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Abstract
Prediction algorithms assign scores in [0, 1] to individuals, often interpreted as “probabilities” of a
positive outcome, for example, of repaying a loan or succeeding in a job. Success, however, rarely
depends only on the individual: it is a function of the individual’s interaction with the environment,
past and present. Environments do not treat all demographic groups equally.

We initiate the study of corrective transformations τ that map predictors of success in the real
world to predictors in a better world. In the language of algorithmic fairness, letting p∗ denote
the true probabilities of success in the real, unfair, world, we characterize the transformations τ

for which it is feasible to find a predictor q̃ that is indistinguishable from τ(p∗). The problem is
challenging because we do not have access to probabilities or even outcomes in a better world. Nor
do we have access to probabilities p∗ in the real world. The only data available for training are
outcomes from the real world.

We obtain a complete characterization of when it is possible to learn predictors that are
indistinguishable from τ(p∗), in the form of a simple-to-state criterion describing necessary and
sufficient conditions for doing so. This criterion is inextricably bound with the very existence of
uncertainty.
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1 Introduction

Prediction algorithms assign scores in [0, 1] to individuals, often interpreted as “probabilities”
of a positive outcome, for example, of repaying a loan or succeeding in a job. Success, however,
rarely depends only on the individual: it is a function of the individual’s interaction with the
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environment, past and present. If we think of an individual x as a collection of features, past
interaction affects those very features; that is, the accomplishments that individuals bring
to a potential new job depend heavily on the opportunities afforded to the them and their
families in the past. In addition, given a collection of features x, an individual’s chance of a
positive outcome depends heavily on the future environment in which the individual will be
operating; for example, a woman with a given degree of talent and experience is less likely to
succeed at a news organization that is hostile to women than at an organization supportive
of women.

We initiate the study of corrective transformations τ that map predictors of success in
the real world to predictors in a better world. In the language of algorithmic fairness, letting
p∗ denote the true probabilities of success in the real, unfair, world, we characterize the
transformations τ for which it is feasible to find a predictor q̃ that is indistinguishable from
τ(p∗). The problem is challenging because we do not have access to probabilities or even
outcomes in a better world. Nor do we have access to probabilities p∗ in the real world. The
only data available for training are outcomes from the real world.

The meaning of a “probability” for a non-repeatable event is the subject of much debate [1],
giving rise to the question of what we should want from an ideal scoring function. In one
view, known as Outcome Indistinguishability, the scores offer a model for the real world,
and we want the modeled world to be indistinguishable from the real world; this leads to
a hierarchy of demands, according to the degree of access to the scoring function that is
granted to the distinguisher [3]. A different, but compatible, view arises from the perspective
of algorithmic fairness. Speaking informally, a scoring function is multi-calibrated with
respect to a collection C of arbitrarily intersecting subsets of the population if it is calibrated
simultaneously on each S ∈ C when viewed in isolation [6]. The sets in C need not be
restricted to the demographic groups often described as “protected sets,” but can (and
should) capture conditions that are predictive of positive or negative outcomes. With this
flexibility in mind, it is perhaps not surprising that multi-calibration has been shown to be
equivalent to the second level of the outcome-indistinguishability hierarchy [3]. We use the
term “MC/OI” to denote these equivalent properties.

Happily, MC/OI predictors can be learned from real-world Boolean outcomes data
o∗(x) ∼ Ber(p∗(x)), without access to p∗ [6]. Now, consider a corrective transformation τ

mapping individual-score pairs (x, p∗(x)) to [0, 1], where the intuition is that q∗(x) = [τ(p∗)](x)
is the probability of a positive outcome in a better world for the individual whose features in
the real world are given by x. Not only do we not have access to q∗, but we do not even have
outcomes data for the better world – that world does not exist! How, then, can we hope
to construct a predictor that is indistinguishable from q∗? That is the problem studied in
this work: for what kinds of corrective transformations τ can we obtain a predictor q̃ that is
MC/OI with respect to q∗?

Taxonomy of transformations. We consider three kinds of corrective transformations. The
conceptually simplest is fully deterministic transformations τ that are specified with no access
to the underlying distribution D∗. Due to the deterministic nature of the transformation, the
transformed predictor τ(p) is completely and uniquely defined for any given predictor p. For
example, the transformation that raises scores for members of a set S, setting [τ(p∗)](x) =
min{p∗(x) + 0.2, 1} for x ∈ S, is fully deterministic.

More generally, we consider parameterized transformations τπ, where the parameters π

are obtained via an efficient parameter-learning algorithm that operates on instance-outcome
samples (x, o∗(x)) for x ∼ DX , where o∗(x) ∼ Ber(p∗(x)). Here we must be careful in
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defining τπ(p), as different randomness – in the samples seen by the parameter-learner and
in random coins it may use – will lead to different choices of π. We also allow the resulting
transformation τπ to be randomized. We informally and implicitly cover all these sources of
randomness when we say that the transformation is randomized.

For example, suppose we have disjoint groups A and B and the goal of the transformation
is to ensure statistical parity, so that in the transformed world the probabilities of a positive
outcome are equalized between the two groups. The exact transformation depends the
disparity in the real world, p∗, between the two group, i.e., the difference between pA

def=
Ex∈A[p∗(x)] = Ex∈A[o∗x], and pB

def= Ex∈B[p∗(x)] = Ex∈B[o∗x]. Both of these quantities can
be estimated from real-world outcomes data during the parameter-learning phase, and from
these one can approximately determine α ∈ [0, 1] = pA−pB

1−pB
such that the transformation τα

that leaves scores unchanged for members of A and sets the new score for members x ∈ B to
[τα(p∗)](x) = α + (1− α)p∗(x) satisfies Ex∈A[(τ(p∗))(x)] ≈ Ex∈B [(τ(p∗))(x)].

In a third type of transformation the parameter-learner L has access to p∗. For example,
consider a population with two disjoint subgroups S, T . A predictor achieves balance for the
positive class [9] if the average score assigned to positive instances in S equals the average score
assigned to positive instances in T . Now, consider a transformation that takes an arbitrary
predictor p as input and produces a transformed τ(p) satisfying the balance condition. To
do this, the parameter-learner needs access to the average p∗ values for the members of T

and of S. For example, suppose that ∀x ∈ T , p∗(x) = 0.8, and ∀x ∈ S, p∗(x) = 0.2. Ensuring
balance for the positive class can then be achieved by setting [τ(p∗)](x) = 0.8 for all members
of S and setting [τ(p∗)](x) = p∗(x) for all members of T . Of course, our algorithms cannot
have access to p∗, but the prospect of building a predictor that is multicalibrated with respect
to τ(p∗) remains compelling.

Canonical transformed predictor. When the transformation is randomized, we cannot
simply speak of τ(p∗), as this is a random variable. However, given all the sources of
randomness and an initial predictor p, the expectation of the transformation τ(p), C[τ(p)] def=
E[τ(p)], where the expectation is taken over the samples fed to the parameter-learner, as
well as it randomness, and any randomness in the transformed predictor, is well defined. We
refer to this as the canonical transformed predictor, and use the special symbol C.

Uncertainty and randomized instantiations. A deep and unresolved question is whether
uncertainty exists, or if instead it only appears to exist because of insufficient information
about the state of the world and insufficient computing power to determine future outcomes.
Thus, when we talk about real-life probabilities p∗(x), we cannot know whether p∗(x) must
lie in {0, 1} (determinism) or whether values in (0, 1) are possible (uncertainty). In the real
world, we only observe outcomes, not individual probabilities. If uncertainty exists, then
real-world outcomes are consonant with a deterministic world p∗∗ that is a specific random
instantiation of the real-world probabilities p∗ in which each x is assigned a probability
p∗∗(x) ∼ Ber(p∗(x)) ∈ {0, 1}.

If uncertainty exists, there are many different possible random instantiations of p∗. The
central concept in a transformation τ is its robustness (or not) to random instantiations:
Does C[τ(p∗)] look like Ep∗∗←RI(p∗)[C[τ(p∗∗)]]? For example, are their average values, over
elements in a large set S, close in expectation? Example 1 above, in which scores of members
of S are increased by 0.2 but capped at 1, is not robust to random instantiations. To see this,
consider two possible choices of the real world p∗. In the first, p∗1(x) = 1/2 for all x ∈ S; in the
second, p∗2(x) = 0 for a random half of the x ∈ S and p∗2(x) = 1 for the remainder of S. Note
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that p∗2 is a random instantiation of p∗1. The average scores for members of S are different
under these two transformations: Ex∈S [(τ(p∗1))(x)] = 0.7, but Ex∈S [(τ(p∗2))(x)] = 0.6. The
Balance for the Positive Class transformation described above also fails to be robust to
random instantiations; in a nutshell, this is because in a random instantiation there is no
uncertainty, and all positive members of S have p∗∗(x) = 1.

In contrast, the parameterized statistical parity transformation described above is robust
to random instantiations. Roughly speaking this is because every random instantiation of p∗

yields (almost) the same value of the parameter α, and for any large set S the average value
Ex∈S [(τ(p∗))(x)] ≈ Ex∈S [(τ(p∗∗))(x)] depends only on α and the expectations Ex∈S∩A[p∗(x)]
and Ex∈S∩B [p∗(x)]. These expectations are invariant under random instantiations (assuming
the sizes of S ∩A, S ∩B are sufficiently large).

It is mathematically impossible, given only real-world instance-outcome pairs, to distin-
guish a real-world p∗ in which probabilities are real-valued (uncertainty exists) and a real
world which is a random instantiation p∗∗ of such a p∗ (no uncertainty), an epistemic state
of affairs we summarize as follows.
Unresolvability Axiom: The question of whether uncertainty exists cannot be resolved by
computing on finitely many samples from D∗.

A Complete Characterization. Quite surprisingly, the concept of robustness to random
instantiations provides a complete characterization of when it is possible to learn predictors
that are indistinguishable from q∗ = τ(p∗):

▶ Theorem 1 (Main Theorem – informal). There is a multiaccurate learning algorithm, and
a multi-calibrated learning algorithm, with respect to q∗ = τ(p∗), if and only if τ is robust to
random instantiations.

Thus, not only is it sometimes possible to build predictors for a transformed world, but there
is a simple-to-state criterion describing necessary and sufficient conditions for doing so, and
this criterion is inextricably bound with the very existence of uncertainty.

To prove sufficiency, we show how to exploit robustness to random instantiation to
create samples of outcomes in the better world of q∗. This sample generation process
involves partitioning samples from D∗ into groups, viewing each group as samples from an
independent random instantiation of p∗, and using these capture, on average, the behavior of
Ep∗∗←RI(p∗)[C[τ(p∗∗)]]. By employing known algorithms we can build the desired predictors
using these samples. We note that at no point does our multicalibration algorithm have access
to the probabilities p∗ or q∗; everything is done given access only to real-world outcomes
data.

To prove necessity, we argue that any transformation that is not robust to random
instantiations must behave very differently on p∗ than it behaves on random instantiations
p∗∗ ← RI(p∗). In principle, this is detectable (although not efficiently!), which would resolve
the question of whether uncertainty exists, contradicting the unresolvability axiom.

Stability. A final important stability notion tells us when multicalibration with respect to
the transformed world q∗ = τ(p∗) is meaningful. Globally stable transformations have the
property that for every fixed distribution D∗ on instance-outcome pairs, τ(p∗) is close to its
expectation C[τ(p)]. There is some flexibility in defining closeness; a natural choice is L1
norm. In fact, a weaker condition suffices for our purposes. Large-set stability requires only
that for any set S fixed a priori, with high probability over the samples and random bits fed
to the learner (and the randomness of the transformed predictor, if it, too, is randomized),
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the average prediction of τ(p∗) on x ∼ D∗|S is close to its expectation C[τ(p∗)](x). In
consequence, given a candidate q, large-set stability ensures that the average values of
q∗ = τ(p∗) on the level sets Sv of q(S) are well-defined. This is crucial for reasoning about
whether or not q is a multicalibrated with respect to q∗.

On related work. A vast body of work spanning many disciplines has studied corrective
transformations to real-life (for example, works that study affirmative action). This body
of work is too vast for us to survey here. Our work studies this question in the context of
risk prediction and through the lens of algorithmic fairness. While fairness in risk prediction
is a widely-studied topic in algorithmic fairness, the focus has been on learning a predictor
that satisfies fairness desiderata while maintaining fidelity to the underlying distribution
(e.g. [2, 6–8]), or on applying corrective transformations to learned risk predictors (e.g. [5]).
Our work, on the other hand, initiates a study of learning about (probabilities in) a better
world, where the better world is obtained by applying a corrective transformation on the
real world itself.

2 Preliminaries, Setup and Definitions

Notation. For a distribution D over domain X , we use Supp(D) to refer to the support
of the distribution (the set of elements in X that have non-zero probability). For x ∈ X
we use D[x] to refer to x’s probability. For a subset S ⊆ X we use D[S] to refer to the
aggregate probability of the set S under D (i.e. D[S] =

∑
x∈S D[x]). For a set S with

non-zero probability, we use (D|S) to refer to the conditional distribution of D, conditioned
on landing in S.

Underlying all of this is a modeling assumption, in which “Nature” assigns a probability
p∗(x) to each individual x. We are agnostic as to whether p∗(x) ∈ {0, 1} for all x or p∗(x)
can be arbitrary in [0, 1]. Since we cannot have access to p∗ (we don’t even know if it is
real-valued!), the OI/MC literature builds scoring functions trained on outcomes o∗(x) that
Nature provides. However, the nomenclature “Nature” (inherited from a long literature on
forecasting) is singularly inapt when viewed from a perspective of social justice, where one’s
“probability” of success and actual outcome are not solely intrinsic to the individual but are
influenced – positively or negatively – by family wealth, structural racism, antisemitism,
sexism, ableism, hetero-normativity, (lack of) availability of contraception and access to
abortion, and so on. These are not forces of “Nature”, they are social forces that shape the
reality in which we live.

We model real-life as a joint distribution over individuals and outcomes, denoted D∗.
An individual is described by a d-dimensional boolean string representing their “features”,
and we focus on Boolean outcomes. Thus, D∗ is supported on {0, 1}d × {0, 1}. We refer to
X = {0, 1}d as the feature space, and use x ∼ DX to denote a sample from real-life’s marginal
distribution over individuals.

A predictor is a function p : X → [0, 1] that maps individuals to an estimate of the
conditional probability of the individual’s outcome being 1. For ease of notation, we use
px = p(x) to denote a predictor’s estimate for individual x. The marginal distribution over
individuals DX paired with a predictor induce a joint distribution over X × Y. Given a
predictor p, we use (x, y) ∼ D(p) to denote an individual-outcome pair, where x ∼ DX
is sampled from real-life’s distribution over individuals, and the outcome y ∼ Ber(px)
is sampled – conditional on x – according to the Bernoulli distribution with parameter
px. We use p∗ : X → [0, 1] to denote the marginal distribution on outcomes of real-life’s
distribution D∗.
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A randomized instantiation of a predictor p is the randomized process of fixing the
prediction on each x ∈ X to be boolean, where the probability of 1 is exactly p(x) (the
boolean prediction for each x is drawn independently). We denote the (probabilistic) outcome
of this process by RI(p).

2.1 Multicalibration and Multiaccuracy
We start with the notion of multi-accuracy. Given a collection of subpopulations C, multi-
accuracy requires that a predictor p̃ reflect the expectations of p∗ correctly over each
subpopulation S ∈ C.

▶ Definition 2 (Multi-Accuracy [6]). Fix a feature distribution DX and a predictor p∗ : X →
[0, 1]. For a collection of sets C ⊆ {0, 1}X and α, γ ≥ 0, a predictor p̃ : X → [0, 1] satisfies
(C, α, γ)-multi-accuracy w.r.t. p∗ (under the feature distribution DX ) if for every S ∈ C s.t.
DX [S] ≥ γ:∣∣∣∣ E

x∼DX
[ p∗(x) | x ∈ S ]− E

x∼DX
[ p̃(x) | x ∈ S ]

∣∣∣∣ ≤ α (1)

Multi-calibration is a stronger notion, requiring the predictor p̃ to be calibrated with
respect to p∗ over each S ∈ C. Here, a set of predictions is calibrated if amongst the
individuals x ∈ X who receive prediction p̃(x) = v, their actual expectation is v. For a
set S and a value v ∈ [0, 1], let Sv be the subset of S to which p̃ assigns value v. We use
suppS(p̃) = {v ∈ [0, 1] : Prx∼DX [ p̃(x) = v | x ∈ S ] > 0} to denote the support of p̃ on S

(the set of values v s.t. Sv′ has non-zero mass).

▶ Definition 3 (Multi-Calibration [6]). Fix a feature distribution DX and a predictor p∗ : X →
[0, 1]. For a collection of sets C ⊆ {0, 1}X and parameters α, γ > 0, a predictor p̃ : X → [0, 1]
satisfies (C, α, γ)-multi-calibration w.r.t. p∗ (under the feature distribution DX ) if for every
set S ∈ C s.t. DX [S] ≥ γ, there exists a set S′ ⊆ S with DX [S′] ≥ (1− α)DX [S] where:

∀v ∈ suppS′(p̃) :
∣∣∣∣ E

x∼(DX |Sv′ )
[p∗(x)]− v

∣∣∣∣ ≤ α. (2)

When p∗ is real-life’s distribution, we simply refer to the predictor p̃ as multi-calibrated
or multi-accurate, but we will also discuss these requirements w.r.t predictors that are not
real-life. We often assume that the predictor p̃ is discretized to precision λ = Θ(α) (see [6]).

3 Corrective Transformations

We study corrective transformations that will be applied to risk predictors. The transform-
ation may include an optional parameter-learning phase. If the transformation does not
use a learning phase, then we say that it is fully explicit. Otherwise, the transformation
specifies a parameter-learner that can observe individual-outcome pairs drawn from the
underlying distribution, or even observe individual-prediction pairs (see Definition 5). The
learning phase outputs parameters π that are plugged into the transformation τ , which can
be deterministic or probabilistic.

We begin by defining fully explicit and deterministic corrective transformations.

▶ Definition 4 (Fully explicit and deterministic corrective transformation.). A fully explicit
(and deterministic) transformation is a mapping τ : X × [0, 1] → [0, 1] that transforms a
predictor p into a new predictor τ(p), where ∀x ∈ X , (τ(p))(x) = τ(x, p(x)).
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Parameterized transformations (see above) also include a parameter-learning phase:

▶ Definition 5 (Parameterized transformation τ). A transformation is a pair (L, τ), where L
is a parameter-learning algorithm that gets access to training data (see below) and outputs
parameters π. For any fixing of the parameters π, the mapping τ , using those parameters,
transforms a predictor p into a new predictor τπ(p), where ∀x ∈ X , (τπ(p))(x) = τπ(x, p(x)).

We consider different options for the parameter-learning algorithm L and its training
data:

Fully-explicit transformation: There is no parameter learning. The learner L always
outputs the empty string (if τ is deterministic, then this equivalent to Definition 4).
Outcome-based parameters: The transformation is applied to a predictor p with respect
to an underlying feature distribution DX . The learner L gets access to individual-outcome
examples (x, o), where x ∼ DX and o ∼ Ber(p(X)), and outputs parameters π.
Prediction-based parameters: The transformation is applied to a predictor p with respect to
an underlying feature distribution DX . The learner L gets access to individual-prediction
examples (x, p(x)), where x ∼ DX , and outputs parameters π.

We use π ← LDX ,p to denote the process of running the parameter learner w.r.t a feature
distribution DX and a predictor p, producing learned parameters π. We allow both the learner
and the mappting τ to be randomized, and denote the random strings they use by rL and rτ

(respectively).

We sometimes abuse notation and refer to the transformation as τ , where the parameter-
learning algorithm is implicit. We also use τ(p) as shorthand for τπ(p), where the parameters
π are learned by the parameter-learning process.

3.1 Stable Transformations
Our primary focus is on transformations that are stable with respect to the choice of samples
and random coins used by the learner, as well as the coins used by τ . We consider two
definitions of stability: global stability, which requires that the resulting predictor is close to
its expectation (globally, in L1 distance). The more relaxed property of Large-set stability
only requires that for any sufficiently large set (fixed a-priori), w.h.p. the average prediction is
close to the expectation (the latter expectation is over the learner’s and τ ’s random choices).

▶ Definition 6 (Canonical transformed predictor). Fix a feature distribution DX , a corrective
transformation (L, τ), and a predictor p. The canonical transformed predictor is defined as:

C[τ(p)] def= E
π←LDX ,p,rτ

[τπ,rτ (p)].

For the remainder of this writeup, We will reserve the special symbol “C” to remind the
reader that we are referring to the canonical predictor.

▶ Definition 7 (Globally stable transformation). Fix a feature distribution DX . A transforma-
tion (L, τ) is (α, β)-globally stable w.r.t. DX if for any predictor p, w.h.p. its (randomized)
transformation τ(p)is close to the canonical transformed predictor in L1 distance:

Pr
π←LDX ,p,rτ

[
E

x∼DX
[|[τπ,rτ

(p)](x)− C[τ(p)](x)|] > α

]
< β.

If (L, τ) is (α, β)-globally stable for every distribution DX then we say that it is universally
globally stable.
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▶ Definition 8 (Large-set stable (LSS) transformation). Fix a feature distribution DX and let
α, β : [0, 1]→ [0, 1] be functions bounding the magnitude and probability of instability as a
function of the set size (see below). A transformation (L, τ) is (α, β)-large set stable (LSS)
w.r.t. DX if for any predictor p and for any fixed set S ⊆ X , taking γ = Prx∼DX [S]:

Pr
π←LDX ,p,rτ

[∣∣∣∣ E
x∼(DX |S)

[[τπ,rτ (p)](x)− C[τ(p)](x)]
∣∣∣∣ > α(γ)

]
< β(γ).

We emphasize that the absolute value in the above equation is external: we compare the
expectation of τ(p) on the entire set S with the expectation of the canonical transformed
predictor on that set.

If (L, τ) is (α, β, γ)-LSS for every distribution DX then we say that it is universally LSS.

The error probability β will usually be exponentially small, so we can take a Union
bound over large collections of sets, and conclude that w.h.p. for all of them simultaneously,
the expectation of the transformed predictor is close to the expectation of the canonical
transformed predictor.

We omit the “universally” or “w.r.t a particular distribution” suffix when they are clear
from the context, simply referring to a corrective transformation as globally or large-set
stable.

3.2 Our Goal: Evidence-Based Corrective Action
Once a corrective transformation is specified, our goal is learning a risk predictor that is
“close to” the probabilities specified by the transformation, when it is applied to real-life’s
probabilities p∗, i.e. close to τ(p∗). However, we can only observe outcomes by real-life’s
distribution: the probabilities p∗ are unknowable. Thus, we study the relaxed (but still
significant!) goals of obtaining predictors that are multicalibrated or multiaccurate with
respect to τ(p∗).

Here the importance of stability (see Section 3.1) becomes apparent: parameter learners are
inherently randomized (as they draw samples), and there can also be additional randomization
in L or in τ . We want to be “close” to the transformed predictor, but which of the many
possibly predictors in the support of τ(p∗)’s output distribution should we aim to be close
to? For stable transformations, the behavior of τ(p∗) on any (large enough) set is close to
its expectation w.h.p. Thus, it is natural to aim to be close to the canonical transformed
predictor C[τ(p∗)]:

▶ Definition 9 (multiaccurate/multicalibrated learning algorithm for (L, τ)). Let (L, τ) be a
transformation. An algorithm A for learning a multi-calibrated (respectively, multi-accurate)
predictor for the transformation gets as input a collection of subsets C ⊆ 2X , an error bound
α ∈ [0, 1], a failure probability β ∈ [0, 1], a set size γ ∈ [0, 1], and labeled individual-outcomes
pairs drawn from a distribution D∗. Let C[τ(p∗)] be the canonical transformation of p∗ (see
Definition 6).

We say that A is a (C, α, β, γ)-multicalibration (respectively, multi-accuracy) learning
algorithm for the transformation (L, τ) if, when we run A on input (C, α, β, γ), with all but
β probability over A’s random coin tosses and the training samples drawn i.i.d. from D∗, it
outputs a predictor q̃ that is (C, α, γ) multi-calibrated (respectively, (C, α, γ) multi-accurate)
w.r.t C[τ(p∗)] (under the distribution D∗X ).
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Discussion. If (L, τ) satisfies large-set stability (or the more stringent requirement of
global stability), then multi-calibration w.r.t. C[τ(p∗)] is quite meaningful: suppose q̃ is a
C-multicalibarted predictor w.r.t. C[τ(p∗)]. Large-set stability implies that w.h.p. over the
coins and samples of the transformation, for each set S in the collection C, and for each
(sufficiently large) level set Sv of q̃ in S, the expectation of τ(p∗) (with the above random
choices and samples) is close to the expectation by the canonical transformed predictor.
Thus, with high probability over the coins and samples of the transformation, the predictions
of q̃ will be calibrated on all the sets in C w.r.t. the (probabilistic) outcome of the corrective
transformation applied to real-life. We find this to be a strong guarantee. Note that we
assume here that the high probability guarantee is strong enough to allow union bounding
over the sets in the collection and their prediction categories.

Multi-calibration with respect to C[τ(p∗)] is not appropriate for corrective transformations
that make arbitrary randomized distinctions between members of a protected class S, because
random but “baseless” distinctions can nonetheless be averaged out in C[τ(p∗)]. For example,
consider a protected group S where p∗ = 0.5 for all members of S, because the data
representation fails to capture appropriate features for members of S that permit accurate
prediction1. Suppose further that on T = Sc, half the elements have p∗(x) = 1 and half
have p∗(x) = 0. One might consider a corrective τ that addresses the situation by arbitrarily
assigning a random value in {0, 1} to each member of S. This transformation is large-set
stable (though it is very much not globally stable). However, we have that C[τ(p∗)] = p∗, so
the effect of the transformation is “washed out” in the canonical transformed predictor, and in
any q̃ that is multicalibrated w.r.t. C[τ(p∗)]. One can argue that a corrective transformation,
aiming to move the predictions towards a better world, should not make such arbitrary
distinctions, and we are sympathetic to this argument. In the full version of this work we
address this issue by including in the multicalibration set collect C sets that may depend on
the randomness used by the transformation τ . Finally, we remark that the above discussion
is mainly for interpreting the positive direction of our characterization (i.e., how meaningful
is multicalibration with respect to C[τ(p∗)]). The negative direction characterizes the
transformations for which achieving multicalibration with respect to C[τ(p∗)] is impossible,
regardless of how meaningful such a guarantee would be.

4 The Characterization

As discussed in the introduction (and the literature), we are agnostic on the question of
whether real-life’s outcomes are deterministic (binary) or probabilistic. Our view is that this
question is unanswerable, and thus corrective transformations should also be agnostic to it.
We formalize this as a robustness property from the transformation (L, τ): we require that
the canonical transformed predictor should be “similar” regardless of whether p∗ is binary
(deterministic) or not (probabilistic). Similarity is captured by requiring that C[τ(p∗)] is close
to the expectation, over a randomized instantiation p∗∗ of p∗, of the canonical transformation
of p∗∗. Closeness is measured in L1 distance, and recall that each x’s probability in p∗∗ is
binary, drawn from the Bernoulli distribution with expectation p∗(x) (see Section 2). For
example, this implies that (at least in expectation), the transformed probabilities should
look similar regardless of whether real-life assigned a 0.5 probability to all the individuals, or
whether the individuals were randomly partitioned into equally-sized sets with probability 0
and probability 1.

1 See Chapter 4 of [4] for a real life example involving child protective services.
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▶ Definition 10 (Robustness to RI.). Fix a feature space X and a distribution DX over
features. A transformation (L, τ) is (ε, δ)-robust to random instantiations w.r.t DX if for
every predictor p:

Pr
x∼DX

[∣∣∣∣C[τ(p)](x, p(x))−
(

E
p′←RI(p)

[C[τ(p′)](x, p′(x))]
)∣∣∣∣ > ε

]
≤ δ

▶ Theorem 11 (Main theorem: transformation characterization). Fix a feature space X and a
distribution DX . Let (L, τ) be a transformation. Then for every ε, δ > 0:

If (L, τ) is (ε, δ)-robust to random instantiations (as per Definition 10), then there is an
algorithm A s.t. for every collection C, and every (ᾱ, β̄, γ̄) s.t. ᾱ = O((δ/γ̄) + ε), A is a
(C, ᾱ, β̄, γ̄) multi-calibration learning algorithm for the tranformation (L, τ). The sample
complexity of A is poly(log |C|, 1/ᾱ, log(1/β̄), 1/γ̄).
If (L, τ) is not (ε, δ)-robust to random instantiations w.r.t DX , then there exists a set S

s.t. for any α, β s.t. (α + β) < (ε/2− negl) where negl bounds the probability that there is
a feature-collision in the algorithm’s training sample (some feature vector appears more
than once), there is no (C = {S}, α, β, γ = δ/2) multi-accurate learning algorithm for the
transformation.

Theorem 11 characterizes the transformations for which, for any given finite collection
of sets C, it is sample-theoretically possible to learn a predictor that is C-multi-calibrated
(or multi-accurate) with respect to C[τ(p∗)]. The positive direction constructs an algorithm
whose sample complexity is logarithmic in |C|, whereas the negative direction shows a
singleton collection for which even multi-accuracy is impossible to obtain. The impossibility
holds unless the algorithm uses sufficiently many samples to start observing “collisions” or
repeated events (i.e. multiple instances of the same feature vector), whereas we are interested
in the setting where events are non-repeatable. Thus, we think of the collision probability as
negligible. Finally, the theorem does not assume the transformation is stable; our study of
stability (Section 3.1) elucidates the qualitative significance of being multicalibrated with
respect to C[τ(p∗)], finding that the concept is meaningful under large-set stability.

Proof of Theorem 11.
Direction I: Non-Robustness ⇒ no multiaccuracy. If (L, τ) is not δ-robust to random
instantiations w.r.t DX , then there exists a predictor p : X → [0, 1] s.t.:

Pr
x∼DX

[∣∣∣∣C[τ(p)](x, p(x))−
(

E
p′←RI(p)

[C[τ(p′)]] (x, p′(x))
)∣∣∣∣ > ε

]
≥ δ.

The above probability considers the absolute value of the difference between the two terms.
Since the absolute value is large at least δ probability, there must be a subset S ⊆ X (defined
ex-post) where the predictions of the canonical transformed predictor are either significantly
larger or significantly smaller than those of the canonical transformation of a randomized
instantiation of p. Suppose w.l.o.g that the former is true, i.e. we have that:

DX [S] ≥ δ

2 , (3)

and that:

∀x ∈ S : C[τ(p)](x, p(x))− E
p′←RI(p)

[C[τ(p′)] (x, p′(x))] > ε. (4)

Suppose towards contradiction that A is an algorithm for learning a multi-accurate
transformed predictor q̃. We run A with parameters α, β (see below) and γ = δ/2 and on the
collection of sets {S} (i.e. the collection is a singleton). A gets i.i.d. feature-outcome samples
{(xi, yi)}, where xi ∈ X is sampled from DX and yi ∈ {0, 1} is Bernoulli with expectation
p∗(x). Consider two experiments of running A with different p∗’s:
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1. In Experiment 1, we set p∗ = p.
2. In Experiment 2, we draw p∗ ← RI(p).

In both experiments we run A on outcomes drawn by p∗, and let q̃ be the predictor that
A outputs.

Consider the random variables Q1 and Q2, where Qc is defined to be the value
Ex∼(DX |S)[q̃(x)] in Experiment c (the RVs Q1, Q2 are over the domain [0, 1]). If A is
an (α, β, γ = δ/2)-multiaccuracy learning algorithm for the transformation (L, τ), then since
DX [S] ≥ γ (see Equation (3)), by Definition 9:

Pr
[∣∣∣∣Q1 − E

x∼(DX |S)
[C[τ(p)](x, p(x))]

∣∣∣∣ > α

]
< β. (5)

On the other hand, consider Experiment 2 and consider a fixed randomized instantiation p′

(Experiment 2 includes the random process of drawing the randomized instantiation, whereas
here we consider a fixed instantiation that has positive probability). Let (Q2|p′) be the RV
obtained by conditioning Q2 on this fixed p′. Again, since DX [S] ≥ γ, by Definition 9:

Pr
[∣∣∣∣(Q2|p′)− E

x∼(DX |S)
[C[τ(p′)](x, p′(x))]

∣∣∣∣ > α

]
< β.

Experiment 2 consists of choosing a random instantiation p′, and then running the learning
algorithm. By the above, adding an expectation over the randomized instantiation p′, we
have that:∣∣∣∣E[Q2]− E

x∼(DX |S),p′←RI(p)
[C[τ(p′)](x, p′(x))]

∣∣∣∣ ≤ α + β. (6)

Thus, by Equation (4), the value of Q1 is w.h.p. higher than the expectation of Q2. This
implies a lower bound on the statistical distance between Q1 and Q2

▷ Claim 12. ∆(Q1, Q2) > ε
2 − α− β.

Proof. The proof follows by the fact that the expectations of two random variables supported
on [0, 1] cannot differ by more than their statistical distance:

E[Q1]−E[Q2] =
∑

v∈[0,1]

(Q1[v] · v −Q2[v] · v) ≤
∑

v∈[0,1]

|Q1(v)−Q2(v)| = 2∆(Q1, Q2).

Further, putting together Equations (4), (5) and (6) we conclude that:

E[Q1]− E[Q2] > ε− 2(α + β).

The claim follows. ◁

The only difference between the two experiments is in the distributions of the feature-
outcome samples fed to the learning algorithm. In particular, the difference is in the
distribution of the binary outcomes: by p, or by a randomized instantiation of p. The feature-
vectors are identically distributed in both experiments (i.i.d. from DX ). If the feature-vectors
sampled by the learning algorithm are all distinct, then the conditional distributions on the
outcomes in the two experiments (for those fixed feature vectors) are also identical: for each
x, the outcome is Bernoulli with expectation p(x). In Experiment 1 this is by design. In
Experiment 2, this is due to the choice of a randomized instantiation p′ of p, and so long
as the samples are all distinct, the outcomes are drawn i.i.d. from the above distribution.
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The only difference between the experiments is that if the same feature vector x is observed
more than once, then in Experiment 1, the outcomes for the different occurrences of x will
be independent, whereas in Experiment 2 they will be identical (since the predictor p′ is
instantiated once). The random variable Q is just a function of the algorithm’s training
sample. Thus, so long as the probability of observing the same feature vector more than
once is negligible, we have:

▷ Claim 13. ∆(Q1, Q2) ≤ negl.

Claims 12 and 13 give a contradition to the assumption that A is a (α, β, γ = δ/2)
multiaccuracy algorithm for any values of α and β for which α + β < ε

2 − negl.

Direction II: Robustness implies calibration-feasibility. We construct an algorithm that
learns a predictor that is multicalibrated with respect to the canonical transformation of p∗

for any robust transformation. For a robust transformation, the canonical transformation of
any p∗ is close to the expectation, over a randomized instantiation p∗∗ of p∗, of the canonical
transformation of p∗∗. The main step in our algorithm is using outcomes drawn by p∗

to generate outcomes whose distributions are close to Ep∗∗←RI(p∗)[C[τ(p∗∗)]]. Robustness
guarantees that this distribution is close to that of the canonical transfomaion of p∗. We
then use a standard outcome-based multi-calibration learning algorithm (e.g. [6]), trained
over the aforementioned samples, to obtain a predictor q̃ that is multiclibrated w.r.t. the
canonical transformation of p∗. The theorem follows.

Our goal, then, is generating outcomes that are close in distribution to
Ep∗∗←RI(p∗)[C[τ(p∗∗)]]. To do this, we treat the observed outcomes drawn by p∗ as spe-
cifying probabilities according to a fictitious randomized instantiation p∗∗ of p∗. These
probabilities are fed into the (probability-based) parameter learner L to learn parameters π

for the transformation τ , towards applying it on (the fictitious) p∗∗. The key point is that
these learned parameters will be identically distributed to parameters learned by L on an
actual randomized instantiation of p∗. Algorithm 1 details the sample-generation procedure.

The predictor q. Step 1 of the sample generation algorithm produces a set of learned
parameters {πi}. These parameters are then used in Step 2 to generate new samples,
where we also take care (both in training and in sample generation) to ensure that the
unstransformed outcome for each feature vector x ∈ X is consistent across all its appearances
in training the i-th parameters and in generating samples. Fixing a run of Step 1 of the
sample generator, for any fixed feature vector x ∈ X that is in the support of DX , let q(x)
denote the conditional probability that Step 2 produces the sample (x, y′ = 1) (conditioned
on the feature vector x). The following claim shows that w.h.p. over the coins used in
Step 1, for almost all x drawn from DX , the conditional probability q(x) is close to the
expectation, over a randomized instantiation p∗∗ of p∗, of the probability assigned by the
canonical transformed predictor. The notation Eq←Step 1 emphasizes that we are taking
expectation only over the randomness in the first step, in which the parameters {π1, i ∈ [ℓ]}
are learned, and not over the randomness in Step 2 in which a random i ∈ [ℓ] is selected.

▷ Claim 14. Fix parameters µ, ρ ∈ [0, 1]. For the sample-generation algorithm (Algorithm 1)
it holds that:

Pr
q←Step 1,x∼D∗

X

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ ≥ µ

]
< ρ
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Algorithm 1 Sample Generation for Robust Transformations.

Input: feature-outcome pairs, outcomes by p∗, error parameters µ, ρ ∈ [0, 1]
Output: feature-outcome pairs, outcomes close to Ep∗∗←RI(p∗)[C[τ(p∗∗)]]

1. Run ℓ = O(
√

log(1/ρ)/µ2) indep. executions of the parameter learner L. For each i ∈ [ℓ]:

a. For every x ∈ X , the i-th untransformed outcome oi
x of x is initialized to be “undefined”.

b. The i-th execution uses freshly drawn random coins rL,i.
c. To produce the j-th feature-probability sample requested by the i-th execution of
L, sample (xi,j , yi,j ∈ {0, 1}) ∼ D(p∗). If xi,j ’s i-th untransformed outcome oi

xi,j
is

defined, then proceed to the next step. Otherwise, set it to yi,j .
d. Use (xi,j , oi

xi,j
) as the j-th sample in the i-th execution of the parameter-learner.

e. The parameter-learner outputs parameters πi.

2. Produce each new feature-outcome output sample as follows:

a. Draw (x, y ∈ {0, 1}) ∼ D(p∗). Pick i ∈ [ℓ] uniformly at random.
b. If x’s i-th untransformed outcome oi

x is defined, then proceed to the next step. Other-
wise, set it to y.

c. Draw y′ ∈ {0, 1} from the Bernoulli distribution with expectation τπi(x, oi
x) and output

the sample (x, y′).

Proof. In Step 1 of the algorithm, consider a single execution i of the parameter-learning
algorithm: the distribution of the learned parameters πi is identical to the distribution of
the parameters that would be learned by taking a randomized instantiation p∗∗ of p∗: the
randomized instantiation is simply determined by the observed binary outcomes (which are
drawn by p∗(x))), where we take care to make sure that if a feature-vector x appears more
than once in the training examples, then it is always “assigned” the binary outcome with
which it first appeared (the i-th untrasnformed outcome is set only once). Moreover, we also
take care that for any feature vector x that appears in Step 2, its untransformed outcome is
set only once (when it first appeared, in training or in sample-generation for the i-th learned
parameters).

Thus, for each i ∈ [ℓ], the distribution of outcomes that are generated in Step 2, conditioned
on that using the i-th learned parameters, is identical to the distribution that would be
obtained in a mental experiment, where we take a randomized instantiations p∗∗i ← RI(p∗),
and learn the parameters πi by training on examples drawn by p∗∗i .

For x in the support of DX , recall that q(x) denotes the probability that the sample
generator assigns outcome 1 to x. We conclude that q is in fact the average of ℓ predictors qi,
where each qi is drawn by choosing a random instantiation of p∗ and transforming it using
(L, τ). Thus:

Pr
q←Step 1

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ > µ

]
= Pr
{p∗∗

i
←RI(p∗),πi}i∈[ℓ]

[∣∣∣∣ E
i∈[ℓ]

[τπi
(x, p∗∗i (x))]− E

p∗∗←RI(p∗)
[C[τ(p∗∗)](x, p∗∗(x))]

∣∣∣∣ > µ

]
<ρ,
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where the first equality is by the mental experiment discussed above, and the second inequality
is by a Chernoff bound. The above holds for any fixed x in the support of DX , and thus it
also holds for a randomly drawn x ∼ DX . ◁

Speaking intuitively, Claim 14 tells us that, with high probability over the randomness
in defining the building blocks of q, the resulting predictor is close to the expectation, over
randomness in p∗∗ ← RI(p∗), of the canonical transformation of p∗∗. By the robustness of τ ,
this in turn is close to the canonical transformed C[τ(p∗)]. Hence, q is close to C[τ(p∗)]. The
remainder of the proof will show that this closeness is maintained under multicalibration;
that is, multicalibrating with respect to q yields a predictor that is close to something
multicalibrated with respect to C[τ(p∗)]. Before proceding with that argument, we first state
a corollary that follows directly from Claim 14 via a standard argument.

▶ Corollary 15. Fix parameters α′, β′, σ′, ρ′ ∈ [0, 1]. For the sample-generation algorithm
(Algorithm 1), run with parameters µ = α′ and ρ = (α′ · β′ · σ′ · ρ′) it holds that:

Pr
q←Step 1

[
Pr

x∼D∗
X

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ > α′

]
> (α′ · σ′ · ρ′)

]
< β′

Proof. Plugging the values of µ, ρ into Claim 14, we conclude that:

Pr
q←Step 1,x∼DX

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ > α′

]
< (α′ · β′ · σ′ · ρ′).

By a standard argument, it follows that it cannot be that with probability larger than β′

over the q that is defined by Step 1, the probability, over x ∼ DX , that q(x) is far from its
“target” in the above equation is larger than (α′ · σ′ · ρ′):

Pr
q←Step 1

[
Pr

x∼DX

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ > α′

]
> (α′ · β′ · σ′ · ρ′)

]
< β′.

◀

From MC w.r.t q to MC w.r.t. the canonical transformed predictor. Running a multical-
ibration algorithm on outcomes generated by the sample generation algorithm (Algorithm 1)
will w.h.p. produce a predictor q̃ that is approximately multicalibrated w.r.t. q. We use Corol-
lary 15 and the robustness of the transformation (L, τ) to show that q̃ is also approximately
MC w.r.t. the canonical transformation of p∗.

In more detail, let C be the collection of sets, and let α, β, γ be parameters to be set below.
We run the sample-generation algorithm (Algorithm 1) with parameters α′ = Θ(α), β′ =
Θ(β), σ′ = γ, ρ′ = Θ(α2). By Corollary 15, with all but Θ(β) probability over the training
in Step 1, the sample generator trains a predictor q for which there exists a “bad” set
Bq ⊆ Supp(DX ) s.t. DX [Bq] ≤ (α3 · γ)/100 where:

∀x ∈ (Supp(DX ) \Bq) :
∣∣∣∣q(x)− E

p∗∗←RI(p∗)
[C[τ(p∗∗)](x, p∗∗(x))]

∣∣∣∣ ≤ α/100. (7)

Further, by the (ε, δ)-robustness of the transformation (Definition 10), there exists a
“bad” set Brobust ⊆ X where DX [Brobust] ≤ δ and

∀x ∈ (Supp(DX ) \ Brobust) :
∣∣∣∣C[τ(p∗)](x, p∗(x)) −

(
E

p∗∗←RI(p∗)
[C[τ(p∗∗)](x, p∗∗(x))]

)∣∣∣∣ ≤ ε (8)



C. Dwork, O. Reingold, and G. N. Rothblum 1:15

We are now ready to analyze the guarantee of the multicalibrated predictor q̃ w.r.t. the
canonical transformation of p∗. We train q̃ by running an outcome-based multicalibration
algorithm on samples generated by Algorithm 1, where the MC algorithm is run on a
collection of sets C, and with parameters α′′ = Θ(α), β′′ = Θ(β) and γ′′ = γ. Let q̃ be the
predictor trained by the MC learning algorithm. We assume w.l.o.g. that q̃ is discretized
to precision λ = Θ(α). In what follows, we assume both that the MC algorithm does not
fail (this happens with all but β′′ probability), and that q trained by the sample generator
satisfies Equation (7) (happens with all but β′ probability). By a Union bound, this is the
case with all but β probability.

Let S ∈ C be a set in the collection s.t. DX [S] ≥ γ. For a value v ∈ [0, 1], let Sv be the
subset of S to which q̃ assigns value v. We define the “bad” level sets to be the elements
assigned values v for which the set Sv has small mass by DX :

Blevels(S) =
⋃

v∈[0,1]:DX (Sv)≤(α·λ·γ)/10

Sv, (9)

where recall that the predictor was discretized to precision λ = Θ(α), so there are at most
1/λ “level sets”. Thus, by construction, DX [Blevels(S)] ≤ (α · γ)/10.

By Definition 3, for any set S ∈ C, s.t. DX [S] ≥ γ, there is a subset S′ ⊆ S where
Equation (2) holds. Let S′′ be the subset of S′ that does not contain members of Bq, of
Brobust, or of Blevels(S). We have that:

DX [S′′] ≥ DX [S′]−DX [Bq]−DX [Brobust]−DX [Blevels(S)]

≥ (1− α′′)DX [S]− α3γ

100 − δ − α · γ
10

≥
(

1− α′′ − α3

100 −
δ

γ
− α

10

)
DX [S]

≥
(

1− α− δ

γ

)
DX [S].

Since we removed the members of Blevels(S) from S′′, it is the case that for every v ∈ [0, 1]
for which S′′v has non-zero mass, it has mass at least (α · λ · γ)/10 (see Equation (9)). Thus:∣∣∣∣ E

x∼(DX |S′′
v )

[C[τ(p∗)](x, p∗(x))] − v

∣∣∣∣ ≤
∣∣∣∣ E
x∼(DX |S′′

v )
[Ep∗∗←RI(p∗)[C[τ(p∗∗)](x, p∗∗(x))]] − v

∣∣∣∣ + ε (10)

≤
∣∣∣∣ E
x∼(DX |S′′

v )
[q(x)] − v

∣∣∣∣ + ε + α

100 (11)

≤
∣∣∣∣ E
x∼(DX |S′

v)
[q(x)] − v

∣∣∣∣ + ε + α

100 + Θ
(

α + δ

α2 · γ

)
(12)

≤ α′′ + ε + Θ
(

α + δ

α2 · γ

)
(13)

= Θ
(

α + δ

α2 · γ

)
+ ε. (14)

Where in the above: Equation (10) follows by the definition of S′′ (which excludes elements
in Brobust, and by Equation (8)). Equation (11) follows because S′′ excludes elements in
Bq (and by Equation (7)). In Equation (12) we switch the expectation from S′′v to S′v using
Proposition 16 below, which follows by standard manipulations. Finally, Equation (13) is by
the multicalibration guarantee of q̃ w.r.t q.
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▶ Proposition 16. For v ∈ [0, 1] s.t. S′′v has non-zero mass:∣∣∣∣ E
x∼(DX |S′

v)
[q(x)]− E

x∼(DX |S′′
v )

[q(x)]
∣∣∣∣ = Θ

(
α + δ

α2 · γ

)
Proof. The proof is by a case analysis on the sign of the difference in the absolute value.
Suppose that the sign is positive, i.e. the first term is larger, then the absolute value is
bounded by:

E
x∼(DX |S′

v)
[q(x)] − E

x∼(DX |S′′
v )

[q(x)] ≤ 1
DX [S′′v ] ·

 ∑
x∈S′

v

DX [x] · q(x) −
∑

x∈S′′
v

DX [x] · q(x)


= 1

DX [S′′v ] ·
∑

x∈(S′
v\S′′

v )

DX [x] · q(x)

≤ DX [(S′v \ S′′v )]
DX [S′′v ]

≤ (α3 · γ/100) + δ

(α · λ · γ)/10 .

If the second term is larger, then the absolute value is bounded by:

E
x∼(DX |S′′

v )
[q(x)] − E

x∼(DX |S′
v)

[q(x)] = 1
DX [S′′v ] ·

 ∑
x∈S′′

v

DX [x] · q(x) − DX [S′′v ]
DX [S′v] ·

∑
x∈S′

v

DX [x] · q(x)


≤

∑
x∈S′

v
DX [x] · q(x) − DX [S′′

v ]
DX [S′

v ] ·
∑

x∈S′
v

DX [x] · q(x)
DX [S′′v ]

=

(
1 − DX [S′′

v ]
DX [S′

v ]

)
·
∑

x∈S′
v

DX [x] · q(x)

DX [S′′v ]

≤
(

DX [S′v]
DX [S′′v ] − 1

)
· DX [S′v]

DX [S′′v ] ,

where the last inequality holds because DX [S′′
v ]

DX [S′
v] ∈ (0, 1], and thus:

1− DX [S′′v ]
DX [S′v] ≤

1− DX [S′′
v ]

DX [S′
v ]

DX [S′′
v ]

DX [S′
v ]

= DX [S′v]
DX [S′′v ] − 1.

The claim follows by observing that:

DX [S′v]
DX [S′′v ] ≤

DX [S′′v ] + (α3 · γ/100) + δ

DX [S′′v ]

≤ 1 + (α3 · γ/100) + δ

(α · λ · γ)/10 ◀

We conclude that, with all but β probability over the sample generation and learning
procedures, q̃ is (Θ(α + δ/(α2 · γ)) + ε, γ)-multicalibrated w.r.t. the canonical transformation
of p∗. The second direction of the theorem follows by setting β = β̄, γ = γ̄ and setting:

α = ᾱ−Θ
(

(δ/γ)1/3
)
− ε.

The restriction on ᾱ implies that α = Ω(ᾱ) (so the sample complexity of the multicalibrated
learning algorithm will be polynomial in (1/ᾱ)), and that α > (δ/γ)1/3. Thus:

Θ(α + δ/(α2 · γ)) + ε ≤ Θ(α + (δ/γ)1/3) + ε = ᾱ.

We conclude that the algorithm indeed achieves (ᾱ, β̄, γ̄) multicalibration w.r.t. the trans-
formed predictor, and (this direction of) the theorem follows. ◀
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