Size Bounds and Algorithms for Conjunctive
Regular Path Queries

Tamara Cucumides
University of Antwerp, Belgium
Pontificia Universidad Catdlica de Chile, Santiago, Chile

Juan Reutter
Pontificia Universidad Catélica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile

Domagoj Vrgoc
University of Zagreb, Croatia
Pontificia Universidad Catélica de Chile, Santiago, Chile

—— Abstract

Conjunctive regular path queries (CRPQs) are one of the core classes of queries over graph databases.
They are join intensive, inheriting their structure from the relational setting, but they also allow
arbitrary length paths to connect points that are to be joined. However, despite their popularity,
little is known about what are the best algorithms for processing CRPQs. We focus on worst-case
optimal algorithms, which are algorithms that run in time bounded by the worst-case output size of
queries, and have been recently deployed for simpler graph queries with very promising results. We
show that the famous bound on the number of query results by Atserias, Grohe and Marx can be
extended to CRPQs, but to obtain tight bounds one needs to work with slightly stronger cardinality
profiles. We also discuss what algorithms follow from our analysis. If one pays the cost for fully
materializing graph queries, then the techniques developed for conjunctive queries can be reused. If,
on the other hand, one imposes constraint on the working memory of algorithms, then worst-case
optimal algorithms must be adapted with care: the order of variables in which queries are processed
can have striking implications on the running time of queries.

2012 ACM Subject Classification Information systems — Query languages
Keywords and phrases graph databases, regular path queries, worst-case optimal algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.13

Funding This work is supported by: ANID — Millennium Science Initiative Program — Code
ICN17_002 and ANID Fondecyt Regular project number 1221799.

1 Introduction

Graph patterns form the basis of most query languages for graph databases [1]. Consequently,
there has been a lot of progress in terms of pattern query answering, either by porting
and optimizing relational techniques into a graph context [15, 11, 12], or by implementing
worst-case optimal algorithms over graphs, which run in time given by the AGM bound of
queries [14, 10, 2], or even with a mix of both approaches [8].

However, the main focus has been so far on simple graph patterns, or conjunctive
queries (CQs), which are matched to the queried database. But one of the key aspects that
differentiate graph and relational databases is the need for answering path queries, which
are usually integrated into graph patterns to form so called conjunctive regular path queries
(CRPQs). CRPQs form an important use case for graph patterns [1], but so far we know
little about algorithms that can compute answers of these queries.

© Tamara Cucumides, Juan Reutter, and Domagoj Vrgo¢;
oY licensed under Creative Commons License CC-BY 4.0
26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 13; pp. 13:1-13:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2

Size Bounds and Algorithms for Conjunctive Regular Path Queries

Consider for instance the CRPQ in Figure 1. We assume in this paper the standard
relational representation of graphs using one binary relation per edge label. Namely, each
edge label a results in a relation R, containing all pairs (v,v’) connected by an a-labelled
edge in the graph. Then @Q); features a triple join, but one of the relations we are joining is
given by expression at, which corresponds to the transitive closure of the relation R,. How
should one compute this query? One approach is to first materialize the answers of all path
queries, after which we have a simple graph pattern or CQ over these materialized relations,
whose answers we already know how to compute [16, 13]. In our case, this means computing
the transitive closure R of R,, as a virtual relation, and then compute the (relational) triple
join RI (x,y) A Ry(y, z) A Re(z,), treating now a* as if it was a standard relation. Is this
efficient? Let us assume for simplicity that the cardinality of R,, Ry and R, is N. Then, the
virtual relation R} may have up to N? tuples. If we use a worst-case algorithm for the task
of computing the triple-join, we can get the answers in O(N?), which also encompass the
time taken to build the virtual relation R} for dealing with a™. As we shall see, the O(N?)
bound also corresponds to the maximum number of tuples that may be in the answer of this
query, so our algorithm can be dubbed worst-case optimal. In this case, the approach seems
plausible, at least in terms of worst-case asymptotic complexity.

Figure 1 Qi(z,y,2) + a(x,y) A Ry(y, 2) A Re(z, 2).

On the other hand, our strategy of materializing transitive closure (or more generally,
any path query) can be quite costly, as R} may have up to N2 tuples itself, which need to
be stored in memory. Thus, it is natural to ask if there is any way of computing the answers
for this query in an optimal way, and in such a way that we do not pay the cost of fully
materializing all path queries. And perhaps more importantly, what happens with other
CRPQs? Do we have a worst-case optimal algorithm for every CRPQ? Does it necessarily
involve materializing all path queries beforehand?

In this paper we provide answers to these questions. We study bounds on the maximum
size of the answer of a CRPQ, given certain cardinality information about the graph. We
use these bounds to investigate optimal algorithms for CRPQs, either in full generality, or
with additional memory constraints. Our main contributions are as follows.

1. Regarding output bounds for CRPQs, we first observe that the bound obtained by
materializing RPQs and applying the standard AGM bound on the resulting
query is not tight. For example, consider the query Q5 in Figure 2 below:

@O — o —(— v —)

Figure 2 Q2(z,y,2) + at(z,y) AbT(y,2).

T. Cucumides, J. Reutter, and D. Vrgoc

If |Ry| = |Rp| = N then the answers to at and b* may have up to N? tuples. Thus,
applying the usual AGM bound over the CQ resulting from materializing both expressions into
relations gives an upper bound of O(N*). This is of course not tight: since |R,| = |Ry| = N,
the number of possible data values in any relation is also bounded by IV, so the total number
of tuples in the answer is O(N?3). One can show that this bound is actually tight.

2. We can obtain much more precise bounds for Qs if we also take into account the cardinality
of the first and second attributes of both R, and R;. For example, if we assume that the
cardinality of the projection of R, and Ry over the first or second attributes is bounded by
M, then the number of tuples in the output of Qs is in O(M?). And we can generalize this
for every CRPQ: We provide bounds on the number of tuples in the answer of any
CRPQ, over any graph satisfying the same cardinalities of relations and each of
their attributes. Our upper bound is based on an extension of the linear program used to
show the AGM bound. Consider for example query Qs(z,y,z) + at(z,y)AbT (y, 2)AR.(z, 2)
in Figure 3.

Figure 3 Qs(z,y,2) <+ at(z,y) AbT(y,2) A Re(z, 2).

Let R} be the projection on the first attribute of R,, R{ the projection on the second
attribute (and analogously for R;). Then the answers of Q3 over a given graph with relations
Ra, Ry, R, are bounded by 27", where p* is the solution of the following program.

minimize uf log|R.| + uf log |Rfl|—|—u§+ log |RS| + ung log |R;| + ulj log | R} |
where ufe + uf >1
ulte + uZJr >1 (1)

+ +
a b
>
Uy Uy >1
R. ,at _at bt bt

c)uaj ?uy 7uy 7uz 20

This is a generalization of the AGM linear program [4], in which now we can also assign
weights to the starting and ending points of RPQs, which receive their own variables (ug+
and u?" for a*, u) and u!" for b*). Assume that the cardinality of R}, RS, RS and Ry is
M, and the cardinality of R, is N, with N < M?2. Then, an optimal solution for this query
Re — 1, ug+ = ué’f =1 and u¢" =u!" = 0. Intuitively, this means assigning full weight
to the R.(x,z) atom of the query, and evenly dividing the weights for vertex y. This makes
sense, because the answers of @) are always bounded by M N: for each tuple (u,v) in R,

there are at most M nodes connected to u and v by means of the expressions a™ and bT.

is u

3. Now that we know how to bound the answers of CRPQ, the next question is to look for
worst-case optimal algorithms for them: an algorithm for a query @ is worst-case optimal if,
on input graph G, the answers of) over G are computed in time bounded by the maximum

13:3

ICDT 2023

13:4

Size Bounds and Algorithms for Conjunctive Regular Path Queries

number of tuples in the answer of) over any graph with the same cardinalities of all the
relations as G. Unfortunately we show that, under usual complexity assumptions, there are
CRPQs for which no worst-case optimal algorithm exists.

4. Two strategies stand off when thinking about computing the answers of CRPQs. The
first we already mentioned: materialize every path query as a virtual relation, and then apply
a worst case optimal algorithm such as e.g. Leapfrog Trie-join [16]. For some queries, such
as the triangle query in Figure 3, this strategy appears to be as optimal as one can be, at
least in terms of computation time in the worst case. However, the memory requirements
are quite high, as materialized path queries can be of quadratic size in terms of the number
of nodes in the graph. On the other hand, one can immediately perform Leapfrog Trie-join
on the graph as if it was a relational database, and whenever one needs pairs of the form
(a,z) connected by a path query r, one computes it on demand, say by doing a Breadth
First Search (BFS) over the relation. Assuming we do not cache intermediate results, this
strategy has no significant memory requirements, but it may incur in chained searches on
the graph, and end up being slower than materialization. At a first glance, it would appear
that we have a strict time/memory tradeoff when computing this type of queries. But is
this the best we can do? As it turns out, by carefully planning how RPQs are instantiated
within worst case optimal algorithms, we provide an algorithm that can compute the
answers of many CRPQs under the same running time as an algorithm based on
full materialization of path queries, but requiring only linear memory, in terms
of the nodes of the graph.

2 Preliminaries

Graph databases. A graph database is usually defined in the theoretical literature as a
directed edge-labelled graph [5, 18]. More formally, if ¥ is a finite alphabet of edge labels, a
graph database over X is a pair (V, E), where V is a finite set of nodes, and E CV x ¥ x V.
An alternative way of viewing a graph database is through its relational representation.
Namely, if ¥ is a finite labelling alphabet, a graph database G = (V, E) over X can be given
as a relational database over the schema {R,}q.ex of binary relations. Intuitively, R, (v,v’)
holds if and only if (v,a,v’) € F; that is, if there is an a-labelled edge between v and v'.
Throughout the paper we will often switch between these two representations. For a binary
relation R,, with a € X, we denote with R} the projection of R, onto its first attribute.
Similarly we define R{ as the projection of of R, onto the second attribute. In the remainder
of the paper we will often use the term graph when referring to a graph database.

Queries over graph databases. Path queries are usually given as regular expressions, under
the name of Regular Path Queries, or RPQs. An RPQ r selects, in a graph G, all pairs (u, v)
of nodes that are connected via edge labels forming a word in the language of r. We denote
this set of pairs as [r]q, see Table 1 for the definition. We assume RPQs are given both by
regular expressions or automata, and freely switch between these representations.

Conjunctive regular path queries (CRPQs) [1, 5], are simply conjunctions of path queries.
In order to exploit what is known about size bounds for relational CQs, we separate the
expressions in our CRPQ into two sets: (i) the expressions consisting of a single letter (which
are thus equivalent to an ordinary CQ); and (ii) regular expressions whose languages contain
more than a single letter. Therefore, we define a conjunctive regular path query over a graph
database to be given by an expression

¢ k
Q@) + N Ra(yiz)A)\ rilyiz) (2)

i=1 i=0+1

T. Cucumides, J. Reutter, and D. Vrgoc

Table 1 Semantics of RPQs, for a € X, and r, r1 and ro arbitrary RPQs. The symbol o denotes
the composition of binary relations.

[ele = {(u,u)|wuisanodeidin G} [ale = {(u,v)]| (u,a,v) € G}
[r1-rm2]e = [rilgeolrle [ri+re]ec = [rileUlre]c
[r*le = [rleU[ror]cUfrororjgU--- ["le = [EleUlrt]c

where a; € X, 7; is a regular expression whose language is not equal to a single one letter word
over X, and T = {x1,...,2n} C {y1,21,--., Yk, 2k} iS & set of output variables. A CRPQ
without such regular expressions is simply a conjuntive query (CQ). Further, a CRPQ is full
if every variable y;, z; is also mentioned in x, and it is e-free if none of the expressions r;
admit € in their language. The expression to the right of the arrow is the body of query Q.
The semantics of a CRPQ @, over a graph G is given via homomorphisms [1]. Namely,
a mapping u : {z1,...,2,} — V is an output of @ over G when p can be extended to the
variables of @ in such a way that for each i € {1,...¢} R, (p(y:), 11(z;)) holds, and for each
te{l+1,...k}, (u(yi), u(2:)) € [ri]e. We denote the set of all outputs with Eval(Q,G). A
CRPQ @ is compatible with a graph G if the graph features all relations mentioned in Q.

Cardinality Profiles. For a given graph database GG, we use 7° to denote the number of
nodes in G that can participate as starting points for a path labelled by 7 in G: it corresponds
to the union of each R’ of each relation R that labels a transition out of the initial state
of the automaton for r. Likewise, r¢ is the union of each R® of each relation that labels a
transition into a final state of the automaton for r.

In order to reason about bounds on graph databases, we always assume access to some
basic statistics about the size of relations in the graph. Formally, the cardinality profile of a
graph database G over X with respect to a query @ includes the following cardinalities:

|V'| the total number of nodes;

For each atom R,(y, z) in Q, the number |R,| of a-labelled edges;

For each atom 7(y, z) in @, with r a regular expression, the number r* of starting points

and r¢ of final points participating in r.

To avoid extra notation, we also assume that a graph database G contains, in addition to
the edge relation, every unary relation of the form r* or r¢. Notice one can always add these
unary relations in linear time.

The AGM bound. Atserias, Grohe and Marx [4] link the size bound of a relational join
query to the optimal solution to a given linear program. In graph terms, let Q(x1,...,x,) +
N R, (yi, z;) be a full conjunctive query without self-joins, i.e, in which each a; is different,
and let G be a graph database where the size of each R,, is N;. Atserias et. al. [4] show
that an optimal bound is achieved by considering the following linear program:

minimize Z uftei logN;
i=1
where Z uffsi > 1 for each variable z in Q (3)

i : z appears in atom Rg;

uftei >0 fori=1,...,m

Let us denote by p*(Q, D) the optimal value of "1, uf*si log N;. The AGM bound [4]
can then be stated as follows.

13:5

ICDT 2023

13:6

Size Bounds and Algorithms for Conjunctive Regular Path Queries

» Theorem 1 (AGM bound). Let Q be a full CQ without self joins, D a database instance
and p*(Q, D) the optimal solution of the associated linear program (3). Then,

| Bval(Q, D)| < 27" (@P),
Furthermore, there are arbitrary large instances D for which we have | Eval(Q, D)| = 2¢"(@:P),

We remark that all the results in this paper refer to data complexity, and thus the size of
CRPQs is treated as a constant throughout our analysis.

3 Size bounds for CRPQs

Path queries provide an interesting challenge when studying size bounds. Every path query
is a relation in itself, but in the worst case, a query like a™¥(x,y) may end up connecting all
nodes in R with all nodes in R¢, thus invoking a quadratic jump in terms of the size of the
potential nodes matching to x and to y. For this reason, tight output bounds must take into
account the number of nodes that can participate as the starting point and the ending point
of the expressions mentioned in the queries. We show how to construct a modified linear
program, extending that of [4], that we use to provide our size bounds.

3.1 Motivation: underlying flat CQs

To see the intuition for our linear program, let us come back to query Qs(z,y, z) in Figure 3,
and consider a graph G. In order to bound the size of Eval(Qs, G), we reason in terms of the
size of [a™]¢. In the worst possible case, we have that [a™]¢ = RS x RS, that is, any node
from R¢ can be reached from any node from R;. It is then easy to see that the answers in
the evaluation Eval(Q3, G) will always be contained in what we call the flat CQ

flat(Qs3)(x,y,2) Ro(x) A Re(y) A Ry(y) A Ry(2) A Re(x, 2),

in which every path query is replaced by the cross product of two unary relations, the possible
starting nodes and the possible ending nodes. In fact, assuming each of R}, R, R; and Rj
are unary relations in G, we have that [Eval(Q3, G)| < [Eval(flat(Qs3), G)|, and this holds for
any graph G compatible with Q). Now flat(Qs) is a full CQ without self-joins, and we know
how to bound its output [4], which immediately results in an upper bound for Qs.
Interestingly, the focus on flat conjunctive queries has another intuitive reading. Coming
back to query Qs from Figure 2, its flat version is simply a cross product of unary relations

Qa2(z,y,2) + Ro(x) ARe(y) A Ri(y) A Ri(2).

For a graph G in which all of R}, RS, R} and Rf have N nodes, we verify that |Eval(Q, G)| <
N?3. This cubic bound is, in a sense, the most crude upper bound one could get for a
conjunctive query: it is simply the cross product of every vertex matching for z, y and z. It
just happens that when the labels joining = and y, and y and z are path queries, this crude
bound ends up being realistic.

But is it tight? We can show it is, and our size bounds end up enjoying several good
properties proved before for full join queries [4] or conjunctive queries [9]. Moving from this
simple example to arbitrary CRPQs, however, is not that easy, and we proceed in several
steps. In section 3.2 we start with a fragment of CRPQs for which the proof is simpler,
and the bounds much more elegant. This fragment corresponds to full CRPQs, without
self-joins or any repetition of labels between atoms, and whose RPQs are defined by e-free

T. Cucumides, J. Reutter, and D. Vrgoc

expressions that admit at least one word of length 2. We call this fragment Simple CRPQs,
and the reason for starting with this fragment is that we can define the general upper and
lower bounds exactly in the same way they were defined for simple CQs by Atserias et al. in
their seminal paper[4]. We then extend our results to arbitrary CRPQs defined by e-free
expressions, with the only caveat that our lower bound is now up to a constant that depends
on the query. We finish with CRPQs that may use expressions including &, such as a*, which
is one of the most common path query occurring in practice [6]. We deal with them by
separating into € and e-free parts, which we can then treat independently.

3.2 Simple CRPQs

To state our first result, we provide a formal definition of the aforementioned simple fragment.

A simple CRPQ is a full CRPQ of the form Q(Z) <+ /\f:1 Ra, (yi,zi) N /\f:Hl ri(Yiy 2;)
with the following properties:
Each relation R,, appears only once in @ (no self joins);
All regular expressions r; are e-free and they contain a word of length at least 2;
If r and 7’ are two different regular expressions in @, then the set of all labels in the first
or last position of any word in the language of r is disjoint to that of r'.

As we hinted in the introduction, the idea is to extend the linear program of AGM with
one vertex variable for each endpoint of every atom r(x,y) in the query, which are then
constrained in the same fashion as edge variables. Alternatively, one can directly construct
the program for the corresponding flat query: it happens to be exactly the same program.

» Theorem 2 (Bound for simple CRPQs). Assume that the query Q(T) < /\f:1 Ra, (yiy zi) A
/\f:£+1 ri(yi, z:) s a simple CRPQ. Then for any graph G we have that

|Eval(Q, G))| < 2°7 (@9

where p*(Q, G) is the optimal solution of the following linear program:

¢ k
minimize Z ufi log|Ra,| + Z (uyi log|ri| + uz log|rf])
=1 =041
where Z yhe: 4+ Z u;’ + Z uy >1 forxex (4)
x=y;Vi:x=2z; 1T=Y; r=z;

uftes >0 forie[1,4
ugi,uyt >0 fori € [0+ 1,K]

Furthermore there are arbitrarily large instances for which

|Eval(Q, G))| > 27" (@),

The upper bound. The upper bound can be obtained using flat CQs. Let Q(T) be a simple
CRPQ. Its underlying flat query flat(Q) is the conjunctive query defined as:

¢ k
fat(@Q)(@) — N Rai(yiz) A\ 7)) Ari(z)
i=1 i=t4+1

Recall we assume for simplicity that each 7 and r¢ is an unary predicate already present
in G. The following is now easy to check:

13:7

ICDT 2023

13:8

Size Bounds and Algorithms for Conjunctive Regular Path Queries

» Lemma 3. Eval(Q,G) C Eval(flat(Q), G), with Q a simple CRPQ.

Since the linear programs of both fla#(Q) (as in [4]) and @ (as in the statement of Theorem 2)
coincide, and 2°" (1e4@),G) i5 an upper bound for Eval(flat(Q), G), this immediately proves
the upper bound of Theorem 2.

The lower bound. We will prove the lower bound by constructing an instance out of the
dual program for). Let us first illustrate the tightness of the bound via the means of an
example. Consider again query Qs3(z,v,2) « a™(z,y),b"(y, 2), Re(z, 2).

The linear program for this query is as seen in (1) and the corresponding dual is:

maximize: v, + vy + v,

subject to: v, + v, < log|R,|
vy < log|(a™)?| vy < log|(a™)°|
v, <log|(6*)*] v, <log|(b")°|

Vg, Uy, Uz 2> 0

Consider an optimal solution Z for the primal and (for duality) a solution to the dual
(vg, vy, v;) such that p*(Q, D) = vy + vy, + v,. Now we want to build an instance G such
that Eval(Q, G) = 2 (%) with |(at)®| = 2%, |(a™)¢| = 2%, |R5| = 2%, |(b*)°| = 2= and
|R.| = 2Y=7%=_ The instance is defined as follows,

We have a special vertex + and 3 sets of vertices: |V, | = 2%+, |V, | = 2%, |V,| = 2"= such

that V, NV, NV, = {x}

Add edges (z, ¢, z) for every pair of nodes (z,z) € V, x V.,

Add edges (z,a,*) for every x € V, and edges (%, a,y) for y € V,

Finally, add edges (y, b, %) for y € V}, and (%, b, z) for z € V.
By the dual restrictions, we can check that the cardinalities are equal or smaller than we
wanted (if they’re smaller we can add random edges as this can only increase the number
of tuples of Eval(Q,G))). Also we can check that |Eval(Q,G))| = 2=+ gince we
have all tuples (z,y,2) with € V,;, y € V,, and z € V, in the result. We conclude that
[Eval(Q, Q)| = 2¢" (@6,

Now we formalize this construction for any simple CRPQ:

Proof of Theorem 2, lower bound. As before, we use the dual program of equation (4)

maximize: E Vg

zeT
subject to: vy, + v., < log|Rg,|, i=1,...,0
vy, < loglr], i=04+1,... .k
v, <log|rf, i=0+1,...k
vz > 0, TET
Consider an instance with cardinalities |R,,| = N; for i € [1,£], |[r§| = N? and [r§| = N¢ for

Jj € [£+ 1,k]. By duality, for any solution @ to the primal and @ for the dual, we have that

k

+ Y (uy log|rf| +ull log|rf]) =) v,
1=0+1 TET

L
> _u'tilog|Ry,
i=1

T. Cucumides, J. Reutter, and D. Vrgoc

with equality when the solutions are optimal. Let us assume that all N;, N and N are of

the form 2% for some L; € N so the optimal solution of both the primal and dual are rational.

Let T be the dual solution and write each v, as p,/q. Then D is an optimal solution to the
linear program with cardinalities N;. Now we present a graph database G with |R;| = N/,
[rf| = (N§)? and |r§| = (N£)? such that [Eval(Q,G)| > 2°" (@),

The vertices of G is the union of sets V, = {1,...,2%=} for each x € T. Also consider a
vertex % that is part of every V.
For every atom R,,(y;,2;) in @, add to G one edge (u,a;,v) for every pair (u,v) in
For every atom r;(y;, z;) in @, choose an arbitrary word m; = a;, . ..a;, of length at least
2 in the language of r; and

Add to G the edges (u, a;,,*) for each u € V,,,.

Add to G edges (x,a;,) for every j € [2, N — 1].

Add to G the edges (%, a;,,v) for each v € V,,.

From the construction we verify that:

|Rq,| = 2V = < qlogNi _ Ni Vi € [1,4]
75| = 2vws < 2018 NI — (N$)4 Vi€ [0+ 1,K]
|| = 2% < 2918V = (Ng) vie [+ 1,k

Further, we also verify that Eval(Q, G) contains all tuples t € V., x -+ x V,. . Now we
add random edges and vertices such that |R;| = N7, |rf| = (Nf)? and |r§| = (N£)?. We now
have a graph G with the desired cardinality profile for which:

l m
|[Eval(Q, G)| > H IR, wRa; H ‘Tﬂuéﬁ . |T7;€‘u;: — 9 s e <

i=1 i=l+1

As in Atserias et al., we also show that the instances satisfying the lower bound can be
constructed with a certain degree of regularity, in which all cardinalities are equal.

» Corollary 4. Given a simple CRPQ Q, we can build an arbitrarily large instance G such
that |Eval(Q, G))| > 2°" (@) with |R,,| = 73| = [r§| for every relation i and j such that
ufei >0, u? >0 and uZ? > 0.

Unfortunately, not every combination of cardinalities of relations and vertices can be
shown to produce tight bounds. However, as in [4], we can show the following: Let @ be a
simple CRPQ and G a graph. Then there exists a graph G’ with the same cardinalities as G
in all vertices and relations mentioned in @, such that Eval(Q,G’)| > 2°" (@& =" where n is
the number of attributes of Q). As for CQs, this is essentially the best we can get.

3.3 Bound for arbitrary e-free CRPQs

Gottlob et al. study how to go from relational join queries to CQs [9], and the same techniques
can be used for obtaining size bounds for e-free CRPQs, even if they feature projections,
repetition of variables, or expressions allowing only words of size 1. Bounds remain tight,
except this time they are tight up to a factor that does depend on the query (but not the
data) in a polynomial way. We first show how to handle arbitrary full CRPQs that are e-free
(and not just the simple ones), and then move to CRPQs that project out some variables.

13:9

ICDT 2023

13:10

Size Bounds and Algorithms for Conjunctive Regular Path Queries

From full to simple CRPQs. We first show that for a full CRPQ @ that is also e-free, and a
graph database G compatible with @, we can construct a simple CRPQ @Q’, and an instance
G’ compatible with @’ such that Eval(Q, G) = Eval(Q’, G’). The translation from @ to Q’
has to deal with repeated labels/relations, and also with expressions that accept only words
of length 1. For this, we first, replace every appearance of a relation R, or label a in any
atom of @ with a fresh relation or label not used elsewhere in the query. Next, replace any
atom of the form r;(y;, z;) where r; = (a1]az|...|ax) (i-e. an expression accepting only words
of size 1), with an atom R, (y;, z;), where R, is a fresh relation. Translation from a graph
G compatible with @, to a graph G’ compatible with @’ is constructed by assigning every
copy of R, (introduced in the construction of @’) the same tuples as R,, and by assigning to
R,, for an expression r = (ay|az|...|ax), the tuples in the union of all R,,,..., Ry, . Other
relations are the same as in G. We call (Q', G’) the simplified version of (Q,G)

» Proposition 5 (full CRPQs). Consider a full CRPQ of form (2) in which every r; is e-free.
For this query we have that | Eval(Q, G)| = |Eval(Q', G")| < 2°" Q"G where Q' and G’ the
simplified version of Q and G. Furthermore, one can construct arbitrarily large instances G
such that | Bval(Q, G)|2P(QD > 20" (QG") where p(1Q)) is a polynomial that depends exclusively

on Q.

Bounds for projections of full, -free CRPQs. Consider a (non-full) e-free CRPQ of the
form

P(z) « Q@) ()

with Typ € Z, and where @ is full and e-free. From our previous result, we know that
Eval(Q, G) is always bounded by 2p"(Q"G") where Q" and G’ constructed as above. As in [9],
we consider a relaxation of the linear program for @', in which we only keep those restrictions
that refer to variables of @ (and Q') that are in Zg. Formally, we denote by 2” %@ the
optimal solution of a modified linear program for Q" and G’, where in the restrictions of (4)

we only consider those referring to Tg. We then have:

» Proposition 6 (Queries with projections [9]). Given an CRPQ P of the form (5) then for

every graph database instance G we have that |Eval(P, G)| < 2°%0 (@G, Moreover, there

are arbitrarily large instances G such that | Bval(P,G)[2P(1R) > QPEO(QI’G/), where p(|P]) is a
polynomial that depends exclusively on P.

3.4 Dealing with ¢

As we have mentioned, the evaluation of the expression ¢ over a graph G = (V, E) contains
the diagonal D = {(v,v) | v € V'}. Thus, the evaluation of expressions containing &, such as
a*, are somehow the union of two different sets of results. On one hand there is the e-free
part, that we know how to deal with, and on the other there is £, which behaves more like a
relation, albeit drawing pairs only from the diagonal D.

The expression €. Consider the triangle query Q4(z,y,2) < Rai(z,y) A Rp(y, 2) A ez, 2),
featuring two edge labels and the regular expression . One can check that Q4 is equivalent
to Ra(z,y) A Rp(y,2) Ae®(x) Ae®(2) Ax = z. What we have done is to produce an analogue
of the flat version of CRPQs, and we use the equalities to force the flat part to map only to
the diagonal. We further transform this query by noting that ¢* = ¢® =V, and chasing away
the equality, obtain the query R, (z,y) A Rp(y,z) AV (z), which always produces the same

T. Cucumides, J. Reutter, and D. Vrgoc

number of tuples as Q4. Hence, dealing with epsilon involves (1) transforming every atom
g(x,y) into two unary atoms V(x),V(y) (to be interpreted as V'), plus the corresponding
equality = = y, and (2) chasing away such equalities. It is not difficult to see that both of
these operations do not alter the size of the outputs of queries; the transformation always
yields an equivalent query, save for the case when the arity of the query is reduced when
chasing the equalities.

Formally, assume that @ is a CRPQ, and let Q* be the query in which each atom &(z,y)
is replaced for the construct V(z) A V(y) A x = y. Assuming V is interpreted as the set of
vertices in every graph G = (V, E), we have:

» Lemma 7. For every CRPQ Q and graph G, Eval(Q,G) = Eval(Q*, G)

Further, let @ be a CRPQ with equalities, i.e, additional atoms of the form = = y, where
both z and y appear in a non-equality atom in Q. Let chase(Q) be CRPQ resulting by
repeatedly replacing variable y for variable x for each atom x = y in the query. We have:

» Lemma 8. For every CRPQ Q and graph G, |Eval(Q,G)| = |Eval(chase(Q), G)|

In order to formally state the bound for queries with &, we use again/ query Q' and graph
G’ constructed in the previous subsection, as well as the solution 2” %029 for the modified
linear program for @’ and G’.

» Proposition 9. Let P(Zg) be a CRPQ in which every regular expression is either e, or
is e-free, and G a graph, and assume that the body of chase(P\) is of the form Q(T), with
To C T. Then for every graph database instance G we have that |Eval(P,G)| < 95 (@G
Moreover, there are arbitrarily large instances G such that |Eval(P, G)|2P0PD > QPEO(Q/’G/),
where p(|P|) is a polynomial that depends exclusively on P.

Arbitrary RPQs. Arbitrary RPQs such as a* are not so easy to deal with, as they represent,
somehow, the union of the diagonal database and an e-free CRPQ. Consequently, we will
look into splitting CRPQs into parts with € and parts without it. For a given CRPQ
Q, let ry,...,rg, be the RPQs in @ that accept e. We define the family of split queries
QI[S], for S C {l1,...,4,}, as follows. For each r¢,¢ € {¢1,...,¢,}, find a decomposition
re = & + 7, where 7 is e-free. Then atom r¢(ys, z¢) is replaced by 7¢(y, 2z¢), if £ € S, or by
K(ye) N K¢(z¢) AN ye = 2o, where Ky is a fresh relation symbol, if £ ¢ S.

Now augment any graph G to make it compatible with any Q[S] by adding relation
Ky ={a|a¢ @ Nnrg} for each £ € {¢1,...,¢,}. It is not too difficult to prove that
|[Eval(Q, Q)| < ZSQ{&,---,&} |Eval(flat(Q[S]), G)|, and we can further turn this property into
an output bound for queries!.

» Proposition 10. Let Q be a CRPQ. For any graph G we have that |Eval(Q,G)| <
ngzhm,%} 20+(QISLE) - yhere Q[S] are queries split from Q, and 2P*(RISLE) s the size
output bound shown for Q[S], in Proposition 9. Moreover, there are arbitrarily large graphs
for which this bound is tight.

One important caveat of this result is that the instances showing that the bound is tight
work by constructing graphs G in which, for every expression ry = ¢ + 7y, we verify that

lele € [e]a-

! For CRPQs with equalities, flat(Q) is defined just as before, all equalities are maintained.

13:11

ICDT 2023

13:12

Size Bounds and Algorithms for Conjunctive Regular Path Queries

4 WCO algorithms for CRPQs

In this section we deal with algorithms for computing CRPQs. Ideally, one would expect
an algorithm that runs in the worst-case optimal bound from Theorem 2 (and subsequent
generalizations). We call such an algorithm worst-case optimal, or wco algorithm for short.
Unfortunately, as we review below, bounds from Casel and Schmid [7] directly imply that
such algorithms do not exist under usual complexity assumptions. In the light of this,
we establish a baseline which amounts to first computing all the answers to the regular
expressions mentioned in our query, materializing them, and running a classical wco algorithm
(e.g. GENERICJOIN [13]) on these materialized relations. We show that a modification of the
GENERICJOIN algorithm of [13] can approach the optimal performance of our baseline for
many CRPQs. As is usual in algorithms for relational/graph queries, we will assume all our
queries to be full.

4.1 WCO algorithms for CRPQs may not exist

Casel and Schmid show lower bounds for the problem of evaluating a single RPQ [7].
Specifically, for a graph G = (V, E), and a (regular path) query Q(z,y) < r(z,y), they
prove that any algorithm capable of evaluating @ over G in time O(|V|“ f(|Q|)) can also be
used to solve the Boolean Matriz Multiplication (BMM) problem: given two square matrices
A and B of size n, compute the product matrix A x B, in time O(n*). In particular, this
means that a quadratic algorithm for computing path queries does not exist unless the BMM
hypothesis is false, and if we accept the weaker combinatorial BMM hypothesis [17], then no
subcubic algorithm exists for computing). Since the answers to @ are clearly bounded by
|[V']2, then we cannot hope for a worst-case optimal algorithm in this case.

A natural question is what happens with CRPQs that mix both path queries and
relations in their edges. Perhaps the relations help soften the underlying complexity of the
problem? Unfortunately, this is not the case. To see this, consider query Q(x,y,z) <+
Ro(x,y) A Sp(y, z) Ar(z, z), where r is any regular expression. Given a graph G in which
|Ra| = |Sp| = n, our results tell us that the answer of Q over G contains at most O(n?) tuples,
and thus a worst-case algorithm must evaluate @ in time O(n?). But this algorithm can then
be used to compute the answers for r over a graph G = (V, E¢), where Vi contains at least
n nodes vy, ...,v,. For this, we construct a graph database G’ = (Vg U {1}, E¢), where
Ry, ={(vi,1) |1 <i<n}, S, ={(1,v;) | 1 <i<n} and where the rest of the relations are
as in G. Then a tuple (v;,1,v;) is in Eval(Q, G’) if and only if (v;,v;) is an answer to r on G.

» Proposition 11. An algorithm capable of computing the answers of every simple CRPQ @
over a graph G in time O(2°" (@S refutes the BMM hypothesis.

Having ruled out the possibility of worst-case optimal algorithms, let us review what can
we do with existing techniques.

As our baseline, we establish a rather naive algorithm, called FULLMATERIALIZATION,
which evaluates a CRPQ @ over a graph database G as follows:
1. Compute the answer of each RPQ r appearing in Q) over G.
2. Materialize all of these binary relations and add them to G.
3. Use a (relational) wco algorithm (e.g. GENERICJOIN [13]) to compute the query answer.
In the final step, each RPQ is now simply treated as a relation that we have previously
computed. This algorithm runs in time bounded by the time to compute the RPQs from
@, and the AGM bound of the query. However, the algorithm may require memory that is
quadratic in terms of the nodes in the graph, to be able to store the results of RPQs.

T. Cucumides, J. Reutter, and D. Vrgoc

While reasonable, this algorithm has practical issues: the quadratic memory footprint
may be too big to store in memory, and we may be performing useless computations because
most pairs in the answers of RPQs may not even match to the remainder of patterns. Memory
usage may be alleviated by clever usage of compact data structures, as in e.g. [3], but we
take a different approach.

In what follows, we impose that algorithms may only use O(|V|) memory, for G = (V, E).

Since Proposition 11 rules out strict wco algorithms, our goal is to devise algorithms that
are capable of achieving the running time of FULLMATERIALIZATION, but using just linear
memory (in data complexity). To analyse the running time of the algorithm, we first introduce
some notation. For a CRPQ @ and a graph database G, with AGM(Q, G) we denote the
bound for maximal size of Eval(Q, G’), over all graphs G’ that have the same cardinality
profiles as G (this includes both the cardinalities of all the relations, as well as the projections
on starting and ending points of these). The time complexity of FULLMATERIALIZATION for
a query Q, over a graph G = (V, E), is bounded by O(|V|?> + AGM(Q, G)), where the cubic
factor accounts to materializing all the RPQs in Q.

4.2 GenericJoin for CRPQs

In order to avoid materializing relations which are potentially quadratic in the size of the
graph, we can utilize a simple idea: compute RPQs on-demand, the first time such an
answer is needed. For this, we will adapt the (relational) wco algorithm GENERICJOIN
of [13], so that it processes regular relations as needed. As we will see, this approach gives
us good running time even when the memory is constrained, and can actually run under the
FULLMATERIALIZATION time bounds for a broad class of queries. For CRPQs, however, the
order of variables we work with has striking implications on the efficiency of the algorithm.

If Q@) + Ay Rai(yisz:) A N1 7i(yir) is a full CRPQ, and G a graph database,
then Algorithm 1 defines GENERICJOINCRPQ(Q, G), a generalization of the GENERICJOIN
wco algorithm from the relational setting to graphs and (full) CRPQs. Similarly as in [13],
we assume an order on the variables of (), and start to recursively strip one variable at a
time. For a selected variable, we compute all the nodes that can be bound to this variable
(line 5). Then we iterate over these nodes one by one, compute RPQs as needed, adding
them to the database (lines 9-11 and 12-14), and proceed recursively (line 15). For the base
case when we have only one variable, we simply complete the missing values (line 4).

Analysis. So how does this algorithm compare to FULLMATERIALIZATION? Well, this is
heavily dependent on the CRP(Q we are processing. As an example, consider again the triangle
query with two RPQs, Q3(x,y,2) < a™(z,y)AbT(y,2)AR.(z, 2) as in Figure 3, and consider
a graph G in which |R.| = N and all starting and ending points of RPQs a™ and b™ have
cardinality M. Here FULLMATERIALIZATION runs in time O(M?3 + M N), but with quadratic
memory (the first part of the sum is for computing answers of RPQs, the second part is the
max number of outputs of the query). On the other hand, GENERICJOINCRPQ achieves the
same bound, but using only linear memory. To see this, let us assume the first chosen variable
is y. As per line 5, we first iterate over all possible vertices v in L = bt° N a*°. For each
such value, we compute sets a™[v] = {v' | (v/,v) € [aT]¢} and b [v] = {v' | (v,v') € [bT]c},
storing these in memory and adding them to G (here G is the augmented graph storing these
relations). We then process the query Q(x,v,2) + at[v](z) A bT[v](2) A Re(z, z) over the
augmented graph G. This query does not feature regular expressions, so we can compute
its answers using GENERICJOIN(Q, G) from [13]. Further, the AGM bound for Q(z,v, 2)
is N, so the algorithm computes the answers in O(N). Thus, the total running time is in

13:13

ICDT 2023

13:14

Size Bounds and Algorithms for Conjunctive Regular Path Queries

Algorithm 1 GenericJoinCRPQ(Q, G).

> @ May have unary relations of the form r[v], from previous recursive iterations.
A0
if |Z] =1 then
return Eval(Q, G)

Pick a variable x € T > We compute into L nodes that can potentially map to x

e N RN REN SN < N

R(z,2)€Q R(y,z)€EQ r(z,2)€Q r(y,x)eQ rv](z)EQ

7. forve L do

8: Q « Qlz/v], G+ G > We instantiate z to v in Q
9: for each atom 7(v,z) € Q do > Compute answers to (v, z), store them in 7[v](z)
10: G« G U], with r[v] = {v' | (v,v") € [r]a}

11: replace (v, z) for r[v](z) in Q

12: for each atom 7(y,v) € Q do > Compute answers to 7(y,v), store them in 7[v](y)
13: G+ GUrv], with r[v] = {v' | (W, v) € [r]a}

14: replace r(y,v) for 7[v](y) in Q

PN

15: Alv] GenericJoinCRPQ(Q, G)
16: A+ AU{v} x Alv]

17: return A

O(IL|- (M? + N)) = O(M - (M?+ N)). Again, the first part of the sum is for computing the
answers of the path queries, the second part for evaluating Q Importantly, this uses linear
memory, as we refresh a™[v] and b*[v] after each new value in L.

So far good news, we managed to avoid quadratic memory at virtually no cost. Unfortu-
nately, we cannot avoid it for all queries. Let us consider the triangle query but now with
three RPQs: Q(z,y,2) + at(z,y) AbT(y,2) AcT(z, 2z). The cardinalities of all starting and
endpoints will be N and let us assume that the first chosen variable is y so the computation
goes as in the example above, except that Q(z, v, z) + a™[v](x) AbT[v](2) AcT (x, z) will still
have one more RPQ to compute and therefore the running time will be in O(N - (N2 + N3)).
It is easy to see that all possible orders for this query will result in the same algorithm: for
this query we cannot avoid having to nest at least the computation of two RPQs.

In the best case, thus, GENERICJOINCRPQ does run in the sought after FULLMATE-
RIALIZATION time bounds. But for certain queries and orderings, the algorithm resorts to
computing each RPQ on demand, which implies a much slower O(AGM(Q, G) - |V'|?) bound.

Queries for which GenericJoinCRPQ is efficient. As we have seen, the problem in our
algorithm is that nesting the evaluation of RPQs is often too costly, and sends us above the
FULLMATERIALIZATION bound. As it turns out, we can characterize the types of queries
for which the nesting can be avoided, and introduce a version of GENERICJOINCRPQ that
takes advantage of this structure.

For this, we will require the query @ is such that its RPQ components form a bipartite
graph. More formally, assume that we have a full CRPQ Q(z) + /\f:1 Ra, (yi, 2z:) A
/\f:eﬂ r:(yi, 2;). We will say that @Q is RPQ-bipartite, if the graph G,.(Q) = (V,., E,), with
V. = Uf:@rl{yi,zi}, and B, = {(y;,2;) | i =€+ 1,...,k}, is bipartite. We call the graph

T. Cucumides, J. Reutter, and D. Vrgoc

Algorithm 2 GenericJoinCRPQ-Bipartite(Q, G, T1).

1. A« (Z)

2: if |Z| = 1 then

3: return Eval(Q, G)

4: L < GenericJoin(Qz,,G)
5: for tz, € L do

6: forie [{+1,k] do

7 if y; € 71 then > processing 7;(yi, i)
8: ri[v] « {v" | (v,0') € [ri]a}

9: Replace 7;(y;, z;) in Q for 7;[v](z;)

10: else > bipartite implies z; € T
11: rifv] « {v" | (v',v) € [ri]c}

12: Replace r;(y;, z;) in Q for r;[v](y;)

13: G« GU vl

14: Altz,] < GenericJoin(Q, G)
15: A+ AU {tfl} X A[tfl]

16: return A

G,(Q) the RPQ-graph of Q. Assume that @ is RPQ-bipartite and let T;,T — T1 be a
bipartiton of the RPQ-graph of). Then evaluating @) over a graph database G can be done
via Algorithm 2, which generalizes GENERICJOINCRPQ so that it takes the advantage of
the bipartite structure of (). Here for a CRPQ @), and a set of variables z;, with Qz, we
denote the CRPQ @ restricted to conjuncts using only the variables in 7;. Notice that, given

that Z; partitions the RPQ-graph of (), the query)z, contains only relations and no RPQs.

Algorithm GENERICJOINCRP Q-BIPARTITE generalizes Algorithm 1 by taking the first

partition of vertices to be a partition that forms a bipartition in the RPQ-graph of the query.

This allows us to instantiate the starting vertices from which all the RPQs in @ will be
computed. Intuitively, the existence of a bipartition in the RPQ-graph of the query allows us
to divide the query into two subqueries with no RPQs and by this avoid having to compute
nested RPQs.
In order to show that the algorithm is correct and to analyse its running time, we
decompose the algorithm in three parts:
1. First, we compute the tuples tz, in the answer of (Jz, using the relational GenericJoin
(line 4).
2. For every tuple tz, we compute all the associated regular expressions (lines 5-13).
3. We compute the rest of the join (involving the variables in T — Z; with the relational
GenericJoin (line 14).
In the worst case, we must perform AGM(Qz,, Gz,) computations of every regular expression
;. Therefore, the total cost is in O(AGM(Qz,,Gz,) x |V|?) (the |V|? being the cost of
computing the RPQs). Next, we also need to evaluate the remaining (conjunctive) query

over variables T — ;. This takes time in O(AGM(Qz_z,,Gz—z,)). We obtain the following.

» Theorem 12. Let Q(T) be a CRPQ such that its RPQ-graph is bipartite, and let T', T’ be an
RPQ-bipartition, with |T'| < |T”|. Then the running time of GENERICJOINCRPQ-BIPARTITE
over @ and a graph G = (V, E) is

AGM(Qz,G) - |V|* + AGM(Qz. G).

13:15

ICDT 2023

13:16

Size Bounds and Algorithms for Conjunctive Regular Path Queries

In order to reach the running time of FULLMATERIALIZATION we need the query to be
even further restricted. In particular, if the bipartition is such that one side contains a single
variable, then the algorithm is equivalent to fixing a vertex in this variable, computing all
the RPQs in @ from this vertex (by the property of bipartition, no other vertex exists), and
then joining the rest using GenericJoin. This gives us the following.

» Corollary 13. When the RPQ-graph of a CRPQ Q is bipartite and it admits a partition T,
" with min{|7'|, |Z"|} = 1, the running time of GENERICJOINCRP Q-BIPARTITE is equal to
FULLMATERIALIZATION.

Hence, for these types of CRPQs we can achieve running time of FULLMATERIALIZATION
using only linear memory. It is not difficult to show that GENERICJOINCRPQ-BIPARTITE
does not run under the FULLMATERIALIZATION bound when queries are not of this specific
shape. In general, we conjecture that this bound (under memory constraints) is not attainable
when graphs are not RPQ-bipartite; solving this problem opens up an interesting line of
work into space-time tradeoffs for computing the answers of a CRPQ.

5 Conclusions and future work

Our paper provides techniques for understanding size bounds of CRPQs, and makes use of
these techniques to inform better algorithms for evaluating CRPQs. Our work also opens
up several lines of work regarding CRPQs, size bounds and algorithms. A first important
problem is to verify that GENERICJOINCRPQ-BIPARTITE works well in practice, and enjoys
as big success as standard worst-case optimal algorithms in graph databases. Of course,
moving beyond RPQ-bipartite queries would require either new algorithms, or proving that
the bounds offered by GENERICJOINCRPQ cannot be improved. Further, there are several
questions regarding tight bounds for complex classes of queries. In particular, our bounds
for CRPQs with € or RPQs accepting € are only shown for very structured graphs where all
relations share the same vertices, and it would be good to show that the bound remains to
hold under arbitrary cardinalities.

—— References

1 Renzo Angles, Marcelo Arenas, Pablo Barcel6, Aidan Hogan, Juan L. Reutter, and Domagoj
Vrgoc. Foundations of Modern Query Languages for Graph Databases. ACM Comput. Surv.,
50(5):68:1-68:40, 2017.

2 Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-Ledesma, and
Adridn Soto. Worst-case optimal graph joins in almost no space. In Guoliang Li, Zhanhuai Li,
Stratos Idreos, and Divesh Srivastava, editors, SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021, pages 102-114. ACM, 2021.

3 Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, and Javiel Rojas-Ledesma. Time-and
space-efficient regular path queries on graphs. arXiv preprint, 2021. arXiv:2111.04556.

4 Albert Atserias, Martin Grohe, and Daniel Marx. Size bounds and query plans for relational
joins. SIAM J. Comput., 42(4):1737-1767, 2013.

5 Pablo Barcel6 Baeza. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013, New York,
NY, USA - June 22-27, 2013, pages 175-188, 2013.

6 Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of large SPARQL
query logs. VLDB J., 29(2-3):655-679, 2020.

7 Katrin Casel and Markus L. Schmid. Fine-grained complexity of regular path queries. In
24th International Conference on Database Theory, ICDT 2021, March 23-26, 2021, Nicosia,
Cyprus, pages 19:1-19:20, 2021.

http://arxiv.org/abs/2111.04556

T. Cucumides, J. Reutter, and D. Vrgoc

10

11

12

13

14

15

16

17

18

Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann.
Adopting worst-case optimal joins in relational database systems. Proc. VLDB Endow.,
13(11):1891-1904, 2020.

Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. Size and treewidth
bounds for conjunctive queries. J. ACM, 59(3):16:1-16:35, 2012.

Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adridn Soto. A worst-case optimal join
algorithm for SPARQL. In The Semantic Web — ISWC 2019 — 18th International Semantic
Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I, pages
258-275, 2019.

Thomas Neumann and Gerhard Weikum. Rdf-3x: a risc-style engine for rdf. Proceedings of
the VLDB Endowment, 1(1):647-659, 2008.

Thomas Neumann and Gerhard Weikum. The rdf-3x engine for scalable management of rdf
data. The VLDB Journal, 19(1):91-113, 2010.

Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the
theory of join algorithms. SIGMOD Rec., 42(4):5-16, 2013.

Dung Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q Ngo, Christopher
Ré, and Atri Rudra. Join processing for graph patterns: An old dog with new tricks. In
Proceedings of the GRADES’15, pages 1-8. ACM, 2015.

Jena Team. TDB Documentation, 2021. URL: https://jena.apache.org/documentation/
tdb/.

Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Nicole
Schweikardt, Vassilis Christophides, and Vincent Leroy, editors, Proc. 17th International

Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 96-106.

OpenProceedings.org, 2014.

Virginia Vassilevska Williams and R Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. Journal of the ACM (JACM), 65(5):1-38, 2018.

Peter T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50-60, 2012.

13:17

ICDT 2023

https://jena.apache.org/documentation/tdb/
https://jena.apache.org/documentation/tdb/

	1 Introduction
	2 Preliminaries
	3 Size bounds for CRPQs
	3.1 Motivation: underlying flat CQs
	3.2 Simple CRPQs
	3.3 Bound for arbitrary epsilon-free CRPQs
	3.4 Dealing with epsilon

	4 WCO algorithms for CRPQs
	4.1 WCO algorithms for CRPQs may not exist
	4.2 GenericJoin for CRPQs

	5 Conclusions and future work

