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—— Abstract

Subgraph counting is a fundamental problem that spans many areas in computer science: database
theory, logic, network science, data mining, and complexity theory. Given a large input graph G and
a small pattern graph H, we wish to count the number of occurrences of H in G. In recent times,
there has been a resurgence on using an old (maybe overlooked?) technique of orienting the edges of
G and H, and then using a combination of brute-force enumeration and indexing. These orientation
techniques appear to give the best of both worlds. There is a rigorous theoretical explanation behind
these techniques, and they also have excellent empirical behavior (on large real-world graphs). Time
and again, graph orientations help solve subgraph counting problems in various computational
models, be it sampling, streaming, distributed, etc. In this paper, we give some short vignettes on
how the orientation technique solves a variety of algorithmic problems.
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1 Introduction

A central problem in computer science is to count or enumerate the occurrences of a small
pattern graph H in a large input graph G. The applications of graph pattern counts occur
across numerous scientific areas, including logic, biology, statistical physics, database theory,
social sciences, machine learning, and network science [36, 13, 17, 12, 24, 9, 30, 55, 48, 21, 47].
The tutorial [51] has more details on applications. A rich and deep theory has emerged from
the study of graph pattern counting [41, 14, 32, 19, 42, 2, 18, 48, 49].

Let us formalize this problem through the language of graph homomorphisms (or graph
mappings). The pattern simple graph is denoted H = (V(H), E(H)), and is thought of
constant-sized. The input simple graph is denoted G = (V(G), E(G)). An H-homomorphism
isamap f:V(H)— V(G) that preserves edges. Formally, ¥(u,v) € E(H), (f(u), f(v)) €
E(G). If the map is 1-1, then it is called a subgraph. If the map also preserves non-edges, then
it is an induced subgraph/homomorphism. For this high-level survey, we will not commit to
any specific problem variant. We use “subgraph counting” an umbrella terms that refers to
all of these problems.

The study of efficient algorithms for subgraph counting is almost a subfield in of itself [37,
3,12, 24, 22, 19, 9, 18, 10, 49]. It would take us too far out to survey the state of this area.
Even the simplest version, when H is a triangle, receives much attention. Let n = [V (G)|
and k = |V(H)|. The trivial algorithm that simply tries all k-tuples of vertices runs in O(n*)
time. By #W/1]-hardness even for H being a k-clique, we do not expect n°¥) algorithms
for general H [19]. The algorithmic study of subgraph counting focuses on understanding
conditions on H and G when the trivial n* running time bound can be beaten.
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The algorithmic technique of graph orientations has repeatedly helped in solving such
counting problems. It is also practically viable and is a key tool in subgraph counting
applications for real-world graphs. The study of this technique has led to a rich hoard of
mathematical results, which further inspire empirical work. In this paper, we will describe a
few short vignettes, describing the application of the technique and specific results.

2  Triangle counting through graph orientations

Let us begin with the basic problem of triangle counting, where H is a 3-clique. A fairly
direct algorithm is the wedge enumeration procedure. For each vertex wu, list all pairs of
neighbors v, w. If (v, w) is an edge, then (u, v, w) form a triangle. Observe that we enumerate
two-paths (or wedges) v, u, w; hence the name wedge enumeration.

Let the graph G have n vertices and m edges. For a vertex v, let d,, denote its degree.
The running time of the above procedure is O(> d?). Not surprisingly, high-degree vertices
greatly affect the running time.

Graph orientations can be thought of as a technique to cut down the running time of
wedge enumeration. This method has been rediscovered many times, but the earliest reference
is by Chiba-Nishizeki [14]. Chrobak-Eppstein use this idea to deal with planar graphs [15].
It has been rediscovered by Schank-Wagner [50] and Cohen [16].

» Definition 1. Given any undirected, simple graph G, an acyclic orientation of G is a DAG
D such that (u,v) is an edge in D iff (u,v) is an edge in G.
Let the partial order on vertices induced by D be denoted <p.

We can also construct a DAG by defining a total order m on the vertices, and then
orienting the edges from lower to higher vertex.

We consider an acycle orientiation D, and instead enumerate all (directed) triangles in D.
Observe that a triangle has a unique acyclic orientation. Moreover, from every u, we will
only find triangles (u,v,w) such that u <p v, w. This is what allows for the major savings
in computation.

Formally, the meta-algorithm is:

1. Compute an acyclic orientation D of the input graph G.
2. For every vertex u:
a. For every pair of outneighbors v, w, check if edge (v, w) is present.

The key difference in the enumeration method is to only look at the outneighbors of w,
which is at most the degree of u. Suppose the outdegree of a vertex v is denoted d;f. Then
the running time of the meta-algorithm is O(}", (d;})?).

So how do we choose the orientation to make this sum small? We will consider two
schemes: degree orientations and degeneracy orientations.

Degree orientations. We order vertices by degree, breaking ties by vertex id. Formally,
u <p v iff d(u) < d(v) or d(u) = d(v) and v has smaller id. This was the ordering proposed
in Chiba-Nishizeki’s original paper [14]. It is implicitly used in the forward algorithm of
Schank-Wagner [50].
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Degeneracy orientations. This is a more sophisticated approach. Think of the “peeling
process”, where we repeatedly remove a vertex of minimum degree. (Note that the degree
keeps decreasing as more vertices are removed.) The order of removal is the degeneracy
ordering, and one simply creates a DAG from this ordering.

The degeneracy orientation is a byproduct of the classic core decomposition of Matula and
Beck [43]. It was first used for subgraph counting by Chrobak-Eppstein [15]. Schank-Wagner
independently give the equivalent node-iterator-core algorithm [50].

2.1 Graph orientations and degeneracy

There is a remarkable connection between the graph orientations given above, the concept of
graph degeneracy, and measures of graph density. Let us begin with a classic definition from
graph theory that directly ties into our problem. For a directed graph D, we use d} (D) to
denote the outdegree of v in D.

» Definition 2. The graph degeneracy, denoted k(G), is defined as follows.

_ : +

K/(G) o D orierﬂlt?on of qué]lX dv (D)

In plain English, the graph degeneracy is the smallest possible maximum outdegree of an
acyclic orientation of G. This quantity is also called the coloring number, due to connections
with graph coloring (Sec. 5.2 of [23]). For convenience, we will simply denote the degeneracy
of G as k.

Matula-Beck gave a simple linear time algorithm to compute the graph degeneracy,
which is exactly the peeling process [43]. Quite surprisingly, the peeling process (or core
decomposition) discovers the orientation that minimizes the maximum outdegree. Observe
that the running time of the triangle enumeration process can be bounded as O(>", (d})?) =
O(max, d} Y, df) = O(mmax, d}). If we choose the degeneracy orientation, then the
running time is O(mk). This algorithm is somewhat folklore, and explicitly stated by
Schank-Wagner [50].

The O(mk) bound was first achieved by Chiba-Nishizeki, using degree orientations [14].

They (implicitly) proved the following theorem, which is stronger than what is required.
» Theorem 3 ([14]). For the degree orientation, . d,d} = O(mk).

Asymptotically, both degree and degeneracy orientations provide the same running time
benefit for triangle counting. This result of Chiba-Nishizeki was expressed in terms of the
graph arboricity, a closely related parameter. But this result sparked off an entire subarea of
algorithms, where the running time is parameterized by the graph degeneracy.

To get more context, let us dig deeper into the meaning of degeneracy and its connection
to other graph parameters.

2.2 Degeneracy and graph density

The (half) average degree of a graph, m(G)/n(G), is a natural graph parameter. Yet it
appears to be a weak measure of the density of a graph. One may have a graph with a linear
number of edges, but containing a clique of size \/n. A stronger notion of sparsity would be
the minimum average degree over all subgraphs of G.

The following theorem builds on classic results of Nash-Williams [44]. Tt relates the
degeneracy to strong notions of graph sparsity.
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Figure 1 We plot the outdegree distributions of the degree and degeneracy orientation for different
real-world graphs. For context, the plots also give the original (vanilla) degree distribution, to see
how the orientations cut down the heavy tail. Observe that both orientations do quite well, though
the degeneracy orientation leads to a smaller maximum degree.

» Theorem 4. Let a(G) = maxq subgraph of G % Then a(G) < k(G) < 2a(G).

Ignoring constant factors, a low degeneracy graph is one where all subgraphs have low
average degree. One can show that x(G) < v/2m, which shows that triangle counting for any
graph can be done in O(m3/?) time.

This concept motivates bounded degeneracy graph classes. These are graph classes with
constant degeneracy, or alternately, graphs where all subgraphs are sparse. Bounded degen-
eracy graph classes are immensely rich; they contain all minor-closed families. Preferential
attachment graphs have constant degeneracy. Real-world graphs typically have a small
degeneracy, comparable to their average degree ([33, 39, 53, 4, 8|, also Table 2 in [4]). The
repeated occurrence of bounded degeneracy graphs across many scenarios underscores the
importance of graph orientations as an algorithmic technique.

2.3 Taming real-world heavy tails

The heavy-tailed degree distribution is one of the hallmarks of real-world graphs. While
these graphs are sparse, their degrees show high variance. These heavy tails pose particular
challenges for subgraph counting and other algorithmic tasks. Orientations give a simple
and effective method to cut down these tails.

In Figure 1, we plot the (out)degree distributions for three different real-world networks
with millions of edges [56]. The degree distribution is the number of vertices of a given
degree, plotted in log-log scale. The “vanilla” points, marked in black, give the original
degree distribution. One can see the characteristic heavy tail in all cases.

We then plot the outdegree distributions of the degree and degeneracy orientations, in
red and green respectively. Observe how both these orientations dramatically reduce the tail.
The degeneracy orientation is only slight lower than the degree orientation. As expected the
maximum degree of the degeneracy orientation is smaller than that of the degree orientation.
In general, the quantity > (d;)? is similar for both orientations.

These observations explain why the orientation technique has so much practical utility.
The original algorithm for triangle counting is immensely effective in practice. A well-
engineered implementation can count triangles in real-world graphs with hundreds of millions
of edges within minutes on a commodity machine [48, 1]. As the plots in Figure 1 show, for
triangle counting, the degree orientation is as effective as the degeneracy orientation. Degree
orientations have the additional benefit of being locally computable and easily parallelizable.
Cohen [16] and Suri-Vassilvitskii [54] independently proposes this orientation for Map-Reduce
listing of triangles.
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2.4 Practical clique counting

The power of degeneracy orientations is central to most practical clique counting algorithms.

Following the template for triangle counting, k-clique counting can be+d0ne by searching all
(k — 1)-tuples of outneighbors. So, for each vertex v, we consider (kdjl) tuples. This leads

to a total running time of O(Y_, (d})*~1). For the degeneracy orientation, max, d; = .

Hence, Y (d)F=! < k*=23" df = mkF~2. Thus, we can get a O(mr*=2) time algorithm
for counting all k-cliques.

In practice, this is a remarkably powerful tool for clique counting. Instead of enumerating
within outneighborhoods, observe that k-clique counting on the input graph G is reduced to
(k —1)-clique counting on the n outneighborhoods. Each outneighborhood is potentially small
(at most size k). Each “outneighborhood problems” can be parallelized or distributed; being
small problems, one can fit each of them into the memory of a small machine. This idea is

central to almost all state-of-the-art practical clique counting algorithms [29, 31, 38, 20, 52].

3 Beyond clique counting

It is natural to ask whether the power of orientations goes beyond counting cliques. A nice
twist on the triangle counting algorithm can be used to count 4-cycles. As before, we will
orient our input graph G using the degree or degeneracy orientation. Each 4-cycle of G will
become an oriented version, and there are three possible non-isomorphic orientations of the
cycle. These are shown in Figure 2.

(a) (b) (c)

Figure 2 All acyclic orientations of the 4-cycle.

Notice that for all the three cases, the directed wedge between i and j (marked in red) is
either an out-wedge or an inout-wedge. These wedges are given in Figure 3. Hence, one can
enumerate only these wedges, index them appropriately, and get the total 4-cycle count.

Out-wedge Inout-wedge

Figure 3 Directed wedges.

For two vertices i, j, let W{;‘*‘ and Wi}'_ be the number of out-wedges and inout wedges
respectively between ¢ and j. The algorithm is:
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ICDT 2023



3:6 Some Vignettes on Subgraph Counting Using Graph Orientations

1. Compute an acyclic (degree or degeneracy) orientation D of the input graph G.

2. Enumerate all out-wedges and inout-wedges (shown in Figure 3). Through this
enumeration, compute, for each pair (i,j) of vertices, compute the numbers WijJr
and WJ_

3. Output the sum Z” ((W§+) i (Wi;f) + Wi—;_ WJ—&-)

A few comments. By appropriate indexing and use of data structures, the entire running
time can be made linear in the total number of out-wedges and inout wedges. The sum
given above separately computes the various directed 4-cycles. There are three terms, each
corresponding to one pattern in Figure 2. Observe that the algorithm gets an exact count
without enumeration of 4-cycles. This leads to a large savings in running time.

The total number of wedges enumerated is at most », d,d,. This is somewhat larger than
triangle counting, where only out-wedges are enumerated. Nonetheless, for the degeneracy
ordering, max, d}” = k. So the running time is O(mk). For the degree orientation, by
Theorem 3, we also get the O(mk) running time.

This bound was first achieved by Chiba-Nishizeki, but through a more complicated
algorithm and analysis. The presentation given here is from Pinar et al. [48]. An equivalent
formulation was given earlier by Cohen [16].

The grand generalization. How far can this technique go? The overall template for counting
H-subgraphs is to first construct all acyclic orientations of H, and count each of them in the
degeneracy (or degree) oriented G. For each acyclic orientation of H, we break it up into a
collection of directed rooted trees. By the outdegree bounds of the degeneracy orientation,
we can enumerate all these directed rooted trees in G. These directed trees needed to indexed
appropriately so the overall H-subgraph count can be efficiently computed (as in the case of
4-cycles, by the three terms).

A series of papers performed these generalizations [48, 6, 7, 5], and most significant is
probably Bressan’s notion of DAG treewidth [11]. By combining various results, one arrives
at the following dichotomy theorem (technically for homomorphisms).

» Theorem 5 ([7, 5]). Suppose the longest induced cycle of H has length at most 5. Then, there
is an algorithm exactly computing the H-homomorphism count that runs in O(m poly(k)logn)
time.

Suppose the longest induced cycle of H has length strictly greater than 5. Assume the
strong Triangle Detection Conjecture from fine-grained complexity. Then, for all (computable)
functions g : N — N and all § > 0, there does not exist an algorithm computing H -
homomorphism counts is O(m*3~°g(k)) time.

This is surprisingly precise dichotomy theorem for when bounded degeneracy helps in
subgraph/homomorphism counting. The limits of the orientation technique remarkably
match up with the hardness result. The strong form of the Triangle Detection Conjecture
states that there is no algorithm that can find a triangle in a graph in O(m4/3*5) time.
(The best upper bound is much larger, and would become m*/3 if the matrix multiplication
exponent is 2.)

Many practical algorithms for large-scale graph pattern counting use versions of these
algorithms for bounded degeneracy graphs [2, 40, 48, 46, 39, 47]. While they may not be
explicitly stated in the language above, the algorithmic techniques combine orientations and
indexing. The concept of DAG treewidth captures the essence of the algorithms, and the
upper bound of Theorem 5 subsumes all the applications.



C. Seshadhri

4 A sublinear application

Let us consider a seemingly unrelated problem. We are given access to the adjacency list of
a massive graph G. We can sample a uniform at random (uar) vertex, query the degree of a
vertex, and can sample uar neighbors of a given vertex.

Our aim is to estimate the average degree ) d,/n = 2m/n, with the fewest queries
to the graph. An obvious approach is to sample a set of uar vertices and compute the
average degree of the sample. While this is an unbiased estimator, the variance can be
extremely high. As an extreme example, suppose the graph is a star. So all vertices except
the center have degree one, while the center vertex has degree n — 1. The average degree is
2(n—1)/n =2 —o0(1). But the sampled average will be 1, with extremely high probability.

We have observed that orientations provide a way of “cutting down the tails”. So consider
the following algorithm.

1. Pick a uar vertex u.

2. Pick a uar neighbor v of .

3. If d, < d,, output 2d,,. If d,, = d,, and the ID of u is less than the ID of v, output
2d,,. Otherwise, output 0.

To analyze this algorithm, it is convenient to think of the degree orientation. When the
procedure picks a directed edge leaving u, then it outputs 2d,,. The expected output of this
procedure is

1 dr 2 dt
,Zi.Qdu: 22t = 2m/n
n 4 dy, n

Thus, this procedure is also an unbiased estimator for the average degree. Observe what this

procedure does for the star. The central vertex has no neighbors of high degree and thus,

does not contribute to the estimator. Hence, the variance of the estimator is much smaller.
Remarkably, the variance can be bounded by the degeneracy.

» Theorem 6 ([26]). With high probability, the average of O(€*k) samples is a (1 + €)-
approximation to the average degree.

Since & is at most \/2m, this shows that the average degree of a graph can be approximated
with (the optimal) O(y/m) samples. The algorithm given above is substantially simpler than
existing procedures that achieved this bound [35]. (Refer to Chapter 10.3 of [34] for more
details.)

This idea of exploiting orientations by a sampling process has succeeded in solving a
number of sublinear graph estimation problems [25, 26, 27, 28]. For such algorithms, we can
only afford to use the degree orientation since it is locally computable. One of the challenges
in these results is related properties of the degree orientation to desired properties of the
degeneracy orientation.

5 Conclusion

These vignettes show the varied algorithmic uses of orientations for subgraph counting
problems. Given the relative simplicity of the orientation technique, it is surprisingly effective

in designing efficient algorithms. And as Theorem 5 shows, these algorithms are often optimal.
Each of the above sections merely scratches the surface of what orientations can achieve.
We discussed four related applications: triangles, cliques, four-cycles, and degree estimation.
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The orientation technique has led to optimal and practical algorithms in each application.
Moreover, there is a rich theory emerging on the basis of orientations. The connections

to density in Section 2.2 form a starting point to much deeper inquiry into graph sparsity,
developed by Nesetiil and Ossana de Mendez [45]. The sublinear subgraph counting results
referenced in Section 4 have all emerged from understanding the power of degree orientations

in reducing the variance of specific random variables.
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