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Abstract
Suppose we are given two datasets: a labeled dataset and unlabeled dataset which also has additional
auxiliary features not present in the first dataset. What is the most principled way to use these
datasets together to construct a predictor?

The answer should depend upon whether these datasets are generated by the same or different
distributions over their mutual feature sets, and how similar the test distribution will be to either of
those distributions. In many applications, the two datasets will likely follow different distributions,
but both may be close to the test distribution. We introduce the problem of building a predictor
which minimizes the maximum loss over all probability distributions over the original features,
auxiliary features, and binary labels, whose Wasserstein distance is r1 away from the empirical
distribution over the labeled dataset and r2 away from that of the unlabeled dataset. This can be
thought of as a generalization of distributionally robust optimization (DRO), which allows for two
data sources, one of which is unlabeled and may contain auxiliary features.
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1 Introduction

For a variety of prediction tasks, a number of sources of data may be available on which to
train, each possibly following a distinct distribution. For example, health records might be
available from at a number of geographically and demographically distinct hospitals. How
should one combine these data sources to build the best possible predictor?

If the datasets S1, S2 follow different distributions D1, D2, the test distribution D will
necessarily differ from at least one. A refinement of our prior question is to ask for which
test distributions, then, can training with S1, S2 give a good predictor?

More generally, very common issues of mismatch between training and test distributions
(and uncertainty over which test distribution one might face) has led to a great deal of
interest in applying tools from distributionally robust optimization (DRO) to machine
learning [12, 28, 24, 26]. In contrast to classical statistical learning theory, DRO picks a
function f whose maximum loss (over a set of distributions near S) is minimized. This set of
potential test distributions, often referred to as the ambiguity or uncertainty set, captures
the uncertainty over the test distribution, along with knowledge that the test distribution
will be close to the training distribution.

The ambiguity set is usually defined as a set of distributions with distance at most
r from the empirical distribution over the training data: B(P̃S , r) =

{
Q : D(P̃S , Q) ≤ r

}
where P̃S is the empirical distribution over training dataset S and D is some distance
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10:2 Distributionally Robust Data Join

measure between two probability distributions. Then, DRO aims to find a model θ such
that for some loss ℓ, θ = arg minθ supQ∈B(P̃S ,r) E(x,y)∼Q[ℓ(θ, (x, y))] – that is, minimize the
loss over the worst case distribution in the ball of distributions B(P̃S , r). The larger r, the
more distributions over which DRO hedges its performance, leading to a tension between
performance (minimizing worst-case error) and robustness (over the set of distributions on
which performance is measured).

In this work, we introduce a natural extension of distributionally robust learning, two
anchor distributionally robust learning, which we also refer to as the distributionally robust
data join problem. Two anchor distributionally robust learning has access to two sources of
training data, the first source containing labels, and the second source without labels but
with auxiliary features not present in the first source. The optimization is then over the set
of distributions close to both the labeled and auxiliary data distributions.

Formally, suppose one has two training datasets. The first dataset S1 consists of feature
vectors X = Rm1 and binary prediction labels for some task Y = {±1}. The other dataset
S2 contains feature vectors X and auxiliary features A = Rm2 but not the labels. The goal
is to find a model θ that hedges its performance against any distribution Q over (X , A, Y)
whose Wasserstein distance is r1 away from the empirical distribution over S1 and r2 away
from that of S2. Note that our setting is a strict generalization of semi-supervised setting:
for m2 = 0, there are no additional features in the second dataset, and S2 is simply some
additional unlabeled dataset. In contrast to pure semi-supervised settings, our method and
setting both allow the learner to take advantage of the additional auxiliary features and
to learn a model robust to additional distribution shift. We also emphasize that having
the common features x between S1 and S2 help learn about the relationship between the
auxiliary features a and the label y indirectly. Consider the following example where we
actually have one dataset that contains the feature vector, auxiliary features, and the label
altogether Scombined = {(xi, ai, yi)}n

i=1. From this dataset, we may form S1 = {(xi, ai)}n
i=1

and S2 = {(xi, yi)}n
i=1 where for every point (xi, ai) in S1 and there’s a corresponding (xi, yi)

such that they share the same feature. In fact, instantiating our framework with r1 = 0
and r2 = 0 corresponds exactly to performing empirical risk minimization over Scombined. In
other words, the quality of how well feature vectors x’s match between S1 and S2 determine
how well we may be able to learn the relationship between the auxiliary features a and the
label y.

In practice, it is quite common to have the datasets fragmented as our setting captures.
For instance, suppose some dataset has been collected at a hospital in order to build a
predictive model that is to be used at a nearby hospital. After collecting this data, some
other research may find other features that could have been useful for the prediction task
but unfortunately were not collected during the contruction of this dataset. Fortunately,
another nearby hospital may have data that contains both the original features and the
useful auxiliary features but does not have labels for this prediction task. Our data join
approach allows to find a model that utilizes such auxiliary features and explicitly considers
the distribution mismatch between the hospital where the model is deployed and the hospitals
from which these two datasets have been collected.

Auxiliary features may be useful not only for improving accuracy of the model but for
guaranteeing additional properties including notions of fairness. In the appendix of the full
version of the paper, we show that our distributionally robust data join problem encompasses
a two-anchor distributionally robust learning instance where one can try to minimize not just
the model’s overall loss but also penalize the model for its difference in performance across
demographic groups, even in situations where demographic information is present only in
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one dataset and the label is only present in the other dataset. This extension is motivated
by designing equitable predictors (e.g., which equalize false positive rate over a collection
of demographic groups) where one training set contains labels for the relevant task but no
demographic information, and another training set contains demographic information but
may not contain task labels. Such settings are quite common in practice, where demographic
data is not collected for every dataset – indeed, collection of demographic data is difficult to
do well or sometimes even illegal [1, 15, 32, 34].

The contribution of our work can be summarized as follows:
1. New Problem Formulation of Distributionally Robust Data Join: we introduce and

precisely formulate the distributionally robust data join problem in Section 2 and exactly
characterize its feasibility in Section 3.1.

2. Application to Fairness: we further show how our original problem can be slightly modified
to capture the problem of enforcing fairness when demographic group information is not
available in the original labeled dataset (In the appendix of the full version of the paper).

3. Tractable Reformulation with an Approximation Guarantee (Theorem 7 in Section 3): we
show how to approximate the distributionally robust data join problem with two convex
optimization problems with an approximation guarantee.

4. Experiments (Section 4): we design and perform a synthetic experiment that shows how
our distributionally robust data join method performs much better than the baselines.
Additionally, we show some preliminary results on the experiments on a few real world
datasets.

1.1 Related Work
Distributionally Robust Optimization: Prior work has looked at many different ways to
define the ambiguity set: characterizing the set with moment and support information
[8, 16, 33], or using various distance measures on probability space and defined the ambiguity
set to be all the probability measures that are within certain distance ϵ of the empirical
distribution: [12] use f-divergence, [18] the Kullback-Leibler divergence, [13] the Prohorov
metric, and [28, 3, 2, 14] the Wasserstein distance, [17] chi-square divergence, and so forth.
Defining ambiguity sets with divergence measures suffers from the fact that they do not
incorporate the underlying geometry between the points – i.e. almost all divergence measures
require the distribution in the ambiguity set to be absolutely continuous with respect to
the anchor distribution. Therefore, because the distributions in the ambiguity set are
simple re-weighting of the anchor distribution, divergence based ambiguity sets don’t include
distributions where the empirical distributions are perturbed a little bit and hence aren’t
robust to “black swan” outliers [23]. By contrast, the Wasserstein distance allows one to
take advantage of the natural geometry of the points (e.g. Lp space). Furthermore, when
we consider ambiguity sets defined by two anchor distributions as we do in this work, the
two empirical distributions that are the anchors of the ambiguity set are almost surely
not continuous with respect to each other. For these reasons, we focus on the Wasserstein
distance in this work.

Most relevant to our work from the distributionally robust optimization literature is [28].
They show that regularizing the model parameter of the logistic regression has the effect of
robustly hedging the model’s performance against distributions whose distribution over just
the covariates is slightly different than that of the empirical distribution over the training
data. Distributionally robust logistic regression is a generalization of p-norm regularized
logistic regression because it allows for not only distribution shift in the convariates but also
the distribution shift over the labels. In a couple of real world datasets, they show that
distributionally robust logistic regression seems to outperform regularized logistic regression
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by the same amount that regularized logistic regression outperforms vanilla logistic regression.
Our work is a natural extension of this work in that we take additional unlabeled dataset
with auxiliary features into account. However, we remark that our contributions go beyond
the contributions of [28]. In particular, reasoning about couplings between 3 distributions
(labeled dataset, unlabeled dataset, and unknown target dataset) as shown later in Section 2.2
is a priori not obvious and rather novel. Existing 2 distribution coupling approach used in
[28] (e.g., creating one coupling between labeled and unlabeled, and another between one
of these and the test distribution) will not give empirically or theoretically good matchings
between all three distributions and will generally also not be computationally tractable in
our case. We further discuss new technical difficulties that have to be overcome in order to
solve our problem later in Section 3 and the appendix of the full version of the paper. [30]
extend [28] by adding a fairness regularization term, but the demographic information is
available in the original labeled dataset in their setting unlike our setting.

Semi-supervised Learning: There have been significant advances in semi-supervised learning
where the learner has access not only labeled data but also unlabeled data [36, 35, 7]. While
our setting is similar to semi-supervised settings, we capture a broader class of possible
problems in two ways. First, our approach allows the unlabeled dataset to have additional
auxiliary features, and second, we explicitly take distribution shift into account.

Imputation: Numerous imputation methods for missing values in data exist, many of which
have few or no theoretical guarantees [11, 27]. Many of these methods work best (or only
have guarantees) when data values are missing at random. Our work, on the other hand,
assumes all prediction labels are missing from the second dataset and all auxiliary features
are missing from the first dataset. Another related problem is the matrix factorization
problem which is also referred to as matrix completion problem [25, 22, 4]: here the goal
is to find a low rank matrix that can well approximate the given data matrix with missing
values. Our problem is different in that we don’t make such structural assumption about the
data matrix effectively being of low rank, but instead we assume all the auxiliary features
are only available from a separate unlabeled dataset.

Fairness: Many practical prediction tasks have disparate performance across demographic
groups, and explicit demographic information may not be available in the original training
data. Several lines of work aim to reduce the gap in performance of a predictor between
groups even without group information for training.

[17] show that the chi-square divergence between the overall distribution and the distri-
bution of any subgroup can be bounded by the size of the subgroup: e.g. for any sufficiently
large subgroup, its divergence to the overall distribution cannot be too big. Therefore,
by performing distributionally robust learning with ambiguity set defined by chi-square
divergence, they are able to optimize for the worst-case risk over all possible sufficiently large
subgroups even when the demographic information is not available. [9] provide provably
convergence oracle-efficient learning algorithms with the same kind of minimax fairness
guarantees when the demographic group information is available.

One may naively think that given auxiliary demographic group information data, the
most accurate imputation for the demographic group may be enough to not only estimate the
unfairness of given predictor but also build a predictor with fairness guarantees. However, [1]
show that due to different underlying base rates across groups, the Bayes optimal predictor
for the demographic group information can result in maximally biased estimate of unfairness.
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[10] demonstrate that one can rely on a multi-accurate regressor, which was first introduced
by [21], as opposed to a 0-1 classifier in order to estimate the unfairness without any bias
and also build a fair classifier for downstream tasks. When only some data points are
missing demographic information, [19] show how to bypass the need to explicitly impute the
missing values and instead rely on some decision tree based approach in order to optimize a
fairness-regularized objective function. [20], given two separate datasets like in our setting,
show how to construct confidence intervals for unfairness that is consistent with the given
datasets via Fréchet and Hoeffding inequalities; our work is different in that we allow a little
bit of slack by forming a Wasserstein ball around both datasets and can actually construct a
fair model as opposed to only measuring unfairness.

[5] and [6] have shown when the demographic group information is available but possibly
noisy, stochastically and adversarially respectively, how to build a fair classifier.

2 Preliminaries

2.1 Notations
We have two kinds of datasets, the auxiliary feature dataset and the prediction label
dataset denoted in the following way: SA = {(xA

i , aA
i )}nA

i=1, SP = {(xP
i , yP

i )}nP
i=1 where

the domain for feature vector x is X = Rm1 , domain for auxiliary features a is A = Rm2 ,
and the label space is y ∈ Y = {±1}. For any vector v ∈ Rm and d1, d2 ∈ [m], we write
v[d1 : d2] to denote the coordinates from d1 to d2 of vector v and v[d] to denote the dth
coordinate. We assume both X and A are compact and convex. For convenience, we write
SX

A = {x : (x, a) ∈ SA}, SX
P = {x : (x, y) ∈ SP } to denote just the feature vectors of the

dataset.
Given any dataset S = {zi}n

i=1, we will write P̃S = 1
n

∑n
i=1 δ(zi) to denote the empirical

distribution over the dataset S where δ is the Dirac delta funcion. We’ll write PZ to denote
the set of all probability distributions over Z. Similarly, we write P(Z,Z′) to denote a set of
all possible joint distributions over Z and Z ′. Also, given a joint distribution P ∈ P(Z,Z′), we
write PZ and PZ′ to denote the marginal distribution over Z and Z ′ respectfully, meaning
PZ(z) =

∫
P(z, dz′) and PZ′(z′) =

∫
P(dz, z′). We extend the notation when the joint

distribution is over more than two sets: e.g. Pz,z′((z, z′)) =
∫

P(z, z′, dz′′) where we have
marginalized over Z ′′ for P which is a joint distribution over Z, Z ′, Z ′′.

We write the set of all possibly couplings between two distributions P ∈ PZ and P ′ ∈ PZ′

as Π(P, P ′) =
{

π ∈ P(Z,Z′) : πZ = P, πZ′ = P ′}. For a coupling between more than two
distributions, we use the same convention and write Π(P, P ′, P ′′) for instance.

Given any metric d : Z × Z → R and two probability distributions P, P ′ ∈ PZ , we write
the Wasserstein distance between them as Dd(P, P ′) = infπ∈Π(P,P′) E(z,z′)∼π[d(z, z′)].

Given some distribution P ∈ P over some set Z, metric d : Z × Z → R, a radius r > 0,
we will write Bd(P, r) = {Q ∈ P : Dd(P, Q) ≤ r} to denote the Wasserstein ball of radius
r around the given distribution P. When the metric is obvious from the context, we may
simply write B(P, r).

In our case, the relevant metrics that are used to measure distance between points are

dX (x, x′) = ||x − x′||p, dA((x, a), (x′, a′)) = ||x − x′||p + κA||a − a′||p′

dP ((x, y), (x′, y′)) = ||x − x′||p + κP |y − y′|

where ||v||p = (
∑

d |v[d]|p)
1
p is some p-norm and κA, κP ≥ 0 are the coefficients that control

how much we care about the ||a − a′||p′ and |y − y′|. We’ll write ||v||p,∗ = sup||v′||p≤1⟨v, v′⟩
to denote dual norm for p-norm. Also, for convenience, given any vector v, we’ll write
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10:6 Distributionally Robust Data Join

vp = v
||v||p

and vp,∗ = v
||v||p,∗

to denote the normalized vectors. When it’s clear from the
context which norm is being used, we write || · ||, || · ||∗, v, and v∗. Now, we are ready to
describe distributionally robust data join problem.

2.2 Distributionally Robust Data Join
We are given an auxiliary dataset SA and a prediction label dataset SP . We are interested
in a joint distribution Q over (x, a, y) such that
1. its marginal distribution over (x, a) is at most rA away from P̃SA

in Wasserstein distance:
DdA

(QX ,A, P̃SA
) ≤ rA

2. its marginal distribution over (x, y) is at most rP away from P̃SP
in Wasserstein distance:

DdP
(QX ,Y , P̃Sp) ≤ rP

Combining them together, the set of distributions we are interested in is

W (SA, SP , rA, rP ) = {Q ∈ P(X ,A,Y) : DdA
(QX ,A, P̃SA

) ≤ rA, DdP
(QX ,Y , P̃Sp

) ≤ rP }
= {Q ∈ P(X ,A,Y) : QX ,A ∈ BdA

(P̃SA
, rA), QX ,Y ∈ BdP

(P̃SP
, rP )}.

Now, we consider some learning task where the performance is measured according to the
worst case distribution in the above set of distributions. We want to find some model
parameter θ such that its loss against the worst-case distribution among W (SA, SP , rA, rP )
is minimized:

min
θ∈Θ

sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

[ℓ(θ, (x, a, y))]. (1)

where ℓ : Θ × (X × A × Y) → R is a convex loss function evaluated at θ. For the sake of
concreteness, we focus on logistic loss1 ℓ(θ, (x, a, y)) = log(1 + exp(−y⟨θ, (x, a)⟩)).

Also, we sometimes make use of the following functions f(t) = log(1 + exp(t)) and
h(θ, (x, a)) = f(−⟨θ, (x, a)⟩) instead of ℓ, as it is more convenient due to not having to worry
about y in certain cases: ℓ(θ, (x, a, +1)) = h(θ, (x, a)) and ℓ(θ, (x, a, −1)) = h(−θ, (x, a)). We
write the convex conjugate of f as f∗(b) = supx⟨x∗, x⟩ − f(x), which in our case evaluates to
b log b + (1 − b) log(1 − b) when b ∈ (0, 1), 0 if b = 0 or 1, and ∞ otherwise.

3 Tractable Reformulation

Let us give an overview of this section. Note that the optimization problem in (1) is a
saddle point problem. In Section 3.1, we first make the coupling in the optimal transport
more explicit in the inner sup term. Then, by leveraging Kantorovich duality, we replace
the sup term with its dual problem which is a minimization problem, thereby making the
original saddle problem into minimization problem. However, the resulting dual problem
has constraints that involve some supremum term, meaning it’s an semi-infinite program
(i.e. supz∈Z constraint(z) ≤ 0 is equivalent to constraint(z) ≤ 0, ∀z ∈ Z). Finally, in Section
3.3, we show how each supremum term can be approximated by some other closed-form
constraint. And we finally show that the resulting problem can be decomposed into two convex
optimization problems and its optimal solution has additional approximation guarantee to
the original optimal solution (Theorem 7).

1 All our results still hold for any other convex loss with minimal modifications
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3.1 Formulation through Coupling
We show how to rewrite the problem (1) using the underlying coupling between the
“anchor” distributions (SA, SP ) and Q ∈ W (SA, SP , rA, rP ). For simplicity, instead of
π
(
(xA

i , aA
i ), (xP

j , yP
j ), (x, a, y)

)
which is a coupling between P̃SA

, P̃SP
, and some joint dis-

tribution Q ∈ PX ,A,Y , we write πy
i,j(x, a) = π

(
(xA

i , aA
i ), (xP

i , yP
i ), (x, a, y)

)
. Then, since the

“anchor” distributions P̃SA
and P̃SP

are discrete distributions, we can rewrite the problem
(1) as choosing θ ∈ Θ that minimizes the following value:

sup
π

a,y
i,j

nA∑
i=1

nP∑
j=1

∑
y∈Y

∫
X ,A

ℓ(θ, (x, a, y))πy
i,j(dx, da) (2)

s.t.
nA∑
i=1

nP∑
j=1

∑
y∈Y

∫
X ,A

di
A(x, a)πy

i,j(dx, da) ≤ rA,

nA∑
i=1

nP∑
j=1

∑
y∈Y

∫
X ,A

dj
P (x, y)πy

i,j(dx, da) ≤ rP

nP∑
j=1

∑
y∈Y

∫
X ,A

πy
i,j(dx, da) = 1

nA
∀i ∈ [nA],

nA∑
i=1

∑
y∈Y

∫
X ,A

πy
i,j(dx, da) = 1

nP
∀j ∈ [nP ]

where di
A(x, a) = dA((xA

i , aA
i ), (x, a)) and dj

P (x, y) = dP ((xP
j , yP

j ), (x, y)). We defer intuitive
explanations and derivation of this problem to the appendix of the full version of the paper.
For any fixed parameter θ, we’ll denote the optimal value of the above problem (2) as
p∗(θ, rA, rP ) and p∗(rA, rP ) = infθ p∗(θ, rA, rP ).

It can be shown that minimizing over the above supremum value in (1) and the optimiza-
tion problem (2) are equivalent as shown in the following theorem. We also provide a tight
characterization of the feasibility of (2). The proof of Theorem 1 and 2 can be found in the
appendix of the full version of the paper.

▶ Theorem 1. For any fixed θ ∈ Θ,

p∗(θ, rA, rP ) = sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

[ℓ(θ, (x, a, y))].

▶ Theorem 2. DdX (P̃SX
A

, P̃SX
P

) ≤ rA + rP , if and only if there exists a feasible solution
for (2).

3.2 Strong Duality
We claim that the following problem is the dual to problem (2) and show that strong duality
holds between them:

inf
αA,αP ,

{βi},{β′
j}

αArA + αP rP + 1
nA

∑
i∈[na]

βi + 1
nP

∑
j∈[nP ]

β′ (3)

s.t. sup
(x,a)

(
ℓ(θ, (x, a, y)) − αAdi

A(x, a) − αP dj
P (x, y)

)
≤ βi + β′

j ∀i ∈ [nA], j ∈ [nP ], y ∈ Y

For fixed θ, we’ll write d∗(θ, rA, rP ) to denote the optimal value for the above dual
problem (3). As in [28], strong duality directly follows from [29], but to be self-contained, we
include the proof in the appendix of the full version of the paper, which follows the same
proof structure presented in [31].

▶ Theorem 3. If there exists a feasible solution for the primal problem (2), then we have that
strong duality holds between the primal problem (2) and its dual problem (3): p∗(θ, rA, rP ) =
d∗(θ, rA, rP ) for fixed θ.
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In other words, we have successfully transformed the saddle point problem (1) into a
minimization problem over θ and the dual variables αA, αP , {βi} and {β′

j}j :

min
θ∈Θ,αA,αP ,

{βi},{β′
j }

αArA + αP rP + 1
nA

∑
i∈[na]

βi + 1
nP

∑
j∈[nP ]

β′
j (4)

s.t. max
y∈{±1}

sup
(x,a)

(
ℓ(θ, (x, a, y)) − αAdi

A(x, a) − αP dj
P (x, y)

)
≤ βi + β′

j ∀i ∈ [nA], j ∈ [nP ]

3.3 Replacing the sup Term
Note that sup(x,a) in the constraint makes it hard to actually compute the expression: it’s
neither concave or convex in terms of (x, a) as it’s the difference between convex functions
ℓ(θ, (x, a, y)) and αAdi

A(x, a) + αP dj
P (x, y). In that regard, we show how to approximate

the sup term in the constraint of dual problem (3) with some closed form expression by
extending the techniques used in [28] who study when there’s only one “anchor” point – i.e.
supx ℓ(θ, x) − αdX (xi, x) as opposed to in our case with two anchor points.

First, let’s focus only on the terms that actually depend on (x, a) and ignore our depend-
ence on y briefly:

sup
(x,a)

ℓ(θ, (x, a, y)) − αAdi
A(x, a) − αP dj

P (x, y)

= κP αP |yP
j − y| +

(
sup
(x,a)

h(yθ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p + αAκA||aA
i − a||p′

)
.

We obtain an upper bound for the supremum term in the lemma below whose full proof
can be found in the appendix of the full version of the paper.

▶ Theorem 4. Fix any y ∈ Y and θ. Write θ1 = θ[1 : m1] and θ2 = [m1 + 1 : m1 + m2].
Suppose p ̸= 1 and p ̸= ∞. If ||θ1||p,∗ ≤ αA + αP and ||θ2||p′,∗ ≤ κAαA, then

sup
(x,a)

h(yθ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p − αAκA||aA
i − a||p′

≤ f

((
min(αA, αP )||θ1||∗||xA

i − xP
j ||

αA + αP
+

⟨yθ1, αAxA
i + αP xP

j ⟩
αA + αP

)
+ ⟨yθ2, aA

i ⟩

)
− min(αA, αP )||xA

i − xP
j ||p.

Otherwise, sup(x,a) h(yθ, (x, a)) − αA||x − xA
i ||p − αP ||x − xP

j ||p − αAκA||aA
i − a||p′ evaluates

to ∞.

Proof Sketch. Similar to [28], we leverage convex conjugacy in order to re-express the sup
term. However, because we have multiple anchor points, the re-expression results in an
infimal convolution of two linear functions with bounded norm constraints as opposed to the
case of [28] where they only have to handle a convex conjugate of a single linear function
with bounded norm constraint and hence find an exact closed form expression. Therefore,
in the appendix of the full version of the paper, we develop new techniques where we show
(1) infimal convolution of linear functions with norm constraints is convex, (2) obtain a
closed form solution of the infimal convolution at two extreme points, and (3) use linear
interpolation of these extreme points to obtain an upper-bound, as a line segment of the two
extreme points sits above the graph for convex functions. ◀

Equipped with the above upper bound on the supremum term, we can imagine trying
to replace the supremum term with the above upper bound in order to get a feasible dual
solution to the dual problem (4). However, one may worry that there is a big gap between
the original supremum term and our upperbound in Theorem 4.
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To this end, we further show that we can in fact approximate the supremum term
with one more trick and hence obtain an approximate dual solution. Suppose we write

x̂i,j =
{

xP
j if αA < αP

xA
i

and α̂ = min(αA, αP ). Note that by definition, the value

measured at (x̂i,j , aA
i ) is a lower bound on the supremum. In other words, we have

h(yθ, (x̂i,j , aA
i )) − αA||xA

i − x̂i,j ||p − αP ||xP
j − x̂i,j ||p = f(⟨yθ, (x̂i,j , aA

i )⟩) − α̂||xA
i − xP

j ||p
≤ sup

(x,a)
h(yθ, (x, a)) − αA||xA

i − x||p − αP ||xP
j − x||p − αAκA||aA

i − a||p′

≤ f

((
min(αA, αP )||θ1||∗||xA

i − xP
j ||

αA + αP
+

⟨yθ1, αAxA
i + αP xP

j ⟩
αA + αP

)
+ ⟨yθ2, aA

i ⟩

)
− α̂||xA

i − xP
j ||p.

Now, via Hölder’s inequality, we can show the lower bound and the upper bound above
on the supremum term are in fact very close, meaning by using either the upper bound or
the lower bound, we can approximate the supremum very well. Here’s a lemma that shows
that the value evaluated at (x̂i,j , aA

i ) is pretty close to the upper bound in Theorem 4:
▶ Lemma 5.

f

((
min(αA, αP )||θ1||∗||xA

i − xP
j ||

αA + αP
+

⟨yθ1, αAxA
i + αP xP

j ⟩
αA + αP

)
+ ⟨yθ2, aA

i ⟩

)
− f(⟨yθ, (x̂i,j , aA

i )⟩)

≤ 2α̂||xA
i − xP

j ||.

In other words, replacing the original supremum constraint with a constraint evaluated at
(x̂i,j , aA

i ) will not incur too much additional error. Finally, using the fact that f(−t) = f(t)+t

for logistic function f , we can bring back the terms that depend on y and approximate the
original supremum constraint in the following manner:

▶ Corollary 6.(
max

y∈{±1}
sup
(x,a)

(
ℓ(θ, (x, a, y)) − αAdi

A(x, a) − αP dj
P (x, y)

))
−
(
f(⟨yP

j θ, (x̂i,j , aA
i )⟩) + max(yP

j ⟨θ, (x̂i,j , aA
i )⟩ − αP κP , 0) − α̂||xA

i − xP
j ||
)

≤ 2α̂||xA
i − xP

j ||

In other words, replacing the supremum constraint with the constraint evaluated at
(x̂i,j , aA

i ) and using the above trick to remove the max over y will arrive at the following
problem, for which we provide an approximation guarantee in Theorem 7.

min
αA,αP ,θ1,θ2,{βi},{β′

j
}
(αArA + αP rP ) + 1

nA

∑
i∈[na]

βi + 1
nP

∑
j∈[nP ]

β′
j (5)

s.t. f(yP
j ⟨θ, (x̂i,j , aA

i )⟩) + max(yP
j ⟨θ, (x̂i,j , aA

i )⟩ − αP κP , 0) − α̂||xA
i − xP

j ||
≤ βi + β′

j ∀i ∈ [nA], j ∈ [nP ]
||θ1||∗ ≤ αA + αP , ||θ2||∗ ≤ κAαA.

▶ Theorem 7. We can solve problem (5) by solving two convex optimization problems. And
the optimal θ∗ for the above problem (5) is such that its objective value for the original
problem (1) is at most 2α̂ maxi∈[nA],j∈[nP ] ||xA

i − xP
j || greater than the optimal solution:

sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

[ℓ(θ∗, (x, a, y))] − 2α̂ max
i∈[nA],j∈[nP ]

||xA
i − xP

j ||

≤ min
θ∈Θ

sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

[ℓ(θ, (x, a, y))].
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Table 1 Average accuracy of each method over 10 experiment runs and standard deviations for
synthetic dataset with a distribution shift.

LR RLR DRLR DJ
Accuracy 0.4126 ± 0.1049 0.5786 ± 0.3992 0.9068 ± 0.0076 0.9923 ± 0.0057

Just as in [28], two convex optimization problems that problem (5) decomposes into can
be solved by IOPT and YALMIP. In addition, we remark that 2α̂ maxi∈[nA],j∈[nP ] ||xA

i − xP
j ||

is a reasonable approximation guarantee because this value should be in the same order as
αArA + αP rP : recall that we have argued in Theorem 2, a feasible solution exists if and only
if DdX (P̃SX

A
, P̃SX

P
) ≤ rA + rP . Additionally, the worst case pairwise distance can actually be

improved with an additional assumption: since any underlying coupling for the Wasserstein
distance most likely transports non-zero probability mass between only close points, we can
imagine considering only the k-nearest-neighbors of each point as opposed to all possible pairs
between two datasets, hence decreasing the approximation error to the maximal pairwise
distance between some point and its k-nearest-neighbor. We make this point more formal in
the appendix of the full verison of the paper.

4 Experiments

We now describe an experimental evaluation of our method on a synethetic dataset and real
world datasets. In all our epxeriments, we use the approach discussed in the appendix of
the full version in which we make practically simplifying assumptions in order to solve the
problem (5) via projected gradient descent. We use 2-norm throughout the experiments: i.e.
p, p′ = 2.

4.1 Synthetic Data
We briefly discuss how we create the snythetic dataset. We want our synthetic data generation
process to encompass the components that are unique to our robust data join setting – namely,
distribution shift and auxiliary unlabeled dataset that contains additional features that should
help with the prediction task.

To that end, we discuss the data generation process at a high level here and more fully
in Appendix B. We have two groups such that the ideal hyperplane that distinguishes the
positive and negative points is different for each group. We introduce distribution shift into
the setting by having the original labeled training dataset consist mostly of points from the
first group and the test dataset consist mostly from the second group. As for specific details
of the data generation process that are important for our setting, we have one of the features
to carry information regarding which group the point belongs to.

As for the unlabeled dataset with auxiliary features, the points will mostly come from the
second group, hence being closer to the test distribution. Furthermore, we include additional
features that are present in the unlabeled dataset to be highly correlated with the true label,
although this unlabeled dataset doesn’t contain the true label of each point.

Because we want our baselines that compare our distributionally robust data join approach
(DJ) against to be in the same model class (i.e. logistic regression) as our method for fair
comparison, we consider the following baselines:
1. LR: Vanilla logistic regression trained on labeled dataset SP

2. RLR: Regularized logistic regression trainined on labeled dataset SP

3. DRLR: Distributionally robust logistic regression trainied on SP
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Table 2 Average accuracy of each method over 10 experiment runs and standard deviations for
three UCI datasets.

BC (m1 = 5) BC (m1 = 25) IO (m1 = 4) IO (m1 = 25) HD 1vs8
DJ 0.9140 ± 0.0368 0.9281 ± 0.0155 0.8208 ± 0.0816 0.7896 ± 0.04885 0.7495 ± 0.0374 0.90841 ± 0.0270
LR 0.9012 ± 0.0294 0.9140 ± 0.0393 0.7764 ± 0.1560 0.7868 ± 0.0653 0.7286 ± 0.0504 0.8729 ± 0.0337

RLR 0.9053 ± 0.0228 0.9287 ± 0.0199 0.7915 ± 0.1417 0.7868 ± 0.0690 0.7363 ± 0.0565 0.8953 ± 0.0250
LRO 0.8789 ± 0.0318 0.8789 ± 0.0318 0.7330 ± 0.0788 0.7330 ± 0.0788 0.6626 ± 0.0569 0.7766 ± 0.0599

RLRO 0.8953 ± 0.0212 0.8953 ± 0.0212 0.7377 ± 0.0800 0.7377 ± 0.0800 0.6714 ± 0.0568 0.8710 ± 0.0450

FULL 0.9684 ± 0.0143 0.9684 ± 0.0143 0.8754 ± 0.0764 0.8754 ± 0.0764 0.8319 ± 0.0311 0.9495 ± 0.0222

The result of this experiment can be found in Table 1. There are few plausible reasons as to
why our approach (DJ) does extremely well in this synthetic experiment. Our distributionally
robust data join is definitely taking advantage of the proximity of unlabeled dataset to the
test distribution in that the majority of points are both from the second group. Although
regularized and distributionally robust logistic regression is trying to be robust against some
form of distribution shift, the set of distributions they are hedging against may be too big as
they are hedging against all distributions that are close to the empirical distribution over
the labeled dataset. By contrast, the set of distributions that distributionally robust data
join may be smaller because it’s hedging against the set of distributions that are close to
the labeled dataset and the unlabeled dataset. Finally, auxiliary features in the unlabeled
dataset are providing information very relevant for the prediction task.

4.2 UCI Datasets
Here we discuss some experiments we have run and show that as a proof of concept, our
distributionally robust data join framework has the potential to be practical empirically.
However, we remark unlike in the synthetic data experiment, we do not introduce any
distribution shift (i.e. training and test are iid samples from the same distribution) and also
choose the additional features for the unlabeled dataset in an arbitrary way because of our
lack of contextual expertise of the features in each dataset. Therefore, the gaps between our
method and the baselines we consider are not as impressive as the performance gap we see
in the synthetic experiments.

We use four UCI datasets for our real world dataset experiment: Breast Cancer dataset
(BC), Ionosphere dataset (IO), Heart disease dataset (HD), and Handwritten Digits dataset
with 1’s and 8’s (1vs8). We provide more details about these datasets in Appendix B. For
all these datasets, each experiment run consists of the following: (1) randomly divide the
dataset into Strain = {(xi, ai, yi)}ntrain

i=1 and Stest, (2) create the prediction label dataset and
auxiliary dataset where v data points belong to both datasets: SP = {(xi, yi)}nP +v

i=1 and
SA = {(xi, ai)}ntrain

nP +1.
We compare our method of joining SA and SP , which we denote as DJ, to the following

baselines:
1. LR: Logistic regression trained on SP

2. RLR: Regularized logistic regression on SP

3. LRO: Logistic regression on overlapped data {(xi, ai, yi)}nP +v
i=nP +1

4. RLRO: Regularized logistic regression on overlapped data {(xi, ai, yi)}nP +v
i=nP +1.

5. FULL: full training on {(xi, ai, yi)}ntrain
i=1

where FULL is simply to show the highest accuracy we could have achieved if the labeled
dataset actually had the auxiliary features and the unlabeled dataset had the labels. The
results of the experiment can be found in Table 2, and we include further details of the
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experiment in Appendix B. Without any distribution shift, the distributionally robust data
join method is solving a somewhat harder problem than the other baselines because of its
hedging against other nearby distributions. Yet it can be seen that the use of the additional
auxiliary features through our data join method helps achieve better accuracy than the
baselines.
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A Possible Negative Societal Impact and Limitations

We do not foresee any direct negative societal impact of our work. However, just as other
distributionally robust optimization methods, our robust guarantees may come at the price
of achieving slightly worse accuracy. However, we note that this trade-off between more
robustness and higher utility can be controlled by setting rA and rP appropriately. On a
related note, another limitation of our approach is that it requires specifying rA and rP ;
one needs to have some knowledge about how “far” the distributions (i.e. labeled dataset,
unlabeled dataset with auxiliary features, and test distribution) may be, which is a limitation
as in other methods that require setting some hyperparameters appropriately.

B Missing Details from Section 4

All the experiments were performed on one of the authors’ personal computer, MacBook Pro
2017, and every experiment took less than an hour.

We note that as it’s standard in practice to output the last iterate instead of the averaged
iterate, we use the last iterate of the projected gradient descent instead of the averaged one
for all our experiments. Now, the total number of points and the features for each dataset is
here along with where the dataset can be found:
1. BC (https://archive.ics.uci.edu/ml/datasets/breast+cancer): 569 points with

30 features
2. IO (https://archive.ics.uci.edu/ml/datasets/ionosphere): 351 points with 34

features
3. HD (https://archive.ics.uci.edu/ml/datasets/Heart+Disease): 300 points with

13 features
4. 1vs8 (https://scikit-learn.org/stable/modules/generated/sklearn.datasets.

load_digits.html#sklearn.datasets.load_digits): This is a copy of the test
dataset from https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+
of+Handwritten+Digits). It originally contains 1797 points with 64 points. But after
filtering out all the digits except for 1’s and 8’s, there are 356 points.

For every dataset, we preprocess the data by standardizing each feature – that is, removing
the mean and scaling to unit variance.

We take the common feature to be the first 5 features for (BC, HD) and 4 for IO –
i.e. m1 = 5 and 4 respectively. For 1vs8, we have m1 = 32, the first half bits of the 8x8
image. And the remaining features are the auxiliary features A: m2 = 25, 30, 8, and 32 for
BC, IO, HD, and 1vs8 respectively. For all datasets, we set the test size to be 30% of the
entire dataset. Then, we set (nP , v) = (20, 5), (20, 10), (30, 5), (30, 10) for BC, IO, HD, 1vs8
respectively. In other words, we imagine the total number of points in our labeled sets SP

and the number of features to be very small. For BC and IO, we also try a case when the
number of common features is a lot more (i.e. m1 = 25).

Now we report the best regularization penalties that maximize the accuracy of RLR
and RLRO respectively over all experiment runs at the granularity level of 10−2. The best
regularization penalty for RLR and RLRO were λ = (0.07, 0.04) for BC (m1 = 5), (0.04, 0.04)
for BC (m1 = 25), (0.02, 0.02) for IO (m1 = 4), (0.01, 0.02) for IO (m1 = 25), (0.08, 0.03) for
HD, and (0.08, 0.08) for 1vs8. The parameters for data join used for each of the datasets can
be found in the table below:

For all of the methods (logistic regression, regularized logistic regression, distributionally
robust logistic regression, and our distributionally robust data join), the learning rate used
was 7 ∗ 10−2 and the total number of iterations was 1500.

https://archive.ics.uci.edu/ml/datasets/breast+cancer
https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Table 3 Parameters used for distributionally data join (DJ) for UCI datasets.

BC (m1 = 5) BC (m1 = 25) IO (m1 = 4) IO (m1 = 25) HD 1vs8
rA 0.65 1.65 0.3 1.5 0.65 1.85
rP 0.65 1.65 0.3 1.5 0.65 1.85
κA 5 5 10 5 10 5
κP 2.5 2.5 5 2.5 5 15
k 1 1 1 1 1 1

Finally, we describe how we generated the data that was used to test how well DJ handles
distribution shift. First, define

β1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] and β2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

For the first group g = 1, the positive points and negative points were drawn from a
multivariate normal distribution with mean β1 and −β1 respectively both with the standard
deviation of 0.2:

x|y = +1, g = 1 ∼ N(β1, 0.2) and x|y = −1, g = 1 ∼ N(−β1, 0.2).

For the second group g = 2, the positive points and negative points were drawn from a
multivariate normal distribution with mean β2 and −β2 respectively both with the standard
deviation of 0.3:

x|y = +1, g = 2 ∼ N(β2, 0.2) and x|y = −1, g = 2 ∼ N(−β2, 0.2).

Now, for the first dataset S1 = {(x1
j , y1

j )}n1
j=1, we had the number of points from group 1

and from group 2 was 400 and 20 respectively. And we had it so that the number of positive
and negative points in each group was exactly the same: i.e. 200 positive and negative points
for group 1, and 10 positive and 10 negative points for group 2.

For the second dataset, S2 = {(x2
i , y2

i )}n2
i=1, the number of points from group 1 and from

group 2 was 200 and 2000 respectively. The number of positive and negative points in each
group was exactly the same once again here.

Our labeled dataset will be the first two coordinates of the fist dataset, meaning m1 = 2:

SP = {(x1
j [0 : 2], y1

j )}n1
j=1.

Then, we will randomly divide the second dataset so that the 70% of it will be used as
unlabeled dataset SA and the other 30% is to be used as the test dataset Stest.

SA = {x2
i }0.7n2

i=1 and Stest = {(x2
i , y2

i )}n2
i=0.7n2+1.

Note that m2 = 10.
The baselines that we consider for this synthetic data experiment are

1. Logistic regression trained (LR) on SP

2. Regularized regression trained (RLR) on SP with λ = 10
3. Distributionally logistic regression (DLR) trained on SP with r = 100, κ = 10.
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