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Abstract
Risk-limiting audits (RLAs) are a significant tool in increasing confidence in the accuracy of elections.
They consist of randomized algorithms which check that an election’s vote tally, as reported by a
vote tabulation system, corresponds to the correct candidates winning. If an initial vote count leads
to the wrong election winner, an RLA guarantees to identify the error with high probability over its
own randomness. These audits operate by sequentially sampling and examining ballots until they
can either confirm the reported winner or identify the true winner.

The first part of this work suggests a new generic method, called “Batchcomp”, for converting
classical (ballot-level) RLAs into ones that operate on batches. As a concrete application of the
suggested method, we develop the first RLA for the Israeli Knesset elections, and convert it to one
which operates on batches using “Batchcomp”. We ran this suggested method on the real results of
recent Knesset elections.

The second part of this work suggests a new use-case for RLAs: verifying that a population
census leads to the correct allocation of parliament seats to a nation’s federal-states. We present an
adaptation of ALPHA [12], an existing RLA method, to a method which applies to censuses. This
suggested census RLA relies on data from both the census and from an additional procedure which
is already conducted in many countries today, called a post-enumeration survey.
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1 Introduction

Running an election is a delicate endeavour, since casting and tallying votes entails seemingly
contradictory requirements: counting the votes should be accurate and it must also be
confidential. A risk-limiting audit (RLA) is a process whose goal is to increase the confidence
that results of an election were tallied appropriately, or more accurately that the winner/s
were chosen correctly. It is usually described for election systems where there is an electronic
vote tabulation, whose tally is referred to as the reported results, but also backup paper-
ballots, whose tally is assumed to be the true results. The procedure examines what is
hopefully a relatively small number of the backup paper-ballots, and comparing them to the
full reported results of the electronic voting system. These audits are randomized algorithms,
where the randomization is manifested in the choice of ballots to examine, and potentially
the order in which they are examined.
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A risk-limiting audit ends either when the reported winners of the election are confirmed,
or after a full recount of the backup paper-ballots of all voters. The audit’s goal is to confirm
that the reported winners according to the electronic vote tabulation (the reported tally)
match the winners according to the paper-backups (the true tally). Note that RLAs verify
that the elections resulted in the correct winners according to the backup paper-ballots,
and not that the reported vote tally was completely accurate; an RLA will approve election
results that contain counting errors which do not change the winners of the elections. This
fact is useful since it would be infeasible to expect the vote tally to be accurate up to every
single ballot, but we should avoid at all cost counting errors which change the winners of the
elections.

The claimed guarantee of RLAs is that if the reported winners of the elections are not
correct (with regards to the full paper count), then the probability that the audit will
mistakenly confirm the results is lower than some predetermined parameter, referred to as
the risk-limit of the audit.

▶ Definition 1. The RLA Guarantee: If the reported winners of the elections are not
correct, an RLA will approve them w.p. of at most α, where α is a parameter which is set
before the audit begins. α is referred to as the audit’s risk-limit.

The efficiency of an RLA is measured by the number of paper-ballots it requires to read,
given that the reported tally matches the true one. In most cases, an RLA should remain
relatively efficient even if the reported tally isn’t completely accurate, as long as it results in
the same winners as the true tally. The efficiency of any specific RLA method is limited by
the election system it operates on. If a system has a sensitive social choice function, meaning
that small tallying errors can often change the election winners, then it is more difficult to
audit efficiently.

RLA methods generally belong to one of three categories, as defined by Lindeman and
Stark [9]:
1. Ballot-comparison: In ballot-comparison audits, the auditor knows which paper-ballot

matches which electronic-ballot. This category of audits is the most efficient, since it
contains the most information about the election results.

2. Ballot-polling: In ballot-polling audits, a single paper-ballot can be sampled and
examined, but it does not need to be matched to its corresponding electronic-ballot.

3. Batch-level: In batch-level audits, ballots are partitioned into batches, usually according
to the prescient in which they were cast. The reported tally of each batch is available,
but there’s no guarantee that a paper-ballot in the batch can be matched to its electronic
counterpart. Ballots are usually not randomly partitioned, and different batches are of
different sizes. Batch-level audits are generally the least efficient of the three categor-
ies, since the partition into batches is not random, making it more difficult to get a
representative sample of the overall vote distribution.

1.1 Our Contributions
The goal of the work is to expand the realm where RLAs are used. Its new contributions are:
1. A new and general method for performing batch-level RLAs, which can be applied

for many election systems, is presented in Section 3. This method, which we call
“Batchcomp”, is usable for any election system that can be audited using the SHANGRLA
framework [11].

2. An RLA method for the Israeli Knesset (The Israeli parliament) elections, based on the
SHANGRLA framework, is presented in Section 4. This method can be applied as-is to
conduct ballot-level RLAs, or be combined with Batchcomp to conduct a batch-level RLA.
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To test both the Knesset RLA method and Batchcomp, we simulate their combination
on real election results. While our Knesset RLA method is essentially a synthesis and
adaptation of previous suggestions in the literature, it is the first time RLAs are applied
to this setting.

3. A new type of RLA that applies to population censuses. This new type of audit is applic-
able in nations where political representatives are allocated to the nation’s geographical
regions based on their population, like the United States, Germany, Cyprus and more. It
relies on data that is already collected in many countries, as part of an existing method for
assessing the accuracy of population censuses called a “post enumeration survey” (PES).
To the best of our knowledge, this is the first and only method which verifies the census’
resulting allocation of representatives to federal-states with a clear statistical guarantee.
The method is presented in Section 5.

2 Related Work

2.1 SHANGRLA

SHANGRLA [11] is an auditing framework which aids in adapting existing RLA algorithms
to new social choice functions. It can be applied to a variety of election methods used
globally, such as plurality, Hamiltonian elections [2], many proportional representation
methods [1], and more.
This method is based on an abstraction called “sets of half-average nulls” (SHAN), where
given a collection of finite lists containing unknown non-negative numbers, we wish to
test whether the average of all of those lists is greater than 1

2 by querying for the values
at different indexes. Each query in this problem returns the values all lists hold at some
specified index. An election system can be audited using SHANGRLA by reducing the
problem of approving its reported winners to the SHAN problem. Once such a reduction
is found, a number of existing algorithms [12, 11, 14] for the SHAN problem can be used
to perform an RLA on that system.
This reduction is found by defining ℓ mappings a1, ..., aℓ from the paper-ballots to non-
negative values, such that the mean of every mapping across all backup paper-ballots is
above 1

2 iff the reported winner/s of the election are true.
▶ Definition 2. The reported winners of an election system can be audited using
SHANGRLA if there exist ℓ non-negative functions a1, ..., aℓ, called assorters, such that
the reported winners of the elections are true iff for every k ∈ [ℓ]:

1
|B|

∑
b∈B

ak(b) >
1
2 , (1)

where B is a list of the backup paper-ballots of the elections. The ℓ inequalities above (for
each k ∈ [ℓ]) are referred to as the election’s assertions.

Some social choice functions have simple conversions to SHANGRLA assertions. E.g., a ma-
jority election between two candidates, Alice and Bob, can be audited using SHANGRLA
with a single assorter. If Alice won the election according to the reported vote tally,
this can be verified by using an assorter which has a mean greater than 1

2 iff Alice truly
received more votes than Bob:

FORC 2023
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▶ Definition 3. An assorter which verifies that Alice received more votes from Bob in
majority elections is:

a(b) =


1 if b is for Alice
0 if b is for Bob
1
2 if b is invalid

2.2 Finding SHANGRLA Assertions
In the example above, finding the correct assorter is relatively simple. For other election
systems, which use more complicated social choice functions, verifying the correctness of
the election winners can sometimes be reduced to verifying a set of linear inequalities
regarding the various vote tallies. In such situations, it may not be immediately clear
how to reduce them to assertions of the form 1

|B|
∑

b∈B a(b) > 1
2 . For such cases, Blom et

al. [1] suggests a generic solution. This solution reduces the problem of verifying that a set
of linear inequalities that depend on the various vote tallies are all true to the problem of
verifying that a set of assorters all have a mean greater than 1

2 across all paper-ballots. We
describe this solution for a single inequality. Given multiple inequalities, each inequality
can be converted to a single SHANGRLA assertion in the same manner.
Say we have a linear inequality which is true iff the reported winner/s of some election
system are the true ones:∑

c∈C
βcvtrue(c) > d, (2)

where C is the set of all ballots that a single voter may cast (e.g. in plurality elections,
C would be the set of candidates), vtrue(c) is the number of cast ballots of of type c

according to the true results, and d and βc (for each c ∈ C) are constants. To perform an
RLA for this election system, we wish to find a SHANGRLA assertion which is equivalent
to (2). Meaning, given (2), we wish to find a non-negative function a : C → [0,∞) such
that (1) is equivalent to (2). As Blom et al. suggest, this can be achieved by defining:

a(b) := q − βb

2
(

q − d
|B|

) , (3)

where q := minc∈C {βc}, and βb is determined by the type of ballot b is - if b is of type
c ∈ C, we have βb = βc. As noted by Blom et al., the assorters generated by this method
are non-negative as long as the inequality they are derived from isn’t trivially true or
trivially false, for any distribution of votes.

2.3 The ALPHA Martingale Test
The ALPHA Martingale Test [12] is a specific RLA algorithm for election systems which
have a SHANGRLA reduction as described in Section 2.1. I.e., when there exist ℓ assorters
a1, ..., aℓ such that the reported winners of the elections are true iff for all k ∈ [ℓ] the
inequality (1) is true.
The test operates by keeping ℓ variables T1, ..., Tℓ, each representing the inverse of a
p-value for the hypothesis that a certain list has an average greater than 1

2 . It then
queries sequentially for random backup paper-ballots, where after each ballot it updates
these ℓ variables. If at any point Tk for some k ∈ [ℓ] surpasses the threshold 1

α , it means



B. Karov and M. Naor 2:5

that we have sufficient evidence that the mean of its corresponding assorter ak over all
ballots is greater than 1

2 . If after a certain query, all of T1, ..., Tℓ have surpassed 1
α at

some point during the audit, then the reported winners of the elections are approved.
After each queried backup paper-ballot bi, the algorithm updates Tk for every k ∈ [ℓ] by
comparing ak(bi) to the following values, which are set before bi is revealed:
a. µk: The mean value of ak over all ballots that have yet to be audited, given that the

mean of ak over all ballots is 1
2 . Recall that if the mean of ak over all ballots is at

most 1
2 , then the reported winners of the elections are wrong, which is the case the

algorithm wishes to detect. Thus, if at some point during the audit we sample a ballot
b with ak(b) ≤ µk, it provides evidence that the reported winners of the elections are
less likely to be correct, and vice-versa.

b. ηk: A guess for what we would expect ak(bi) to be based on the reported results
and the ballots we previously queried. This guess can be made in several ways while
maintaining the algorithm’s correctness. One reasonable way to do so is to set ηk to
be the mean of ak over ballots that have yet to be audited, assuming that the reported
tally is completely accurate. As explained by Stark [12], The audit becomes more
efficient, meaning less ballots need to be examined, the more accurate this guess is.

c. uk: In the paper presenting ALPHA, uk was defined as the maximal value ak may
return. In reality, the ALPHA Martingale Test is risk-limiting even for other choices of
uk, as long as the inequality µk < ηk < uk is always maintained. For our purposes, uk

can be thought of as a guess for whether the next sampled ballot would indicate that
assertion k is more or less likely to be true. If the next ballot to be sampled increases
our confidence that the assertion is true, the audit is more efficient when uk is large,
and vice-versa.

The ALPHA Martingale Test can be adapted to sample ballots either with or without
replacement. It can also be adapted to perform batch-level audits, where batches of ballots
are sampled instead of individual ones. We refer to this batch-level version of the ALPHA
Martingale Test as ALPHA-Batch. The Batchcomp method presented in Section 3 is
based on ALPHA-Batch and attempts to improve on it by adjusting its assorters and
utilizing the new definition for uk.

3 The Batchcomp RLA

This section describes a generic way of performing batch-level RLAs, when the results of
the elections can be verified using SHANGRLA assertions, as described in Section 2.1. This
algorithm is original to this work and is based on ALPHA-Batch. Batchcomp relies on the
following assumptions:
1. The election’s social choice function can be audited using the SHANGRLA framework.
2. The reported and true results agree on the total number of ballots within each batch.

3.1 Model and Notation

Fix some elections system with a set of ballots B and a partition of these ballots into d batches
B1, ..., Bd. We make no assumptions regarding this partition, and different batches may be
of different size. By assuming that the election system can be audited using SHANGRLA,
we assume the following:

FORC 2023
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▶ Assumption. There are ℓ assorters a1, .., aℓ such that the reported winners are true iff for
all k ∈ [ℓ]:

1
|B|

∑
b∈B

ak(b) >
1
2 .

Throughout the following sections, we sometimes abuse notation and apply assorters over
entire batches. When doing so, ak(Bi) is defined as the mean of ak over all ballots in Bi:

ak(Bi) := 1
|Bi|

∑
b∈Bi

ak(b). (4)

In accordance with this, ak(B) denotes the mean value of ak across all ballots.
Finally, note that each batch has a reported tally, which is known before the audit begins,

and a true tally, which we may only learn during the audit. Therefore, each assorter has a
reported and true mean value over each batch, which can be calculated from its reported
and true tally, respectively. We denote the reported mean of an assorter ak over a batch Bi

as arep
k (Bi), and its true mean over that batch as atrue

k (Bi). Using this notation, the audit’s
goal is to test whether atrue

k (B) > 1
2 for all k ∈ [ℓ].

3.2 Batchcomp Overview
Batchcomp attempts to confirm that the mean of ℓ assorters over all ballots are all greater
than 1

2 by sequentially sampling batches of backup paper-ballots and examining them. In
each iteration, it samples a previously unsampled batch, such that each batch is sampled
w.p. proportional to its size.

After each sampled batch, it updates ℓ p-values, each corresponding to the hypothesis
that an assorter has a mean greater than 1

2 across all ballots. The algorithm keeps the
inverses of these p-values, T1, ..., Tℓ. Each variable Tk is updated according to the backup
paper-ballots in the sampled batch and according to 3 additional variables - µk, ηk, Uk. µk

and ηk are defined as they were in the ALPHA Martingale Test (see Section 2.3). Uk, which
is Batchcomp’s version of uk from the ALPHA Martingale Test, controls how significantly
Tk changes per audited batch. µk, ηk and Uk are updated after each iteration, while always
maintaining Uk > ηk > µk.

During the audit, Batchcomp uses a modified version of the election’s assorters a1, ..., aℓ.
We denote these modified assorters as A1, ..., Aℓ. Each new assorter Ak has a mean greater
than 1

2 iff its corresponding assorter ak also has a mean which is greater than 1
2 . Thus, to

approve that the reported winners of the elections are correct, it suffices to approve that
Ak(B) > 1

2 for all k ∈ [ℓ]. Auditing A1, ..., Aℓ instead of a1, ..., aℓ makes the audit agnostic
to the order in which batches are sampled, as long as the reported batch-level vote tallies are
accurate. As explained in the following section, this can increase the audit’s efficiency.

3.3 Comparing Batchcomp and ALPHA-Batch
The ALPHA-Batch method, which Batchcomp is based on, is performed by examining the
mean of every assorter over each sampled batch according to its backup paper-ballots. It
does not use the reported vote tally of the batches beyond the total number of ballots they
contain. Batchcomp attempts to improve on the efficiency of ALPHA-Batch by auditing
something slightly different - instead of auditing the mean value of an assorter ak over the
backup paper-ballots (true results) in a sampled batch, it audits the discrepancy between
the mean value taken by ak over a batch according to its reported tally, and the mean value
it returns over the same batch according to its paper-ballots.
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The values returned by the ALPHA-Batch assorters can change drastically from batch
to batch, depending on their vote distribution according to the true results. The values
the Batchcomp assorters return depend only on the accuracy of the reported tally; if two
batches with different vote distributions were both counted accurately in the reported results,
a Batchcomp assorter will return the same value when applied on each of them. This fact is
shown in Section 3.4.

As an example of this, examine majority elections with accurate reported tallies. In such
elections, ALPHA-Batch operates by applying the assorter from Definition 3 on the sampled
batches. Applying this assorter on a batch returns the share of votes won by the reported
winner of the elections inside that batch. This value can swing heavily depending on the
specific batch that is sampled. A batchcomp assorter for the same elections returns the same
value on every batch, regardless of the vote distribution within it.

Recall that before sampling and reading a backup paper-ballot, the ALPHA Martingale
Test guesses the value that each assorter would return on this ballot (this guess is ηk, for
each assorter ak). As explained by Stark when presenting ALPHA [12], the audit is more
efficient when these guesses are accurate. If each assorter returns a similar value for all
batches, as happens in Batchcomp, then the audit can make guesses which are more accurate.
This is the root cause for Batchcomp outperforming ALPHA-Batch in the simulations shown
in Section 4.3.

3.4 The Batchcomp Assorters
This section converts the election assorters a1, ..., aℓ to equivalent assorters A1, ..., Aℓ which
depend on the accuracy of the batch-level tallies instead of their vote distribution. These
new assorters, which we refer to as the Batchcomp assorters, are equivalent to the original
ones in the sense that they all have a mean greater than 1

2 iff the original ones all have a
mean greater than 1

2 .

▶ Definition 4. For each assorter ak, define the Batchcomp-assorter Ak : C∗ → [0,∞):

Ak(Bi) := 1
2 +

Mk + atrue
k (Bi)− arep

k (Bi)
2(wk −Mk) .

Where Mk is the reported margin of assorter ak across all batches, and wk is the maximal
reported value of ak, across all batches:

Mk := arep
k (B)− 1

2 , wk := max
j∈[d]
{arep

k (Bj)}.

As explained in Section 3.3, when the reported batch-level tallies are accurate, each
Batchcomp assorter returns the same value on all batches. This is since accurate batch-level
tallies indicate that for any batch Bi we have arep(Bi) = atrue(Bi), and:

Ak(Bi) = 1
2 + Mk

2(wk −Mk) .

To use these Batchcomp assorters instead of the original assorters a1, ..., aℓ, we need to show
that they are non-negative and that Ak(B) > 1

2 iff atrue
k (B) > 1

2 (recall that a(B) denotes
the mean of an assorter a over all ballots).

▷ Claim 5. For any assorter ak, its conversion to a Batchcomp assorter Ak is non-negative.

FORC 2023
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Proof. Fix an assorter ak and its Batchcomp counterpart Ak. Examine the minimum of
atrue

k and the maximum of arep
k . Recall that assorters are always non-negative, and that wk

is defined as the maximum of arep
k across all batches. Thus, for any batch Bi:

Ak(Bi) = 1
2 +

Mk +

≥0︷ ︸︸ ︷
atrue

k (Bi)−

≤wk︷ ︸︸ ︷
arep

k (Bi)
2(wk −Mk) ≥ 1

2 + Mk − wk

2(wk −Mk) = 0. ◁

▷ Claim 6. For any assorter ak and its conversion to a Batchcomp assorter Ak, we have
atrue

k (B) > 1
2 iff Ak(B) > 1

2 .

Proof. By the definition of Ak and Mk (Definition 4):

Ak(B) = 1
2 +

Mk + atrue
k (B)− arep

k (B)
2(wk −Mk)

= 1
2 +

arep
k (B)− 1

2 + atrue
k (B)− arep

k (B)
2(wk −Mk)

= 1
2 +

atrue
k (B)− 1

2
2(wk −Mk) .

And since wk > Mk, as wk ≥ arep
k (B) > Mk, this value is greater than 1

2 iff atrue
k (B) > 1

2 .
◁

The Batchcomp assorters A1, ..., Aℓ can also be used by the ALPHA-Batch algorithm in
place of the original assorters a1, ..., aℓ. This, however, does not lead to an increase in the
audit’s efficiency by itself, at least in the settings we simulated. Batchcomp attempts to
improve on ALPHA-Batch’s efficiency by combining these new assorters with the re-definition
of uk (see Section 2.3).

3.5 The Batchcomp Algorithm
1. Initialization:

(a) Initialize K = [ℓ], which holds the indexes of assertions we have yet to approve.
(b) Initialize B1 = (B1, B2, ..., Bd) and B0 = ∅. As the algorithm progresses, B0 holds the

batches which were already audited and B1 the batches that have yet to be audited.
(c) For each k ∈ K initialize:

TK := 1, µj := 1
2 , ηk := 1

2 + Mk

2(wk −Mk) , Uk := 1
2 + Mk + δ

2(wk −Mk) .

For some δ > 0. Appendix B examines how to choose δ. For definitions of Mk and
wk see Definition 4. Note that since wk > Mk > 0 we have Uk > ηk > µk.

2. Auditing Stage: As long as B1 ̸= ∅, perform:
(a) Sample a batch from B1 and denote it as Bi. Each batch Bj in B1 is sampled with

probability proportional to its size: |Bj |∑
Bt∈B1 |Bt|

.

(b) Remove Bi from B1 and add it to B0.
(c) For each k ∈ K, update Tk by the same update rule as in ALPHA-Batch:

Tk ← Tk

(
Ak(Bi)

µk

ηk − µk

Uk − µk
+ Uk − ηk

Uk − µk

)
.

(d) For each k ∈ K, if Tk > 1
α , the kth assertion can be approved, so remove k from K.
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(e) For each k ∈ K update uk, µk and ηk, in this order:

µk ←
1
2 n−
∑

Bj ∈B0 |Bj |Ak(Bj)

n−
∑

Bj ∈B0 |Bj |
.

ηk ← max
{

1
2 + Mk

2(wk−Mk) , µk + ϵ
}

.
Uk ← max {Uk, ηk + ϵ}.

Where ϵ is some very small positive meant to ensure that µk < ηk < Uk.
(f) If µk < 0, The kth assertion is necessarily true, so remove k from K.
(g) If K = ∅, all assertions were approved, so approve the reported winners.

3. Output: If the audit hasn’t approved after examining all batches, it can calculate the
true winners of the elections.

Any initialization and update rule for the variables ηk and Uk that always maintains
µk < ηk < Uk also yields a risk-limiting audit. The update rules shown here lead to increased
efficiency when the batch-level tallies are accurate. ηk, the algorithm’s guess for the value
Ak would return on the next sampled batch, is set to the value Ak returns on each batch
given that the reported batch-level tallies is accurate, as calculated in Section 3.4.

▶ Theorem 7. Batchcomp fulfills the RLA guarantee (Definition 1).

Proof. Batchcomp is a modified version of ALPHA-Batch, and fulfills the RLA guarantee
for the same reasons as ALPHA-Batch. It makes two modifications to the ALPHA-Batch
algorithm, which maintain it being risk-limiting:
1. For every k ∈ [ℓ], Batchcomp verifies that Ak(B) > 1

2 while ALPHA-Batch verifies that
atrue

k (B) > 1
2 . By Claim 6, verifying these two conditions is equivalent. ALPHA-Batch

also relies on a1, ..., aℓ being non-negative. Switching to auditing A1, ..., Aℓ requires them
to be non-negative as well, which is proven in Claim 5.

2. Batchcomp uses a different initialization and update rule for Uk. While ALPHA-Batch
defines Uk differently than Batchcomp, it only requires to have Uk > ηk for every k ∈ [ℓ]
for the audit to fulfill the RLA guarantee. Batchcomp’s update rule for Uk and ηk

(step 2e) always maintains Uk > ηk, meaning that it fulfills the guarantee as well. ◀

4 Israeli Knesset Elections RLA

This section describes how to perform an RLA to verify the results of the Israeli Knesset
elections. The Knesset is the Israeli parliament and its sole legislative authority. It comprises
of 120 members who are elected according to closed party-list proportional representation.
The goal of this suggested Knesset RLA is to verify that each party won the correct number
of seats, meaning that the correct Knesset members were elected.

This method can be used in Israel currently to verify the initial hand-count of the votes,
which is not performed centrally - each polling place independently tallies its own ballots. It
can also become useful if, in the future, the vote tallying will be done by some electronic
means, such as an optical reader. In such cases, this method could confirm that the winners
outputted by the electronic vote tabulation system are likely to be correct.

Before moving to explain the social choice function of the Knesset elections, we define
some notation. Let P be the set of all parties running in the elections, and let S := 120 be
the number of available seats. For every party p ∈ P , let vtrue(p) denote the true number of
votes p received, according to the backup paper-ballots.
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4.1 Knesset Election Method
Before each election cycle, each running party submits a ranked list of its candidates. On
polling day, each voter votes for a single party, and parties receive seats in proportion to
the share of the votes they received. The seats each party wins are given to the top-ranked
candidates in the party’s list. Allocating Knesset seats to the various parties is done as
follows [8]:
Electoral Threshold: In the Knesset elections, only parties who receive a share of at least

t := 0.0325 of the valid votes are eligible to win seats.
Seat allocation: The allocation of seats is done according to the D’Hondt method, a highest

averages method, and can be formulated in multiple ways. We present a description of a
general highest averages method which was suggested previously by Gallagher [5]. Each
specific highest averages method is characterized by a unique monotonically increasing
function d : N→ N which is used during the seat allocation process. D’Hondt, the method
used in the Israeli Knesset, uses d(n) = n. To find how many seats a party is awarded for
a highest averages method with some function d:
1. Imagine a table with a row for each party which is above the threshold, and S columns.

At column s In the row of party p, write vtrue(p)/d(s). All cells are initially unmarked.
2. Mark the S cells with the largest values in the table.
3. The number of marked cells a party has in its row is the number of seats it receives.
Note that the values in each row are monotonically decreasing, as d is monotonically
increasing, so each row would be fully marked up to a certain column, and unmarked for
the rest of it.

Apparentment (Also Known as Electoral Alliances): Prior to election day, two parties may
sign an apparentment agreement, which may allow one of them to gain an extra seat. If
two parties sign an apparentment agreement, and only if both are above the threshold,
they unite to a single allied party during the seat allocation stage. Then, the number of
seats their alliance received is split between them according to the same seat allocation
method (D’Hondt). If one of the parties in the apparentment is below the electoral
threshold while using only its own votes, the apparentment is ignored. Each party may
only sign a single apparentment agreement.

4.2 Knesset RLA Assorters
This section presents assorters that can be used to perform an RLA for the Knesset elections,
using the SHANGRLA framework. We begin by presenting three conditions which all hold
true iff the reported winners of the elections are correct. We then proceed to show assorters
for these conditions, such that the assorters all have a mean greater than 1

2 iff these conditions
all hold true.

▶ Theorem 8. Let srep(p) and strue(p) be the reported and true number of seats that a party
p won in a Knesset elections, respectively. We have it that srep(p) = strue(p) for every party
p ∈ P , iff these 3 conditions all hold true:
1. Every party who is reportedly above the electoral threshold, is truly above it.
2. Every party who is reportedly below the electoral threshold, is truly below it.
3. For every two parties p1, p2 who are reportedly above the electoral threshold, the condition

(srep(p1) ≥ strue(p1)) ∨ (srep(p2) ≤ strue(p2)) is true.

Proof. Fix some reported and true tallies for the elections, and calculate the number of
seats each party reportedly and truly won according to these tallies. If the reported and true
number of seats each party won are equal, then the 3 conditions above hold true trivially.
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Otherwise, assume there is a discrepancy between the reported and true seat allocation.
There must be at least one party who won more seats according to the reported results
compared to the true results, which we denote as pr, and at least one party who won less
seats according to the reported results compared to the true results, which we denote as pt.

We now show that at least one of the three conditions above are violated. If pr is not
truly above the electoral threshold, then Condition 1 is violated, as it receives seats according
to the reported tally. Similarly, if pt is below the threshold according to the reported tally,
then Condition 2 is violated. Otherwise, both parties are truly above the threshold.

If both parties are reportedly above the electoral threshold, then pt reportedly won
less seats than it truly deserves, meaning that srep(pt) < strue(pt). Similarly, we have
srep(pr) > strue(pr). This violates Condition 3 and concludes the proof. ◀

Above Threshold Assertion
The role of this assertion is to check that Condition 1 holds. Stark [11] has previously suggested
a SHANGRLA assertion for this condition exactly. For every party p who reportedly is above
the electoral threshold, we add a single SHANGRLA assorter to the set we audit:

▶ Definition 9. An above threshold assorter for a party p is defined as:

aabove
p (b) :=


1
2t if b is for party p
1
2 if b is invalid
0 otherwise

Below Threshold Assertion
This assertion verifies Condition 2. Confirming that a party is below the threshold is equivalent
to verifying that all other parties received at least 1 − t of the valid votes. Therefore, we
can use an assorter similar to the one above. For every party p who is reportedly below the
electoral threshold, we add the following assorter to the set we audit:

▶ Definition 10. A below-threshold assorter for party p is defined as:

abelow
p (b) :=


0 if b is for party p
1
2 if b is invalid

1
2(1−t) otherwise

Move-Seat Assertion
This assertion is verifies that Condition 3. For any pair of parties p1, p2, this essentially
verifies that compared to the reported results, p1 does not deserve extra seats at the expense
of p2. An assertion for this condition was previously suggested by Blom et al. [1] (Section 5.2.)
when auditing elections using highest averages methods. For every ordered pair of parties
(p1, p2) who are reportedly above the electoral threshold, we add the following assorter to
the set we audit:

▶ Definition 11. A move-seat assorter for two parties p1, p2 is defined as:

amove
p1,p2

(b) :=


1
2 + srep(p1)+1

2srep(p2) if b is for p2

0 if b is for p1
1
2 otherwise
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Handling Apparentments
The assertions above ignore the existence of apparentments. To handle them, we can simply
treat each two allied parties who are reportedly above the electoral threshold as a united
party when adding move-seat assertions. Additionally, to verify that the seat allocation
between every two allied parties is correct, two move-seat assertions (one in each direction)
are added to the audit for every two allied parties who are reportedly above the electoral
threshold.

4.3 Simulations Based on Recent Elections
We describe the results of simulating the execution of a batch-level RLA over the real election
results for the 24th Knesset in 2021. The partition of ballots to batches used in this simulation
is done according to the real election results, and each batch contains ballots from a single
polling place. The audit uses assertions as described in Section 4.2, converts their assorters to
Batchcomp assorters as described in Section 3.4 and runs the Batchcomp method described
in Section 3.5 to audit them.

We compare the performance of Batchcomp with the performance of the ALPHA-Batch
algorithm described in section 4.2 of ALPHA [12]. ALPHA-batch uses the SHANGRLA
assertions from Section 4.2 of this work, without converting their assorters to Batchcomp-
assorters. For each assertion, we measure the number of ballots required to approve it by
each algorithm, as a factor of the assertion’s margin (minimal number of ballots that would
need to be altered, compared to the reported vote tally for the assertion to become false).

The results presented here assume that all vote tallies are accurate. Similar plots for
results with small tabulation errors, as well as results for additional election cycles, are
available in the paper’s GitHub repository. The election cycle described here is representative
of the trends present in the other examined cycles.

Technical Details
The simulated RLA uses a risk-limit of α = 0.05 and δ = 10−10. The latter was determined
after some experimentation - lower choices for δ do not improve efficiency when the reported
results are accurate, while higher values reduce the audit’s efficiency.

The number of audited ballots by each method is averaged across 10 simulations. An
examination of these simulations shows that the number of ballots required to approve each
assertion by Batchcomp has very low standard deviation. The mean standard deviation
across all assertions is 1,888, while the maximal standard deviation across all assertions is
5,291. The code used to generate these simulations was written in Python, and is available at
the paper’s GitHub repository (see title page), along with plots for additional election cycles.

Results
Figure 1 and Table 1 show that approving the reported winners for this election cycle required
auditing 85% of ballots by Batchcomp, while requiring virtually all ballots by ALPHA-Batch.
If it wasn’t for a single assertion which had a very small margin (367 ballots), the Batchcomp
audit would be done after auditing 3̃2% of the ballots, while ALPHA-Batch would still
require reading nearly all ballots.

The most glaring conclusion from this simulation, as well as ones we performed for
additional election cycles, is that Knesset elections have very tight margins, which make
them difficult to audit in a risk-limiting manner. If the election winners win with a margin



B. Karov and M. Naor 2:13

103 104 105 106

Assertion Margin (Log Scale)

0

1

2

3

4

R
eq

ui
re

d
B

al
lo

ts

×106

4,436,365 Voters, 12,926 Batches

Knesset 24 - ALPHA-Batch Required Number of Ballots by Assorter Margin

Above Threshold

Below Threshold

Move Seat Between Parties

Total Voters

103 104 105 106

Assertion Margin (Log Scale)

0

1

2

3

4

R
eq

ui
re

d
B

al
lo

ts

×106

4,436,365 Voters, 12,926 Batches

Knesset 24 - Batchcomp Required Number of Ballots by Assorter Margin

Above Threshold

Below Threshold

Move Seat Between Parties

Total Voters

103 104 105 106

Assertion Margin (Log Scale)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
eq

ui
re

d
B

al
lo

ts

×106

4,436,365 Voters, 12,926 Batches

Knesset 24 - Difference in Required Ballots (ALPHA Batch - Batchcomp)

Above Threshold

Below Threshold

Move Seat Between Parties

0

Figure 1 The first two plots present the number of ballots required to approve each assertion
during the audit, either by the ALPHA-Batch method or by our Batchcomp method. Each point
in these plots represents a single assertion, where its value on the x axis is its margin in log-scale,
and its value on the y axis is the number of ballots that the audit examined before approving the
assertion. Each point in the plot is colored by the type of assertion it represents. The final plot
presents the difference in ballots required per assertion between ALPHA-Batch and Batchcomp.

of below 0.01% of the total ballots, it’s unlikely that any RLA method could approve them
without close to a full manual recount. Appendix D examines ways of relaxing the RLA’s
guarantee to decrease the number of ballots the audit has to read.

While auditing the entire Knesset elections proves to be difficult, examining the number
of ballots required to approve the various assertions shows that Batchcomp significantly
outperforms ALPHA-Batch. Generally, assertions that had very small or fairly large margins
required a similar number of ballots by both algorithms, while assertions with margins of
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Table 1 The last three assertions to be approved by the Batchcomp, including their margin and
the number of ballots they required to be approved by each method.

Margin Batchcomp ALPHA
Assertion (% of votes) (% of votes) (% of votes)

Don’t move a seat from 367 3,782,269 4,435,198
Meretz to Labor (0.008%) (85%) (≈ 100%)

Don’t move a seat from 2,567 1,411,262 4,424,877
The Joint List to Likud & Religious Zionist (0.06%) (32%) (≈ 100%)

Don’t move a seat from 2,162 1,394,595 4,412,625
New Hope to Yamina (0.05%) (31%) (99%)

between 0.01% and 2% were significantly easier to audit using Batchcomp. Some assertions
which ALPHA-Batch could not approve without a nearly full manual recount were approved
by Batchcomp while examining less than 20% of the backup paper-ballots.

5 The Census RLA

This section presents a risk-limiting audit method for a population census. It applies to
nations which allocate political power to their constituencies or federal-states in proportion to
their population according to a certain class of methods (highest averages), and who conduct
a post-enumeration survey (PES) as recommended by United Nations guidelines [13]. By
these guidelines, a PES is performed by randomly sampling a small number of households,
re-running the census over this chosen sample, and then comparing the results to the original
census. For consistency, throughout this section, we assume that this allocated political
power is manifested as the number of representatives a region receives in parliament, and
refer to these regions as the nation’s federal-states.

The goal of our audit is to provide a clear statistical guarantee regarding the correctness
of this census’ resulting allocation of representatives. To achieve such a guarantee, we first
need to define what allocation is considered correct. The allocation which results from the
PES would not be sufficient here, since it may change based on the subset of households
which were sampled. To avoid this potential issue, we view the true results of the census
as the results the PES would have if it was to run over all households. This means that
technically, a census RLA assumes that the PES surveyed all households. During the actual
audit, however, it only asks for the information the PES collected on a small, randomly
chosen sample of households, which is exactly the data that the PES actually has.

The census RLA is performed by sequentially sampling households and processing the
census and PES information regarding them. Since the PES only runs over a small sample
of households, the audit is limited in its length. Therefore, setting a risk-limit (probability of
approving wrong results) ahead of the audit, as done in election RLAs, could be problematic.
Were we to do so, then the audit might fail to approve a correct representative allocation
even when using the entire PES sample, resulting in an inconclusive outcome.

The observation above leads us to slightly change the statistical guarantee that a census
RLA provides: instead of setting the risk-limit and then running the audit, the census RLA
runs over the entire PES and then returns the risk-limit with which it can approve the census
representative allocation. If the risk-limit returned by census RLA is insufficient, a governing
body may decide to conduct a second round of re-surveying, and to continue the audit on
these newly re-surveyed households.
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▶ Definition 12. The census RLA guarantee: For any 0 < α ≤ 1, if running the PES
over all households would lead to a different allocation of representatives than the census,
then the probability that a census RLA returns a value α′ such that α′ ≤ α is at most α. α′

is referred to as the audit’s outputted risk-limit.

5.1 Post Enumeration Survey (PES)
A post enumeration survey is a process which measures the accuracy of a population census
by conducting an independent population survey over a small portion of randomly chosen
households. According to the guidelines published by the Department of Economic and
Social Affairs of the United Nations [13], a PES begins by choosing a partial sample of the
households in a nation, such that each household has an equal probability of being included
in this sample. Afterwards, a new survey contacts each sampled household and asks them
the exact same questions as the original census.

For our purposes, the only information of interest is the number of residents at each
household. In reality, some countries may allocate representatives to federal-states according
to the number of a specific sector of the population that they hold (e.g. eligible voters or
citizens). In our model, we assume it is simply the number of residents, but our method
applies in the same manner otherwise.

5.2 Model and Notation
In our model, a nation measures its population using a nation-wide census and then conducts
a PES as described in the previous section. Denote the information given by the census as:

H: A list of households that were surveyed.
gcen(h): The number of residents a household h ∈ H has according to the census.

And denote the information given by the PES as:
HP ES : A list of households which were surveyed by the PES. Must be a subset of H.
gP ES(h): The number of residents a household h ∈ HP ES holds according to the PES.

The nation then allocates R representatives to its federal-states, whose set we denote as S, by
using a highest averages method, as described in Section 4.1. Recall that each specific highest
averages method is defined by a different monotonically increasing function d : N→ N.

Our model assumes each state also has a constant additive factor which is added to
its census population count during the representative allocation process. We denote this
constant as cs for each s ∈ S. Meaning, the value written at cell [s, r] of the imaginary table
used during the representative allocation, for s ∈ S and r ∈ [R], is:

gcen(s) + cs

d(r) , (5)

The additive factor, cs, allows our model some added flexibility, meaning it can cover more
political systems. In the United States, for example, we would want to exclude people living
in group residence (e.g. homeless people, nursing home residents, etc’) from the audit, since
they are not covered by the PES. To do so, we can assume their number according to the
census is accurate and run the audit over the rest of the population. This can be achieved
by defining cs to be the number of persons who live in a group residence in state s according
to the census.

Our census RLA method relies on one simplifying assumption:

▶ Assumption. In both the census and in the PES, the number of residents in a single
household is upper-bounded by a known value, denoted as gmax.
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The value gmax must be set before the PES is conducted. Both the census and the PES
must report that all households have gmax residents at most.

This assumption is necessary due to a critical difference between elections and censuses; In
elections, a single ballot has very limited power. In a census, if it was not for this assumption,
a single household could hold an arbitrarily large number of residents and completely swing
the allocation of representatives to the states.

Finally, denote the number of representatives awarded to state s ∈ S according to the
census as rcen(s).

5.3 Census RLA Overview
The following sections suggest a new method for census RLAs, which relies on the SHANGRLA
framework. In the following section, we design SHANGRLA assertions for auditing the
census’ resulting allocation of representatives to the federal-states. While these assertions can
be used as-is to perform a census RLA, they are only an intermediate step in the development
of more efficient assertions. These more efficient assertions are used by a modified version of
the ALPHA Martingale Test to perform a census RLA, as described in Section 5.5.

5.4 Census RLA Assorters
We begin by adapting the definition of assertions and assorters to the language of census
RLAs. When auditing elections, an assorter is defined as a non-negative function over the
set of possible ballots a voter may cast. When auditing a census, we define an assorter as a
non-negative function over the set of all households, meaning a : H → [0,∞). An assorter
a satisfies the assertion 1

|H|
∑

h∈H a(h) > 1
2 iff some condition regarding the allocation of

representatives to the federal states is true.

▶ Definition 13. Census assorters are functions a1, ..., aℓ : H → [0,∞) with the following
property: Given some census results, if the PES surveyed all households, the allocation of
representatives according to the census and according to the PES match iff for all k ∈ [ℓ]:

1
|H|

∑
h∈H

ak(h) >
1
2 . (6)

These ℓ inequalities are referred to as the census assertions.

The census assorters for our setting are developed by finding a set linear inequalities
which all hold true iff a full PES leads to the same allocation of representatives as the
census. These inequalities are then converted to SHANGRLA style assertions by the method
described by Blom et al. [1] (see Section 2.1).

▶ Theorem 14. Assume the PES surveyed all households. The allocation of representatives
according to the census and according to the PES match, iff for any two states s1, s2 ∈ S:∑

h∈H gP ES
s1

(h) + cs1

d(rcen(s1)) >

∑
h∈H gP ES

s2
(h) + cs2

d(rcen(s2) + 1) . (7)

The proof of this theorem appears in Appendix A.1. By the method suggested by Blom et
al. [1], confirming Equation (7) is equivalent to confirming the SHANGRLA style assertion:

1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2 ,

where:
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▶ Definition 15. The census assorter aP ES
s1,s2

is defined as:

aP ES
s1,s2

(h) :=
gP ES

s1
(h)

cd(rcen(s1)) +
gmax − gP ES

s2
(h)

cd(rcen(s2) + 1) ,

where c denotes:

c := 2
(

gmax

d(rcen(s2) + 1) −
cs1

|H|d(rcen(s1)) + cs2

|H|d(rcen(s2) + 1)

)
.

▶ Theorem 16. Assume that the PES surveyed all households. The assorters {aP ES
s1,s2
| s1, s2 ∈

S, s1 ≠ s2} are all non-negative and satisfy the following condition: The allocation of
representatives according to the census and the PES match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2 . (8)

Proof. The non-negativity of these assorters is due to the method by Blom et al., which
generates non-negative assorters. Additionally, by this method, for any two states s1, s2,
verifying (8) is equivalent to verifying (7). By Theorem 14, verifying (7) for every two states
is equivalent to verifying that the full PES leads to the same representative allocation as the
census, concluding this proof. ◀

For each assorter aP ES
s1,s2

, we now define a new assorter As1,s2 which can also be used to
audit the same census. As1,s2 has a significant advantage over aP ES

s1,s2
, which motivates us to

use it instead. Each assorter aP ES
s1,s2

essentially audits the number of residents per household
according to the PES, without using the per-household census data. Meanwhile, As1,s2 audits
the discrepancy in the number of household members between the census and the PES. Since
we typically expect this discrepancy to be small, this yields a more stable and efficient audit.

Before defining As1,s2 , note that each assorter aP ES
s1,s2

can also be defined over the census
population counts instead of the PES counts. We denote this as acen

s1,s2
:

▶ Definition 17. The value of an assorter aP ES
s1,s2

as in Definition 15 over the census population
count is defined as:

acen
s1,s2

(h) :=
gcen

s1
(h)

cd(rcen(s1)) +
gmax − gcen

s2
(h)

cd(rcen(s2) + 1) .

Using this reported (by the census) and true (by the PES) resident counts, we define
new assorters which audit the discrepancy between them. This is similar to the Batchcomp
assorters from Section 3.4, which audit the batch-level discrepancy between the reported and
true vote tallies.

▶ Definition 18. The census comparison assorter As1,s2 for states s1, s2 ∈ S is defined as:

As1,s2(h) := 1
2 +

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2) ,

where ms1,s2 is the margin of as1,s2 according to the census population counts:

ms1,s2 := 1
|H|

∑
h∈H

acen
s1,s2

(h)− 1
2 ,

and:

zs1,s2 := max
{

gmax

cd(rcen(s2) + 1) ,
gmax

cd(rcen(s1)) , 0
}

.

FORC 2023



2:18 New Algorithms and Applications for Risk-Limiting Audits

▶ Theorem 19. Assume that the PES surveyed all households. The assorters {As1,s2 | s1, s2 ∈
S}, as defined in Definition 18, are all non-negative and satisfy the following condition: the
allocation of representatives according to the census and the PES match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

As1,s2(h) >
1
2 .

The proof for this theorem is presented in Appendix A.2.

5.5 Census RLA Algorithm
The algorithm presented next is a slightly altered version of the ALPHA Martingale Test, when
thinking of each household as a ballot whose content is the household’s state and its number
of residents. We denote the households surveyed by the PES as HP ES = (h1, h2, ..., hd) for
some d ∈ N, and assume that they are given in random order.

1. Initialization
(a) For each (s1, s2) ∈ S × S s.t. s1 ̸= s2, initialize:

Ts1,s2 := 1.
T max

s1,s2
:= 1.

µs1,s2 := 1
2 .

ηs1,s2 := 1
2 + ms1,s2

2(zs1,s2 −ms1,s2 ) .

Us1,s2 := 1
2 + ms1,s2 +δ

2(zs1,s2 −ms1,s2 ) , where δ > 0.
2. Auditing Stage: Iterate over the households in HP ES , for the ith household hi perform

for each ordered pair of states (s1, s2):
(a) Update Ts1,s2 and T max

s1,s2
:

Ts1,s2 ← Ts1,s2

(
As1,s2 (hi)

µs1,s2

ηs1,s2 −µs1,s2
Us1,s2 −µs1,s2

+ Us1,s2 −ηs1,s2
Us1,s2 −µs1,s2

)
.

T max
s1,s2

← max
{

T max
s1,s2

, Ts1,s2

}
.

(b) Update µs1,s2 , ηs1,s2 and Us1,s2 , in this order:

µs1,s2 ←
1
2 |H|−

∑i

j=1
As1,s2 (hj)

|H|−i .

ηs1,s2 ← max
{

1
2 + ms1,s2

2(zs1,s2 −ms1,s2 ) , µs1,s2 + ϵ
}

.
Us1,s2 ← max{Us1,s2 , ηs1,s2 + ϵ}.

Where ϵ is some very small positive meant to ensure that µs1,s2 < ηs1,s2 < Us1,s2 .
(c) For each s1, s2, if µs1,s2 < 0, the corresponding assertion must be true, so set

T max
s1,s2

=∞.
3. Output: The result of the audit is the maximal risk-limit across all assertions:

max
s1,s2∈S

{
1

T max
s1,s2

}
.

▶ Theorem 20. The census RLA fulfills the census RLA guarantee (Definition 12).

Proof. The census RLA is essentially the ALPHA Martingale Test, with four modifica-
tions. We explain why these modifications maintain the risk-limiting nature of the ALPHA
Martingale Test:

Instead of sampling and examining ballots, the census RLA samples and examines
households. This does not effect the fact that the ALPHA Martingale Test is risk-limiting
- a census RLA can be viewed as a classical election RLA where every ballot correspond
to a household, and holds that household’s state and number of residents.
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The census RLA doesn’t sample households at random, it iterates over the households
sampled by the PES. Despite this, since the PES surveys randomly selected households,
the algorithm audits a previously unsampled household selected uniformly at random in
each iteration. This is just as the ALPHA Martingale Test requires.
Instead of pre-setting the risk-limit, the risk-limit with which the census representative
allocation can be approved is outputted after iterating over all PES households. This
outputted risk-limit is already available as part of the ALPHA Martingale Test. In
election RLAs, the audit approves the reported winners when this running risk-limit
drops below the pre-set risk-limit. Here it outputs it after examining all PES households.
The census RLA defines Us1,s2 (which corresponds to uk in the ALPHA Martingale Test)
differently. As mentioned previously, it always maintains Us1,s2 > ηs1,s2 , so the audit
remains risk-limiting. ◀

5.6 Simulations

This section simulates the suggested census RLA on the Cypriot census and its resulting
allocation of representatives to districts in the House of Representatives of Cyprus. Our
original intention was to simulate the suggested census RLA method on the US census and
its resulting allocation of representatives in the US House of Representatives to the states.
This turned out to be infeasible, however, as the audit outputted an insufficient risk-limit.
This is a result of the relatively large number of states (50) and representatives (435) in the
American system. Allocating many representatives to many states increases the probability
of there being a single representative whose allocation is determined by a very small number
of state residents.

To show that the census RLA is useful in other settings, we chose to simulate the audit on
the House of representatives of Cyprus, where 56 representatives are allocated to 5 districts.
This should be viewed as a pet-setting for testing the census RLA method, and not as a
ready-as-is implementation for the Cypriot system.

The House of Representatives of Cyprus

The House of representatives of Cyprus is its sole legislating body, and holds 56 occupied
seats. An additional 24 seats are reserved for the Turkish Cypriot community, who withdrew
from the political decision-making process in 1964, leaving their house seats vacant [4].

The remaining 56 seats of the house are allocated to 5 districts. Currently, the allocation
of seats to the districts is amended by law when found necessary, and does not change
automatically following a census according to a set method. A census RLA could be useful
when performing these amendments, to ensure that the resulting allocation of seats to
districts is sufficiently reliable.

Technical Details

We allocated representatives to districts using the D’Hondt method. D’Hondt was chosen
since it’s currently used in the Cypriot elections to allocate seats to political parties. The
audit was run assuming that each household holds 15 residents at most, and with δ = 10−10.

The census data used in the simulation is based on the results of the 2021 Cypriot census.
For more details regarding the census data generation, see Appendix C. The simulation’s
code is available at the paper’s GitHub repository (see title page).
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Figure 2 The census RLA output when the census and PES fully agree on the number of residents
in each household, as a factor of the share of households that were surveyed by the PES.

Results
To examine the census RLA method, we present in Figure 2 the outputted risk-limit of the
census RLA as a factor of the size of the PES. This simulation assumes that the census and
the PES agree on the number of residents in each PES-surveyed households. Results with
small census and PES disagreement, which are largely similar to the ones presented here, are
available at the paper’s GitHub repository.

Under the specified conditions, a PES which samples 0.66% of households is sufficient for
a risk limit of 0.1, and a sample of 0.85% is sufficient for a risk-limit of 0.05. A PES often
surveys around 1% of households [7], meaning that our census RLA can confidently approve
the census’ resulting allocation of representatives to districts under these conditions.

These results show that the census RLA method is applicable in some settings, when the
number of representatives and federal-states to allocate them to is relatively small. When
there are many representatives and federal-states, even a small error in the census can lead
to a wrongful allocation of representatives, and auditing the census results requires a larger
PES sample.

6 Discussion and Further Research

Throughout this work, we can observe that an election’s social choice function and setting
can severely limit the efficiency of their RLAs. Systems like the Israeli Knesset elections and
the US House of Representatives’ allocation of representatives to states are very sensitive to
enumeration errors, making it difficult to audit them efficiently.

The simulation of the Batchcomp method on the Israeli Knesset elections (Section 4.3)
indicates that Batchcomp provides a noticeable improvement over ALPHA-Batch in the
limited settings that were tested. Despite this relative success, we cannot definitively say it
outperforms existing methods without a clear, rigorous way of analyzing their efficiency.

The census RLA method appears to be useful in some limited settings, and can be
implemented using existing post-enumeration surveys. In systems where our method is
currently not sufficient, a census RLA could perhaps aim for a weaker guarantee - that the
number of representatives each state should receive according to the PES is close to the
number it has according to the census. This option is discussed in Appendix D.

The work raises many open questions and potential research directions:
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Applying RLAs in Additional Settings: Generally speaking, RLAs can be applied whenever
one wishes to verify the computation of some function over a large number of inputs
obtained through potentially error-prone processes. While political elections provide a
natural environment for their application, we advocate for their use in a wider range of
settings to ensure reliable results.
As an example of such settings, RLAs could potentially be used to verify that decisions
taken based on datasets which were altered in order to satisfy differential privacy are
correct according to the real data. This could be achieved by running an RLA in a
protected environment (enclave) which holds a subsample of the original, noiseless data.
In this setting, the noisy, (differential private) dataset is seen as the reported result, while
the noiseless dataset is the true results. An RLA can verify that the results of some
computation over the differential private dataset and over the original noiseless dataset
are likely to be identical, based on a (hopefully) small random sample from the original
dataset. One challenge is to make sure that the very fact that the data passed the test
does not hurt the desired differential privacy property.

Analytical Analysis of the Efficiency of RLAs: Most recent literature in the field, including
this work, focuses on suggesting new RLA algorithms and fitting them to additional
electoral systems and settings. There is little to no analytical analysis of the efficiency
and capabilities of many RLA methods. Without a more rigorous analysis, it is not
possible to definitively determine which RLA methods are better for which settings. Such
analysis could help, for instance, to argue analytically whether Batchcomp is indeed
preferable over ALPHA-Batch.

Connection Between RLAs and Computational Models: Thus far, advancements in the
field of RLAs were done mostly independently and without connection to computational
models. Finding such connections may inspire new RLA algorithms, or suggest new
methods for analyzing the capabilities and efficiency of existing methods. As an example
of these connections, RLAs can essentially be viewed as randomized decision trees, where
each branch represents a different sequence of paper-ballots that can be uncovered during
the audit. Viewing RLAs in this manner may allow us to analyze their query complexity
(number of ballots examined) or instance complexity (best possible performance over
specific election results) and to apply existing results from other fields onto RLAs.
As a potential example for this, viewing RLAs as randomized decision trees may allow
us to find lower bounds for the query-complexity of RLAs by analyzing the randomized
unlabeled certificate complexity of the social choice function they operate on, as defined
by Grossman, Komargodski and Naor [6]. Randomized unlabeled certificate complexity
is a complexity measure of a function over some specific input. It’s defined roughly as
the minimal number of queries, in expectation, that any randomized decision tree which
computes this function has to perform over the specified input, given a permuted version
of it as a certificate. This notion could be relevant for RLAs since they are essentially
randomized decision trees which calculate a social choice function’s output (the true
winners) while using the reported election results as a certificate.
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A Proofs

A.1 Proof of Theorem 14
▶ Theorem 14. Assume the PES surveyed all households. The allocation of representatives
according to the census and according to the PES match, iff for any two states s1, s2 ∈ S:∑

h∈H gP ES
s1

(h) + cs1

d(rcen(s1)) >

∑
h∈H gP ES

s2
(h) + cs2

d(rcen(s2) + 1) . (7)

Proof. First, assume that the two allocations of representatives match. Examine the
imaginary table with which representatives are allocated to states according to the PES.
Recall that each state has exactly its first rP ES(s) cells marked. Since we assume that for any
s ∈ S, rP ES(s) = rcen(s), we have it that for any s1, s2 ∈ S, the cell at index [s1, rcen(s1)] is
marked, while the cell at [s2, rcen(s2) + 1] is not. Since the marked cells are the ones which
hold the largest values in the table, the cell at [s1, rcen(s1)] has a larger value than the cell
at [s2, rcen(s2) + 1]. Writing these values out results exactly in (7)- the larger term is the
value at [s2, rcen(s2) + 1], and the smaller is the value at [s1, rcen(s1)].

https://www.census.gov/data/tables/time-series/demo/families/households.html
https://www.census.gov/data/tables/time-series/demo/families/households.html
https://m.knesset.gov.il/en/about/lexicon/pages/seats.aspx
https://m.knesset.gov.il/en/about/lexicon/pages/seats.aspx
https://www.pio.gov.cy/en/press-releases-article.html?id=27965
https://unstats.un.org/unsd/demographic/standmeth/handbooks/Manual_PESen.pdf
https://unstats.un.org/unsd/demographic/standmeth/handbooks/Manual_PESen.pdf
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Towards proving the other direction of the equivalence, we show that if (7) is true for
any s1, s2 ∈ S, then a certain condition (9) holds for any s1, s2. We then show that if this
condition is true, then the allocation of representatives according to the census and according
to the PES match.

▷ Claim 21. Let rP ES(s) be the number of representatives a state s is allocated according
to the full PES results. For any s1, s2 ∈ S, if (7) is true then:(

rP ES(s1) ≥ rcen(s1)
)
∨
(
rP ES(s2) ≤ rcen(s2)

)
. (9)

Proof. Assume towards contradiction that for some s1, s2 ∈ S, the condition (9) is false,
meaning that

(
rP ES(s1) < rcen(s1)

)
∧
(
rP ES(s2) > rcen(s2)

)
is true.

Examine the table used to allocate representatives to states according to the PES results.
According to this table, s2 is awarded rP ES(s2) representatives. Since rP ES(s2) > rcen(s2),
and since the row s2 has exactly its first rP ES(s2) cells marked, the cell at [s2, rcen(s2) + 1]
is marked. Additionally, since s1 was awarded exactly rP ES(s1) seats and since rP ES(s1) <

rcen(s1), the cell at [s1, rcen(s1)] is not marked.
By the paragraph above, if

(
rP ES(s1) ≥ rcen(s1)

)
∨
(
rP ES(s2) ≤ rcen(s2)

)
is false, then

the cell at [s2, rcen(s2) + 1] is marked while the cell at [s1, rcen(s1)] is not. Since the marked
cells are the ones which hold the largest values, it follows that the cell at [s2, rcen(s2) + 1]
has a larger value than the cell at [s1, rcen(s1)], meaning that:∑

h∈H gP ES
s1

(h) + cs1

d(rcen(s1)) ≤
∑

h∈H gP ES
s2

(h) + cs2

d(rcen(s2) + 1) .

The larger term in this inequality is the value at index [s2, rcen(s2) + 1] and the smaller one
is the value at index [s1, rcen(s1)]. This contradicts (7), and thereby proves this claim. ◁

▷ Claim 22. If (9) is true for any s1, s2 ∈ S, then the allocation of representatives according
to the census and according to the full PES are identical.

Proof. Assume towards contradiction that the two allocations are not identical. Therefore,
there must be at least one state s with rP ES(s) ̸= rcen(s). If rP ES(s) > rcen(s), since the
number of total representatives is constant, there must be another state s′ with rP ES(s′) <

rcen(s′). Similarly, if rP ES(s) < rcen(s), there must be another state s′ with rP ES(s′) >

rcen(s′). Either way, (9) is false. Thus, if (9) is true for every pair of states, then the two
allocations must be identical, completing the proof. ◁

Using these two claims, we can now complete the proof of this theorem. Assume (7) is true
for any pair of states. By Claim 21, (9) is also true for any pair of states, and by Claim 22,
this makes the allocation of representatives according to the census and according to the PES
identical. This proves the other direction of the equivalence and concludes the proof. ◀

A.2 Proof of Theorem 19
▶ Theorem 19. Assume that the PES surveyed all households. The assorters {As1,s2 | s1, s2 ∈
S}, as defined in Definition 18, are all non-negative and satisfy the following condition: the
allocation of representatives according to the census and the PES match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

As1,s2(h) >
1
2 .

Proof. We show that As1,s2 is non-negative and that the required equivalence holds.
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▷ Claim 23. For any s1, s2 ∈ S, As1,s2 is non-negative.

Proof. Fix two states s1, s2 ∈ S. Recall the definition of As1,s2 :

As1,s2(h) := 1
2 +

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2) .

By the definition of aP ES
s1,s2

and acen
s1,s2

, the value of the nominator in the expression above is:

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h) =ms1,s2 +
gP ES

s1
(h)− gcen

s1
(h)

cd(rcen(s1)) +
gcen

s2
(h)− gP ES

s2
(h)

cd(rcen(s2) + 1) .

h is either from s1, from s2 or from neither of them. If it’s from neither, this expression
equals ms1,s2 . If it’s from s1, then:

ms1,s2 +

≥0︷ ︸︸ ︷
gP ES

s1
(h)−

≤gmax︷ ︸︸ ︷
gcen

s1
(h)

cd(rcen(s1)) +

=0︷ ︸︸ ︷
gcen

s2
(h)− gP ES

s2
(h)

cd(rcen(s2) + 1) ≥ ms1,s2 −
gmax

cd(rcen(s1))

where gmax is the maximal number of residents a single household may have. If h is from s2,
then:

ms1,s2 +

=0︷ ︸︸ ︷
gP ES

s1
(h)− gcen

s1
(h)

cd(rcen(s1)) +

≥0︷ ︸︸ ︷
gcen

s2
(h)−

≤gmax︷ ︸︸ ︷
gP ES

s2
(h)

cd(rcen(s2) + 1) ≥ ms1,s2 −
gmax

cd(rcen(s2) + 1) .

So for any h ∈ H:

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)

≥min
{

ms1,s2 , ms1,s2 −
gmax

cd(rcen(s2) + 1) , ms1,s2 −
gmax

cd(rcen(s1))

}
. (10)

By (10) and by the definition of zs1,s2 (Definition 18):

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h) ≥ ms1,s2 − zs1,s2 . (11)

Meaning that for any h ∈ H:

As1,s2(h) = 1
2 +

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2) ≥ 1

2 + ms1,s2 − zs1,s2

2(zs1,s2 −ms1,s2) = 0,

proving the claim. ◁

▷ Claim 24. Assume the PES surveyed all households. The allocation of representatives
according to the census and the PES match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

As1,s2(h) >
1
2 .

Proof. By Theorem 16, the allocation of representatives according to the census and the PES
match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2 .
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Therefore, to prove this claim, it suffices to prove that for every s1, s2 ∈ S:(
1
|H|

∑
h∈H

As1,s2(h) >
1
2

)
⇐⇒

(
1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2

)
.

Fix any two federal-states s1, s2 ∈ S. We show that the two inequalities above are equivalent:

1
|H|

∑
h∈H

As1,s2(h) >
1
2

⇐⇒ 1
|H|

∑
h∈H

(
1
2 +

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2)

)
>

1
2

⇐⇒ 1
|H|

∑
h∈H

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2) > 0.

Now, using the definition of ms1,s2 and re-arranging the summation yields the desired
equivalence:

⇐⇒ 1
|H|

∑
h∈H

1
|H|
∑

h′∈H acen
s1,s2

(h′)− 1
2 + aP ES

s1,s2
(h)− acen

s1,s2
(h)

2(zs1,s2 −ms1,s2) > 0

⇐⇒
1

|H|
∑

h∈H aP ES
s1,s2

(h)− 1
2

2(zs1,s2 −ms1,s2) > 0

⇐⇒ 1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2 .

The last transition relies on the fact that zs1,s2 > ms1,s2 , which is true since zs1,s2 ≥
maxh∈H acen(h) ≥ ms1,s2 (see Definition 18). This concludes the proof of this claim. ◁

The combination of these two claims completes this theorem’s proof. ◀

B Batchcomp – Choosing δ

As seen in Section 3.5, for every assorter ak and its Batchcomp counterpart Ak we initialize:

Uk = 1
2 + Mk + δ

2(wk −Mk) ,

where δ > 0. Different choices for δ all maintain the RLA guarantee, but under certain
conditions, certain values of δ yield more efficient audits. This section attempts to give
intuition regarding the ideal choice of δ. Generally, the more we expect the reported vote
tallies of the different batches to be accurate, the smaller δ should be. We show this by
comparing µk to the expected value of a Batchcomp assorter on the next batch to be sampled.

▷ Claim 25. During a Batchcomp RLA, if the next sampled batch Bi satisfies Ak(Bi) ≥ µk

for some batch-assorter Ak, then choosing a smaller Uk increases the audit’s efficiency, and
vice-versa; if Ak(Bi) < µk, then setting a larger Uk increases the audit’s efficiency.

Proof. Examine some Batchcomp assorter Ak. Approving its assertion requires fewer ballots
the more significantly Tk grows per batch. This is because the audit approves assertion
k when Tk > 1

α . Therefore, it suffices to show that if Ak(Bi) ≥ µk, then Tk grows more
significantly when Uk is small, and vice-versa.
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Towards this purpose, denote the next audited batch as Bi. To prove this claim, we take
the derivative by Uk of the update rule of Tk in step 2c of the Batchcomp algorithm:

Tk ← Tk

(
Ak(Bi)

µk

ηk − µk

Uk − µk
+ Uk − ηk

Uk − µk

)
.

Taking its derivative by Uk results in:

Tk

(
−Ak(Bi)

µk

ηk − µk

(Uk − µk)2 + 1
Uk − µk

− Uk − ηk

(Uk − µk)2

)
= Tk

(Uk − µk)2

(
−Ak(Bi)

µk
(ηk − µk) + Uk − µk − Uk + ηk

)
= Tk

(Uk − µk)2

(
−Ak(Bi)

µk
(ηk − µk)− µk + ηk

)
= Tk

ηk − µk

(Uk − µk)2︸ ︷︷ ︸
>0

(
1− Ak(Bi)

µk

)
.

Where the term above the under-brace is positive since Tk is positive, and since we always
have Uk > ηk > µk ≥ 0. We can observe that if Ak(Bi) > µk, this derivative is negative,
meaning that choosing a smaller value for Uk causes Tk to increase more significantly. If
Ak(Bi) < µk, then the opposite is true. This concludes the proof of this claim. ◁

According to this claim, if we expect to have Ak(Bi) > µk for all batch-assorters and batches,
we should choose a smaller δ, and vice versa. When using a Batchcomp assorter, we have:

Ak(Bi) = 1
2 +

Mk + atrue
k (Bi)− arep

k (Bi)
2(wk −Mk) .

And wk > Mk > 0 by the definition of Mk. Therefore, as long as the batch-level discrepancies
between the reported and true vote counts are small, we expect to consistently have Ak(Bi) ≥
µk, meaning we should choose a smaller δ. To get Ak(Bi) < µk, we would need to have
atrue

k (Bi)− arep
k (Bi) > Mk, meaning that the discrepancy in vote counts, as it relates to the

assorter ak, is greater than its reported margin. If the margin isn’t extremely small, and
the errors in the vote count are uncorrelated and rare, this is very unlikely to happen. We
believe that this should encourage choosing a very small value for δ, since it would only make
the audit inefficient if it’s likely that the vote counting was malicious.

▶ Conclusion (informal). A Batchcomp RLA is more efficient when δ > 0 is very small, as
long as the vote tallying is not done maliciously.

C Census RLA – Data Generation

The data used to perform this simulation is based on the population census conducted in
2021 [10]. The Statistical Service of Cyprus publicly reports the total number of residents in
every district, but not the individual household data, which the census RLA requires. To
generate this data, we assumed that the number of residents per household distributes as it
does in the United States, as reported by its census [3]. We additionally assumed that 1% of
households do not respond to the census and are counted as if they have no residents. The
per-household data used in these simulations was generated as follows:
1. The number of households per district was calculated by dividing the district’s population

by the expected number of residents per household.
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2. The number of residents in each household was drawn from the distribution specified in
the US census [3].

3. Due to the randomness involved in the previous step, the real census and our generated
one might disagree on the population of the districts. To balance this, the constant of
each district (cs in (5) at Section 5.2) was set as the difference between the population of
the district according to the real census and according to our generated one. With this
definition, the allocations of representatives to districts by the real census and by our
generated one are necessarily identical.

D Weakening the RLA Guarantee

When conducting a SHANGRLA based RLA, a single assertion may be the difference between
reading relatively few or a relatively many ballots or households to approve the reported
outcome. As an example of this, in the Knesset elections examined in Section 4.3, a single
assertion causes the Batchcomp audit to read 85% of ballots, instead of only 32% without
it. In such cases, the auditing body may decide in advance that a certain assertion is too
difficult to audit, and forgo approving it. This decision can be taken based on the assertion’s
margin, or by simulating the audit in advance and checking the number of ballots required
per assertion.

For RLAs which approve an allocation of parliament seats to different political parties
or federal-states, tight assertions can be altered to verify that the reported allocation of
seats is nearly accurate. For example, in the Knesset elections, if an assertion which involves
some specific party drastically increases the number of ballots the audit reads, an RLA can
approve that the number of seats that this party wins according to the reported results is
at most ±1 from its true number. This would result in a shorter audit, at the expense of a
slightly weaker guarantee.

To achieve this, when designing move-seat assertions which involve some difficult-to-audit
party p, we alter the number of seats it reportedly won. For every assertion which verifies
that seats shouldn’t be moved from p to some other party p′, we imagine p reportedly won
one seat less than it actually did. Similarly, when verifying that seats shouldn’t be moved
from p′ to p, we imagine p has reportedly won one seat more than it did. The same notion
also applies for census RLAs and their assorters.

Alternatively, if some assertions are too difficult to audit, the auditing body can decide
to verify that certain blocks of parties or federal-states get the correct number of seats. For
parliamentary elections, this is achieved by partitioning the parties to electoral blocks, and
verifying that no seats should be moved between every two parties who belong to different
blocks.
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