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Abstract
The problem of consistent query answering for primary keys and self-join-free conjunctive queries
has been intensively studied in recent years and is by now well understood. In this paper, we
study an extension of this problem with counting. The queries we consider count how many times
each value occurs in a designated (possibly composite) column of an answer to a full conjunctive
query. In a setting of database repairs, we adopt the semantics of [Arenas et al., ICDT 2001] which
computes tight lower and upper bounds on these counts, where the bounds are taken over all repairs.
Ariel Fuxman defined in his PhD thesis a syntactic class of queries, called Cforest, for which this
computation can be done by executing two first-order queries (one for lower bounds, and one for
upper bounds) followed by simple counting steps. We use the term “parsimonious counting” for this
computation. A natural question is whether Cforest contains all self-join-free conjunctive queries
that admit parsimonious counting. We answer this question negatively. We define a new syntactic
class of queries, called Cparsimony, and prove that it contains all (and only) self-join-free conjunctive
queries that admit parsimonious counting.
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1 Introduction

The problem of consistent query answering (CQA) [2, 4, 5, 37] with respect to primary
keys is by now well understood for self-join-free conjunctive queries: a dichotomy between
tractable and intractable queries has been established, and it is known which queries have a
consistent first-order rewriting [29, 32]. It remains a largely open question to extend these
complexity results to queries with aggregation. In this paper, we look at a simple form of
aggregation: counting the number of times each (possibly composite) value occurs in the
answer to a conjunctive query. Although this problem has been studied since the early years
of CQA [18], a fine-grained characterization of its complexity remains open.

Formally, let q be a full (i.e., quantifier-free) self-join-free conjunctive query. We define
a counting query as follows. We designate a tuple z⃗ of distinct variables of q, called the
grouping variables, and let w⃗ be a tuple of the variables in q that are not in z⃗. The variables
of q, which are all free, are made explicit by denoting q as q(z⃗, w⃗). We are interested in
a query that, on a given database instance db, returns all tuples (c⃗, i) with c⃗ a tuple of
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constants, of the same arity as z⃗, and with i a positive integer that is the number of distinct
tuples d⃗, of the same arity as w⃗, satisfying (c⃗, d⃗) ∈ q(db). This counting query will be
denoted cnt(q, z⃗).

For example, consider the database schema of Fig. 1, which is intended to store the unique
gender and department of each employee, and the unique building of each department. Ignore
for now that the database instance of Fig. 1 is inconsistent (as it stores two departments
for Anny, and two buildings for IT). Let q0(x, y, z) = E(x, ‘F’, y) ∧ D(y, z), where x, y, z are
variables and ‘F’ denotes a constant. Then, on a consistent database instance, cnt(q0, z)
would return the number of female employees working in each building. In SQL, cnt(q0, z)
can be encoded as follows:

SELECT Building, COUNT(*) AS CNT
FROM E, D
WHERE E.Dept = D.Dept AND Gender = ’F’
GROUP BY Building

On the database instance of Fig. 1, this query will return (A, 4) and (B, 3). These answers
are however not meaningful because they suffer from double-counting due to inconsistencies.
We describe next a more meaningful semantics that was introduced in [2].

First, following [1], we define a repair of a database instance as a maximal subinstance
that satisfies all primary-key constraints. In this paper, we consider no other constraints than
primary keys. Then, following the approach of [2], more meaningful answers are obtained by
returning, for every value c⃗ for the grouping variables z⃗, tight lower and upper bounds on the
corresponding counts over all repairs. This new query is denoted by cqacnt(q, z⃗). Thus, an
answer (c⃗, [m, n]) to this new query means that on every repair, our original query cnt(q, z⃗)
returns a tuple (c⃗, i) with m ≤ i ≤ n, and, moreover, these bounds m and n are tight. By
tight, we mean that for every j ∈ {m, n}, there is a repair on which cnt(q, z⃗) returns (c⃗, j).

For example, the database instance of Fig. 1 has four repairs, because there are two choices
for Anny’s department, and two choices for the building of the IT department. Note that in
Fig. 1, blocks of conflicting tuples are separated by dashed lines. The query cnt(q0, z) returns
different answers on each repair: there are two repairs where the answer is {(A, 3), (B, 1)};
there is one repair where the answer is {(A, 1), (B, 3)}; and there is one repair where the
answer is {(A, 2), (B, 2)}. The latter set of answers, for example, is obtained in the repair
that assigns Anny to department HR, and IT to building B. The query cqacnt(q0, z) would
thus return {(A, [1, 3]), (B, [1, 3])}.

In this paper, we are concerned about the complexity of computing cqacnt(q, z⃗). In
general, there exist self-join-free conjunctive queries q such that, for some choice of the
grouping variables z⃗, cqacnt(q, z⃗) cannot be solved in polynomial time (under standard
complexity assumptions). This follows from earlier research showing that there are self-join-
free conjunctive queries q′(z⃗) for which the following problem is coNP-complete: given c⃗

and db, determine whether q′(c⃗) is true in every repair of db. The latter problem obviously
reduces to counting: q′(c⃗) is true in every repair of db if and only if cqacnt(q, z⃗) returns
(c⃗, [m, n]) on db for some m ≥ 1, where q is the full query obtained from q′ by dropping
quantification.

In his PhD thesis [18], Fuxman showed that for some q and z⃗, the answer to cqacnt(q, z⃗)
can be computed by executing first-order queries followed by simple counting steps. To
illustrate his approach, consider the following query in SQL:

SELECT Building, COUNT(DISTINCT Emp) AS CNT
FROM E, D
WHERE E.Dept = D.Dept AND Gender = ’F’
GROUP BY Building
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E Emp Gender Dept
Suzy F HR
Anny F HR
Anny F IT
Grety F IT
Lucy F MIS

D Dept Building
HR A
IT A
IT B
MIS B

Figure 1 Example database. Primary keys are underlined.

On our example database of Fig. 1, this query returns {(A, 3), (B, 3)}. We observe that the
returned counts match the upper bounds previously found for cqacnt(q0, z). Importantly,
it can be shown that this is not by accident: on every database instance, the latter SQL
query will return the correct upper bounds for cqacnt(q0, z). Note that the latter query
uses COUNT(DISTINCT Emp), which means that duplicates are removed, which is a standard
practice in relational algebra.

We now explain how to obtain the lower bounds for our example query. To this end,
consider the following query:

SELECT Building, Emp
FROM E, D
WHERE E.Dept = D.Dept AND Gender = ’F’

Following [1], we define the consistent answer to such a query as the intersection of the query
answers on all repairs. For our example database, the consistent answer is the following
table, which we call C:

C Emp Building
Suzy A
Lucy B

Note that Anny does not occur in the consistent answer, because (Anny, A) is false in some
repair, and so is (Anny, B). From [29], it follows that computing the consistent answers to the
latter SQL query is in FO (i.e., the class of problems that can be solved by a first-order query),
using a technique known as consistent first-order rewriting. The lower bounds {(A, 1), (B, 1)}
are now found by executing the following query on C (and, again, this is not by accident):

SELECT Building, COUNT(DISTINCT Emp) AS CNT
FROM C
GROUP BY Building

Since C can be expressed in SQL, we can actually construct a single SQL query that computes
the lower bounds in cqacnt(q0, z).

In general, if q(z⃗, w⃗) is a full self-join-free conjunctive query for which cqacnt(q, z⃗) can
be computed as previously described, then we will say that the query obtained from q by
existentially binding the variables in w⃗ (i.e., by binding the variables that are not grouping
variables) admits parsimonious counting. Thus, our example showed that ∃x∃y E(x, ‘F’, y) ∧
D(y, z) admits parsimonious counting. A formal definition of parsimonious counting will
be given later on (Definition 8). In this introduction, we content ourselves by saying that
parsimonious counting, if possible, computes cqacnt(q, z⃗) by executing two first-order queries
(one for lower bounds, and one for upper bounds), followed by simple counting steps.

The main contribution of our paper can now be described. In his doctoral dissertation [18],
Fuxman defined a class of self-join-free conjunctive queries, called Cforest, and showed the
following.
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▶ Theorem 1 ([18]). Every query in Cforest admits parsimonious counting.

The class Cforest has been used in several studies on consistent query answering. It
was an open question whether Cforest contains all self-join-free conjunctive queries that
admit parsimonious counting. We will answer this question negatively in Section 8. More
fundamentally, we introduce a new syntactic class, called Cparsimony, which includes Cforest
and contains all (and only) self-join-free conjunctive queries that admit parsimonious counting.
That is, we prove the following theorem.

▶ Theorem 2 (Main theorem). For every self-join-free conjunctive query q, it holds that q

admits parsimonious counting if and only if q is in Cparsimony.

Moreover, a new and simpler proof for Theorem 1 will follow in Section 8.
The remainder of this paper is organized as follows. Section 2 discusses related work.

Section 3 introduces preliminary constructs and notations. Section 4 introduces the semantic
notion of parsimonious counting. Section 5 introduces our new syntactic class of queries,
called Cparsimony, which restricts self-join-free conjunctive queries. Section 6 shows that every
query in Cparsimony admits parsimonious counting, and Section 7 shows that Cparsimony
contains every self-join-free conjunctive query that admits parsimonious counting. Section 8
shows that Cforest is strictly included in Cparsimony, and provides a new proof for Theorem 1.
Section 9 concludes the paper. Several helping lemmas and proofs are available in [25].

2 Related Work

Consistent query answering (CQA) started by a seminal paper in 1999 co-authored by Arenas,
Bertossi, and Chomicki [1], who introduced the notions of repair and consistent answer. Two
years later, the same authors introduced the range semantics (with lower and upper bounds)
for queries with aggregation [2, 3][4, Chapter 5], which has been commonly adopted ever since.
In particular, it was adopted in the PhD thesis [18] of Fuxman, who provided Theorem 1
(albeit using different terminology) and its proof, and used this result in the implementation
of the ConQuer system [19]. ConQuer aims at computations in first-order logic with counting
(coined “parsimonious counting” in the current paper), which can be encoded in SQL. This is
different from AggCAvSAT [15], a recent system by Dixit and Kolaitis, which uses powerful
SAT solvers for computing range semantics, and thus can solve queries that are beyond the
computational power of ConQuer. Aggregation queries were also studied in the context of
CQA in [6].

Consistent query answering for self-join-free conjunctive queries q and primary keys has
been intensively studied. Its decision variant, which was coined CERTAINTY(q) in 2010 [36],
asks whether a Boolean query q is true in every repair of a given database instance. A
systematic study of its complexity for self-join-free conjunctive queries had started already
in 2005 [21], and was eventually solved in two journal articles by Koutris and Wijsen [29, 32],
as follows: for every self-join-free Boolean conjunctive query q, CERTAINTY(q) is either in
FO, L-complete, or coNP-complete, and it is decidable, given q, which case applies. This
complexity classification extends to non-Boolean queries by treating free variables as constants.
Other extensions beyond this trichotomy deal with foreign keys [23], more than one key
per relation [31], negated atoms [30], or restricted self-joins [28]. For unions of conjunctive
queries q, Fontaine [17] established interesting relationships between CERTAINTY(q) and
Bulatov’s dichotomy theorem for conservative CSP [7].

The counting variant of CERTAINTY(q), denoted ♯CERTAINTY(q), asks to count the
number of repairs that satisfy some Boolean query q. This counting problem is fundamentally
different from the range semantics in the current paper. For self-join-free conjunctive queries,
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♯CERTAINTY(q) exhibits a dichotomy between FP and ♯P-complete under polynomial-time
Turing reductions [33]. This dichotomy has been shown to extend to queries with self-joins if
primary keys are singletons [34], and to functional dependencies [11]. Calautti, Console, and
Pieris present in [8] a complexity analysis of these counting problems under weaker reductions,
in particular, under many-one logspace reductions. The same authors have conducted
an experimental evaluation of randomized approximation schemes for approximating the
percentage of repairs that satisfy a given query [9]. Other approaches to making CQA more
meaningful and/or tractable include operational repairs [10, 12] and preferred repairs [26, 35].

Recent overviews of two decades of theoretical research in CQA are [5, 37]. It is worthwhile
to note that theoretical research in CERTAINTY(q) has stimulated implementations and
experiments in prototype systems [14, 16, 19, 20, 24, 27].

3 Preliminaries

We assume that every relation name R is associated with an arity, which is a positive integer.
We assume that all primary-key positions precede all non-primary-key positions. We say that
R has signature [n, k] if R has arity n and primary-key positions 1, . . . , k.

If R has signature [n, k] and s1, . . . , sn are variables or constants, then R(s1, . . . , sn) is
an R-atom (or simply atom), which will often be denoted as R(s1, . . . , sk, sk+1, . . . , sn) to
distinguish between primary-key and non-primary-key positions. Two atoms R1(s⃗1, t⃗1) and
R2(s⃗2, t⃗2) are said to be key-equal if R1 = R2 and s⃗1 = s⃗2. A fact is an atom in which no
variable occurs. A database instance (or simply database) is a finite set of facts. A database
instance db is consistent if it does not contain two distinct key-equal facts. A repair of db
is a ⊆-maximal consistent subset of db.

If s⃗ is a tuple of variables or constants, then |s⃗| denotes the arity of s⃗, and vars(s⃗) denotes
the set of variables occurring in s⃗. By an abuse of notation, if we use a tuple z⃗ of variables
at places where a set of variables is expected, we mean vars(z⃗). For an atom F = R(s⃗, t⃗), we
define Key(F ) := vars(s⃗), notKey(F ) := vars(⃗t) \ vars(s⃗), and vars(F ) := vars(s⃗) ∪ vars(⃗t). For
example, if F = R(c, x, x, y, y, z, c), then Key(F ) = {x, y} and notKey(F ) = {z}, where c is
a constant.

Conjunctive Queries. A conjunctive query q is a first-order formula of the form:

∃w⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, (1)

where the variables of w⃗ are bound, and the other variables are free. Such a query is also
denoted by q(z⃗) with z⃗ a tuple composed of the free variables. We write vars(q) for the
set of variables that occur in q, and can assume vars(q) = vars(w⃗) ∪ vars(z⃗) without loss
of generality. We say that q is full if all variables of vars(q) are free. We say that q is
self-join-free if i ̸= j implies Ri ̸= Rj . The quantifier-free part R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)
of q is denoted body(q). By slightly overloading notation, we also use body(q) for the set
{R1(x⃗1, y⃗1), . . . , Rn(x⃗n, y⃗n)}. We write free(q) for the set of free variables in q.

If a self-join-free conjunctive query q is understood, and we use a relation name R at
places where an atom is expected, then we mean the unique R-atom of q. If c⃗ is a tuple of
constants of arity |z⃗| and db a database instance, then db |= q(c⃗) denotes that q(c⃗) is true
in db using standard first-order semantics. If db |= q(c⃗), we also write c⃗ ∈ q(db), and we
say that c⃗ is an answer to q on db.

We now introduce operators for turning bound variables into free variables, or vice versa,
and for instantiating free variables.

ICDT 2023
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Making bound variables free. Let q be a conjunctive query with free(q) = z⃗. Let x⃗ be
a tuple of (not necessarily all) bound variables in q (hence x⃗ ∩ z⃗ = ∅). We write
∄x⃗ [q] for the conjunctive query q′ such that free(q′) = z⃗ ∪ x⃗ and body(q′) = body(q).
Informally, ∄x⃗ [q] is obtained from q by omitting the quantification ∃x⃗. For example, if
q(z) = ∃x∃y R(x, y) ∧ R(y, z), then ∄x [q] = ∃y R(x, y) ∧ R(y, z).

Binding free variables. Let q be a conjunctive query, and x⃗ a tuple of (not necessarily all)
free variables of q. Then ∃x⃗ [q] denotes the query with the same body as q, but whose set
of free variables is free(q) \ x⃗.

Instantiating free variables. Let q be a conjunctive query, and z⃗ a tuple of distinct free
variables of q. Let c⃗ be a tuple of constants of arity |z⃗|. Then q[z⃗→c⃗] is the query obtained
from q by replacing, for every i ∈ {1, 2, . . . , |z⃗|}, each occurrence of the ith variable in z⃗

by the ith constant in c⃗.

Consistent Query Answering. Let q(z⃗) be a conjunctive query. We write db |=cqa q(c⃗) if
for every repair r of db, we have r |= q(c⃗). If db |=cqa q(c⃗), we also say that c⃗ is a consistent
answer to q on db. A consistent first-order rewriting of q(z⃗) is a first-order formula φ(z⃗)
such that for every database instance db and every tuple c⃗ of constants of arity |z⃗|, we have
db |=cqa q(c⃗) if and only if db |= φ(c⃗). Note incidentally that the set of integrity constraints
is always implicitly understood to be the primary keys associated with the relation names
that occur in the query.

Query Graph. The query graph of a conjunctive query q(z⃗) is an undirected graph whose
vertices are the bound variables of q. There is an edge between x and y if x ̸= y and x, y

occur together in some atom of body(q).

Attack Graph. The following is a straightforward extension of attack graphs [29] to deal
with free variables.

Let q(z⃗) be a self-join-free conjunctive query. If S is a subset of body(q), then q \ S

denotes the query obtained from q by removing from q all atoms in S. Every variable of
q \ S that is free in q remains free in q \ S; and every variable of q \ S that is bound in q

remains bound in q \ S.
We define K(q) as the set of functional dependencies that contains ∅ → free(q) and

contains, for every atom F in q, the functional dependency Key(F ) → vars(F ). Note that
since K(q) contains ∅ → free(q), we have that K(q) |= ∅ → y if and only if K(q) |= free(q) → y,
for each y ∈ vars(q). If F is an atom of q, then F +,q is the set that contains every variable
y ∈ vars(q) such that either y ∈ free(q) or K(q \ {F}) |= Key(F ) → y (or both).

It is known that in the study of consistent query answering for self-join-free conjunct-
ive queries, we often do not need a special treatment of free variables, because comput-
ing consistent answers to q(z⃗) has the same time complexity as the decision problem
CERTAINTY(q(z⃗)[z⃗→c⃗]) with c⃗ a sequence of pairwise distinct fresh constants. The ad-
dition of functional dependencies ∅ → free(q) has the same effect as treating variables in
free(q) as constants. In the following example, we omit curly braces and commas when
denoting sets of variables. For example, {z1, z2} is denoted z1z2.

▶ Example 3. Let q = ∃u∃v∃x∃y R(u, x) ∧ S(x, z1, y) ∧ T (y, v, z2) ∧ U(y, u). We have
free(q) = z1z2. Then, q \ {T}1 is the query ∃u∃v∃x∃y R(u, x) ∧ S(x, z1, y) ∧ U(y, u), whose
only free variable is z1. Note incidentally that since v does not occur in the latter query, the

1 Recall that we use T as a shorthand for the T -atom of q.
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quantification ∃v can be dropped. We have K(q \ {T}) = {∅ → z1, u → x, xz1 → y, y → u}.
Note that ∅ → z1 belongs to the latter set because z1 is free in q \ {T}. The set of variables
that are functionally dependent on Key(T ) relative to K(q \ {T}) is uxyz1. Finally, we obtain
T +,q = uxyz1z2. Note that the latter set contains the variable z2 that is free in q. ⌟

We say that an atom F of q attacks a variable x occurring in q, denoted F
q
⇝ x, if there

exists a sequence ⟨x1, x2, . . . , xn⟩ of bound variables of q (n ≥ 1) such that:
1. if two variables are adjacent in the sequence, then they occur together in some atom of q;
2. x1 ∈ notKey(F ) and xn = x; and
3. for every ℓ ∈ {1, . . . , n}, xℓ ̸∈ F +,q.
Such a sequence will be called a witness of F

q
⇝ x. We say that an atom F of q attacks

another atom G of q, denoted F
q
⇝ G, if F ̸= G and F attacks some variable of vars(G).

It is now easily verified that if F attacks G, then F also attacks a variable in Key(G). A
variable or atom that is not attacked, is called unattacked (where q is understood from the
context). The attack graph of q is a directed graph whose vertices are the atoms of q; there
is a directed edge from F to G if F

q
⇝ G. A directed edge in the attack graph is called an

attack. Koutris and Wijsen [29] showed the following.

▶ Theorem 4 ([29]). A self-join-free conjunctive query q(z⃗) has a consistent first-order
rewriting if and only if its attack graph is acyclic.

An attack from F to G is weak if K(q) |= Key(F ) → Key(G); otherwise it is strong. By a
component of an attack graph, we always mean a maximal weakly connected component.

Let q be a self-join-free conjunctive query. Whenever the relationship K(q) |= Z → w

holds true, then there exists a sequential proof of it, as defined next.

Sequential Proof. Let q(z⃗) be a self-join-free conjunctive query, and Z ⊆ vars(q). Let
⟨F1, F2, . . . , Fn⟩ be a (possibly empty) sequence of atoms in body(q) such that for every
i ∈ {1, . . . , n}, Key(Fi) ⊆ free(q)∪Z ∪

(⋃i−1
j=1 vars(Fj)

)
. Such a sequence is called a sequential

proof of K(q) |= Z → w, for every w ∈ free(q) ∪ Z ∪
(⋃n

j=1 vars(Fj)
)

. A sequential proof of
K(q) |= Z → w is called minimal if ⟨F1, . . . , Fn−1⟩ is not a sequential proof of K(q) |= Z → w.

4 Parsimonious Counting

Consider a conjunctive query q(z⃗) = ∃w⃗ B, with B a quantifier-free conjunction of atoms
(called the body). We introduce a query that takes a database instance db as input and
returns, for every tuple c⃗ ∈ q(db), the number of valuations for w⃗ that make the query true.

▶ Definition 5 (cnt(q, z⃗)). Let q(z⃗, w⃗) be a full conjunctive query, in which notation it
is understood that z⃗ and w⃗ are disjoint, duplicate-free tuples of variables. cnt(q, z⃗) is the
query that takes as input a database instance db and returns every tuple (c⃗, i) for which the
following hold:
1. c⃗ a tuple of constants of arity |z⃗|; and
2. i is a positive integer such that i is the number of distinct tuples d⃗, of arity |w⃗|, satisfying

db |= q(c⃗, d⃗).
A maximal set of answers to q(db) that agree on z⃗ will also be called a z⃗-group (where
q and db are implicitly understood). Thus, cnt(q, z⃗) counts the number of tuples in each
z⃗-group.

The following definition introduces range consistent query answers as introduced in [2].

ICDT 2023
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▶ Definition 6 (cqacnt(q, z⃗)). Let q(z⃗, w⃗) be a full conjunctive query, in which notation it
is understood that z⃗ and w⃗ are disjoint, duplicate-free tuples of variables. cqacnt(q, z⃗) is the
query that takes as input a database instance db and returns every tuple (c⃗, [m, n]) for which
the following hold:
1. for every repair r of db, there exists d⃗ such that r |= q(c⃗, d⃗);
2. there is a repair of db on which cnt(q, z⃗) returns (c⃗, m);
3. there is a repair of db on which cnt(q, z⃗) returns (c⃗, n); and
4. if cnt(q, z⃗) returns (c⃗, i) on some repair of db, then m ≤ i ≤ n.
If (c⃗, [m, n]) is an answer to cqacnt(q, z⃗) on db, then we will say that it is a range-consistent
answer. Note that if (c⃗, [m, n]) is a range-consistent answer, then, by definition, c⃗ is a
consistent answer to q(z⃗), hence m ≥ 1.

The following proposition states that computing cqacnt(q(z⃗, w⃗), z⃗) can be NP-hard, even
if the query ∃w⃗ [q] has a consistent first-order rewriting.

▶ Proposition 7. There exists a self-join-free conjunctive query q(z⃗) that has a consistent
first-order rewriting such that cqacnt(body(q), z⃗) is NP-hard to compute.

Proof sketch. In 3-DIMENSIONAL MATCHING (3DM), we are given a set M ⊆ A1 ×A2 ×A3,
where A1, A2, A3 are disjoint sets having the same number n of elements. We are asked
whether M contains a matching, that is, a subset M ′ ⊆ M such that |M ′| = n and no two
elements of M ′ agree in any coordinate. The problem 3DM is NP-complete [22].

Consider the query q(z) = ∃x1∃x2∃x3∃y Z(z) ∧
∧3

i=1
(
Ri(xi, y) ∧ Si(xi, y)

)
. The edge-set

of q’s attack graph is empty. Therefore, q’s attack graph is acyclic. By Theorem 4, q(z)
has a consistent first-order rewriting. Let M ⊆ A1 × A2 × A3 be an instance of 3DM. Let
dbM be the database instance that contains Z(c) and includes, for every a1a2a3 in M ,⋃3

i=1{Ri(ai, a1a2a3), Si(ai, a1a2a3)}. Moreover, dbM includes
⋃3

i=1{Ri(⊥i, ⊤), Si(⊥i, ⊤)},
where ⊥1, ⊥2, ⊥3, ⊤ are fresh constants not in A1 ∪ A2 ∪ A3. Clearly, dbM is first-order
computable from M . It can now be verified that M has a matching if and only if for some ℓ,
cqacnt(body(q), z) returns (c, [ℓ, n + 1]) on dbM . ◀

Note that the foregoing proof can be easily adapted from 3DM to 2DM. That is, the query
q(z) = ∃x1∃x2∃y Z(z)∧

∧2
i=1

(
Ri(xi, y) ∧ Si(xi, y)

)
has a consistent first-order rewriting, but

computing cqacnt(body(q), z) is as hard as 2DM.
We now introduce the semantic notion of parsimonious counting, which was illustrated

by the running example in Section 1. Informally, for a query q(z⃗) that admits parsimo-
nious counting, it will be the case that on every database instance db, the answers to
cqacnt(body(q), z⃗) can be computed by a first-order query followed by a simple counting
step.

▶ Definition 8 (Parsimonious counting). Let q be a conjunctive query with free(q) = z⃗.2 Let x⃗

be a (possibly empty) sequence of distinct bound variables of q(z⃗). We say that q admits
parsimonious counting on x⃗ if the following hold (let q′(z⃗, x⃗) = ∄x⃗ [q]):
(A) q(z⃗) has a consistent first-order rewriting;
(B) q′(z⃗, x⃗) has a consistent first-order rewriting (call it φ(z⃗, x⃗)); and
(C) for every database instance db, the following conditions (Ca) and (Cb) are equivalent:

2 We will commonly write q(z⃗) to make explicit that free(q) = z⃗.
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(a) (c⃗, [m, n]) is an answer to cqacnt(body(q), z⃗) on db;
(b) m ≥ 1 and both the following hold:

(i) m is the number of distinct tuples d⃗, of arity x⃗, such that db |= φ(c⃗, d⃗); and
(ii) n is the number of distinct tuples d⃗ such that db |= q′(c⃗, d⃗).

We say that q admits parsimonious counting if it admits parsimonious counting on some
sequence x⃗ of bound variables.

Significantly, since Definition 8 contains a condition that must hold for every database
instance db, it does not give us an efficient procedure for deciding whether a given self-join-free
query q(z⃗) admits parsimonious counting.

We now give some examples. From the proof of Proposition 7 and the paragraph after
that proof, it follows that under standard complexity assumptions, for k ≥ 2,

qk(z) := ∃x1 · · · ∃xk∃y Z(z) ∧
k∧

i=1

(
Ri(xi, y) ∧ Si(xi, y)

)
does not admit parsimonious counting, even though qk(z) has a consistent first-order rewriting.
The following example shows a query q(z) that does not admit parsimonious counting, but
for which cqacnt(body(q), z) can be computed in first-order logic with a counting step that
is slightly more involved than what is allowed in parsimonious counting.

▶ Example 9. Let q(z) = ∃x∃y R(z, x) ∧ S(x, y) and q∗(z, x, y) = R(z, x) ∧ S(x, y). We first
argue that q(z) does not admit parsimonious counting. Let db be the following database
instance:

R z x

c1 a

c2 a

c2 b

S x y

a d

a e

b f

It can be verified that on this database instance, cqacnt(q∗, z) must return (c1, [2, 2]) and
(c2, [1, 2]). We next show the answer to q∗ on db:

q∗(db) z x y

c1 a d

c1 a e

c2 a d

c2 a e

c2 b f

The correct upper bound of 2 in (c2, [1, 2]) could only be obtained by counting, within the
c2-group, the number of distinct ⟨x⟩-values. However, such a counting would conclude an
incorrect upper bound of 1 for the c1-group. It is now correct to conclude that q(z) does not
admit parsimonious counting.

The lower and upper bounds can be obtained from q∗(db) by a counting step that is only
slightly more involved than what is allowed in parsimonious counting. First, construct the
following relation where R̃(cj , v | n) means that cnt(q∗, z) returns (cj , n) on a repair that
contains R(cj , v).

R̃ z x

c1 a 2
c2 a 2
c2 b 1
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These counts can be obtained from q∗(db) by counting the number of distinct y-values
within each zx-group. Next, the lower and upper bounds are obtained as the minimal and
maximal counts within each z-group.

Note incidentally that for q0(z) := ∃x∃y R(z, x) ∧ T (z, x) ∧ S(x, y), which is obtained
from q(z) by adding T (z, x), we have that q0 admits parsimonious counting. The change
occurs because if db |=cqa q0(c), then there exists a unique value a such that db |=
∀x (R(c, x) → x = a) and db |= ∀x (T (c, x) → x = a). That is, the only blocks that can
contribute to cqacnt(body(q0), z) have cardinality 1. This means that range semantics
reduces to counting on a consistent database instance. ⌟

5 The Class Cparsimony

The notion of parsimonious counting is a semantic property defined for conjunctive queries.
A natural question is to syntactically characterize the class of conjunctive queries that admit
parsimonious counting. In this paper, we will answer this question under the restriction
that queries are self-join-free. This is the best we can currently hope for, because consistent
query answering for primary keys and conjunctive queries with self-joins is a notorious open
problem for which no tools are known (e.g., attack graphs are not helpful in the presence
of self-joins). We now define our new syntactic class Cparsimony, which uses the following
notion of frozen variable.

▶ Definition 10 (Frozen variable). Let q(z⃗) be a self-join-free conjunctive query. We say that
a bound variable y of q(z⃗) is frozen in q if there exists a sequential proof of K(q) |= ∅ → y

such that F
q

̸⇝ y for every atom F that occurs in the sequential proof. We write frozen(q)
for the set of all bound variables of vars(q) that are frozen in q. A bound variable that is not
frozen in q is called nonfrozen in q.

▶ Example 11. Let q(z) = ∃x R(z, x) ∧ S(z, x). We have R
q

̸⇝ x. Therefore, ⟨R(z, x)⟩ is a
sequential proof of K(q) |= ∅ → x that uses no atom attacking x. Hence, x is frozen. Note
here that z is free, hence K(q) |= ∅ → z by definition. ⌟

▶ Definition 12 (The class Cparsimony). We define Cparsimony as the set of self-join-free
conjunctive queries q(z⃗) satisfying the following conditions:

(I) the attack graph of q(z⃗) is acyclic and contains no strong attacks; and
(II) there is a tuple x⃗ of bound variables of q(z⃗) such that:

(1) every component3 of q(z⃗)’s attack graph contains an unattacked atom R such that
K(q) |= x⃗ → Key(R); and

(2) for every atom R in body(q(z⃗)), every (possibly empty) path in the query graph
of q(z⃗) between a variable of notKey(R) and a variable of x⃗ uses a variable in
Key(R) ∪ frozen(q).

We will say that such an x⃗ is an id-set for q(z⃗). We will say that an id-set x⃗ is minimal if
any sequence obtained from x⃗ by omitting one or more variables is no longer an id-set.

Informally, id-sets x⃗ will play the role of x⃗ in Definition 8: they identify the values that
have to be counted within each z⃗-group to obtain range-consistent answers.

3 Whenever we use the term component, we mean a maximal weakly connected component.
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R(x, y1) S(x, y2)

T (y1, y2, y3, z)

P (v, w)

y1

y2

y3 x

v

w

Figure 2 Attack graph (left) and query graph (right) of q(z) = ∃x∃y1∃y2∃y3∃v∃w R(x, y1) ∧
S(x, y2) ∧ T (y1, y2, y3, z) ∧ P (v, w).

We now illustrate Definition 12 by some examples. Then Proposition 17 implies that every
query q(z⃗) in Cparsimony has a unique minimal id-set that can be easily constructed from
q(z⃗)’s attack graph. Finally, Proposition 18 settles the complexity of checking membership
in Cparsimony.

▶ Example 13. In the paragraph following the proof of Proposition 7, we introduced the
query q(z) = ∃x1∃x2∃y Z(z) ∧

∧2
i=1

(
Ri(xi, y) ∧ Si(xi, y)

)
. The edge-set of q(z)’s attack

graph is empty. No variable is frozen. According to condition II1 in Definition 12, every
id-set (if any) must contain x1. However, no id-set can contain x1, because for the atom
R2(x2, y), the edge {y, x1} in the query graph is a path between a variable of notKey(R2)
and x1 that uses no variable of Key(R2). We conclude that q(z) is not in Cparsimony. ⌟

▶ Example 14. The query q(z) = ∃x∃y∃v R(x, y) ∧ S(y, v) ∧ T (v, y) ∧ P1(z, y) ∧ P2(z, y)
belongs to Cparsimony. The attack graph of q(z) has a single attack from S to T . The query
graph of q(z) has two undirected edges: {x, y} and {y, v}. The variable y is frozen, because
⟨P1(z, y)⟩ is a sequential proof of K(q) |= ∅ → y (note here that z is free), and P1

q

̸⇝ y.
It can be verified that ⟨x⟩ is an id-set. Note that ⟨y, x⟩ is a path in the query graph

between y ∈ notKey(T ) and x that uses no variable of Key(T ) = {v}. However, that path
uses the frozen variable y. ⌟

▶ Example 15. Let q(z) = ∃x∃y1∃y2∃y3∃v∃w R(x, y1) ∧ S(x, y2) ∧ T (y1, y2, y3, z) ∧ P (v, w).
The attack graph and the query graph of q(z) are shown in Fig. 2. We now argue that
q(z) is in Cparsimony. First, the attack graph of q is acyclic and contains no strong attacks.
We next argue that xv is an id-set for q. The attack graph of q(z) has two components.
Condition II1 in Definition 12 is obviously satisfied for x⃗ = xv since K(q) |= xv → v and
K(q) |= xv → x. It is easily verified that condition II2 is also verified. In particular, for the
atom T (y1, y2, y3, z), every path between y3 and x uses either y1 or y2. ⌟

▶ Example 16. Let q(z) = ∃x∃y R1(x, y, z) ∧ R2(x, y) ∧ S1(y, x) ∧ S2(y, x). The attack graph
of q(z) contains no edges and, thus, is acyclic and has four components. It can be verified
that no variable is frozen. We claim that q(z) is not in Cparsimony, because it has no id-set.
Indeed, from condition II1 in Definition 12, it follows that every id-set must contain either
x or y (or both). For the atom S1(y, x), the empty path is a path between a variable in
notKey(S1) to x that uses no variable in Key(S1). It follows by condition II2 that no id-set
can contain x. From R2(x, y), by similar reasoning, we conclude that no id-set can contain y.
It follows that q(z) has no id-set. ⌟
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▶ Proposition 17. Let q(z⃗) be a query in Cparsimony, and let x⃗ be a minimal id-set for it.
Let N =

⋃
{notKey(R) | R ∈ q}. Let V be a ⊆-minimal subset of vars(q) that includes, for

every unattacked atom R of q, every bound variable of Key(R) \ N . Then,
1. V = vars(x⃗); and
2. whenever R, S are unattacked atoms that are weakly connected in q(z⃗)’s attack graph,

Key(R) ∩ x⃗ = Key(S) ∩ x⃗.

▶ Proposition 18. The following decision problem is in quadratic time: Given a self-join-free
conjunctive query q(z⃗), decide whether or not q(z⃗) belongs to Cparsimony.

6 The Class Cparsimony Admits Parsimonious Counting

In this section, we show the if-direction of Theorem 2, which is the following theorem.

▶ Theorem 19. Every self-join-free conjunctive query in Cparsimony admits parsimonious
counting.

We use a number of helping lemmas and constructs. The following lemma says that if x⃗

is an id-set of a query q(z⃗) in Cparsimony, then for a consistent database db, the answers
to cnt(body(q), z⃗) can be obtained by counting the number of distinct x⃗-values within
each z⃗-group, while variables not in x⃗ · z⃗ can be ignored.

▶ Lemma 20. Let q(z⃗, x⃗, w⃗) be a full self-join free conjunctive query, in which notation it
is understood that z⃗, x⃗ and w⃗ are disjoint, duplicate-free tuples of variables. Assume that
the query ∃x⃗w⃗ [q] belongs to Cparsimony and that x⃗ is an id-set for it. Let db be a consistent
database instance. For all tuples a⃗ and b⃗ of constants, of arities |z⃗| and |x⃗| respectively, for
all tuples c⃗1 and c⃗2 of arity |w⃗|, if db |= q(⃗a, b⃗, c⃗1) and db |= q(⃗a, b⃗, c⃗2), then c⃗1 = c⃗2.

We now present the notion of optimistic repair, which was originally introduced by
Fuxman [18]. Informally, a repair r of a database db is an optimistic repair with respect
to a conjunctive query q(z⃗) if every tuple that is an answer to q(z⃗) on db is also an answer
to q(z⃗) on r. The converse obviously holds true because conjunctive queries are monotone
and repairs are subsets of the original database instance.

▶ Definition 21 (Optimistic repair). Let q(x⃗) be a conjunctive query. Let db be a database
instance. We say that a repair r of db is an optimistic repair with respect to q(x⃗) if for
every tuple a⃗ of constants, of arity |x⃗|, db |= q(⃗a) implies r |= q(⃗a) (the converse implication
is obviously true).

The following lemma gives a sufficient condition for the existence of optimistic repairs.

▶ Lemma 22. Let q(z⃗) be a self-join free conjunctive query in Cparsimony, and let x⃗ be a
minimal id-set for it. Let q′(z⃗, x⃗) be the query ∄x⃗ [q]. Let db be a database instance, and c⃗ a
tuple of constants, of arity |z⃗|, such that db |=cqa q(c⃗). Then, db has an optimistic repair
with respect to q′

[z⃗→c⃗].

We now present the notion of pessimistic repair, also borrowed from [18]. Informally, a
repair of a database db is a pessimistic repair with respect to a conjunctive query q(z⃗) if
every answer to q(z⃗) on r is a consistent answer to q(z⃗) on db. The converse trivially holds
true.

▶ Definition 23 (Pessimistic repair). Let q(x⃗) be a conjunctive query. Let db be a database
instance. We say that a repair r of db is a pessimistic repair with respect to q(x⃗) if for every
tuple a⃗ of constants, of arity |x⃗|, if r |= q(⃗a), then db |=cqa q(⃗a).
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The following lemma gives a sufficient condition for the existence of pessimistic repairs.

▶ Lemma 24. Let q(z⃗) be a self-join free conjunctive query in Cparsimony, and let x⃗ be a
minimal id-set for it. Let db be a database instance, and c⃗ a tuple of constants, of arity |z⃗|,
such that db |=cqa q(c⃗). Then, db has a pessimistic repair with respect to q′

[z⃗→c⃗].

The following example illustrates the preceding constructs and lemmas.

▶ Example 25. Let q(z) = ∃x∃y∃v R(x, y) ∧ S(y, v, z) ∧ T (y, v). Let db be the following
database instance:

R x y

a1 b1

a2 b2

a3 b2

a4 b3

S y v z

b1 c1 g1

b2 c2 g1

b2 c2 g2

b3 c3 g2

T y v

b1 c1

b2 c2

b3 c3

Clearly, db has two repairs, which are r1 := db\{S(b2, b2, g2)} and r2 := db\{S(b2, b2, g1)}.
We first determine the answers to cqacnt(body(q), z) on db in a naive way without

using parsimonious counting, but by enumerating repairs. To this end, let q∗(z, x, y, v) =
R(x, y) ∧ S(y, v, z) ∧ T (y, v). We have:

q∗(r1) = {(g1, a1, b1, c1), (g1, a2, b2, c2), (g1, a3, b2, c2), (g2, a4, b3, c3)}
q∗(r2) = {(g1, a1, b1, c1), (g2, a2, b2, c2), (g2, a3, b2, c2), (g2, a4, b3, c3)}

The value g1 occurs in 3 tuples of q∗(r1), and in one tuple of q∗(r2). On the other hand,
g2 occurs in one tuple of q∗(r1), and in 3 tuples of q∗(r2). It follows that (g1, [1, 3]) and
(g2, [1, 3]) are the answers to cqacnt(body(q), z) on db.

It can be verified that q(z) ∈ Cparsimony with an id-set x⃗ = ⟨x⟩. We next compute
cqacnt(body(q), z) on db by means of parsimonious counting. To this end, let q′(z, x) =
∄x [q], and let φ(z, x) be a consistent first-order rewriting for q′(z, x). If we execute these
queries on db, we obtain:4

q′(db) = {(g1, a1), (g1, a2), (g1, a3), (g2, a2), (g2, a3), (g2, a4)}
φ(db) = {(g1, a1), (g2, a4)}

As stated in Theorem 19, the set q′(db) yields the upper bound 3 for g1 and g2, and the set
φ(db) yields the lower bound 1 for g1 and g2. It is important to understand that parsimonious
counting obtains these bounds directly on db, without computing any repair.

We elaborate this example further to illustrate the constructs of optimistic and pessimistic
repairs. We have:

q′(r1) = {(g1, a1), (g1, a2), (g1, a3), (g2, a4)}
q′(r2) = {(g1, a1), (g2, a2), (g2, a3), (g2, a4)}

Note that the consistent answer to q′(z, x) on db (i.e., the set φ(db) used previously) is
equal to q′(r1) ∩ q′(r2) = {(g1, a1), (g2, a4)}. We see that r1 is an optimistic repair with
respect to q′(z, x)[z→g1], and a pessimistic repair with respect to q′(z, x)[z→g2]. On the other
hand, r2 is an optimistic repair with respect to q′(z, x)[z→g2], and a pessimistic repair with
respect to q′(z, x)[z→g1]. ⌟

4 φ(db) is a shorthand for the set of all tuples (c, d) such that db |= φ(c, d).
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Proof of Theorem 19. Let q(z⃗) ∈ Cparsimony. We have to prove that q(z⃗) admits parsimo-
nious counting. Since q(z⃗) ∈ Cparsimony, we can assume an id-set x⃗ for q(z⃗). It suffices to
show that conditions A, B, and C in Definition 8 are satisfied for this choice of x⃗. As in
Definition 8, let q′(z⃗, x⃗) = ∄x⃗ [q].

Since q(z⃗) is in Cparsimony, it has an acyclic attack graph. It follows from Theorem 4
that q(z⃗) has a consistent first-order rewriting. Thus, condition A in Definition 8 is satisfied.
It is known [29] that the attack graph of q′(z⃗, x⃗) is a subgraph of the attack graph of q(z⃗).
Informally, no new attacks are introduced when bound variables are made free. It follows
that q′(z⃗, x⃗) has an acyclic attack graph, and therefore, by Theorem 4, a consistent first-order
rewriting. Thus, condition B in Definition 8 is satisfied. In the remainder of the proof,
we show that condition C in Definition 8 is satisfied. To this end, let db be an arbitrary
database instance.

Let c⃗ be a tuple of constants such that db |=cqa q(c⃗). Let D be the active domain
of db. Let f be a function that maps every subset s of db to the cardinality of the set
{a⃗ ∈ D|x⃗| | s |= q′(c⃗, a⃗)}. Clearly, for every repair r of db, we have r ⊆ db and hence, since
conjunctive queries are monotone, f(r) ≤ f(db). Moreover, since repairs are consistent,
it follows by Lemma 20 that for every repair r of db, if (c⃗, i) is an answer to the query
cnt(body(q), z⃗) on r, then i = f(r).

By Lemma 22, we can assume an optimistic repair o of db with respect to q′(z⃗, x⃗)[z⃗→c⃗].
By Definition 21 of optimistic repair, for every tuple a⃗ of constants, of arity |x⃗|, we have
o |= q′(c⃗, a⃗) if and only if db |= q′(c⃗, a⃗). It follows f(o) = f(db). Consequently, for
every repair r of db, f(r) ≤ f(o). It follows that for some lower bound m, we have that
(c⃗, [m, f(db)] is an answer to cqacnt(body(q), z⃗) on db.

By Lemma 24, we can assume a pessimistic repair p of db with respect to q′(z⃗, x⃗)[z⃗→c⃗].
Let φ(z⃗, x⃗) be a consistent first-order rewriting of q′(z⃗, x⃗). By Definition 23 of pessimistic
repair, the following hold:

p |= q(c⃗, a⃗) if and only if db |= φ(c⃗, a⃗). Therefore, f(p) is the cardinality of the set
S := {a⃗ ∈ D|x⃗| | db |= φ(c⃗, a⃗)}.
for every repair r of db, f(p) ≤ f(r).

It follows that there is an upper bound n such that that (c⃗, [|S|, n]) is an answer to
cqacnt(body(q), z⃗) on db. Putting everything together, we obtain that (c⃗, [|S|, f(db)])
is an answer to cqacnt(body(q), z⃗) on db. From this, it is correct to conclude that condi-
tion C in Definition 8 is satisfied. This concludes the proof. ◀

7 Completeness of the Class Cparsimony

In this section, we show the only-if-direction of Theorem 2, which is the following theorem.

▶ Theorem 26. Every self-join-free conjunctive query that admits parsimonious counting
belongs to Cparsimony.

The following three lemmas state some properties of queries q(z⃗) that admit parsimonious
counting on some x⃗.

▶ Lemma 27. Let q(z⃗) be a self-join-free conjunctive query. If q(z⃗) admits parsimonious
counting, then the attack graph of q(z⃗) is acyclic.

▶ Lemma 28. Let q(z⃗) be a self-join-free conjunctive query. Let x⃗ be a (possibly empty)
sequence of bound variables of q(z⃗). If q(z⃗) admits parsimonious counting on x⃗, then the
attack graph of q′(z⃗, x⃗) has no strong attack.
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▶ Lemma 29. Let q(z⃗) be self-join-free conjunctive query whose attack graph is acyclic.
Let x⃗ be a (possibly empty) sequence of bound variables of q(z⃗). If q(z⃗) admits parsimonious
counting on x⃗, then x⃗ satisfies condition II1 in Definition 12.

The following two lemmas, and their corollary, concern condition II2 in Definition 12.

▶ Lemma 30. Let q(z⃗) be a self-join-free conjunctive query. Let x⃗ be a (possibly empty)
sequence of bound variables of q(z⃗), and let q′(z⃗, x⃗) = ∄x⃗ [q]. Let c⃗ a tuple of constants of
arity |z⃗|. If q(z⃗) admits parsimonious counting on x⃗, then for every database instance db, if
db |=cqa q(c⃗), then db has an optimistic repair with respect to q′

[z⃗→c⃗].

Proof. Assume that q(z⃗) admits parsimonious counting on x⃗. Let db be a database instance
such that db |=cqa q(c⃗). Let (c⃗, [m, n]) be an answer to cqacnt(body(q), z⃗) on db. Define

D := {d⃗ ∈ D|x⃗| | db |= q′(c⃗, d⃗)}, (2)

where D be the active domain of db. By our hypothesis that q(z⃗) admits parsimonious
counting on x⃗, it follows by condition C in Definition 8 that

n = |D|. (3)

By Definition 6, we can assume a repair r of db such that (c⃗, n) is an answer to cnt(body(q), z⃗)
on r. Since r is consistent, we have that (c⃗, [n, n]) is an answer to cqacnt(body(q), z⃗) on r.
Define

R := {d⃗ ∈ D|x⃗| | r |= q′(c⃗, d⃗)}. (4)

By our hypothesis that q(z⃗) admits parsimonious counting on x⃗, it follows by condition C in
Definition 8 that

n = |R|. (5)

Since conjunctive queries are monotone and r ⊆ db, it follows R ⊆ D. Since |R| = |D| by (3)
and (5), it follows R = D. From D ⊆ R, it follows that r is an optimistic repair with respect
to q′(z⃗, x⃗)[z⃗→c⃗]. ◀

▶ Lemma 31. Let q(z⃗), x⃗, q′(z⃗, x⃗), and c⃗ be as in the statement of Lemma 30. Assume
that x⃗ violates condition II2 in Definition 12. Then, there exists a database db such that
db |=cqa q(c⃗), but db has no optimistic repair with respect to q′

[z⃗→c⃗].

▶ Corollary 32. Let q(z⃗) be a self-join-free conjunctive query. Let x⃗ be a sequence of distinct
bound variables of q(z⃗), and let q′(z⃗, x⃗) = ∄x⃗ [q]. If q(z⃗) admits parsimonious counting on x⃗,
then x⃗ satisfies condition II2 in Definition 12.

Proof. Immediately from Lemmas 30 and 31. ◀

Finally, we need the following result.

▶ Lemma 33. Let q(z⃗) be a self-join-free conjunctive query. Let x⃗ be a sequence of distinct
bound variables of q(z⃗). Let q′(z⃗, x⃗) = ∄x⃗ [q]. Assume that x⃗ satisfies condition II2 in
Definition 12. If the attack graph of q(z⃗) has a strong attack from an atom R to an atom S,
then the attack graph of q′(z⃗, x⃗) has a strong attack from R to S.

Before giving a proof of Theorem 26, we illustrate the preceding results with an example.
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▶ Example 34. Let q(z) = ∃x∃y R(x, z, y) ∧ S(y, x) ∧ T (y, x). We will argue that q(z) is not
in Cparsimony, and then illustrate that it does not admit parsimonious counting.

The only edges in the attack graph of q are (R, S) and (R, T ). Assume for the sake of
contradiction that q ∈ Cparsimony. Then, following Proposition 17, the minimal id-set of
q(z⃗) is ⟨⟩. However, since K(q(z)) ≡ {x → y, y → x, ∅ → z}, condition II1 in Definition 12 is
violated for x⃗ = ⟨⟩. We conclude by contradiction that q /∈ Cparsimony.

We now argue, without using Theorem 26, that q(z) does not admit parsimonious counting.
Conditions A and B in Definition 8 of parsimonious counting are satisfied for every choice of
x⃗ in {⟨⟩, ⟨x⟩, ⟨y⟩, ⟨x, y⟩}. However, we will show that condition C is not satisfied. To this
end, let x⃗ be a sequence of bound variables of q(z). Let q′(z, x⃗) = ∄x⃗ [q]. First, suppose that
x⃗ ∈ {⟨x⟩, ⟨x, y⟩}. Consider the following database instance db:

R x z y

a d e

b d e

c d f

S y x

e a

e b

f c

T y x

e a

e b

f c

We have that (d, [1, 2]) is an answer to cqacnt(body(q), z), but it can be easily verified that
|q′(db)| = 3, which is distinct from the upper bound 2.

Assume next that x⃗ ∈ {⟨y⟩, ⟨x, y⟩}. Consider the following database instance db:

R x z y

a d e

a d f

b d g

S y x

e a

f a

g b

T y x

e a

f a

g b

Now we have that (d, [2, 2]) is an answer to cqacnt(body(q), z), but |q′(db)| = 3.
The only remaining case to be considered is x⃗ = ⟨⟩. In that case q′ = q. Consider the

following database instance db:

R x z y

a d e

b d f

S y x

e a

f b

T y x

e a

f b

Since db is a consistent database instance, the only repair of db is db itself. We have that
(d, [2, 2]) is an answer to cqacnt(body(q), z) on db. It can be easily verified that |q′(db)| = 1,
which is distinct from the upper bound 2.

Finally, we claim (without proof) that 2-DIMENSIONAL MATCHING (2DM) can be
first-order reduced to computing cqacnt(body(q), z). Therefore, since 2DM is NL-hard [13],
q(z) cannot admit parsimonious counting under standard complexity assumptions. ⌟

Proof of Theorem 26. Assume that q(z⃗) admits parsimonious counting. Then, q(z⃗) has a
tuple x⃗ of bound variables such that for the query q′(z⃗, x⃗) := ∄x⃗ [q], the conditions A, B,
and C in Definition 8 are satisfied. From conditions A and B, it follows by Theorem 4 that
q(z⃗) and q′(z⃗, x⃗) have acyclic attack graphs. By Lemma 29, condition II1 in Definition 12 is
satisfied for x⃗. By Corollary 32, condition II2 in Definition 12 is satisfied by x⃗. By Lemma 28,
the attack graph of q′(z⃗, x⃗) has no strong attack. By Lemma 33, it is now correct to conclude
that the attack graph of q(z⃗) has no strong attack either, and thus condition I in Definition 12
is satisfied. Since we have shown that q(z⃗) satisfies all conditions in Definition 12, we conclude
q(z⃗) ∈ Cparsimony. ◀
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8 Comparison with the Class Cforest

In this section, we introduce Cforest and show Cforest ⊊ Cparsimony without making use of
Theorem 1. Theorem 1 then follows by Theorem 19.

▶ Definition 35 (Cforest). Let q(z⃗) be a self-join-free conjunctive query. The Fuxman graph
of q is a directed graph whose vertices are the atoms of q. There is a directed edge from
an atom R to an atom S if R ̸= S and notKey(R) contains a bound variable that also
occurs in S. The class Cforest contains all (and only) self-join free conjunctive queries q(z⃗)
whose Fuxman graph is a directed forest satisfying, for every directed edge from R to S,
Key(S) \ free(q) ⊆ notKey(R).

▶ Theorem 36. Cforest is a strict subset of Cparsimony.

9 Conclusion and Future Work

In his PhD thesis, Fuxman [18] defined a syntactically restricted class of self-join-free
conjunctive queries, called Cforest, and showed that for every query in Cforest, consistent
answers are first-order computable, and range-consistent answers are computable in first-order
logic followed by a simple aggregation step. Our notion of “parsimonious counting” captures
the latter computation for counting. Later, Koutris and Wijsen [29] syntactically characterized
the class of all self-join-free conjunctive queries with a consistent first-order rewriting, which
strictly includes Cforest. However, it remained an open problem to syntactically characterize
the class of all self-join-free conjunctive queries that admit parsimonious counting. In this
paper, we determined the latter class, named it Cparsimony, and showed that it strictly
includes Cforest.

We now list some open problems for future research. In Definition 8 of parsimonious
counting, we required that q(z⃗) has a consistent first-order rewriting. It is known [32] that
there are self-join-free conjunctive queries, without consistent first-order rewriting, that have
a consistent rewriting in Datalog. We could relax Definition 8 by requiring the existence
of a consistent rewriting in Datalog, rather than in first-order logic. It is an open question
to syntactically characterize the self-join-free conjunctive queries that admit parsimonious
counting under such a relaxed definition.

Another open question is to characterize the complexity of cqacnt(q(z⃗, w⃗), z⃗) for every
full self-join-free conjunctive query q and choice of free variables z⃗. It is easily verified that
the complexity of computing the answers to cqacnt(q(z⃗, w⃗), z⃗) is higher than computing the
consistent answers to q′(z⃗) := ∃w⃗ [q] (because of the lower bound in range semantics). It
remains an open question to characterize this complexity if q′(z⃗) is not in Cparsimony, even
if it has a consistent first-order rewriting.

The notion of parsimonious counting does not require conjunctive queries to be self-
join-free. An ambitious open problem is to syntactically characterize the class of all (i.e.,
not necessarily self-join-free) conjunctive queries that admit parsimonious counting. This
problem is largely open, because it is already a notorious open problem to syntactically
characterize the class of conjunctive queries that have a consistent first-order rewriting.

Another open question is to extend the results in the current paper to other aggregation
operators than COUNT, including MAX, MIN, SUM, and AVG.
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