the stream FRT. See Figure 1, for an illustration of
the substreams processed by various instances Z;.

Since E C FZ_HT it holds by construction of Algorithm 2 that W__ <1+ 5) W;/B
where W;; and W; are the sums of reduced weights computed by A on streams FR and F,
respectlvely For any vertex v, let A(v) := pu5(v) — ¢5(v). Recall that ¢ is an increasing
function by the construction of the algorithm, thus A(v) > 0. Then, by the proportionality
between the sum of reduced weights and the sum of potentials (3, w'(e) =2 ¢(v), see
Proposition 6), we have the following upper bound:

D AW =) err) —ps) <> (1+e) pr) — ) =c- Y or(v)

veV veV veV veV

We now claim that if we assign, for every v € V, a weight c¢(v) := (1+¢) - (p5,(v) + A(v)),
then we have a valid (weighted) vertex cover in the graph consisting of all edges in FRT ,
i.e., for each edge e = {u,v} € FRT, it holds that c(e) := c(u) + ¢(v) > w(e). Consider two
cases. If e € FT, then we have cle) > (1+¢€) - (epp(v) + p5p(u) = wle). Otherwise, e € R
and we have

c(e) = (1+e) (¢prv) + ¢rr(u) + 5R[v) — 95() + err(u) — er())
> (1+e) (ppp) +org(u) (B is a substream of BT)
> w(e) . (by Proposition 5)

Thus, we get a valid vertex cover as required. Now, we can use this to show that the returned
matching M (FT) computed by A on the stream FT is a (2 + ¢)-approximation of the
maximum weighted matching M* of the sliding window E:
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w(M*) = Z w(e) < Z c(v) (each vertex is incident to at most one edge in M*)

eeM~ vev
=148 ) (pprv) +A®))
veV
<(1+e) Y (prrv) +epp ()
veV
<(1+¢)? Z ©up(v) (since ¢ is monotonic)
veV
< (1+3¢) Z Ymr(v) (since €2 < e for 0 < e < 1)
veV
< 2(1 4 3¢)(1 + 4e) - w(M(FT)) (by Proposition 6)

< (24 38¢) - w(M(FT)) .

Space. The sliding window E can be covered by O (;) many blocks as s is the block size.
First, we bound the number of instances ¢ created for a block B Recall that edges from
the block B; processed by the instance IJ are the edges in F“ and F1 c...C Fz B .
Furthermore, [y = {e'}, T/V’1 = w(e') > Wmin, and W;Hl (14+¢)-W 3 L for all 4 < ¢. Thus,

* Wmax-

(1+e)" wmin < (142)"- Wll?l < Wll?z (M(FZ))

I\D\:

By rearranging, we get £ = O(log,,.0) = O (% -logo). By Observation 4, each instance

of A stores O ("1%(1/5)) edges. Thus, at any moment, all existing instances of A store

0] (% . 10% . 7nl°g£1/€)> many edges.

Note that we additionally need to store the edges of at most one block (stored in Stack),

i.e., at most s edges. Overall, we need to store at most O (% . 10% . ”l%(l/g) + s) edges.

€

. \/n-L- -1 . .
Setting s to {nLlOgl/Eogg gives us the final space bound in words of memory. <

» Remark. Assuming that ¢ is constant and that o is polynomial in n, we obtain an algorithm
that uses O(v/nL) space. This is o(n?) space as long as L = 6(n?). If, additionally, the input
graph of each window is simple, we have that L = O(n?) (a simple graph always has O(n?)

edges) and a space bound of O (n\/ﬁ W), which simplifies to O (n/n).

We can easily adapt the algorithm to the (unweighted) MM problem. More specifically,
the Paz-Schwartzman algorithm becomes the GREEDY matching algorithm, while the sum
of reduced weights simply becomes the size of the GREEDY matching obtained. While the
approximation factor remains 2 + €, the matchings of the instances now store O(n) edges

instead of O ("1%(1/8)) Also, 0 = 5. Then, by setting s to {\/n'Lgog"J, we obtain a

better memory bound for the algorithm. This adaptation yields the following result:

» Theorem 8. There is a deterministic streaming sliding window algorithm for MM with an

approzimation factor of (2 + ) that uses O (w / "leog"> words of memory for any & > 0.
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4 (3 + e)-approximation Sliding Window Algorithm

In this section, we give a (3 + ¢)-approximation semi-streaming sliding window algorithm
by applying the smooth histogram technique [6] in a similar manner as Biabani et al. [4].
We start with our definition of a refined lookahead algorithm which we use to describe a
sliding window algorithm. Then, we show that ALG%g is a refined lookahead algorithm;
thus, obtaining the sliding window algorithm for MWM.

» Definition 9 ((f, a1, as, 8)-refined lookahead algorithm). Let 8 € (0,1), a1, a0 > 1 and, for
a ground set X, let f : 2% — RY be a non-decreasing function. We say a streaming algorithm
ALG with two outputs O1, 04 is a (f, a1, s, B)-refined lookahead algorithm if the following
holds for any stream S of items of the set X:

1. O1(S) < f(S) < a1 - 01(9), i.e., the first output is an ay-approzimation of f.

2. For any partitioning of S into three disjoint sub-streams A, B, and C with O1(B) >
(1=08)-01(AB), we have Oz(BC) < f(ABC) < ag - O2(BC), i.e., if the first output on
the substream AB is similar to the first output on the substream B then the second output
on the substream BC' is an as-approximation of f on the whole stream S = ABC.

Observe that if O; = Oy and a7 = as = « then we retrieve the standard definition of
a (f, «, B)-lookahead algorithm as given by Biabani et al. (see Definition 3). Our refined
lookahead algorithm is also similarly turned into a sliding window algorithm. In essence,
the algorithm simulates runs of a traditional streaming algorithm on suffixes of the current
sliding window. It maintains runs on suffixes such that the value of O; of any two consecutive
runs are not too different, while the value of O; of any non-consecutive runs are sufficiently
different so as to ensure that at most a logarithmic number of runs are required at any point
of time. The second output O; is a solution which, given the smoothness assumptions of the
runs, is always guaranteed to be an as-approximation of the next oldest run. Details of the
algorithm and the proof of the following theorem are provided in Appendix B.

» Theorem 10. Let 0 < 8 <1 and ay,as > 1, S be a stream of items from a set X, and
f 2% — R* be a non-decreasing function. Suppose there exists a (f,ay,az, B)-refined
lookahead algorithm that uses at most s words of memory. Then, there is a sliding window
algorithm that maintains an as-approximation of f using O(% ~slog(a10)) words of memory

for o = f(S)/ fmin where fmin = min{f(e) : e € S}.

We will now apply Definition 9 to algorithm ALG%g. To this end, we consider the first
output O, as the sum of reduced weights W¢, the second output O; as the weight of the
returned matching w(M (S)), and function f as the weight of a maximum-weight matching
MWM(S). In fact, we prove in Theorem 11 that this indeed yields a (MWM, (2 + 2¢), (3 +
20¢), ﬁ)—reﬁned lookahead algorithm. Hence, the algorithm given by Theorem 10 with ALG%g
is a (3 + ¢)-approximation semi-streaming sliding window algorithms for MWM.

» Theorem 11. Let 0 < e < & and 0 < B < 5. The algorithm ALGSg is a (MWM, (2 + 2¢),

(3 + 20¢), ﬁ) -refined lookahead algorithm.

To prove Theorem 11, we follow the approach of Biabani et al. [4]. Let an input stream S
be partitioned into three substreams ABC'. They split the maximum matching of the stream
M* = M*(ABC) into two parts M} 5 and Mg where M} 5 := M* N AB is the restriction of
M* to the edges in AB, analogously for the substream C. Biabani et al. then bound the
weights of these two parts separately. To this end, they use the notion of a critical subgraph.
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» Definition 12 (Critical Subgraph [4]). Consider a graph G specified by a stream S of edges.

Let A, B,C be disjoint substreams of S such that S = ABC. Then, the critical subgraph
of G with respect to the mazimum matching M*(ABC) and the substreams A, B,C is the
subgraph H = (Vi, E) such that

Ey :={e € B| e is adjacent to two edges in Mg}.

Vi :=V(Eg), i.e., Vi is the set of endpoints of the edges in Ey.

Biabani et al. use the critical subgraph to bound the weights of M}z and Mg in terms
of the weight of the matching returned by the algorithm w(M ) (Lemmas 13 and 14 in their
work [4]). In our analysis, in particular, in Lemmas 15 and 16, we use the same ideas to
bound the weights of M} and M¢ in terms of sums of reduced weights computed by the
algorithm instead.

Before stating and proving Lemmas 15 and 16, we present the following auxiliary lemma
already proved by Biabani et al. in the exact formulation as we need it. We highlight that
their proof holds for any run of ALG%g on an arbitrary stream.

» Lemma 13 (Biabani et al. [4], Lemma 15). For any stream AB,
(I+4¢)- Z oap(v) > Z wig(e) .
veVy ecEy

For the statement of the next auxiliary lemma, we need the following notion. Let S be a
stream of edges. For an edge e € S, we define the set Pg(e) as the set of edges incident to e
(including €) arriving no later than e, i.e, Ps(e) ={e¢’ € S| €' Ne # O, te < t.}, where, for
any edge f, t; is the arrival time of edge f. Biabani et al. [4] showed that the weight of any
edge e can be bounded by the sum of the reduced weights of the edges in Pg(e) (up to a
(1+ &) factor).

» Lemma 14 (Biabani et al. [4], Lemma 5). For each edge e € S,
) <(+e) Y whe)
e’€Ps(e)

With that, we can finally prove our analogous lemmas of Biabani et al’s Lemmas 13 and
14 [4] which bound w(M}5) and w(M¢,), respectively.

» Lemma 15 (Analogue of Lemma 13, [4]). For any stream ABC,

w(Mig) <2(1+e) - Whg— Y whe).
ecEy

Proof. By definition, we have w (M} ) = ZSEMZB w(e). Let e = {u,v} € M} 5. Note that
the vertices u and v are not in V. Thus, we can bound the sum as follows.

w(Mip) < (1+¢) Z pap(v) by Proposition 5
veV\Vy
=(1+¢) (Z pap(v) = Y SDAB('U)>
veV veVy

By Proposition 6 and by Lemma 13, we have
Z oap(v) =2W)4p and (1+¢) Z pap(v) > Z wz(e).
veV veEVH ecEpy

Thus, we can conclude that

w(Mjig) <2(14¢) - Whg— Y whle). <
ecEy
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» Lemma 16 (Analogue of Lemma 14, [4]). For any stream ABC),

w(Mg) <2(1+e) Who —(1+e) Y while).
e€B\Ey

Proof. First, when considering a run of the algorithm on BC, by Lemma 14, we obtain

wMg) = Y we) <1+ Y Y whele).

e€M¢, eEME e’'€P(e)

Observe that any edge e € BC' is incident to at most two edges of M, and the edges of
B\ Ey are incident to at most one edge of M. Hence, we can rewrite the previous double
sum as follows:

Z Z wpe(e) <2- Z wpe(e) — Z wic(e)

e€EMf e’'€P(e) eeBC e€eB\Egy

=2 -Wpe — Z wpcle) ,
e€B\Egy

which implies the result. |

Now, we are ready to prove Theorem 11, i.e., ALGSg is a (MWM, (24 2¢),(34+ 208),5)—
refined lookahead algorithm for suitable parameters € and .

Proof of Theorem 11. We recall that we consider a version of ALG%g such that the first
output is the sum of reduced weight W' and the second output is the weight of the computed
matching w(M ) First, by Proposition 6, we get that for any stream S it holds that
Wi < w(M*(S)) < 2(1+¢) - W{. Thus, it remains to prove that for any stream ABC,
given that W5 > (1 — 8) - W/ 5, the maximum matching M* = M*(ABC) is such that
w(M*) < (3+20¢) - w(M(BC)).

w(M*) <2(14¢e) - Wig+2(1+e) Whe — Wp by Lemmas 15 and 16
g%?.wgm(ws).w,;c—wg by Wh > (1 B)- Wi
<(1+43e) - Wp+2(1+e) Wpe sinceﬂég
< (3+5¢) - Wge by W' being non-decreasing
< (3+5e)(1+4e)- w(M(BC)) by Proposition 6
< (3 +20¢) - w(M(BC)) since ¢ < 1—10 <

Theorems 10 and 11 together then imply our main result.

» Theorem 2. There is a deterministic streaming sliding window algorithm for Maximum-

weight Matching with an approzimation factor 3 + ¢ that uses O (bgi# -nlog O’) words of

memory, for any 0 <e < 0.1 and o = 3  Winaz/ Winin -

» Remark. Our (3 + ¢)-approximation algorithm for MWM yields the (3 + ¢)-approximation
algorithm for MM by Crouch et al. [7] when ALG% is replaced with the GREEDY matching
algorithm (the sum of reduced weights becomes the size of the matching). The hard instance
of their algorithm also holds for our algorithm.
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5 Conclusion

In this paper, we gave two algorithms for MWM in the sliding window model. Our first
algorithm has an approximation factor of 2 + ¢ and uses space O(v/nL), and our second
algorithm has an approximation factor of 3 + ¢ and uses semi-streaming space. The approx-
imation factor of our semi-streaming algorithm matches the approximation factor of the best
semi-streaming sliding window algorithm known for (unweighted) MM [7].

Regarding the semi-streaming space regime, since further improvements in the approxim-
ation factor would imply improvements for (unweighted) MM, the most natural direction for
future research is to make further progress on the unweighted version of the problem first. Is
there a 2.99-approximation semi-streaming space sliding window algorithm for MM?

While the known lower bounds for MM for one-pass streaming algorithms in the insertion-
only model also apply to the sliding window model, no stronger lower bounds for the sliding
window model are known. Can we prove a lower bound on the approximation factor of
sliding window algorithms for MM that use semi-streaming space and are stronger than what
is currently known for the insertion-only model, i.e., stronger than 1 + In(2) [15]?
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algorithm given by Biabani et al. (Definition 3) together with the Paz and Schwartzman’s
algorithm thus cannot be used to improve upon the approximation factor of 3.5.

Recall that a lookahead algorithm relies on the smoothness of the algorithm’s output.

More formally, an (f, «, §)-lookahead algorithm ALG satisfies the condition that for any
stream ABC, if ALG(B) > (1-8)-ALG(AB) then f(ABC) < a- ALG(BC) (see Definition 3).
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In other words, if the algorithm ALG outputs similar results on the streams B and AB then
the algorithm’s output on BC' is required to be an a-approximation of the objective value
f(ABC) of the whole stream ABC.

We will present a graph G whose edges are divided into three substreams A, B and C
such that ALG%g outputs matchings of the same weight on substreams AB and B, while the
outputted matching on substream BC' is roughly a 3.5-approximation of a maximum-weight
matching of the entire stream ABC. The graph G is such that even if we modified ALG%g to
return maximum-weight matchings among the edges stored in Stack then the same properties
still hold. Thus, the hard instance is also hard for the monotonic version of the algorithm.
The graph G is depicted in Figure 2.

[ ) ® [ )
Ay Ay Cy
1+¢ 1+ 3¢ 1+e¢ 1+¢
A1 Cg Al Cl
1+4+¢ 1+¢
Ag Bg Bl A2 B2 02
[ ) [ ] [ )

Figure 2 The edges of the graph G are divided into substreams A, B and C. The order of
the edges within the substreams is indicated by subscripts (the order of the edges with the same
subscript is not important). The thin edges have unit weight and the thick edges have the indicated
larger weights.

Matchings computed on AB and B. First, we analyze ALG%¢ separately on the sub-
streams A and B. See Figure 3 for the values of the reduced weights and potentials computed
by the algorithm.

w Wy YA
! : 0 By By By
Ay 1 0
S l4e 14¢ 1 14¢€ w
| I S e
: T4+e
A, 1 0 € 1+e¢ 1+e¢ € ¢¥B
. | 0

Figure 3 Reduced weights and potentials computed by ALG%g when run separately on substreams

A and B. Recall that substream A consists of two paths, while only one of them is depicted here.

The edges outputted by the runs of the algorithm are marked by dotted circles.

Observe that the substream A consists of two disjoint paths of length three. While only
one of them is shown in Figure 3, the algorithm computes the same reduced weights and
potentials for both paths.

We now analyze the execution of the algorithm on substream AB. To this end, consider
the moment when the substream A has been fully processed and substream B begins. Observe
that each edge of B is now incident to a single vertex with potential 1 + . Thus, by the
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construction of the algorithm, none of the edges of B are pushed onto Stack. These edges
therefore have reduced weights zero and cannot be outputted by the algorithm. Furthermore,
when run on AB, the algorithm outputs the two edges in Ay, i.e., w(M(AB)) = 2+ 2¢,
which are the only two edges pushed onto Stack.

As established in Figure 3, when the algorithm runs only on the substream B, it outputs
the two edges in By, i.e., w(M(B)) = 2+ 2¢. Hence, we have that w(M(B)) = w(M(AB)).
It follows that the stream ABC satisfies the condition w(M(B)) >(1-p)- w(M(AB)), for
any value of § > 0, as required by the definition of a lookahead algorithm.

Matching computed on BC. Now, we analyze the execution of the algorithm on the
substream BC'. At the time when the substream C begins, the reduced weights of edges in
B and the current potentials of the incident vertices are the same as when the algorithm is
run only on the substream B — see Figure 3 for these values. See Figure 4, for the reduced
weights of the edges in C when we run the algorithm on the substream BC'.

w (I
[ ]
14 3¢ 2¢e
03 Cl 1+e 1
B By By . 1 0
¥B € 1+e¢ 1+4+¢ 81' Cag

Figure 4 The reduced weights of the edges in C' after the execution on the substream BC' and the
potentials of the vertices incident to the edges in B at the time when the substream B is processed.

By the end of the execution, only the two edges in C7 and C3 are pushed onto Stack
since the edges in Cs have reduced weights zero. The algorithm ALG%g outputs a greedy
matching of the edges pushed onto Stack (in the reverse order they arrived). In particular, it
outputs the edges in C; and C3 and they block all edges in B. Hence, w(M(BC)) =2+ 4e.
Observe further that these edges constitute a maximum-weight matching among the edges
pushed onto Stack.

Maximum-weight Matching and Approximation Factor.
maximum-weight matching in G consists of all the edges that have an endpoint of degree 1
(the edges in Ay, Cy, and C5) and is thus of weight 7 + 3e. Since w(M(BC)) =2+ 4e, we
conclude that it is not possible for ALG% to yield a (MWM, 3.5 — A, §)-lookahead algorithm,
for any constant A > 0 and suitable parameter S.

First, observe that the unique

B More on Refined Lookahead Algorithms

In this section, we will prove Theorem 10. To this end, for convenience, we restate the
definition of refined lookahead algorithms first.

» Definition 9 ((f, a1, aa, B)-refined lookahead algorithm). Let 8 € (0,1), a1, a2 > 1 and, for
a ground set X, let f : 2X — R be a non-decreasing function. We say a streaming algorithm
ALG with two outputs O1,04 is a (f, a1, s, B)-refined lookahead algorithm if the following
holds for any stream S of items of the set X:
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1. 01(5) < f(S) < ay - 01(9), i.e., the first output is an ay-approximation of f.

2. For any partitioning of S into three disjoint sub-streams A, B, and C with O1(B) >
(1=0)-01(AB), we have O3(BC) < f(ABC) < ag - O2(BC), i.e., if the first output on
the substream AB is similar to the first output on the substream B then the second output
on the substream BC' is an as-approximation of f on the whole stream S = ABC.

Algorithm 3 LOOKAHEAD SLIDING WINDOW ALGORITHM.

Input: A stream S with a sliding window of length L
A: a (f, a1, ag, B)-refined lookahead algorithm with outputs O; and O,

Initialization:

1: Let k < 0 be the number of instances

Streaming:
2: while a new item e of the stream S is revealed do
3: Create an instance 41 of A
4: Feed e into all existing instances 71, ..., Zk4+1
5: 141
6: while 7 < k do > Deleting instances with similar value of O,
7: Let j > ¢ be the largest index for which O1(Z;) > (1 — 3) - O1(Z;)
8: if no such j exists then j < i+ 1
9: Delete instances Z,. for each i < r < j
10: R ]
11: Let Z~1 be the next existing instance after 7, > 77 was not deleted
12: if 7.1 does not exist then continue to line 15
13: if |S(Z>1)| > L then > |S(Zs1)]| is the number of items fed into 7~
14: Delete Z;
15: Renumber the instances and let k£ be the number of remaining ones

16: if |S(Z1)| = L then report Oz(Z;)
17: else report Oy (Z>)

Let e be the current item of the stream being processed by Algorithm 3 and let E be
the current sliding window consisting of the L most recently processed items (including
e). While processing e, the algorithm first creates a new instance Zy41 (called a bucket in
Biabani et al. [4]) of A. Then, e is fed into all existing instances 71, ..., Zxt1. Next, starting
from the oldest instance Z;, only its newest similar instance, determined by O; (Item 2 of
Definition 9), is kept and every other instance in between is deleted. Whether a newest
similar instance exists or not, the process is then repeated with the next oldest remaining
instance until reaching the newest instance. Note that the oldest and newest instances, Z;
and 7y respectively, are never deleted by this process. However, if the number of items fed
into the second oldest remaining instance Z~1 is at least L, i.e., the current sliding window
E is fully contained in the stream S(Zs1) of edges processed by Z~1, then Z; is deleted. The
instances are then renumbered to Z1,...,Z;, from the oldest one to the newest, such that k
is the number of remaining instances. At this stage, the sliding window F is sandwiched
between streams S(Z;) and S(Z;). Finally, after processing the item, if the current sliding
window contains exactly the edges processed by Z;, then the algorithm reports the second
output O of the instance Z; as the solution, otherwise it reports Oz (Z3).

In essence, the instances of A created by Algorithm 3 simulate runs of a traditional
streaming algorithm on suffixes of the current sliding window. Note that the oldest run
always contains all items of the sliding window and potentially some additional ones. The
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idea is to maintain runs on suffixes such that the value of O; of any two consecutive runs are
not too different, while the value of O; of any non-consecutive runs are sufficiently different
S0 as to ensure that at most a logarithmic number of instances of A is used at any point of
time.

This idea is exactly captured when A, with two outputs O; and O, is a (f, a1, as, f)-
refined lookahead algorithm (which applies the smooth histogram technique by Braverman
and Ostrovsky [6]). The first output O; is used to determine how often a run on a suffix should
be maintained, which depends on the smoothness criteria given by Item 2 of Definition 9.
The second output Oy is a solution which, given the smoothness assumptions of the runs,
is always guaranteed to be an as-approximation of the next oldest run. We highlight that
the smoothness assumptions are only guaranteed to hold for consecutive runs whose suffixes
differ by more than one item. Then, for a stream S of items from a set X and a non-
decreasing function f : 2% — R*, the number of runs is at most logarithmic in n as long
as 07(S) = f(S)/ fmin, where frin = min{f(e) : e € S}, is polynomial in n. We prove this
formally in Theorem 10.

» Theorem 10. Let 0 < 8 <1 and ay,as > 1, S be a stream of items from a set X, and
f: 2% — R* be a non-decreasing function. Suppose there exists a (f, a1, as, B)-refined
lookahead algorithm that uses at most s words of memory. Then, there is a sliding window
algorithm that maintains an as-approximation of f using O(% ~slog(oz1cr)) words of memory

for o = f(S)/ fmin where fmin = min{f(e) : e € S}.

Proof. We prove that Algorithm 3 satisfies the assertion of the theorem. Let .4 be the used
(f, a1, a9, B)-refined lookahead algorithm with the outputs O; and O,.

Approximation. Let F be the sliding window at any instance of the algorithm, i.e., the
set of the L most recently processed items. The algorithm ensures that E is sandwiched
between streams of items fed to Z; and 7y, i.e., So C E C Sy for S; = S(Z;),i € {1,2}. We
are now in one of two cases, either the items of S; and Sy differ by exactly one item or more
than one item.

In the former case, the algorithm asserts that |S2| < L, otherwise S; would have been
deleted, and therefore the items of Sy are exactly those of the sliding window E, i.e., |S1| = L.
The reported solution is then always O2(S1) = O2(E) which by Item 2 of Definition 9
(consider the case when E = ABC = BC) is trivially an as-approximation of f(E).

In the latter case, the algorithm would have, at some point, deleted instances which
caused Z; and Zy to become consecutive instances (Line 9 of Algorithm 3). Consider the
time t* when they first became adjacent. Let S7 and S5 be the streams processed by Z; and
T,, respectively, in the time t*. The algorithm asserts that O1(S5) > (1 — 8) - O1(S7). Let
C' be the remaining items fed into the instances such that S; = S7C and Sy = S5C. Then,
by Item 2 of Definition 9 and f being non-decreasing,

02(82) < f(S2) < f(E) < f(S51) < az - O2(52).

Hence, we have that, O2(S2), is an as-approximation of f(E). Now, if |S1| # L the solution
reported is O3(S2), otherwise |Si| = L and the solution reported is O2(S1) = O2(E). We
conclude that in either case an as-approximation of f(E) is reported.

Space. Let k be the maximum number of instances stored by the algorithm after processing
an item. After the process of deleting and renumbering the instances, the algorithm ensures
that O1(Z;42) < (1 — B) - O1(Z;) holds for any instances Z; and Z; 2. Thus for the largest
odd number k£’ not exceeding k,

k!

(1+8) 7 01(T) < O1(Th).
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Recall that £(5(Z1) < 0. Then, by Item 1 of Definition 9, we have that 011(11) < 0.

F(S(Zy))
It follows that

K -1

1
—5— < log;, s(@10) and k'=0 <ﬁ ~10g(a10)) :

O1(Zyr)

This implies the result since there are only ever k + 1 < k' + 2 instances of A, each of which
uses at most s words of memory. <

A motivating example of the refined lookahead definition is exactly the Paz-Schwartzman
algorithm ALG%g with the first output O; as the sum of reduced weights W§, the second
output Oy as the weight of the returned matching w(M (S )), and function f as the weight of
a maximum-weight matching MWM(S). Now, consider the graph given in Appendix A (see

Figure 2). We have that w(M(AB)) = w(M(B)) =2+ 2, W)z =2+ 2 and Wy = 1 + 2.

We showed in Appendix A that this is indeed a hard instance for (standard) lookahead
algorithms when the weight of the matching computed is used as the smoothness constraint
(recall that (1 — 3) - w(M(AB)) < w(M(B)) is then required in a hard instance, which is
the case here). On the other hand, refined lookahead algorithms allow us to use the sum of
reduced weights as the smoothness constraint. Since (1 — ) - W/ 5z £ W}, for small enough
[, the instance therefore is not hard for refined lookahead algorithms.
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