The Complexity of the Shapley Value for Regular
Path Queries
Majd Khalil &

Technion, Haifa, Israel

Benny Kimelfeld =

Technion, Haifa, Israel

—— Abstract

A path query extracts vertex tuples from a labeled graph, based on the words that are formed by the
paths connecting the vertices. We study the computational complexity of measuring the contribution
of edges and vertices to an answer to a path query, focusing on the class of conjunctive regular path
queries. To measure this contribution, we adopt the traditional Shapley value from cooperative game
theory. This value has been recently proposed and studied in the context of relational database
queries and has uses in a plethora of other domains.

We first study the contribution of edges and show that the exact Shapley value is almost always
hard to compute. Specifically, it is #P-hard to calculate the contribution of an edge whenever at
least one (non-redundant) conjunct allows for a word of length three or more. In the case of regular
path queries (i.e., no conjunction), the problem is tractable if the query has only words of length
at most two; hence, this property fully characterizes the tractability of the problem. On the other
hand, if we allow for an approximation error, then it is straightforward to obtain an efficient scheme
(FPRAS) for an additive approximation. Yet, a multiplicative approximation is harder to obtain.
We establish that in the case of conjunctive regular path queries, a multiplicative approximation of
the Shapley value of an edge can be computed in polynomial time if and only if all query atoms are
finite languages (assuming non-redundancy and conventional complexity limitations). We also study
the analogous situation where we wish to determine the contribution of a vertex, rather than an
edge, and establish complexity results of similar nature.

2012 ACM Subject Classification Theory of computation — Data provenance

Keywords and phrases Path queries, regular path queries, graph databases, Shapley value
Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.11

Related Version Full Version: https://arxiv.org/abs/1412.2221 [15]

Funding This work was supported by the Israel Science Foundation (ISF), Grant 768/19, and the
German Research Foundation (DFG) Project 412400621 (DIP program).

1 Introduction

Graph databases arise in common applications where the underlying data is a network of
entities, especially when connectivity and path structures are of importance. Such usage spans
many fields, including the Semantic Web [2], social networks [10], biological networks [20, 38],
data provenance [1], fraud detection [30], recommendation engines [37], and many more.
In its simplest form, a graph database is a finite, directed, edge-labeled graph. Vertices
represent entities and edges represent binary relationships of different types (labels) between
entities. Query mechanisms for graph databases enable the retrieval of parts of the graph
according to patterns of connections between vertices.

A canonical example of a graph query is the Regular Path Query (RPQ) [5,7,8,36]. An
RPQ qualifies paths using a regular expression over the edge labels. When evaluated on
a graph, the answers are source-target pairs of vertices that are connected by a path that
conforms to the regular expression. This allows users to inspect complex connections in

© Majd Khalil and Benny Kimelfeld;

licensed under Creative Commons License CC-BY 4.0
26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 11; pp. 11:1-11:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:smajd11@cs.technion.ac.il
mailto:bennyk@cs.technion.ac.il
https://orcid.org/0000-0002-7156-1572
https://doi.org/10.4230/LIPIcs.ICDT.2023.11
https://arxiv.org/abs/1412.2221
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

The Complexity of the Shapley Value for Regular Path Queries

graphs by enabling them to form queries that match arbitrarily long paths. An important
generalization of the class of RPQs is the class of Conjunctive Regular Path Queries (CRPQs)
that extend regular path queries to conjunctions of atoms, each being an RPQ that should
hold between two specified variables [7,8].

Being simple and expressive, RPQs and CRPQs are an integral part of popular graph
query languages for graphs, such as GraphLog, Cypher, XPath, and SPARQL. Therefore,
they motivate and give rise to much research effort, including the study of some natural
computational problems and variations thereof [11,22,23,26]: What is the complexity of
deciding whether an RPQ matches a path from a given vertex to another (what we refer
to as Boolean query evaluation)? Can we efficiently count and enumerate these paths? Is
a given CRPQ contained in another given CRPQ? The combined complexity of Boolean
query evaluation is in polynomial time for RPQs and NP-complete for CRPQs [4]. Data
complexity, however, is NLOGSPACE-complete for both [3]. The containment problem for
RPQs is PspACE-complete, and for CRPQs, it is ExpspACE-hard [6,11].

In this paper, we focus on the problem of quantifying the responsibility and contribution
of different components in the graph, namely edges and vertices, to an answer to the CRPQ
(and RPQ in particular). This problem has been studied in the context of queries on relational
databases, and our motivation here is the same as in the relational context: we wish to
provide the database user with an explanation of why (or what in the database led to that)
we got a specific answer; when many combinations of data items can lead to an answer, and
the lineage is too large or complex, we wish to quantify the contribution of individual items
in order to distinguish the more important from the less important to the answer [9].

How does one quantify the contribution of a database item to a query answer? In the
relational model, several definitions and frameworks have been proposed for measuring the
contribution of a tuple. For example, Meliou et al. [25] defined the respounsibility of a tuple
t as, roughly, the inverse of the minimal number of tuples needed to be removed in order
to make ¢ counterfactual (i.e., the query answer is determined by the existence of ¢); this
measure is an adaptation of earlier notions of formal causality by Halpern and Pearl [13].
Causal effect is another measure proposed by Salimi et al. [31]: if the database is probabilistic
and each tuple has independently the probability 1/2 of existence, how does the probability
of the answer change if we assume the existence or absence of ¢t7 Lastly, and most relevant
to our work, recent work has studied the adoption of the Shapley value as a responsibility
measure [9,16,18,29].

The Shapley value is a formula for wealth distribution in a cooperative game [32]. In
databases, the conceptual application is straightforward: the tuples are the players who play
the game of answering the Boolean (or numerical) query; hence, the wealth function is the
result of the query [16]. The Shapley value has a plethora of applications, including profit
sharing between ISPs [21], influence measurement in social network analysis [28], determining
the most important genes for specific body functions [27], and identifying key players in
terrorist networks [34], to name a few. Closer to databases is a recent application to model
checking for measuring the influence of formula components [24]. As another example, in
machine learning, the SHAP score [19] has been used for measuring the contribution of
each feature to the prediction, and it is essentially the Shapley value with the features as
players. This value was also used for quantifying the responsibility that every tuple has on
the inconsistency of a knowledge base [14,39] and a database [18]. The Shapley value is often
intractable to calculate, and particularly, the execution cost might grow exponentially with
the number of players. Hence, past research has been investigating islands of tractability
and approximation algorithms.

M. Khalil and B. Kimelfeld

Contribution. We study the complexity of computing the Shapley value of edges and
vertices for CRPQs over graph databases. In the remainder of this section and throughout
the paper, we focus on edges (and discuss vertices in Section 6). Computing the Shapley
value of an edge e then boils down to answering the following question. If we eliminate all
edges and add them back one by one in uniformly random order, what is the probability that
e is a counterfactual cause (i.e., its inclusion is necessary and sufficient [25]) for the answer
at hand? As done in previous work in the context of relational databases [18,25], we view
the graph as consisting of two types of edges: endogenous edges and exogenous edges. The
endogenous edges are the ones that we consider for reasoning on responsibility, and they are
the players of the game. The exogenous edges constitute external knowledge that we take for
granted, and so, they are not players in the cooperative game (and not eliminated at the
beginning of the probabilistic process).

To be more precise, an instance of our problem involves a query ¢ (e.g., an RPQ or
a CRPQ), an input graph G, an answer tuple t of vertices of G, and an edge e whose
contribution to ¢ we seek to measure. We adopt the yardstick of data complexity [35] where
we consider the query ¢ as fixed. Hence, each fixed query ¢ is associated with a distinct
computational problem that takes as input G, Z, and e.

We first show that the exact computation of the Shapley value is almost always hard.
Specifically, it is sufficient for the CRPQ to have a non-redundant atom (i.e., a conjunct
associated with a regular language) with a word of length three or more for the computation
to be #P-hard (FP#P—complete). In addition, for RPQs (i.e., single-atom CRPQs), we
complete this hardness condition to a full dichotomy by showing that the Shapley value can
be computed in polynomial time if the language contains only words of length at most two.

Next, we study the complexity of approximation. In our context, we adopt a standard
yardstick of tractable approximation, namely FPRAS (Fully Polynomial-Time Approximation
Scheme). An approximation of the Shapley value of an edge to a CRPQ can be computed
via a straightforward Monte Carlo (average-over-samples) estimation of the probability that
we previously defined. This estimation guarantees an additive (or absolute) approximation.
However, we are also interested in a multiplicative (or relative) approximation.

We establish a dichotomy that classifies CRPQs into a class where there is a multiplic-
ative FPRAS and the complementing class where there cannot be any such FPRAS under
conventional complexity assumptions. Specifically, if the CRPQ contains an atom (non-
redundant atom) with an infinite regular language, then (any) multiplicative approximation
is intractable since it is already NP-complete to determine whether the Shapley value is
nonzero. In every other case (assuming no redundant atoms), an additive FPRAS can also be
used to obtain a multiplicative FPRAS, due to the gap property, previously established in the
relational model [18,29]: if the Shapley value is nonzero, then it is at least the reciprocal of
a polynomial. Note that this is contrasting the situation with relational conjunctive queries,
where there is always a multiplicative FPRAS [16]. Intuitively, this is true since, unlike the
case of conjunctive queries, in the case of RPQs and CRPQs we do not necessarily have any
fixed upper bound on the minimal number of tuples (edges) that need to be present for e to
become a counterfactual cause.

Moving on from edges to vertices, the complexity situation remains quite similar. In
particular, it is generally hard to compute the exact Shapley value of a vertex: it is sufficient
for the CRPQ to have a non-redundant atom that contains a word of length four or more for
the computation to be hard. For RPQs, we establish that the family of tractable queries for
edges is also tractable for vertices. Yet, for vertices, a gap remains and we do not complete a
full classification. For approximate evaluation, we establish the same dichotomy as for edges.

11:3

ICDT 2023

11:4

The Complexity of the Shapley Value for Regular Path Queries

Organization. The rest of the paper is organized as follows. We introduce some basic
terminology in Section 2. In Section 3, we formally define how the Shapley value is applied
in our setting for edges in graph databases. We study the complexity of computing exact
Shapley values for CRPQs in Section 4, and investigate approximations in Section 5. In
Section 6, we present the complexity results for the case when measuring the contribution of
vertices instead of edges. We conclude and discuss directions for future work in Section 7.
For lack of space, some of the proofs are omitted and can be found in the full version of the
paper [15].

2 Preliminaries

We begin by setting some terminology and notation that we use throughout the paper.

Graphs and Path Queries

We use ¥ to denote a finite alphabet (i.e., set of symbols) that is used for labeling edges
of graphs. A word is a finite sequence of symbols from ¥. As usual, ¥* denotes the set of
all words. A language L is a (finite or infinite) subset of 3*. By a slight abuse of notation,
we may identify a language L with a representation of L such as a regular expression or a
finite-state automaton. A regular expression is defined as follows:), €, and o € ¥ represent
the empty language, the empty word, and the symbol o, respectively; and if r and s are
regular expressions, then (r | s) and (r - s) and (r*) are also regular expressions, denoting
union, concatenation, and Kleene star, respectively. We sometimes omit parentheses and
dots when there is no risk of ambiguity (so we may write rs instead of (r - s), for instance).
The language L(r) that r accepts (recognizes) is defined as usual. We abbreviate by ¥* the
regular expression that accepts every word. A deterministic finite automaton (DFA) A is a
tuple (@, %, d, qo, F'), where @ is a finite set of states, ¥ is a finite alphabet, §: Q X X — Q is
the transition function, qq is the initial state, F' is the set of accepting states. By 6*(w) we
denote the state that the automaton reaches after reading w, starting from the initial state.
The automaton accepts a word w if §*(w) € F. We again use L(A) to denote the language
that A recognizes. (Recall that the classes of regular expressions and DFAs coincide in their
expressive power.)

By a graph we mean an edge-labeled directed graph G = (V, E) where V is the finite
set of vertices and E C V x V is the set of edges (v,u), each with a label bl(v,u). We
will consistently denote by n and m the number of vertices and edges, respectively; that
is, n = |V| and m = |E|. A path p from the vertex u to the vertex v in G is a sequence
p = (vo,v1), (v1,v2), ..., (Vg—1,vx) of edges in G such that u = vy and v = v;. By |p| we
denote the length & of p, and by bl(p) we denote the word bl(vg,v1) - - Ibl(vg—1,vg). If
G = (V,E) is a graph and E’ C F is a set of edges, then we denote by G[E’] the subgraph
G = (V,E’) of G. In other words, G[E'] is obtained from G by removing every edge in
E\E.

A path query g has the form (z, L,y) where x and y are variables and L is a language.
When evaluated on a graph G, it returns the set ¢(G) of all pairs (s, t) such that s and ¢ are
vertices of G and there exists a path p from s to ¢t with bl(p) € L. An answer (s,t) is viewed
as an assignment of s and ¢ to z and y, respectively; this will become important later when
we combine multiple path queries. For convenience, we may view ¢ as a function that takes
G, s and ¢ as input, where ¢[s,t](G) = 1 if (s,t) is an answer and ¢[s, t](G) = 0 otherwise.
As a special case, a regular path query (RPQ) is such that L is a regular language, defined
via a regular expression r or an automaton A. We sometimes use the shorthand L for the
query (z, L,y), or r in the case of a regular expression.

M. Khalil and B. Kimelfeld

Figure 1 The graph of our running example. In the paper, we denote the edge (v;,v;) as e;;.

» Example 1. Figure 1 depicts the graph G over ¥ = {a, b, ¢} for our running example. We
show a few examples of RPQs on G.

q1 = X*. This query tests whether there is a path from s to t in G. For example, we
have that q1[v1, v2](G) = 1, and q1[v1, v6](G) = 1, since there are paths from v; to both
vy and vg. In contrast, ¢1[vs, v1](G) = 0 since there is no path from vs to v;.

g2 = abc. This query tests whether there is a path from s to ¢ in G that matches the word
abe. For example, we have that ga[v1, vs](G) = 1, as there is a path v — v3 — v5 — vg
that matches abe. But ga[vs,v5](G) = 0, as the only path from vz to vs consists of a
single edge labeled b.

g3 = ab*. This query tests whether there is a path from s to t in G that matches regular
expression ab*. We have gs[vi,v6](G) = 1 due to the path vy — va — v4 — vg, or
alternatively, v; — vo — vg, that match ab*. But we have ¢a[vs, v5](G) = 0, as the only
path from wvs to vs consists of a single edge with label b, which is not a match for ab*.

We will later use these queries to illustrate additional concepts in the paper. J

Conjunctive Regular Path Queries

A conjunctive regular path query, CRPQ for short, is a conjunction of RPQs with possibly
shared variables. More precisely, a CRPQ ¢ has the form

gler, . m) = N @irri 2) (1)
i=1

where each y; and z; is a variable from {x1,...,z;} and each r; is a regular expression. The
RPQ (y;, 7, 2i) is also referred to as the ith atom of ¢ and is denoted by g;. As before, when
evaluated on a graph G, we denote by ¢(G) the set of all of assignments (uq,...,u) to
(21,...,2k), such that all atoms are satisfied. We also denote the assignment (uq,...,ug) as
a function p: {z1,..., 25} = {u1, ..., ux} such that pu(z;) = u; fori =1,..., k. We use a
numeric notation similarly to RPQs, that is, q[uy, ..., uz](G) =1 if (uy,...,ux) is an answer
and q[uq, ..., ux)(G) = 0 otherwise.

» Example 2. Let us look at the query g[x1,za,23] = (21,a*,22) A (22,b*,23). When
evaluated on a graph, this query returns triplets (u,us,us) such that there is a path from
uy to ug of edges labeled a, and from us to us of edges labeled b. In our running example
(Figure 1), we have that g[vi, ve, v6](G) = 1, as there is a path v; — v9 that matches a*, and
a path vy — vg — vg that matches b*. Yet, qv1,vs3,v6](G) = 0, since every match from vs
to vg contains a label that is not b. _|

11:5

ICDT 2023

11:6

The Complexity of the Shapley Value for Regular Path Queries

An atom g; is redundant if its removal from ¢ results in a query that is equivalent to g.
Formally, denote by ¢\/ the CRPQ that is obtained from ¢ by removing the jth atom.

m

q\j[fﬂl,...,ifk] = /\ (yi»rivzi)
=15

Then the jth atom is redundant if ¢ = ¢\, that is, ¢(G) = ¢V (G) for all graphs G.

» Example 3. Let us look at g[x1,x9, 23] = (21, a,22) A (22,b,23) A (1,a*b*, x3). In this
query, the third atom is redundant according to our definition, as removing it does not
change the result set on any graph. Intuitively, if the first two queries return true then so
does the third, thus the third atom does not add any restriction to the conjunction. a

We later refer to the following obvious (and standard) observation.

» Observation 4. Let q be a CRPQ. If the ith atom is non-redundant, then there exists a
graph G and assignment p to (x1,...,xr) such that q;[u(y;), u(z;)|(G) =1 for j # i and
ailn(yi), m(z:))(G) = 0.

In the sequel, we say that ¢ is without redundancy if every atom of ¢ is non-redundant.
Note that every CRPQ ¢ can be made one without redundancy (while preserving equivalence)
by repeatedly removing redundant atoms.

The Shapley Value

Let A be a finite set of players. A cooperative game is a function v: P(A) — R, where P(A)
is the power set of A (containing all subsets of A), such that v(#) = 0. For S C A, the
value v(S) represents a value, such as wealth, jointly obtained by S when the players of S
cooperate. The Shapley value for the player a is defined to be:

Shapley(A, v, a) = ﬁ > (v(ma U {a}) = v(ma)). (2)

w€llg

Here, I1 4 is the set of all possible permutations over the players in A, and for each permutation
7w we denote by 7, the set of players that appear before a in the permutation. Alternatively,
the Shapley value can be written as follows:

Shapley(A,v,a) = > B“(|A|;||,B| mbl (v(B U {a}) — v(B)).
BCA\{a} '

Intuitively, the Shapley value of a player a is the expected contribution of a to the value
v(B) where B is a set of players chosen by randomly (and uniformly) selecting players one by
one without replacement. The Shapley value is known to be unique up to some rationality
axioms that we omit here (c.f. [32]).

3 The Shapley Value of Edges

Throughout the paper, we focus on the Shapley value of edges of the input graph G. Later,
in Section 6, we also discuss the extension of our results to the Shapley value of vertices.
Given a CRPQ ¢, our goal is to quantify the contribution of edges in the input graph G
to an answer @ for q. We adopt the convention that, for the sake of measuring contribution,
the database is viewed as consisting of two types of data items — we reason about the

M. Khalil and B. Kimelfeld

contribution of the endogenous items while we take for granted the existence of the exogenous
items (that serve as out-of-game background) [16,25,31]. Hence, in our setup, we view the
graph as consisting of two types of edges: endogenous edges and exogenous edges. For a
graph G = (V, E), we denote by E, and Ej the sets of endogenous and exogenous edges,
respectively, and we assume that F is the disjoint union of E, and FE,.

Our goal is to quantify the contribution of an edge e € E,, to an answer @ = (uq,...ux)
of the query g, that is, to the fact that ¢[@](G) = 1. To this end, we view the situation as a
cooperative game where the players are the endogenous edges. The Shapley value of an edge
e € E, in this setting will be denoted by Shapley(q)(G, i, ¢).

Shapley(q)(G, i, e) def Shapley(Eq, vg, €)

where the function Shapley is as defined in Equation (2) and v, is the numerical function
that takes as input a subset of the endogenous edges and is defined as follows:

vg(B) = q[u](G[B U Ey]) — qlu](G[E.])

In particular, vy () = 0. Put differently, we have the following.

Shapley(q)(G, i, e) =

> BB AL aeln u B U) - daGBUED) ()
BCE\{e} "

For a CRPQ ¢, the computational problem CRPQShapley(q) is that of computing the
Shapley value of a given edge:

Problem CRPQShapley(q)

Parameter: | CRPQ ¢
Input: | Graph G, vertex vector @ = (uq,...,ux), endogenous edge e
Goal: | Compute Shapley(q)(G, 4, e)

When ¢ has only one atom, and is in fact an RPQ (z,r,y) with r being a regular
expression, we may replace ¢ with r in the notation and write Shapley(r)(G, s,t,e) and
RPQShapley(r) with the meaning of Shapley(q)(G, s,t,e) and RPQShapley(q), respectively.

» Example 5. Considering the running example of Figure 1, assume that all edges are

endogenous. Let us first compute the contribution of the edges to the answer (vy,vg) to b*.
The edge ez changes g[va, v6](G) from 0 to 1 if and only if it is selected first or second
among {eay, €26, €46}. This event happens with probability 2/3, so

Shapley (b*) (G, va, vg, €26) = 2/3.

For es4 to increase the value, it should be selected before esg and after eqq, and this

happens with probability 1/6. Hence, Shapley (b*)(G, va, vg, €24) = 1/6.

Similarly to eas, Shapley(b*)(G, va, vs, €46) = 1/6.

Every other edge is irrelevant to the answer (v, vg), and so, its Shapley value is zero.
Note that the sum of the Shapley values of all edges is 1, which is no coincidence, since in

general the Shapley value over all players sums up to the overall wealth of the entire set of
players [32]. Following are additional examples.

11:7

ICDT 2023

11:8

The Complexity of the Shapley Value for Regular Path Queries

Shapley(abc) (G, v1, vg, €). Any edge that is not on the only path that matches abe, namely
p: vy — v3 — vs — vg, will have the Shapley value of zero. For edges on the path p, the
computations are similar to each other and they all have the same Shapley value. For
one of them to change the query result, it needs to appear after both other edges in the
permutation of E,,. This happens in %! of the overall 9! permutations. So we have:

Shapley(abc) (G, v1, v, €13) = Shapley(abc)(G, v1, vg, €35)
1

= Shapley(abc) (G, v1, v, €56) = 3

If we assume that e;3 is exogenous, then the other two edges will split the contribution
evenly. Then we get:

1
Shapley{abc) (G, v1, vs, €35) = Shapley(abe)(G,v1,ve, €56) = 7

Shapley(ab*)(G,v1,v6,e). There are two paths that match the regular expression ab*
(as we have seen in Example 1). Again, any edge that is not on any of these paths has
the Shapley value zero. But now, the contributions of the remaining edges is not equal
since, for instance, ejs is on both paths so we expect it to have higher contribution than
the others. For the edge esg to change the query result, it needs to appear after edge
e12 but before at least one of ess and eyq. Permutations where this happens are either
permutations where esg appears after ejo and one of eoy and eyq but before the other
one, and there are 2 - E?:o(i + 2)'(‘;) (8 —i—2)! = & - 9! such permutations. This is also
possible in permutations where esg appears after e1o but before both esq and eyq, and
there are 30 (i + 1)!(3)(8 — i — 1)! = & - 9! such permutations. There are an overall of
9! possible permutations, so,

1
Shapley (ab”)(G, v1, e, €26) = 7 -

For the two edges es4 and eyq, the computations are similar to each other. For one of
them to change the query, it needs to appear after e;o and the other one, but before eog.
Similar to before, there are Z?:O(i +2)1(%)(8 —i — 2)! = 5 - 9! permutations where this
happens, so,

1

TE

For the last edge e1s, it needs to appear after esg or after both ey, e45. Permutations
where this happens are either permutations where e15 appears second after esg, and these
account for % . % -9l = % - 9! of all permutations, or permutations where e;5 appears
third or forth, and these account for % - 9! of all permutations. So overall we get that

X
12°
Note that, again,) . Shapley(ab®)(G,v1,v6,€) = 1, as expected. J

Shapley(ab*)(G,v1, vg, e24) = Shapley(ab*)(G, vy, vs, €46) =

Shapley(ab*)(G, v1, vg, €12) =

4 The Complexity of Exact Computation

In this section, we study the complexity of CRPQShapley(q), where the goal is to compute
the exact Shapley value of an edge. Note that the query ¢ is fixed in the analysis, hence,
every ¢ defines a separate computational problem CRPQShapley(q). The following theorem
show that CRPQShapley(q) is computationally intractable for almost every CRPQ ¢, except
for limited cases. We prove the theorem later, in Section 4.1.

M. Khalil and B. Kimelfeld

» Theorem 6 (Hardness). Let g be a CRPQ. If q has a non-redundant atom with a language
that contains a word of length three or more, then CRPQShapley(q) is FP#Y _complete.

Recall that FP#F is the class of functions computable in polynomial time with an oracle
to a problem in #P (e.g., counting the number of satisfying assignments of a propositional
formula). This class is considered intractable, and above the polynomial hierarchy (Toda’s
theorem [33]).

The question of whether the condition of Theorem 6 is necessary for hardness remains
open. Yet, we can show that it is, indeed, necessary, in the case of a single atom (RPQ):

» Theorem 7 (Tractability). Let q be an RPQ with the reqular expression r. If every word in
L(r) is of length at most two, then RPQShapley(q) is solvable in polynomial time.

Proof. We give a polynomial-time algorithm for computing RPQShapley(r) where L = L(r)
consists of words of length at most two. We denote by M(G, k) the set of all subsets E' C E,
of size k such that G[E, U E’] contains a path of L from s to t. We have the following from
Equation (3):

m’ —1 ' r . '
RPQShapley (1) (G s.t.c) = > =i)
k=0 ’

m’'—1
k'(m' —k—1)!
-y B @ e n),
k=0

Here, G. is the same as G, except for e that is exogenous instead of endogenous, G \ e is
the graph G with the exclusion of e, and m’ = |E,|. This shows that the computation of
RPQShapley(r)(G, s, t, e) reduces efficiently to computing |M(G, k)|, that is, counting the
subsets of E, (of endogenous edges) of size k that, when added to Fx, connects s to ¢ via a
path that matches a word in w € L.

We assume that L does not contain the empty word. This is without loss of generality,
for the following reason. If L contains the empty word €, then either s = ¢ and e has the
Shapley value zero (since it is irrelevant), or s # t and we can ignore the empty word of L.

We now show that | M(G, k)| can be computed in polynomial time when L(r) consists
of words of length at most two. First, let us observe that we can compute |[M(G, k)| by
computing the complement set |M(G, k)| which is defined similarly but for subsets of length
k where there is no path in L:

mien = (")) - MGH.

So, it suffices to show how to compute |[M(G, k)|.

For a subset of endogenous edges to be in M(G, k), it should not connect, with E,, any
path from s to ¢ matching w € L (i.e., matching one of wy, ..., w;). In other words, it should
not connect any path of length one matching some w; with |w;| = 1, or any path of length
two matching some w; with |w;| = 2. This partitions the set of endogenous edges into three
categories:

Permitted: Edges that are not part of any path that matches L.

Forbidden: Edges that connect s to ¢ without needing any other endogenous edge, either

because they have a label that constitutes a word w;, or because they connect a path of

length two together with an exogenous edge.

On2Path: All other edges, that is, the edges that belong to pairs of endogenous edges

that are needed together in order to connect s to ¢t through a word in L.

11:9

ICDT 2023

11:10

The Complexity of the Shapley Value for Regular Path Queries

Observe that following. First, the three sets Permitted, Forbidden and On2Path are pairwise
disjoint (by definition). Second, On2Path can be partitioned into |On2Path|/2 pairwise-
disjoint pairs, each constitutes a path with a word in L. (Note that our data model does not
allow for parallel edges.)

It follows that to construct a set of k edges in M(G, k), we can select i < k edges from
Permitted, then k — i pairs from the |On2Path|/2 pairs, and then one edge from each pair.
Hence, we get:

k . |On2Path|
—_ Permitted _— i
|M(G,k)\:§ <| . |)< k2_i)-2’@ : (4)

i=0
Finally, observe that we can compute each of Permitted, Forbidden and On2Path in polynomial
time, and we can then compute Equation (4) in polynomial time. This concludes the proof. <«

Hence, we get a full classification for RPQs:

» Corollary 8. Let q be an RPQ with the reqular expression r. Assuming P # NP, the
following are equivalent:

1. RPQShapley(q) is solvable in polynomial time.

2. Every word in L(r) is of length at most two.

In the remainder of this section, we prove the hardness side (Theorem 6).

4.1 Proof of Hardness

Membership in FP#¥ is straightforward from the definition of the Shapley value in Equa-
tion (2). Indeed, Shapley{q)(G,,e) can be computed using an oracle to the problem of
counting the permutations over the edge set such that e changes the evaluation from zero
(false) to one (true). For the FP#-hardness, we prove it in a sequence of reductions. We
begin with hardness for the special case where the language consists of a single three-letter
word. For that, we will use a result by Livshits et al. [17] on the computation of Shapley
values for facts (tuples) in relational databases. We use that to prove hardness for the general
case of a language with one or more words of length at least three, even when restricted to
simple graphs.

We first recall the result of Livshits et al. [17]. They considered relational databases D
where some of the facts are endogenous and the rest exogenous. As in our notation, the
corresponding subsets of D are denoted by D, and D,, respectively. For a Boolean query ¢
that maps every database into {0, 1}, they defined the Shapley value of a fact similarly to
the way we define the Shapley value of an edge: the endogenous facts are the players and
the query is the wealth function:

Shapley(q)(D, f) = Shapley(D,, vap, f)

where vg,(E) = q(F U Dy) — q(Dx). They established a complete classification of the
class of conjunctive queries without self-joins into tractable and intractable queries for the
computation of the Shapley value. What is relevant to us is that the following conjunctive
query is FP#P_hard:

Qrst(): Fz,y[R(z) A S(z,y) AT(Y)]

We define a special kind of graphs that will help us in some of the proofs. A graph
G = (V, E) is called a leveled graph if there exists a split of the vertex set into levels Vg, ..., Vi,
such that:

M. Khalil and B. Kimelfeld

S
R T
a & ¢ a
a | d
b c
c e d
d|c
(a) Input database D. (b) Reduction graph G.

Figure 2 An example for the construction in the reduction of the proof of Lemma 9.

1. The set of vertices V is the disjoint union of Vj, ..., Vj.
2. Every edge is from a vertex of some level V; to a vertex of V1.

From the hardness of the Shapley value for QrsT, it is easy to prove the following.

» Lemma 9. Let 0; € ¥ for i = 1,2,3. RPQShapley(oi0203) is FP#Y _hard, even when
restricted to leveled graphs.

The proof (given in the long version of the paper) is via the reduction illustrated in
Figure 2. Next, we have the following generalization of Lemma 9.

» Lemma 10. Let r be a regular expression. If there exists a word in L(r) of length at least
three, then RPQShapley(r) is FP#Y -hard, even when restricted to leveled graphs.

The reduction from the problem of Lemma 9 to that of Lemma 10 is illustrated in Figure 3
(and explained in the full version). With Lemma 10, we can prove Theorem 6.

Proof of Theorem 6. We know that ¢ has a non-redundant atom g; such that L(r;) contains
a word of length at least three. We reduce RPQShapley(r;) on leveled graphs (Lemma 10) to
CRPQShapley(g). Given an input leveled graph G, source vertex s, target vertex ¢ and edge
e for RPQShapley(r;), we construct an input instance G* for CRPQShapley(q).

Since the ith atom is non-redundant, we can use Observation 4 and conclude that there
exists a graph G; and assignment ¢’ to Z such that all RPQ atoms return true except for the
ith atom; that is, we have that g;[s;,t;](G;) =1 for every j # i and ¢;[s;, t;](G;) = 0. Here,

s; and t; are the vertices assigned to the variables y; and z;, respectively, from Equation (1).

We assume that G and G; are disjoint. We construct a new graph G* by adding G to G,
and merging s and t into s; and t;, respectively. Hence, in G*, the vertex s; has all edges
that it has in G, in addition to the outgoing edges that s has in G. Similarly, in G*, the

(a) Input graph G. (b) Graph G’ constructed in the reduction.

Figure 3 An example for the reduction in Lemma 10, for a regular expression that accepts the
word abcde, source vertex s = v, target vertex t = vg.

11:11

ICDT 2023

11:12

The Complexity of the Shapley Value for Regular Path Queries

vertex t; has all of the edges that it has in G;, in addition to the incoming edges that ¢ has
in G. In G*, we set all of the edges of G; to be exogenous ones. Moreover, G* and G have
the same set of endogenous edges.

To complete the proof, observe that ¢[0](G*) is equal to ¢;[s, t](G). To see that, observe
that G* has a matching path for the jth atom for all j # i (since G; does). Recall also that
there are no paths from s; to ¢; matching r; in G;. Hence, from our construction of G* (and
in particular given that s; and ¢; are not part of any cycle), we get that every path from s;
to t; that matches r; should be fully contained in G. Hence, G* has a g; path from s; to t; if
and only if G has a ¢; path from s to ¢.

Let E, and FE, be the sets of exogenous and endogenous edges of G, respectively, and let
E% be the set of exogenous edges of G*. We can extend the above argument to conclude that

q[v)(G"[E; U E']) = qi[s, t](G[Ex U E'])

for all subsets E’ of E,, since every edge of G; is exogenous in G*. From that we can now
conclude that Shapley(r;)(G, s,t,e) = Shapley(q)(G*, 7, e), as claimed. <

This completes the proof of the hardness side of Theorem 6.

5 Complexity of Approximation

We now study the complexity of approximating CRPQShapley(q). We aim for a fully poly-
nomial randomized approximation scheme, or FPRAS for short. Formally, an FPRAS for
a numeric function f is a randomized algorithm A(z,e€,d), where z is an input for f and
€,0 € (0,1), such that A(x,e€,d) returns an e-approximation of f(z) with probability 1 — 4
(where the probability is over the randomness of A) in time polynomial in z, 1/€ and log(1/4).
We distinguish between an additive FPRAS:

Pr(f(z) —e < A(z,6,0) < f(z)+¢]>1-§

and a multiplicative FPRAS:

Pr {(—f)e <Az, e,0) < (1+e)f(x)| =1—0.

5.1 Results

There is a simple Monte-Carlo algorithm that guarantees an additive approximation for the
Shapley value on any CRPQ, and we show that it also serves as a multiplicative FPRAS
in some cases. In this section, we establish a dichotomy in the complexity of multiplicative
approximation for the class of CRPQs. We note that here and later on, we sometimes give
results for general CRPQs, yet without redundancy. These results generalize to CRPQs
with redundant atoms by application to any CRPQ obtained by repeatedly eliminating
redundancy (as mentioned in Section 2).

» Theorem 11. Let g be a CRPQ without redundancy. If L(r;) is finite for every atom r;
of q, then CRPQShapley(q) has a multiplicative FPRAS. Otherwise, CRPQShapley(q) has no
multiplicative approzimation (of any ratio) or else NP C BPP.

In the remainder of this section, we prove Theorem 11, starting with the hardness side
(Section 5.2) and moving on to the FPRAS algorithm (Section 5.3).

M. Khalil and B. Kimelfeld

(a) The DFA for regular expression a(a + b)*c. (b) Input graph G.

(c) The graph G’ of the reduction for input instance (G,v1,va,e).

Figure 4 An example for the construction in the reduction of the proof of Lemma 15.

5.2 Proof of Hardness

For the hardness, we use a direct consequence of the characterization of Fortune, Hopcroft
and Wyllie [12] of the subgraph homeomorphism problem:

» Proposition 12. [t is NP-complete to determine, given a graph G, vertices s and t, and
edge e, whether e lies on any simple path from s to t.

Equipped with Proposition 12, we can now show the hardness for ¥* using the following
characterization of when the Shapley value of an edge is nonzero.

» Lemma 13. Let G be a graph where all edges are endogenous. Let s and t be two vertices
of G, and e an edge of G. Shapley(X*)(G,s,t,e) > 0 if and only if e belongs to a simple
path from s to t.

Proof. Denote by ¢ the RPQ (z,X*,y). We handle separately each direction of the claim. If
Shapley(X*)(G, s, t,e) > 0, then it follows from the definition of the Shapley value that there
exists a subset E’ of the edges such that ¢[s, t](G[E’]) = 0 and q[s, t](G[E’ U {e}]) = 1. Let
G' = G[E’ U {e}]. Then G’ contains a simple path from s to ¢. If this simple path does not

contain e, then it is a simple path in G[E’], which contradicts the fact that ¢[s, t](G[E’]) = 0.

Conversely, suppose that e lies on a simple path P from s to ¢ in G. If the random selection
of Shapley selects precisely all edges of P except for e, then the addition of e would change
the result from 0 to 1. Hence, the Shapley value is nonzero. <

Hence, from Proposition 12 and Lemma 13 we conclude the following corollary, which
proves the hardness part of Theorem 11 for the language ¥*.

» Corollary 14. [t is NP-complete to determine whether Shapley(X*)(G, s,t,e) > 0, given
G, s, t and e, even if all edges of G are assumed to be endogenous.

Next, we generalize Corollary 14 from ¥* to any arbitrary infinite regular language 7.

» Lemma 15. Let r be a reqular expression. If L(r) is infinite, then it is NP-complete to
determine whether Shapley(r)(G, s,t,e) > 0.

11:13

ICDT 2023

11:14

The Complexity of the Shapley Value for Regular Path Queries

Proof sketch. It is straightforward to show that the problem is in NP, as any subset of
endogenous edges that adding e to it connects a matching path serves as a witness and
can be verified in polynomial time. We will prove NP-hardness by showing a reduction
from the problem of determining whether Shapley(3¥*)(G, s,t,e) > 0 where all edges are
endogenous, and then apply Corollary 14. Given an input instance (G, s,t,e), we will show
how to construct an instance (G', s',t’, ') for our problem so that Shapley(X*)(G, s, t,e) >0
if an only if Shapley(r)(G’,s',t',¢e’) > 0.

Since L(r) is infinite, we know that its corresponding DFA A has at least one cycle. We
find a path from an initial state to an accepting state that passes through a state s of A
that participates in a cycle. We will denote the path by: [:sg — ... = s; — ... — s, where
S; = S.

We assumed s is a part of a cycle. Let us denote the labels along the cycle starting, from
s, by w, = 0¢...0.. The graph G’ is constructed from G so that every path from s’ to ¢/
matches r in the following way. The graph G’ consist of three subgraphs, as illustrated in
Figure 4.

A copy of the graph G where every edge is replaced with a fresh path of ¢ edges with

labels matching w,. We denote the correspondent of each vertex v of G as v”. Hence, s

and ¢t become s” and t”, respectively. All of the edges in this part are endogenous.

A copy of the path s9 — ... — s;, with the same labels as in the DFA A, where we

identify s; with s”. The edges of this part are all exogenous.

The path s; — ... — s, with the same labels as in the DFA A, there we now identify s;

with #’/. The edges of this part are all exogenous.

We now define s’ to be the copy of sg, we define ¢’ to be the copy of si, and we choose as €’
any edge along the path that replaces e.

From here it is easy to prove that e belongs to a simple path of G from s to ¢ if and only
if ¢/ belongs to a simple path of G’ from s’ to t/, and from there we conclude similarly to
Lemma 13 that Shapley(X*)(G, s,t,e) > 0 if and only if Shapley(r)(G’,s',t',¢’) > 0. <

Finally, we extend Lemma 15 from RPQs to CRPQs similarly to the way we proved
Theorem 6.

» Lemma 16. Let g be a CRPQ without redundancy. If L(r;) is infinite for some atom r;
of q, then determining whether Shapley(q)(G,,e) > 0 is NP-complete.

This completes the proof of the hardness side of Theorem 11. Next, we will prove the
positive side.

5.3 Proof of Tractability

We now show that for every CRPQ where the hardness condition of Theorem 11 does not
hold, a multiplicative FPRAS exists. We start by showing that in this case, the gap property
(as defined by Livshits et al. [17]) holds: if the Shapley value is nonzero, then it must be at
least the reciprocal of a polynomial.

» Lemma 17. Let q be a fired CRPQ without redundancy. If L(r;) is finite for every atom
r; of q, then there exists a polynomial p such that Shapley(q)(G,, e) is either zero or at
least 1/p(|G]).

Proof. If there is no subset E’ of E, such that adding e to E’ U E, changes the value of
query ¢ from false to true, then Shapley(q)(G,u, e) = 0. Otherwise, let E’ be a minimal such
set. Then |E'| < k1 + ...+ ky,, where each k; is the length of the longest word in L(r;); the

M. Khalil and B. Kimelfeld

language for the i-th atom in ¢, as at worst case, the paths match the longest word for each
RPQ. Since each L(r;) is finite, every k; is a finite constant, and so, k = k1 + ...+ k,, is a
constant.

Returning to the definition of the Shapley value (Equation (2)), the probability of selecting
a permutation 7 such that 7. is exactly E'\ {e} is

(1B = Diem’ — [ED! _ (m = k)!

m/'! - m/'!

where m’ = |E,|. Hence, we have that

L (M k) !
> = :
Shapley(q)(G, @, e) 2 ~— m' —k+1)-...-m

This completes the proof. |

Similarly to Livshits et al. [17], we can use the gap property to show that an additive
FPRAS can be turned into a multiplicative FPRAS.

» Lemma 18. Let g be a CRPQ without redundancy. If L(r;) is finite for every atom r; of
q, then CRPQShapley(q) has both an additive and a multiplicative FPRAS.

Proof. Using the Chernoff-Hoeffding bound, we can get an additive FPRAS of the value
Shapley(q)(G, i, e), by simply taking the ratio of successes over O(log(1/d)/€?) trials of the
following experiment:

Select a random permutation (eq, ..., €,,) over the set of endogenous edges E,,.

Suppose that e = ¢;, and let E;_1 = {e1,...,e;_1}. If ¢[t](G[E;—1 UE,U{e}]) =1 and

q[@](G[E;-1 U Ey]) = 0, then report “success,” otherwise, report “failure.”

From Lemma 17 (the gap property), we conclude that in order to get a multiplicative
e-approximation, it suffices to apply an additive €-approximation where 1/€' is polynomial
in the size of G and in 1/e. <

5.4 Open Problem: Directed Acyclic Graphs

It is worth noting that the proof of hardness fails when the graph is acyclic, as it relies on
Proposition 12. The lemma states that it is NP-complete to determine whether a given graph
G has a simple path from a given source vertex s to a given target vertex ¢ through a given
edge e. While this is true in the case of a general graph G, the problem is easily solvable
in polynomial time when the graph is acyclic, since every path is simple. This leaves open
the question of whether we can have a multiplicative FPRAS for the Shapley value even
for RPQs with an infinite language. We leave this question for future investigation. Note,
however, that for the exact computation there is no change even when restricted to DAGs,
since the reductions constructed DAGs.

6 Shapley Value of Vertices

In this section, we discuss the complexity of the Shapley value for vertices, rather than edges,
of the graph. Similarly to the case for edges, our goal is to quantify the contribution of
vertices in the input graph to an answer of a path query. So, now, the graph consists of two
types of vertices: endogenous vertices and exogenous vertices.

11:15

ICDT 2023

11:16

The Complexity of the Shapley Value for Regular Path Queries

For a graph G = (V| E), we denote by V;, and V the sets of endogenous and exogenous
vertices, respectively, and we assume that V' is the disjoint union of V;, and V. If U is a set
of vertices, then G[U] denotes the subgraph of G that is induced by U; hence, the vertex set
of G[U] is U and the edge set of G[U] consists of every edge of G with both endpoints in U.
We denote by Shapley(q)(G, @, w) the Shapley value of a vertex w € V;, that is:

Shapley(q)(G, @, w) & Shapley(Va, v}, w)

where the function Shapley is as defined in Equation (2) and v} is defined as follows:
vy(B) = q[u](G[B U VA]) — q[a)(G[V4])

We denote by CRPQShapley’(q) and RPQShapley”(r) the computational problems that
correspond to the ones defined earlier for the Shapley values of edges. We now state the
results that we establish with some notes on the changes that should be made in the proofs.

6.1 Complexity of Exact Computation

We can show the following regarding the exact computation of the Shapley value of a graph
vertex.

» Theorem 19. The following hold for a CRPQ q.

1. If ¢ has a non-redundant atom with a language that contains a word of length four or
more, then CRPQShapley”(q) is FP#F _complete.

2. If q is an RPQ with the reqular expression r, and every word in L(r) is of length at most
two, then RPQShapley'(q) is solvable in polynomial time.

Note that we leave a gap in the classification of RPQs. Theorem 19 states that if there
exists a word of length four or more, then the problem is hard, and if all words are of length
at most two, then the problem is solvable in polynomial time. The case where there are
words of length three but not longer remains an open problem (as opposed to the case of
edges where we had a full dichotomy on RPQs due to Corollary 8).

The proof of the hardness part is almost the same as the proof of Theorem 6 for the case
of edges. We begin with hardness for the special case where the regular language (or any
language) consists of a single four-letter word (rather than three in the case of edges). For
that, we use the same result by Livshits et al. [16] on the computation of Shapley values
for facts in relational databases. We then continue with the same sequence of reductions as
done for edges to get the hardness for a general CRPQ. The proof of the tractability part is
also similar to the proof of Theorem 7.

6.2 Complexity of Approximation

For calculating the Shapley value approximately, we get the exact same dichotomy for vertices
as Theorem 11 for edges.

» Theorem 20. Let ¢ be a CRPQ without redundancy. If L(r;) is finite for every atom r; of
q, then CRPQShapley*(q) has a multiplicative FPRAS. Otherwise, CRPQShapley'(q) has no
multiplicative approzimation (of any ratio) or else NP C BPP.

The proof is also similar to that of Theorem 11. We establish an FPRAS through a
straightforward additive approximation and the gap property. For hardness, we know from
Fortune, Hopcroft and Wyllie [12] that it is NP-complete to determine whether a vertex

M. Khalil and B. Kimelfeld

v lies on a simple path from s to ¢ in a given graph G, and from that we conclude that
deciding whether Shapley(X*)(G, s,t,v) > 0 is also NP-complete. From there we continue
with a sequence of reductions that is similar to what we have for the case of edges.

6.3 Summary

We conclude that the complexity for both exact computation and approximation of the
Shapley value of vertices is very similar to the case of edges. It is generally hard to compute
exact values; it is sufficient for the CRPQ to have an atom that is non-redundant and contains
a word of length four or more for the computation to be hard, while for RPQs we identify
that the tractable family of queries for edges is also tractable for vertices. For approximation,
we have an identical dichotomy for the existence of a multiplicative FPRAS.

7 Concluding Remarks

This work continues the research of responsibility and contribution in databases. We presented
the graph-database perspective where the queries are (conjunctive) regular path queries,
and the responsibility measure is the Shapley value. We investigated the data complexity
of the Shapley value of edges in the graph. For the exact computation, we showed that it
is generally hard, while we also showed a specific family of CRPQs where the computation
can be done in polynomial time. This is not a full dichotomy for the class of CRPQs, but
we establish a dichotomy for the class of RPQs. It remains an open problem whether the
condition we have for hardness defines a full dichotomy on CRPQs. We have also studied the

complexity of computing an approximation of the Shapley value in the form of an FPRAS.

An additive FPRAS is easy to achieve using Monte-Carlo sampling, while a multiplicative
approximation is harder. We showed a family of CRPQs where the gap property holds, and
hence, an additive FPRAS can be transformed into a multiplicative one. These are the
CRPQs where every atom has a finite language. For the other CRPQs, we showed that it is
hard to obtain any multiplicative approximation (assuming no redundant atoms). Thus, we
achieved a dichotomy on CRPQs for the case of approximation. Finally, we showed that the
complexity picture is quite similar (up to a small gap) if we compute the Shapley value of
vertices rather than edges.

Several problems remain open. We still do not have a full coverage of all CRPQs for the
exact computation of Shapley values. In the case of vertices, we still have a gap already
for RPQs. In addition, the proof of the hardness of approximation in Section 5.2 is not
valid when the input graph is acyclic; this raises the question of whether there are better

opportunities of efficient approximations when the problem is restricted to acyclic graphs.

It is also interesting to understand the impact on complexity of adopting other semantics
for RPQ evaluation, such as simple paths and shortest paths [22]. Another direction is
investigating richer path languages, for example, allowing existentially quantified variables in
the query, or negated atoms.

—— References

1 Manish Kumar Anand, Shawn Bowers, and Bertram Ludéscher. Techniques for efficiently
querying scientific workflow provenance graphs. In EDBT, volume 426, pages 287-298. ACM,
2010. doi:10.1145/1739041.1739078.

2 Marcelo Arenas and Jorge Pérez. Querying semantic web data with SPARQL. In Maurizio
Lenzerini and Thomas Schwentick, editors, PODS, pages 305-316. ACM, 2011. doi:10.1145/
1989284 .1989312.

11:17

ICDT 2023

https://doi.org/10.1145/1739041.1739078
https://doi.org/10.1145/1989284.1989312
https://doi.org/10.1145/1989284.1989312

11:18

The Complexity of the Shapley Value for Regular Path Queries

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Pablo Barcelé Baeza. Querying graph databases. In Richard Hull and Wenfei Fan, editors,
PODS, pages 175-188. ACM, 2013. doi:10.1145/2463664.2465216.

Pablo Barcel6, Leonid Libkin, Anthony W Lin, and Peter T Wood. Expressive languages for
path queries over graph-structured data. ACM Transactions on Database Systems (TODS),
37(4):1-46, 2012.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Rewriting
of regular expressions and regular path queries. In PODS, pages 194-204. ACM, 1999.
doi:10.1145/303976.303996.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Containment
of conjunctive regular path queries with inverse. In KR, pages 176-185. Morgan Kaufmann,
2000.

Mariano P. Consens and Alberto O. Mendelzon. GraphLog: a visual formalism for real life
recursion. In PODS, pages 404-416. ACM, 1990. doi:10.1145/298514.298591.

Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query language
supporting recursion. In SIGMOD, pages 323-330. ACM, 1987. doi:10.1145/38713.38749.
Daniel Deutch, Nave Frost, Benny Kimelfeld, and Mikaél Monet. Computing the Shapley
value of facts in query answering. In SIGMOD, pages 1570-1583. ACM, 2022.

Wenfei Fan. Graph pattern matching revised for social network analysis. In ICDT, pages 8-21.
ACM, 2012. doi:10.1145/2274576.2274578.

Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunctive queries
with regular expressions. In Alberto O. Mendelzon and Jan Paredaens, editors, PODS, pages
139-148. ACM, 1998. doi:10.1145/275487.275503.

Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theor. Comput. Sci., 10:111-121, 1980. doi:10.1016/0304-3975(80)90009-2.
Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model approach:
Part 1: Causes. In UAI pages 194-202, 2001.

Anthony Hunter and Sébastien Konieczny. On the measure of conflicts: Shapley inconsistency
values. Artif. Intell., 174(14):1007-1026, 2010.

Majd Khalil and Benny Kimelfeld. The complexity of the Shapley value for regular path
queries, 2022.

Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. Query games in
databases. SIGMOD Rec., 50(1):78-85, 2021.

Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. The Shapley value
of tuples in query answering. Log. Methods Comput. Sci., 17(3), 2021.

Ester Livshits and Benny Kimelfeld. The Shapley value of inconsistency measures for functional
dependencies. In ICDT, volume 186 of LIPIcs, pages 15:1-15:19. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2021. doi:10.4230/LIPIcs.ICDT.2021.15.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems 30, pages 4765—4774. Curran Associates,
Inc., 2017.

Artem Lysenko, Irina A. Roznovat, Mansoor Saqi, Alexander Mazein, Christopher J. Rawlings,
and Charles Auffray. Representing and querying disease networks using graph databases.
BioData Min., 9:23, 2016. doi:10.1186/s13040-016-0102-8.

Richard T. B. Ma, Dah-Ming Chiu, John Chi-Shing Lui, Vishal Misra, and Dan Rubenstein.
Internet economics: The use of Shapley value for ISP settlement. IEEE/ACM Trans. Netw.,
18(3):775-787, 2010. doi:10.1109/TNET.2010.2049205.

Wim Martens and Tina Trautner. Evaluation and enumeration problems for regular path
queries. In ICDT, volume 98 of LIPIcs, pages 19:1-19:21. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik, 2018. doi:10.4230/LIPIcs.ICDT.2018.19.

Wim Martens and Tina Trautner. Dichotomies for evaluating simple regular path queries.
ACM Trans. Database Syst., 44(4):16:1-16:46, 2019. doi:10.1145/3331446.

https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/303976.303996
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/2274576.2274578
https://doi.org/10.1145/275487.275503
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.4230/LIPIcs.ICDT.2021.15
https://doi.org/10.1186/s13040-016-0102-8
https://doi.org/10.1109/TNET.2010.2049205
https://doi.org/10.4230/LIPIcs.ICDT.2018.19
https://doi.org/10.1145/3331446

M. Khalil and B. Kimelfeld

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Corto Mascle, Christel Baier, Florian Funkev, Simon Jantsch, and Stefan Kiefer. Responsibility
and verification: Importance value in temporal logics. In 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1-14. IEEE, 2021.

Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu. The complexity
of causality and responsibility for query answers and non-answers. Proc. VLDB Endow., 4(1):34—
45, 2010.

Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph databases.
SIAM J. Comput., 24(6):1235-1258, 1995. doi:10.1137/S009753979122370X.

Stefano Moretti, Fioravante Patrone, and Stefano Bonassi. The class of microarray games and
the relevance index for genes. Top, 15(2):256-280, 2007.

Ramasuri Narayanam and Yadati Narahari. A Shapley value-based approach to discover
influential nodes in social networks. IEEE Trans Autom. Sci. Eng., 8(1):130-147, 2011.
doi:10.1109/TASE.2010.2052042.

Alon Reshef, Benny Kimelfeld, and Ester Livshits. The impact of negation on the complexity
of the Shapley value in conjunctive queries. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors,
PODS, pages 285-297. ACM, 2020. doi:10.1145/3375395.3387664.

Gorka Sadowski and Philip Rathle. Fraud detection: Discovering connections with graph
databases. White Paper-Neo Technology-Graphs are Everywhere, 13, 2014.

Babak Salimi, Leopoldo E. Bertossi, Dan Suciu, and Guy Van den Broeck. Quantifying causal
effects on query answering in databases. In TaPP. USENIX Association, 2016.

Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker,
editors, Contributions to the Theory of Games II, pages 307-317. Princeton University Press,
Princeton, 1953.

Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865—
877, 1991.

Tjeerd van Campen, Herbert Hamers, Bart Husslage, and Roy Lindelauf. A new approximation
method for the Shapley value applied to the WTC 9/11 terrorist attack. Soc. Netw. Anal.
Min., 8(1):3:1-3:12, 2018. doi:10.1007/s13278-017-0480-z.

Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In STOC,
pages 137-146. ACM, 1982. doi:10.1145/800070.802186.

Mihalis Yannakakis. Graph-theoretic methods in database theory. In PODS, pages 230-242,
1990. doi:10.1145/298514.298576.

Ningning Yi, Chunfang Li, Xin Feng, and Minyong Shi. Design and implementation of
movie recommender system based on graph database. In WISA, pages 132-135. IEEE, 2017.
doi:10.1109/WISA.2017.34.

Byoung-Ha Yoon, Seon-Kyu Kim, and Seon-Young Kim. Use of graph database for the
integration of heterogeneous biological data. Genomics & informatics, 15(1):19, 2017.

Bruno Yun, Srdjan Vesic, Madalina Croitoru, and Pierre Bisquert. Inconsistency measures for
repair semantics in OBDA. In IJCAI, pages 1977-1983. ijcai.org, 2018.

11:19

ICDT 2023

https://doi.org/10.1137/S009753979122370X
https://doi.org/10.1109/TASE.2010.2052042
https://doi.org/10.1145/3375395.3387664
https://doi.org/10.1007/s13278-017-0480-z
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/298514.298576
https://doi.org/10.1109/WISA.2017.34

	1 Introduction
	2 Preliminaries
	3 The Shapley Value of Edges
	4 The Complexity of Exact Computation
	4.1 Proof of Hardness

	5 Complexity of Approximation
	5.1 Results
	5.2 Proof of Hardness
	5.3 Proof of Tractability
	5.4 Open Problem: Directed Acyclic Graphs

	6 Shapley Value of Vertices
	6.1 Complexity of Exact Computation
	6.2 Complexity of Approximation
	6.3 Summary

	7 Concluding Remarks

