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Abstract
Side channel attacks, and in particular timing attacks, are a fundamental obstacle for secure
implementation of algorithms and cryptographic protocols. These attacks and countermeasures have
been widely researched for decades. We offer a new perspective on resistance to timing attacks.

We focus on sampling algorithms and their application to differential privacy. We define sampling
algorithms that do not reveal information about the sampled output through their running time.
More specifically: (1) We characterize the distributions that can be sampled from in a “time oblivious”
way, meaning that the running time does not leak any information about the output. We provide
an optimal algorithm in terms of randomness used to sample for these distributions. We give an
example of an efficient randomized algorithm A such that there is no subexponential algorithm with
the same output as A that does not reveal information on the output or the input, therefore we
show leaking information on either the input or the output is unavoidable. (2) We consider the
impact of timing attacks on (pure) differential privacy mechanisms. It turns out that if the range of
the mechanism is unbounded, such as counting, then any time oblivious pure DP mechanism must
give a useless output with constant probability (the constant is mechanism dependent) and must
have infinite expected running time. We show that up to this limitations it is possible to transform
any pure DP mechanism into a time oblivious one.
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1 Introduction

There is always a gap between the way an algorithm is specified and described mathematically
and how it is implemented in a physical device and environment. Physical systems often
leak information to the environment, for example the power usage, heat radiation, running
time and much more. This leakage, in turn, can make systems which are secure in the
theoretical model, susceptible to attacks in practice which make them completely insecure.
These attacks are called “side channel attacks.” In this work we focus on timing attacks, i.e.
attacks that exploit the running time leakage.
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11:2 Resistance to Timing Attacks for Sampling and Privacy Preserving Schemes

One important field which is sensitive to timing attacks is Differential Privacy (DP) [9, 10].
DP deals with analyzing data sets in a way which protects the privacy of an individual
contributor to the collection. Informally, for an algorithm to be differentially private it needs
to have “close” output distributions on two data sets which differ by a single entity1. In this
work we consider the question of defining security against timing attacks. To this end, we
define new notions of resistance to timing attacks in the realm of sampling and differential
privacy, provide resistant constructions, and prove their security.

We formally define time oblivious DP mechanisms. We show that time oblivious pure DP
mechanisms have some undesirable properties and therefore the recommendation is to use
approximate DP in practice. Nevertheless, we show that if one can tolerate those properties
in applications, then any pure DP mechanism can be transformed to a time oblivious pure
DP mechanism with similar privacy guarantee.

1.1 A Very Brief History of Timing Attacks
Side channel attacks and in particular timing attacks have long history and we would not
attempt to survey it (see the companion paper [6] for more details). For instance, an
early work by Lipton and Naughton [21] showed a way to exploit timing information to
compromise the performance of dictionaries that employ universal hash functions. The work
of Kocher [20], showing how the running time of certain implementations of RSA and Diffie
Hellman schemes leaks information which can be used to break the systems and put the
issue in the forefront of research in the area.

One of the most efficient lattice based digital signature schemes is BLISS, suggested by
Ducas, Durmus, Lepoint and Lyubashevsky [7]. This scheme uses a bimodal Gaussian sampler
and was shown to be vulnerable to timing attacks, and in particular the sampling component
is not independent of the secret-key [11, 3], as well as other attacks. These vulnerabilities
might be the reason the scheme did not emerge as an option in the Post-Quantum NIST
standardization process.

The differential privacy (DP) setting has had its own share of issues with respect to
leaky implementations. Starting with Mironov [22] who showed that the problems of finite
precision arithmetic imply that pioneering implementations of differentially private databases
actually do not satisfy the desired properties. To address this Balcer and Vadahn [2]
considered designing DP-algorithms that can be implemented in strict polynomial time.
More recently, Andrysco et al. [1] showed that various concrete implementations differentially
private mechanisms are vulnerable to timing channels. Ilvennto [13] suggested implementing
the Exponential Mechanism with “Base-2 Differential Privacy,” which meant it could be
implemented with finite precision, but left open the issue of timing attack resilience.

1.2 Prevention Techniques
The main approach to prevent timing attacks is to use fixed time algorithms, often called in
the literature “constant time algorithms,” meaning algorithms that run the same amount of
time on all inputs.

There are two main drawbacks to this solution. First, in order for the algorithm to run
in fixed time on all the inputs, we need to know the worst case running time, a task that is
often challenging on its own. The second one is that even if we do know the running time,

1 There are two variants to differential privacy, pure and approximate. In the case of pure DP, the results
should be close pointwise.
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in many cases there is a very large gap between best case and worst case running time, or
even average case and worst case running time, and by making the algorithm run in the
worst case time on all inputs, we create huge overheads. It is also worth mentioning that the
second caveat can make many protocols and algorithms impractical and not usable when
efficiency is critical.

In addition, the survey in Section 1.1 demonstrates that the task of making an algorithm
run in fixed time is more subtle and challenging than meets the eye. Timing information can
leak from response times of the server, from I/O calls, from reading RAM memory or cache
memory and many more possibilities. In order for the algorithm to be truly and fully fixed
time, one must make sure to make everything fixed time, which is often very challenging,
and goes against hardware and software optimizations.

A common technique to thwart timing attacks in the public-key context is “blinding,”
first suggested by Chaum [4] in the context of signatures, where a value v is mapped into a
random looking one u prior to the encryption or signature, in a manner that allows to retrieve
the desired signature or encryption from the encryption or signature on u. Kocher [20]
suggested using blinding to make RSA implementations secure against timing attacks. The
blinding works by multiplying the input x by a fresh random element r of the group Z∗

N ,
i.e. a random element which is co-prime to N . To decode, a multiplication by the group
inverse r−1 is done at the end of the computation. Note that simply using the same r for
many inputs will not work, as the attack suggested by Kocher can recover r over time, and
even recover the exponent without knowing r. Hence, fresh r needs to be chosen in each
round. This example goes to show that using blinding as a technique to protect against
timing attack is often a subtle task, and that if implemented naively or incorrectly can lead
to a false sense of security.

A general approach to preventing leakage is to employ techniques from secure multi-party
computation, and split the input into various parts where leaking almost all of them does not
leak the actual values. It was first suggested in Ishai, Sahai and Waters [14] for thwarting
probing attacks (see [16] for a survey). This can be thought of as the “moral equivalent” of
blinding for a general functions. However, in case of timing, given that what is leaked is a
function of all parties (at the very least, the sum of their running times), it is not clear that
that it solves the problem. Nevertheless, it does point to the issue of the number of random
bits used to generate a sample.

1.3 Our Contributions and Technical Overview
Our goal in this work is to investigate the landscape of algorithms and systems that can be
implemented in a manner resistant to timing attacks, but we wish to expand the ‘Procrustean
bed’ of fixed time algorithms. We provide foundational treatment to the subject as well as
many algorithms and separation results.

In Section 2 We focus on the security against timing attacks in an information theoretic
manner and focuses on randomized algorithms and in particular on sampling algorithms.
We define sampling algorithms secure against timing attacks, “time oblivious” sampling
algorithms. Our main result of this section is a charterization of the the distributions that
can be sampled without leaking any information on the output.

▶ Theorem 2.3. Let D be a discrete probability distribution. Then D has a time oblivious
generating algorithm if and only if the following holds:
1. D has finite support.
2. D is rational, i.e. all the probabilities of possible outputs are rational.

FORC 2023
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We also give an optimal time oblivious algorithm to sample from a rational distribution
of finite support, where optimal means that any other time oblivious algorithm has slower
running time.

In Section 3 we concentrate on the implication of these results to Differential Privacy, i.e.
what happens to such mechanisms when their running time (or the number of random bits
used) is leaked (recall from Section 1.1 that there is a history of leakage problems in DP
implementations). Since many differential privacy mechanisms work by taking the input and
adding to it noise generated by some distribution with an infinite support, it is clear from
the discussion above that this approach is futile when trying to resist timing leakage.

We formally define time oblivious DP mechanisms:

▶ Definition 3.1. Let M : C → R be a randomized algorithm. We say M is (ε, δ)-
differentially private time oblivious mechanism if for every pair of neighboring datasets D

and D′, every subset S ⊆ R× N

P[(M(D), T (M(D))) ∈ S] ≤ eε · P[(M(D′), T (M(D′))) ∈ S] + δ.

We show that the situation is more complex. Some techniques, such as randomized
response, work here provided the biased coin flipped is rational. In case the range is
unbounded, as in counting in a database whose size is not known, then it is impossible to
guarantee useful results with very high probability. That is, for any (time oblivious pure DP
mechanism with an unbounded range there is a ρ > 0 s.t. for most databases the mechanism
outputs useless results with probability at least ρ (See Claim 3.4). But on the other hand, we
can take any DP mechanism and find a pointwise close (for each database) DP mechanism
that is time oblivious as we prove in Theorem 3.6:

▶ Theorem 3.6. Let M be any ε-pure DP mechanism with a discrete range R. For any
γ > 0, ε′ > ε there is a time oblivious ε′ pure DP mechanism Mobl such that ∥Mobl(D)−
M(D)∥T V < γ.

Finally, we supplement Section 2 with Appendix A which deals with the problem of
sampling a satisfying assignment of a DNF formula in a time oblivious way. We show how to
convert the well known non time oblivious algorithm into a time oblivious algorithm while
preserving the run-time. In addition, we show that leaking information on the formula is
unavoidable. Specifically, we show that any time oblivious algorithm for sampling a satisfying
assignment from a DNF formula that “hides the formula” must run in exponential time,
and therefore we show an inherent exponential gap for hiding the input of a randomized
algorithm.

▶ Theorem A.4. Sampling a uniform satisfying assignment of a DNF formula in an input
hiding time oblivious way cannot be done efficiently and requires Ω(2n) bits in expectation.

2 Time Oblivious Sampling: Definitions and Characterization

The challenge of designing an algorithm that generates a distribution D using a sequence of
unbiased coins C1, C2, . . . ∼ Bernoulli

( 1
2
)

was studied in the seminal work of Knuth and
Yao [19] in the mid 1970s. They described a greedy algorithm to generate D and showed that
it is optimal in terms of the expected number of coin flips. In addition they discuss properties
of the algorithm, such as expected number of coins used, optimality, computational efficiency
and more. A detailed discussion about their work can be found in Chapter 15 (“The random
bit model”) of Devroye [5]
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Their work appeared many years before the public discussion on side channel attacks
and they did not address this issue. One possible timing attack is to measure the number of
coin flips used by the algorithm. To see how this information may be useful, consider the
example of sampling from Geo

( 1
2
)

by tossing coins until we get for the first time “heads”,
and the number of tosses is the output generated. Clearly in this example, an adversary who
knows the number of coin flips knows exactly what element was sampled. Such leakage can
compromise cryptographic systems which rely on private randomness.

Another scenario where such leakage may be problematic occurs in the context of
Differential Privacy (DP) [10]. Informally, the requirement of DP is for neighbouring data-
sets, to have “close” output distribution. By close we mean up to some multiplicative and
additive factor. Removing the additive factor gives a stronger notion of DP, called pure
DP. One main motivation for DP is to be able to get meaningful statistics from data, while
preserving the privacy of the individual. A very common technique to achieve DP algorithms
is to sample from some noise distribution, for example the Laplace distribution, and add it
to the actual result.

As pointed by Balcer and Vadhan [2], the runtime of the noise generation can leak
information about the noise that was generated, which in turn can make the noisy output
not as hiding as well as in the idealized world. This may compromise the DP guarantee of
the algorithm, especially if it is a pure DP algorithm.

Therefore, in order for the algorithm to satisfy the DP definition, it is essential that the
running time of the noise generator will not give information to an adversary regarding the
value sampled. This is discussed more thoroughly in Section 3.

Distributed sampling

A case where the number of bits used clearly leaks is when the generation is done distributively,
using some sort of multi-party computation (e.g. when creating a root key or in the context
of differential privacy [8]). In this case, the amount of communication (in bits) between the
parties is directly related to the number of bits needed for the generation, so to keep the
value generated hidden we need to make sure that the number of random bits consumed
does not leak information.

2.1 Preliminaries, Notation and Definition

Let D be a discrete distribution on N, with di = P[D = i]. We say D is rational if each di is
a rational number, and D has finite support if: supp(D) := {j | dj > 0} is a finite set.

For a randomized algorithm A let R denote its random tape and R[i] ∼ Bernoulli
( 1

2
)

is the ith bit in the tape. Then Rn is the n-bit random string: R[0]R[1] . . .R[n − 1]. We
assume a randomized algorithm A reads the tape sequentially, and after reading Rn decides
deterministically, after a finite amount of steps, whether to return an output or read R[n]
from the tape. The output distribution of A over random tape R will be denoted by O(A),
and the number of bits read from the random tape by A is the random variable (R.V.) T (A).

A useful way to view the generation of O(A) by Knuth and Yao is to consider R as
defining a random walk on an infinite binary tree in which going left corresponds to reading
a 0 and going right corresponds to reading a 1, for this reason we consider a binary sequence
a0 . . . an as a node. Since A is deterministic given Rn+1 = a0 . . . an, then for the node
a0 . . . an in the tree A either halt and outputs, or A “walks” to either a0 . . . an0 or a0 . . . an1
with equal probability, 1

2 .

FORC 2023



11:6 Resistance to Timing Attacks for Sampling and Privacy Preserving Schemes

In light of the view above we define the ith level of the tree to be the set of all binary
sequences of length i. We will abuse the notation and use a0 . . . ai−1 to denote the correspond-
ing integer associated with the binary sequence. We say that a0 . . . ai−1 precedes b0 . . . bi−1
if it is smaller as an integer. We say that A outputs on a binary sequence a0 . . . ai−1 if
conditioned on Ri = a0 . . . ai−1 the algorithm reads the first i bits of R and outputs before
reading R[i]. The ith level is called an output level of A if A outputs on some sequence
a0 . . . ai−1 in that level. The set of all output levels of A is denote by L(A). Finally T (A)
will denote the distribution of the number of bits A read from the random tape R.

When considering the runtime of a randomized algorithms an important resource is
the number of random bits that are read from the random tape. Having this number be
independent of the instance generated is a prerequisite to time obliviousness. Furthermore,
once the required number of random bits has been read, the problem is a deterministic
computation of a mapping and this can be performed in some worst case time for the given
size. So at least in principle there is an independent implementation.

Motivated by the discussion above, we make the following definition:

▶ Definition 2.1. We say A is a time oblivious generating algorithm if its output
distribution and running time distribution are independent, meaning O(A) and T (A) are
independent random variables.

2.2 Characterization of Time Oblivious Distributions
A natural question to ask is what distributions can be generated in a time oblivious way?
For example, can we generate the distribution Geo( 1

2 ) that was discussed at the beginning
of the section? What about sampling a biased coin where the probability of ’1’ is p and ’0’
otherwise? Can we do it for all values of p? We focus on the exact model, meaning we want
to sample from the exact distribution and not some approximation.2 Consider the following
“separating bit” algorithm for sampling a biased coin with bias p: Let p = 0.p1p2 . . . be the
binary expansion of p, we toss fair coins x1, x2, . . . to generate a number x between 0 and 1,
x = 0.x1x2 . . .. We stop in the first index i where pi ≠ xi we return xi. We call the algorithm
“separating bit” because we toss coins until we find the first index the separates the binary
representation of p from the binary representation of the number x we generate.

Notice that:

▷ Claim 2.2. Let p be the bias of the generated coin then:
1. The “separating bit” algorithm is not time oblivious.
2. The expected number of random bits read by the algorithm is 2.

Proof.
1. If the algorithm produced an output after a single coin flip, we know that the result of

the coin flip was 1− p1 and therefore the output is 1p1=1.
2. Each coin has probability 1

2 to be the separating bit, therefore the number of bits read is
Geo( 1

2 ) and the expected amount of bits read is 2. ◁

While Claim 2.2 shows that the separating bit algorithm is not time oblivious for all p, it
does not mean there is no time oblivious algorithm to toss a p-biased coin to some values of
p ̸= 1/2. We show that we can toss a p biased coin iff p is rational. More generally, we will
show:

2 For an example of previous work on exact sampling, consider Feldman et al. [12] who addressed the
issue of how many different types of coins one needs in order to generate a die roll in an exact manner.
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▶ Theorem 2.3. Let D be a discrete probability distribution. Then D has a time oblivious
generating algorithm if and only if the following holds:
1. D has finite support.
2. D is rational, i.e. all the probabilities of possible outputs are rational.

This characterization answers the questions above, we cannot sample from Geo( 1
2 ) in a

time oblivious way, and we can generate a biased coin if and only if p is rational. We will
prove the theorem by showing each direction separately, and begin by showing:

▶ Lemma 2.4. If a distribution D has a time oblivious algorithm, then it is rational with
finite support.

Proof. Let A be a time oblivious generating algorithm for D. Since A has output distribution
D, it means in particular that it outputs at some level, i.e. L(A), is not empty. Let k be the
first output level of A. Denote by mk the number of output nodes of length k, and by ej the
number of nodes which output j in that level. The number of sequences of length k is 2k and
so we get that: 0 < mk ≤ 2k <∞. Observe that the probability to get an output j in level
k is exactly ej

mk
. Since A is time oblivious, conditioning on T (A) = k yields the same output

distribution D and so for all j we have dj = ej

mk
and therefore dj ∈ Q and D is rational.

Notice that dj = ej

mk
means that dj > 0 implies that dj ≥ 1

mk
and therefore |supp(D)| ≤ mk.

We get that D is rational with finite support. ◀

We will later prove the other direction of Theorem 2.3 by describing a time oblivious
algorithm to output D. In the binary tree view described in Section 2.1 being time oblivious
means that in each output level the conditional distribution given that the level was reached
is D (i.e. the output nodes of the level are distributed exactly according to D). From now
on, in light of Lemma 2.4, if D is generated by a time oblivious algorithm we may assume
supp(D) = {1, . . . , n} and use the notation dj = pj

qj
for the output distribution and let

q := LCM(q1, .., qn).3 We now prove some properties of general time oblivious algorithms.
We will need the following definition:

▶ Definition 2.5. A node a0 . . . an is called reachable if no prefix a0 . . . am with m < n is an
output node.

The following lemma applies for any time oblivious algorithm A:

▶ Lemma 2.6. Let A be a time oblivious algorithm with a finite and rational output distribu-
tion D where the LCM of the probabilities is q. Let tk be the number of nodes in level k that
are either unreachable or output nodes, and mk the number of output nodes at level k, then:
1. The number mi of output nodes in level i is a multiple of q.
2. tk satisfies: tk =

∑k
i=0 2k−imi. In particular tk is a multiple of q.

Proof. Proof in Appendix B. ◀

A corollary of Lemma 2.6 is:

▶ Corollary 2.7. Let D be a discrete distribution. D can be generated in finite worst case
complexity if and only if D is rational with finite support and q = 2k.

Proof. Proof in Appendix B. ◀

3 The LCM is the Least Common Multiple of a set of natural numbers, that is the smallest natural
number that is divisible by the given set of numbers.

FORC 2023



11:8 Resistance to Timing Attacks for Sampling and Privacy Preserving Schemes

We now describe a time oblivious algorithm that generates D. Following Lemma 2.4, we
assume that the support of D is [n], and D is given by a list of length n of the probabilities
di = pi

qi
for co-prime pi and qi. Since the distribution has finite support, q = LCM(q1, . . . , qn)

can be computed efficiently (and we assume is part of the input). By Lemma 2.6 we know
that any time oblivious algorithm should output a multiple of q elements in each level.
Observe that if a level has q reachable nodes then we can partition these nodes into sets
{Si}n

i=1, where |Si| = di · q = pi

qi
· q ∈ N and output i at Si.

With this in mind, the algorithm works as follows: the algorithm iterates level by level
and if there are q reachable nodes then it assign them q outputs similarly to the Si’s above.
Picking arbitrary reachable nodes may be inefficient (even though it will be optimal in terms
of randomness, the formal definition may be found in Definition 2.12). To make the algorithm
efficient the algorithm picks consistently the q left most reachable nodes in each level. This
is now formally described in Algorithm 1:

Algorithm 1 Gen(D,R).

1: q ← LCM(q1, . . . , qk)
2: n← 0
3: while True do
4: n← n + 1
5: if (2n mod 2q) ≥ q then ▷ If there are q reachable nodes in level n

6: if (Rn mod 2q) ≤ q − 1 then ▷ Is Rn one of the q leftmost reachable nodes
7: Return GetValue(D, (Rn mod 2q))

Algorithm 2 GetValue(D, j).

1: q ← LCM(q1, . . . , qk)
2: s0 ← 0
3: for i = 1 to k do
4: si ← si−1 + q · pi

qi

5: Return i such that si−1 ≤ j < si ▷ Binary Search the value of i

The following lemma justifies the comments in Algorithm 1 and specifies properties of its
output nodes:

▶ Lemma 2.8.
1. The number of reachable nodes in level n is exactly 2n mod 2q.
2. Let a0 . . . an−1 be the node in the tree that represents reading the bits a0, . . . , an−1 from the

randomness tape. The number of reachable nodes preceding a reachable node a0 . . . an−1
of Algorithm 1 is a0 . . . an−1 mod 2q.

3. Let tn be the number of nodes in level n which are either unreachable or output nodes.
For all n we have: 2n − tn < q.

Proof. Proof in Appendix B. ◀

We now finish the proof of Theorem 2.3 and show that Algorithm 1 is time oblivious:

▷ Claim 2.9. Algorithm 1 is time-oblivious algorithm and generates D.
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Figure 1 Distribution Generating Tree of D0 using Algorithm 1.

Proof. By Parts 1,3 of Lemma 2.8 at each level n of Algorithm 1 there are q output nodes that
correspond to the binary expansion of {⌊ 2n

2q ⌋·2q, ⌊ 2n

2q ⌋·2q+1, .., ⌊ 2n

2q ⌋·2q+q−1} and Algorithm 2
outputs i on the nodes that correspond to the numbers {⌊ 2n

2q ⌋ · 2q + si−1, .., ⌊ 2n

2q ⌋ · 2q + si− 1}.
Therefore we get that P[O(A) = i | T (A) = n] = 1

q · q
pi

qi
= di which implies that O(A) is

D when conditioning on T (A) = n. Thus O(A) and T (A) are independent random variables.
◁

To demonstrate how the algorithm works, we show an example of the generating tree for
the distribution: D0 =

{ 1
2 , 1

3 , 1
6
}

.

▶ Example 2.10. The LCM q of the denominators of D0 is 6 and so:

D0 =
{

3
6 ,

2
6 ,

1
6

}
This gives the following distribution generating tree:

2.3 Randomness Efficiency
We now show the sampling algorithm is the most efficient one in terms of randomness. To

formalize what it means to be most efficient in terms of randomness, for an algorithm A let
ℓi(A) be the probability that A produces an output on level i and denote by Sk =

∑k
i=1 ℓi(A),

the probability that the algorithm will produce an output up until, and including, level k.
▶ Definition 2.11. Let A and A′ be two algorithms with the same output distribution D.
We say A (weakly) dominates A′ in efficiency if for all k: Sk(A′) ≤ Sk(A). Furthermore,
we say A strictly dominates A′ if A weakly dominates A′ and there exists some k for which
Sk(A′) < Sk(A).

With this definition we can now define what it means for an algorithm to be “optimal”:

▶ Definition 2.12. An algorithm A that generates D is optimal, if for all algorithms A′

that generate D, A (weakly) dominates A′.

▶ Remark 2.13. For non-negative integer valued random variable X: E[X] =
∑∞

k=1 P[X ≥ k]
and therefore if A weakly dominates A′ then E[T (A)] ≤ E[T (A′)] which means that if A is
optimal then the expected number of random bits used by A is the minimum possible.

FORC 2023



11:10 Resistance to Timing Attacks for Sampling and Privacy Preserving Schemes

We will show that Algorithm 1 is optimal. First we need:

▶ Observation 2.14. Let tk be the number of unreachable or output nodes level k, then
Sk = tk

2k .

Proof. Proof in Appendix B. ◀

▶ Theorem 2.15. Let D be a finite and rational distribution where the LCM of the denomi-
nators of the probabilities is q, then Algorithm 1 is an optimal time oblivious algorithm for
generating D.

Proof. Proof in Appendix B. ◀

In addition to its optimality Algorithm 1 is essentially unique in the following sense:

▷ Claim 2.16. All optimal algorithms have the same number of output nodes in each level
as Algorithm 1.

Proof. Let A be Algorithm 1 and let A′ be another optimal time oblivious algorithm for D.
Since A and A′ are both optimal we have: ∀k : Sk(A) = Sk(A′). By definition of Sk this
implies ∀k : ℓk(A) = ℓk(A′). Therefore A and A′ have the same output levels with q output
nodes at each output level. ◁

We can now estimate the number of random bits Algorithm 1 reads from the tape:

▶ Lemma 2.17. The expected number of bits read from the tape, E[T (A)], by Algorithm 1 is
log2 q + Θ(1).

Proof. Proof in Appendix B. ◀

We now analyze the complexity of Algorithm 1. Recall that n = |supp(D)|. We assume
the input is a list of numbers (pi, qi), the LCM q and the size of the support n = |supp(D)|:

Preparation time worst case O(n). The array of si described in Algorithm 2 can be
computed ahead of time in O(n) running time by iteratively applying si = si−1 + q · pi

qi
.

Sampling time expected O(log q). Remember that from Lemma 2.17 we know that the
expected number of bits the algorithm reads is log2 q + Θ(1) bits. The algorithm takes
extra O(log q) time to binary search what to output in Algorithm 2 so the sampling time is
O(log q). One should keep in mind that the first level that is an output level is ⌈log2 q⌉, and
therefore the loop in Algorithm 1 may start at that level. Similar analysis to Lemma 2.17
implies that the expected number of iterations executed by the loop is Θ(1).

Space complexity worst case O(log q). We can deduce O(log q) space complexity in
expectation since T (A), the expected number of bits read from the tape, is log2 q + O(1) and
the memory needed for Rn, 2n is proportional to T (A). To get O(log q) worst case, notice
that the algorithm doesn’t actually need to know Rn, 2n but only (Rn mod 2q), (2n mod 2q)
and this can be maintained using O(log q) bits.

Algorithm 1 is also oblivious in the much stronger sense: all reachable nodes have the
same control-flow i.e. they execute each line in the algorithm exactly the same number of
times, and in the same order. Therefore, given a fixed time implementation of mod 2q, and
a fixed time implementation that compares two numbers of size up to 2q the running time of
this implementation of A will not leak information on the output4.

4 Fixed time mod operations are required since in some circumstance even having the same control flow
does not guarantee fixed time, as was shown by the Hertzbleed attack [24]
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Notice that the parameters above cannot be improved. Preparation time is essential
for general D, since any sampling algorithm must read the probabilities of the outputs.
The sampling time cannot be improved by Lemma 2.17, it also cannot be worst case by
Corollary 2.7. Space complexity Ω(log q) is needed to represent output range of size Ω(q).

From the discussion in this section, we conclude that defending against time attacks may
cost unbounded slowdown, i.e.:

▶ Observation 2.18. For every n there exist a distribution D for which E[T (A)]/E[T (A′)] ≥ n

where A′ is the optimal generation algorithm for D (not necessarily time oblivious) and A is
any time oblivious algorithm for D.

Proof. Consider the distribution D of a biased coin with p = 1
22n . Since the separating bit

algorithm takes 2 random bits in expectation we know that E[T (A′)] ≤ 2 since A′ is optimal.
Let A′′ be Algorithm 1. Since it is optimal, we deduce from Remark 2.13 that E[T (A)] ≥

E[T (A′′)]. A′′ has one output level which is 2n and therefore E[T (A)] ≥ 2n. By dividing
these two inequalities we conclude that E[T (A)]/E[T (A′)] ≥ n. ◀

We refer the intrested reader to Appendix A where we consider time oblivious randomized
algorithms that does not leak information on their input, as well as their input from the
running time. We show that the algorithm of Karp and Luby [17, 18] to sample a satisfying
assignment from a DNF formula, can be transformed to be time oblivious and efficient, but
there is no efficient time oblivious algorithm that does not leak x from the running time.

2.4 Approximate Time Oblivious Sampling a Distribution
The “time oblivious” condition may sometimes be too strict, since many distributions used in
real life applications do not have a finite support or rational probabilities. Moreover, even if the
distribution does have finite support and rational probabilities, in some situations Algorithm 1
can be considerably slower than the Knuth-Yao sampler (that is optimal among all samplers
in the random coin flips model). In other situations the time oblivious sampler has similar
number of coin flips used to the Knuth-Yao sampler, e.g. when sampling a uniform integer
in [n]. Therefore it is desired to have a definition of “approximate obliviousness.”

We stress that whether using an approximation is an appropriate solution depends on the
specific application of the sample in a randomized algorithm as well as on the approximation’s
guarantee. For example, if M is a pure DP mechanism, and the sampling time used by
M leaks a small amount of information on the database, then M may not be pure DP
given the running time. On the other hand this sort of approximation can be applied to
an approximate DP mechanism with a small cost to δ. We will consider time oblivious DP
mechanism in more detail in Section 3.

We suggest the following definition for “approximate time oblivious sampling” that
preserves the privacy of the sample even when the running time has leaked. Note that for
sampling algorithm A we let O(A) be its output. The definition essentially says that given
the running time the conditional distribution is close to the original in a point-wise sense.

▶ Definition 2.19. Let D be a distribution and X ∼ D. An algorithm A is (ε, δ)-approximate
time oblivious sampler of D if for any T ⊆ N and for any S ⊆ supp(D):

e−εP[X ∈ S]− δ ≤ P[O(A) ∈ S | T (A) ∈ T ] ≤ eεP[X ∈ S] + δ.

The main benefit of considering the approximation above is that, as we shall see, the
sampling complexity will not depend on the LCM of the distribution. If δ = 0 then we say A
is a pure time oblivious sampler of D and if δ > 0 then it is an approximate time oblivious
sampler. Allowing (pure) type of approximation yield that all distributions of finite support
can be sampled approximately:
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▷ Claim 2.20. Let D be a discrete distribution with support size n and let

H := H(D) = max
x∈supp(D)

log
(

1
P[x]

)
.

Then there exist an ε-pure time oblivious sampler of D that uses H + log 1
ε + O(1) random

bits in the worst case.

Proof. Proof in Appendix B ◁

We note that in the pure variant of Definition 2.19, only distributions of finite support
can be sampled, as supp(D) must contain all the outputs in the first output level of A. We
will use this observation again in Section 3. We also note that the number of coin flips used is
essentially tight, since a pure sampler that outputs after k coin tosses must satisfy Heε ≥ 2k,
otherwise the maximizer of H would not satisfy the pure sampling condition.

We can replace of the dependence on H(D), by a dependence on δ > 0 if we allow the
use of an (ε, δ)-approximate time oblivious sampler:

▷ Claim 2.21. Let D be a discrete distribution with supp(D) = [n], then there exist a
(0, δ)-approximate time oblivious sampler that uses log n + log 1

δ + O(1) bits worst case.

Proof. Proof in Appendix B. ◁

Many distributions used in applications are of infinite support, e.g. the geometric distribu-
tion, discrete Laplace, etc. With respect to Definition 2.19 one must consider an approximate
time oblivious sampler (that is not pure). Notice that a consequence of Definition 2.19 is
that every subset S ⊆ supp(D) of measure > δ must satisfy that supp(O(A)) ∩ S ̸= ∅. This
suggests that the the support of the distribution generated by the sampler should be of
measure at least 1− δ.

In general consider a distribution D and let Sδ ⊆ supp(D) denote a subset of minimal
size that satisfies for X ∼ D: P[X ∈ Sδ] ≥ 1− δ.

▷ Claim 2.22. For any distribution D there exist an (0, δ) approximate time oblivious
sampler that uses log(|Sδ/2|) + log 1

δ + O(1) random bits in the worst case.

Proof. To ease the notation we assume that supp(D) = N, X is a random variable with
distribution D, and pi = P[X = i]. Also assume Sδ/2 = [n] for n = |Sδ/2|. Let D′ be the
distribution supported on [n] in which the probability to get i is qi where:

qi =
{

pi + P [X ̸∈ [n]] , if i = 1
pi, otherwise

}
By applying the sampler of Claim 2.21 to D′ we obtain a sampler that uses log n + log 1

δ +
O(1) random coins. Notice that since the time is fixed and ε = 0 then Definition 2.19
coincides with total variation (TV) distance of distributions. Therefore since by construction
D and D′ are of TV distance δ

2 and D′ and the distribution produced by Claim 2.21 is of
distance δ

2 the sampler distribution is of TV distance δ and it outputs on a single time,
therefore satisfies Definition 2.19. ◁

We remark that for distributions of infinite support tail bounds imply bounds on Sδ

and therefore imply bounds on the efficiency of an approximate time oblivious sampler. For
example, let D be a discrete distribution on Z satisfying P[|X| > t] ≤ c1exp(c2t) for some
positive constants c1, c2 and t large enough (i.e. D is discrete, sub-exponential distribution).
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The tail bound implies that |Sδ| = O
(
log 1

δ

)
and thus the approximate sampler is efficient

and needs O
(
log 1

δ

)
random bits by Claim 2.22.

This in particular applies to the sub-exponential distributions such as geometric and
Laplace which are commonly used in differential privacy.

3 Differential Privacy Mechanisms and Timing Attacks

We gave a full characterization on the distributions that can be sampled in a time oblivious
way. This can be interpreted as a negative result for time oblivious sampling, since many
algorithms use distributions that are not of finite support and also assume that elements may
have irrational probabilities of being an outcome. A prominent example in the context of
differential privacy (DP) is the application of a Laplace(ε) R.V. that has an infinite support.
It is often sampled inside a differentially private mechanism, but by Theorem 2.3 it cannot
be sampled by a time oblivious algorithm. Therefore the execution of the mechanism will
actually leak information that will make it non-DP (at least in the pure sense).

This may be considered as the conceptual starting point of the work of Balcer and
Vadhan [2]. In their work, they addressed the problem of DP mechanisms implemented on
“finite computers” to address the issues of timing attacks and infinite output range. They
constructed DP algorithms on finite range, with worst case running time to handle those
issues and emphasized that each sampling must be of a distribution D which is finite an
rational.

One issue that motivates the formal discussion of the sampler as part of the timing of a
mechanism is that by Corollary 2.7 we get that rounding to rationals, as done in [2], isn’t
enough and the rounding must be to dyadic rationals; this was first observed in the work
of [8] in relation to DP. This issue is clearly dependent on the model of computation, but
shows the delicacy needed in the rounding procedure to ensure worst case running time.

Another issue is that the sampling running time of an algorithm is affected by the running
time of the sampler it uses. By Observation 2.18 it may be that a proposed algorithm
originally uses samples that take expected O(1) time to generate, but using the time oblivious
samples must run in running time ω(1). This may affect total performance of an algorithm.

The main aim of this section is to define time oblivious DP mechanisms and specifically,
time oblivious pure DP mechanisms and investigate their properties. Even though time
oblivious sampling is restrictive, we show that time oblivious pure DP mechanism are far
more flexible. In particular, we prove that any pureDP mechanism can be transformed to
a time oblivious with almost the same guarantees. We begin with the definition of time
oblivious DP mechanism.

▶ Definition 3.1. Let M : C → R be a randomized algorithm. We say M is (ε, δ)-
differentially private time oblivious mechanism if for every pair of neighboring datasets D

and D′, every subset S ⊆ R× N

P[(M(D), T (M(D))) ∈ S] ≤ eε · P[(M(D′), T (M(D′))) ∈ S] + δ.

In the definition above, if δ = 0 the mechanism is said to be pure time oblivious DP,
otherwise it is approximate time oblivious DP. C denotes the set of possible database (rather
then a distribution), and we assume that C is connected as a graph with respect to the
neighbouring relation. The time oblivious DP condition does not impose any condition on
M(D) in terms of finiteness or rationality. The time oblivious DP condition means that levels
in the distribution generating trees from Section 2.2 satisfy that the conditional distribution
on neighbouring datasets are almost the same up to the prescribed parameters.
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The following lemma says that the time oblivious condition implies that all databases
have the same outputs at each level.

▶ Lemma 3.2. Let M be a time oblivious ε-pure DP mechanism on a connected set of
databases, then for any two databases D and D′′:

supp(M(D)|T (M(D)) = t) = supp(M(D′′)|T (M(D′′)) = t).

Proof. By the connectivity of C it’s enough to show this for neighbouring databases D, D′.
If r ∈ R is in the support of the conditional distribution on level n of M on D then by the
pure DP condition:

0 < P[M(D) = r | T (M(D)) = t] ≤ eε · P[M(D′) = r | T (M(D′)) = t]

Therefore P[M(D′) = r | T (M(D′)) = t] > 0 and r is in the support of the conditional
distribution on level t of M(D′). ◀

Pure DP mechanism for approximate counting

One fundamental problem considered in the DP literature is counting. That is, given a
database D output an approximation to the number of elements satisfying some property.
We now devise a time oblivious pure DP mechanism for approximate counting up to a factor
2. This example captures critical properties of time oblivious DP algorithms.

Let c(D) be the true count of D. For each database we need to construct a tree and by
Lemma 3.2 at each level we must have the same outputs for all possible databases D. The
mechanism will have at level i + 2 only one possible output which is 2i. If 2k ≤ c(D) < 2k+1

the mechanism will have one output node in each of the levels 2, .., k + 1, k + 4, k + 5 . . . . , at
level k + 2 the algorithm outputs on 2k+1 − c(D) + 1 of the nodes the value 2k, while at level
k + 3 the algorithm outputs 2k+1 on 2c(D)− 2k+1 + 1 nodes. Notice that

k+1∑
i=2

2−i + (2k+1 − c(D) + 1)2−(k+2) + (2c(D)− 2k+1 + 1)2−(k+3) +
∞∑

i=k+4
2−i = 3

4 .

Therefore by adding another output at the 2nd level which will always be 1 we get a
probability distribution on output nodes and with probability at least 1

4 the output is either
2k or 2k+1 so this algorithm approximates c(D) up to factor 2 with constant probability.
Moreover, notice that neighboring databases have identical trees up to 1 node in one level
k + 2 and 2 nodes in level k + 3. This algorithm is ln 3 pure DP since at each output level
the number of output nodes changes by at most 2 and since there is at least one output node
of value 2i at level i + 2 we get that if there are s output nodes at the level then it’s enough
to have ε satisfy s + 2 ≤ eεs which holds for ε = ln 3 since s ≥ 1.

The mechanism above has several drawbacks, which we will soon show must exist in all
time oblivious pure DP mechanisms. One drawback is that with constant probability the
mechanism outputs an irrelevant output since with probability 1

4 the output is 1 for any
database. Another drawback is that the amount of randomness used scales with c(D) in
contrast to the not time oblivious algorithm of adding a discrete Laplace noise to c(D).

We turn to specifying and proving the claims stated above. We begin with showing
that a time oblivious pure DP mechanism on infinitely many databases gives an irrelevant
output with some constant probability. To define what this means we assume we have a
utility function U : C × R → {0, 1} for which U(D, r) = 1 if r is useful information of D.
We say that U is sofic if for any r ∈ R there are only finitely many databases D such that
U(D, r) = 1.
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▶ Definition 3.3. For a mechanism M the utility of the mechanism on a database D is
defined by UM(D) = E [U(M(D))], we omitM when it is clear from context. The guaranteed
utility of a mechanism M is GU(M) := infD∈C U(D).

We show that with some constant probability the algorithm gives an irrelevant answer
for most databases using the definition of guaranteed utility.

▷ Claim 3.4. Let U be a sofic utility function. Then any time oblivious pure DP mechanism
M with infinitely many possible databases has GU(M) ≤ 1− 1

2s where s is the first output
level of M.

Proof. Proof in Appendix B. ◁

Similarly to guaranteed utility, we define the guaranteed expected runtime of the algorithm
to be GT (M) = supD∈C E[T (M(D))]. Even though it seems natural to require for a time
oblivious ε-pure DP to have a GT (M) finite (with some parameter that may depend on ε) it
cannot be done without serious consequences on the utility of the mechanism.

▶ Proposition 3.5. Let U be a sofic utility function and M is a pure DP mechanism on
infinitely many possible databases. Then GT (M) is finite implies that GU(M) = 0

Proof. Proof in Appendix B. ◀

We remark that all proofs above can be easily modified to handle a utility function with
range [0, 1] such that for every r ∈ R and x > 0 there are finitely many D with U(r, D) > x.

It is natural to wonder how does the expressive power of pure DP mechanisms compare to
the expressive power of time oblivious pure DP mechanisms, i.e. does a ε pure DP algorithm
has a time oblivious counterpart?

We now get to the main result of this section. We prove that any ε-pure DP mechanism
M has a time oblivious pure DP mechanism with almost the same security guarantee and
utility. Therefore this shows that pure DP mechanisms can be defended against timing attacks
with a small cost to their utility and and security guarantees.

▶ Theorem 3.6. Let M be any ε-pure DP mechanism with a discrete range R. For any
γ > 0, ε′ > ε there is a time oblivious ε′ pure DP mechanism Mobl such that ∥Mobl(D)−
M(D)∥T V < γ.

Proof. The idea is to use a similar construction to the approximate counting mechanism
described above by providing that each level in the tree will correspond to a different element
in R. Intuitively we will view the levels of the tree as an “abacus”, and the change of the
probability distributions of neighbouring datasets will correspond to change in the number
of beads that outputs in each layer.

We assume R = {ri}∞
i=1, and we start by picking s, the depth of the first input level

which we will decide later, and an integer t which corresponds to the number of output nodes
that must be in every level.

The element ri will be output at level s+i. For the mechanismMobl to have outputs close
to M(D) for any D we need that the probability to output at the level that corresponds to
ri is roughly pi = P[M(D) = ri]; let qi denote the probability to output ri in Mobl(D). We
pick qi ≈ t

2s+i + 2s−t
2s pi. Define N+

i = ⌈(2s+i − t2i)pi⌉+ t and N−
i = ⌈(2s+i − t2i)pi⌉+ t− 1

to be the number of output nodes in level s + i with the two options for estimating qi from
below and from above. Notice that by the choice of N+ and N− we know that

1 + 1
2s
≥

∑
2−(s+i)N+

i ≥ 1 ≥
∑

2−(s+i)N−
i ≥ 1− 1

2s
.
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Therefore, there exists a signing of the Ni (this is done by looking at the binary expansion
of the sum above) that gives a probability distribution. Notice that the following inequalities
hold

N+
i

2s+i
≥ P[Mobl(D) = ri] ≥

N−
i

2s+i
.

To bound the privacy guarantee ofMobl we need to bound N+
i (D)/N−

i (D′) for neighboring
database D, D′, where we abuse the notation to describe which Ni belongs to which database.
But since M is ε-pure DP we get that N+

i (D)/N−
i (D′) ≤ teε+1

t−1 . Therefore by picking t

large enough such that teε+1
t−1 ≤ eε′ we can ensure the DP guarantee and by picking s large

enough that implies t+1
2s < γ (The extra masking of t nodes at each output level + 1 for

rounding) the proof follows. ◀

▶ Remark 3.7. Notice that since ∥Mobl(D)−M(D)∥T V < γ it follows that for any utility
function (not necessarily sofic) U : C ×R → [0, 1], the utility of UMobl

(D) ≥ UM(D)− γ.
The proof above produces a tree for Mobl(D) each D ∈ C by picking the signing for

the Ni. We leave it as an open question to provide mechanisms M(D) for which the time
oblivious pure DP mechanism M(D) is efficiently computable from the input D.

By Theorem 3.6 we get that any pure DP mechanism with a discrete range has a time
oblivious pure DP with mechanisms with similar privacy guarantee. We saw in Proposition 3.5
that infinite guaranteed expected running time cannot be avoided for pure DP mechanism.
Approximate DP mechanisms do not suffer from this issues.

▷ Claim 3.8. There is a (0, δ) mechanism for approximate counting up to an additive factor
1
δ with expected number of used bits O

(
log 1

δ

)
.

Proof. Return the true count + a uniform number in [1, . . . , 1
δ ], with the uniform number

sampled by Algorithm 1. ◁

4 Future Work and Open Problems

Our investigation focused on the question of time oblivious sampling, and we used a combi-
natorial lens to give a full characterization of the distributions that can be sampled from in
a time oblivious way. These distributions have a finite support and rational weights. The
combinatorial perspective also helped us define an algorithm to sample from such distribu-
tions and show it is optimal in a strong sense of the randomness used. In certain situations
distributions are not given explicitly but are given in a rather succinct form. A notable
example is sampling via a Markov Chain process which have found numerous applications in
TCS. This lead us to ask:

▶ Question 1. Is it possible to efficiently convert a Markov Chain algorithm, which samples
from a finite and rational distribution, into a time oblivious algorithm with exactly the same
output distribution?

A natural consumer of our results is the area of differential privacy. Here we had both
bad news and good news: the bad news are for mechanisms that we require to produce useful
results (where the utility is some arbitrary but non trivial function of a points in the domain
and range). It is impossible to guarantee usefulness with high probability ((1− g(n) where
g is a function whose limit is 0). On the other hand we argued that it is possible to take
any mechanisms and make it time oblivious without changing the distribution by much (and
hence it utility) while preserving its differential privacy.



Y. Ben Dov, L. David, M. Naor, and E. Tzalik 11:17

▶ Question 2. One important question is whether the process of turning a DP mechanism
into a timing oblivious one can preserve the computational efficiency of the scheme.

In this paper we revisited the issues arising from timing attacks and specifically investigated
Time oblivious sampling, where the emphasis was an exactly producing a distribution. In a
companion paper we explore notions and methods for protecting keyed functions from timing
attacks [6].
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A The Good News and the Bad News: DNF Sampling
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each term Ci has 1 ≤ ℓi ≤ n literals and is of the form Ci = yi
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2 ∧ . . . ∧ yi

ℓi
where each
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j is a literal. It is worth noting that the task of finding a satisfying assignment to a DNF

formula is easy and straightforward, however counting the number of satisfying assignments is
#P − complete. Jerrum, Valiant and Vazirani [15] provide a general discussion on generating
a uniform object given an efficient algorithm that approximates to the counting problem.
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Karp and Luby [17, 18] tackle the other direction. They describe an efficient algorithm for
sampling a uniformly satisfying assignment to a DNF formula and use it for approximate
counting.

Let ϕ = C1 ∨ . . . ∨ Cm be a DNF formula with n variables, and let Si be the set of
satisfying assignments to term Ci. Let ℓi be the number of literals in Ci and note that
|Si| = 2n−ℓi . Further denote by S =

∑
i |Si| and by pi = |Si|

S , which is the relative weight of
Ci. The algorithm works as follows:
1. Sample a clause with probability proportional to its weight, meaning clause Ci is chosen

with probability pi.
2. Sample a random assignment π ∼ Si.
3. Let k be the number of clauses that are satisfied by π. With probability 1

k return π, else
restart the algorithm from the beginning.

In order to convert the algorithm to be time oblivious, for Step 1, notice that the running
time may leak information about the chosen clause. The LCM q of the distribution in step 1
is

∑
j |Sj |. We can therefore use Algorithm 1 with q =

∑
j |Sj | and conclude that Step 1 is

done in a time oblivious way. Note that ∀i : |Si| ≤ 2n and there are m clauses, therefore the
expected running time of this step is O(n + log m).

Next, the running time of Step 2 may leak information about the chosen assignment. If
the clause has ℓ literals, one can simply choose a uniform assignment to the n− ℓ remaining
literals. However, this does reveal what ℓ is, which yields information about what clause was
chosen in the case where the clauses are of different sizes. To hide ℓ, we toss n coins and
ignore the first ℓ, thus making Step 2 of the algorithm run in time independent of ℓ and the
chosen assignment, making it time oblivious. This gives us a running time of n always.

Finally, for Step 3, we need to toss a 1
k -biased coin. To make this step time oblivious

we need to hide the value of k, which is the number of satisfied clauses by the assignment
π chosen in Step 2. Since there are m clauses, we know that 1 ≤ k ≤ m. In order to hide
what k is, we need to take a value q which is divisible by all numbers from 1 to m, i.e.
q = LCM(1, . . . , m). With this q we can run Algorithm 1 and output heads on the first q

ℓ

output nodes, and tails on the rest. This makes the distribution of the running time of Step
3 independent of k, and overall Step 3 is time oblivious. The following is a standard number
theoretic estimate (which may be found in [23] p.37):

▶ Fact A.1. ln(LCM(1, 2, . . . , n)) = Θ(n).

By Lemma 2.17, we need O(log q) = log (LCM(1, . . . , m)) bits in expectation, instead
of O(log m). By Fact A.1 we conclude that the expected running time of Step 3 is O(m).
Notice that this is an exponential increase relative to the O(log m) bits that is needed to
generate a uniform element of {1, . . . , m}.

Finally the expected number of iterations of the algorithm before it produces an output
is at most m, since k is bounded above by m. Putting it all together we get:

▶ Proposition A.1. There exists an efficient time oblivious algorithm for uniform DNF
sampling running in expected time O(mn + m2)

While we showed that the running time of the algorithm above does not leak information
about what assignment was chosen, it does reveal information about the structure of the
formula. For example, the running time leaks information about the number of literals and
number of clauses in the formula. When the formula is public information this leakage does
not give any new information, but there might be cases where we wish to hide the structure
of the formula in addition to what assignment was chosen.

It is therefore natural to ask: is there an efficient time oblivious algorithm for DNF
sampling that hides the formula as well as the chosen assignment?
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A.1 An Exponential Lower Bound for Hiding the Formula

We formalise what it means to “hide the structure of the formula”:

▶ Definition A.2. Let x ∈ {0, 1}n be an input to a randomized algorithm A. We say A(x) is
an input hiding time oblivious generating algorithm if its running time distribution is
independent of both the output distribution and the input x.

The motivation for the definition above is to defend against timing attacks in situations
where a randomized algorithm runs on an input which we would like to be kept secret, as
well as the output. We show that DNF sampling cannot be done efficiently in an input
hiding time oblivious way, we will show a different problem which cannot be done efficiently,
and then get the result on DNF via a reduction.

Consider the problem: given x ∈ {1, . . . , 2n} sample a random element in {1, . . . , x}. This
task can be done efficiently using O(log x) random bits. However, in the input hiding setting
we wish to hide x in addition to the sample. This problem cannot be solved efficiently and
in a time oblivious way.

▶ Lemma A.3. The task of sampling a random element k ∈ {1, . . . , x} given x ∈ {1, . . . , 2n}
in an input hiding time oblivious way takes at least Ω(2n) random bits.

Proof. Let ℓm(x = i) be the probability that the algorithm outputs on level m given x = i.
In order for the sample to be time oblivious, we need the running time to be independent
both of the choice of x and k. This means that the running time distribution of the algorithm
should be the same for all values of x. In particular: for all m and i, ℓm(x = i) = ℓm(x = 1)

From the observation above we know that the algorithm must have the same output
levels, and same number of output nodes for all values of x. Let q be the number of nodes
in the first output level. We get that q must be divisible by all values from 1 to 2n, and
therefore q ≥ LCM(1, . . . , 2n). By Fact A.1 we need Θ(2n) to represent LCM(1, 2, . . . , 2n),
and the result follows. ◀

Applying the lemma, we get the following theorem on DNF sampling:

▶ Theorem A.4. Sampling a uniform satisfying assignment of a DNF formula in an input
hiding time oblivious way cannot be done efficiently and requires Ω(2n) bits in expectation.

Proof. Given x ∈ {1, . . . , 2n} notice that we can write a formula with the literals a0, . . . , an−1
consisting of at most n clauses and x satisfying assignments. We denote the formula
corresponding to x by ϕx. If x = 2k we set ϕx = a0 ∧ . . . ∧ a(n−1)−k−1 ∧ an−1−k. It is easy
to check that for x =

∑
i∈S 2i for some S ⊆ {0, 1, . . . , n− 1} one can set ϕx = ∨i∈Sϕ2i and

obtain in such a way for each x ∈ {1, ..., 2n} a formula with x satisfying assignments and at
most n clauses.

We know by Lemma A.3 that to sample a uniform element from {1, . . . , x} given x any
algorithm must use Ω(2n) bits in expectation in case we want to algorithm to be input hiding
time oblivious case and by Proposition A.1 there is a time oblivious algorithm that samples
from the formulas above using O(n2) random bits. Therefore we conclude that hiding the
formula cannot be done efficiently. ◀



Y. Ben Dov, L. David, M. Naor, and E. Tzalik 11:21

B Missing Proofs

B.1 Missing Proofs in Section 2

Proof of Lemma 2.6. If A is time oblivious then the output distribution O(A) is D when
conditioning on T (A) = k, therefore: pj

qj
= dj = ej

mk
where mk is the number of output

nodes in the kth level and ej is the sequences of length k on which A outputs j. We get that
ej = mk · pj

qj
and as each ej is a natural number we get that for all j: qj | mk and therefore

q | mk. This concludes Part 1.
For Part 2, notice that in the binary tree each output node in level l has 2k−l descendants

in level k that it makes unreachable, and also that an output node can not have another
output node as a descendent, therefore tk =

∑k
i=0 2k−imi. By the first part each mi is

divisible by q and therefore tk is a multiple of q. ◀

Proof of Corollary 2.7. If q = 2k then we can clearly output all elements in level k since D
is rational with finite support. For the other direction, we may assume that the algorithm
reads exactly t bits from R. This also implies that D is rational with finite support. By
Lemma 2.6 q |2t and therefore q = 2k for some k. ◀

Proof of Lemma 2.8. For Part 1, observe that the statement is true if q = 2m for some m.
The test 2n ≥ q and the test (2n mod 2q) ≥ q are exactly the same until the first output
level. Since q is a power of 2 then all the nodes in level m will be output nodes and there
will not be any more output nodes.

For q that is not a power of 2 we prove the claim by induction on the level. The base
case is level 1. Indeed q is not a power of 2 which implies that q > 2 and as level 1 has 2
nodes, both nodes are reachable.

Assume the statement is true for all levels up to k. We now show the statement is true
for k + 1. By the induction hypothesis let r = 2k mod 2q be the number of reachable nodes
in level k. if r < q we know that k is not an output level. In this case each reachable node
a0 . . . ak−1 becomes two reachable nodes in level k + 1, since each node has two children:
a0 . . . ak−10 and a0 . . . ak−11. From this we get that the number of reachable nodes in level
k + 1 is 2r, and the statement holds since:

2k+1 ≡ 2 · 2k ≡ 2r (mod 2q).

If q < r < 2q then k is an output level. Write r = q + s for some 1 ≤ s < q, and observe
that q nodes will be output nodes in that level. This means that the number of reachable
nodes in level k + 1 will be 2s and indeed:

2k+1 ≡ 2 · 2k ≡ 2r ≡ 2(q + s) ≡ 2q + 2s ≡ 2s (mod 2q).

This concludes part 1 of Lemma.
For Part 2 notice that at each output level the output nodes are the q leftmost reachable

nodes, and we know there are exactly 2n mod 2q reachable nodes from Part 1 the binary
sequences of {⌊ 2n

2q ⌋ · 2q, ⌊ 2n

2q ⌋ · 2q + 1, .., 2n − 1} correspond to the reachable nodes. Part 2
now follows by taking mod2q on the sequence above.

Finally, by Part 1 the number of reachable nodes in each level is between 0 and 2q − 1,
and in addition, if there are at least q reachable nodes, then q nodes produce an output and
therefore 2n − tn < q. ◀
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Proof of Observation 2.14. Recall that Sk =
∑k

i=1 ℓi(A) is the probability that the algo-
rithm produced an output up until level and including k. By Part 2 of Lemma 2.6 we
get:

Sk =
k∑

i=0
ℓi(A) =

k∑
i=0

2−imi = 1
2k

k∑
i=0

2k−imi = tk

2k
. ◀

Proof of Lemma 2.17. For the lower bound: the first output level k satisfies 2k ≥ q and
T (A) ≥ k since it is the first output level. Taking expectation it follows that E[T (A)] ≥
⌈log2 q⌉.

For the upper bound: Recall that by construction of Algorithm 1 the algorithm outputs
on nodes from left to right, and at each level there are less than q nodes which are reachable
but not output nodes. From this we get that after the first time the algorithm reads a 0, it
will produce an output after at most log q more steps. Observe that the probability to read
the first 0 in the ith level is a Geo

( 1
2
)

R.V. and therefore we get:

E[T (A)] ≤
∞∑

i=1

1
2i

(i + log q) = log q

∞∑
i=1

1
2i

+
∞∑

i=1

i

2i
= log q + 2. ◀

Proof of Theorem 2.15. Let D be a distribution and A be Algorithm 1 for D. Assume
towards a contradiction that A is not optimal. This means that there exists a time oblivious
algorithm A′ which generates D and a k such that Sk(A′) > Sk(A). By Observation 2.14
Sk(A′) = t′

k

2k and Sk(A) = tk

2k . From the assumption about A′ we get that t′
k > tk. From

Lemma 2.6 we know that t′
k and tk are both multiples of q which means t′

k ≥ tk + q. From
Lemma 2.8 we know that 2k− tk < q which means that tk > 2k− q. Taking both inequalities
into account we get that t′

k > 2k. Recall that t′
k is the number of unreachable or output

nodes of algorithm A′ at level k, and therefore cannot be bigger than 2k. Thus we get a
contradiction and conclude A is optimal. ◀

Proof of Claim 2.20. We assume that supp(D) is [n] and define pi = P[X = i]. Let k be a
parameter of the number of coins that the sampler uses before returning an answer, and
assume k > H + c for large enough c that will be picked later. Define p+

i = ⌈pi2k⌉
2k and

p−
i = ⌊pi2k⌋

2k .
The sampler A will have P[O(A) = i] is either p+

i or p−
i and will always output after

reading all k bits. Therefore it will satisfy that P[T (A) ∈ {k}] = 1 which will make the
conditioning on the time in Definition 2.19 redundant. It is possible to always “sign” p±

i (i.e.
pick between p+

i or p−
i ) to obtain a distribution (the sum of the probabilities is 1). We will

show that for any such signing algorithm A is an approximate time oblivious sampler of
D. Notice that since k > H + c we have that 2k · pi = ri + ti for some integer ri > 2 and
0 ≤ ti < 1:

p+
i

p−
i

= ⌈pi2k⌉
⌊pi2k⌋

≤ ri + 1
ri − 1 ≤ 1 + 2

ri − 1 .

If 2
ri−1 < ε, then we could conclude with the inequality 1 + x ≤ ex that p+

i

p−
i

≤ eε, and

therefore p+
i

pi
< eε as well as pi

p−
i

≤ eε since we know p+
i ≥ pi ≥ p−

i .
Therefore it is enough to find k for which 2

ri−1 < ε. Notice that by the definition of H

we have for k = H + c that 2k · pi ≥ 2c Therefore c = log 1
ε + 4 suffices. ◁
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Proof of Claim 2.21. We use the notation pi := P[X = i] for X ∼ D. We also continue with
the notation defined in Claim 2.20, p+

i , p−
i with k = log n+log

( 1
δ

)
. Clearly p+

i −p−
i = 1

2k ≤ δ
n .

Let D′ be a distribution that correspond to some signing p±
i and we will again take A that

outputs according to D after k = log n + log 1
δ coin tosses. For S ⊆ [n] :

P[X ∈ S]− δ · |S|
n

=
∑
i∈S

(
pi −

δ

n

)
≤

∑
i∈S

p−
i

≤ Pr[O(A) ∈ S]

≤
∑
i∈S

p+
i ≤

∑
i∈S

(
pi + δ

n

)
= P[X ∈ S] + δ · |S|

n
.

Therefore since |S| ≤ n

Pr[O(A) ∈ S]− δ ≤ P[X ∈ S] ≤ Pr[O(A) ∈ S] + δ. ◀

B.2 Missing Proofs in Section 3
Proof of Claim 3.4. Let D be some database and let k be the index of the first output level of
M(D). By Lemma 3.2 we know that there are r1, . . . , rℓ ∈ R that appear in the output level
of all possible databases. Since U is sofic and there are infinitely many possible databases
we can find a database D′ such that U(D′, r1) = 0 and therefor GU(D) < 1 and thus the
guaranteed utility of M satisfies U(M) < 1. ◁

Proof of Proposition 3.5. Assume that GT (M) < m. Let D be any database and τ > 0 and
let r1, . . . ., rℓ be the elements ofR that D outputs in levels 1, . . . , τm. We know that there is a
database D′ that satisfies U(D′, ri) = 0 but by Markov’s inequality P[T (M(D′)) > τm] < 1

τ

and therefore we get that GU(M) ≤ U(D′) ≤ 1
τ . Since τ > 0 is arbitrary we conclude that

GU(M) = 0. ◀
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