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Abstract
Many companies rely on advertising platforms such as Google, Facebook, or Instagram to recruit a
large and diverse applicant pool for job openings. Prior works have shown that equitable bidding
may not result in equitable outcomes due to heterogeneous levels of competition for different types
of individuals. Suggestions have been made to address this problem via revisions to the advertising
platform. However, it may be challenging to convince platforms to undergo a costly re-vamp of their
system, and in addition it might not offer the flexibility necessary to capture the many types of
fairness notions and other constraints that advertisers would like to ensure. Instead, we consider
alterations that make no change to the platform mechanism and instead change the bidding strategies
used by advertisers. We compare two natural fairness objectives: one in which the advertisers must
treat groups equally when bidding in order to achieve a yield with group-parity guarantees, and
another in which the bids are not constrained and only the yield must satisfy parity constraints.
We show that requiring parity with respect to both bids and yield can result in an arbitrarily large
decrease in efficiency compared to requiring equal yield proportions alone. We find that autobidding
is a natural way to realize this latter objective and show how existing work in this area can be
extended to provide efficient bidding strategies that provide high utility while satisfying group parity
constraints as well as deterministic and randomized rounding techniques to uphold these guarantees.
Finally, we demonstrate the effectiveness of our proposed solutions on data adapted from a real-world
employment dataset.
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3:2 Bidding Strategies for Proportional Representation in Advertisement Campaigns

1 Introduction

For many institutions, hiring a diverse workforce is crucial to achieving and retaining an
equitable environment. While there are many strategies that can be employed to ensure that
each stage of the hiring process, from initial resume screening to a final hiring decision, can
be done equitably, even the best of attempts may fall short if the initial pool of applicants
lacks sufficient diversity. As a result, many companies rely on online advertising platforms
such as Google, Facebook, or Instagram to recruit a wider applicant pool for job openings.

Advertising platforms sell slots to advertisers through auction mechanisms. Toward the
goal of yielding a diverse applicant pool, advertisers are able to create recruitment and
marketing campaigns to target users of different demographic groups. This specific but
salient setting of job advertisements is bound by policy oversight from different government
entities. In the United States, the Equal Employment Opportunity Commission enforces
discrimination laws that prohibit employers from “publishing a job advertisement that shows a
preference for or discourages someone from applying for a job based on his or her race, color,
religion, sex, national origin, age, disability or genetic information”1. However, it is unclear
whether this guidance refers to bidding equally on individuals from different demographics,
or to achieving a proportional yield for all demographics regardless of protected class status.

Prior work has observed that these two goals may not be equivalent. Due to differences
in advertiser demand, the required costs to reach users of various demographic groups can
be very different; women in particular may see fewer job ads due to competition from retail
brands that do not target men [21]. As a result, setting the same bid value for all groups may
still result in a disproportionate representation in downstream yield when there are different
levels of competition for different groups of users on the platform [15, 10]. Existing work
(such as [10, 12] with more discussed in Section 2) interprets this behavior as a failure of the
mechanism due to composition, and suggests ways that ad auctions could be redesigned to
guarantee fair outcomes despite these composition effects.

However, an advertising platform may be unlikely to implement a new auction mechanism
for a number of reasons, even if the revenue of the new alternative can be shown to be close
to that of the original mechanism. For instance, the costs necessary to research, deploy,
and completely redesign the current auction system may make such a change undesirable.
Moreover, a new auction might make the mechanism far more complex and difficult for
advertisers to understand as well as offer less flexibility if it is designed with only a few
specific types of constraints and objectives in mind. We discuss these concerns in more detail
in Section 3.

Instead, we take the perspective that perhaps only requiring advertisers to bid values
that are similar across different groups of interest may not be the most useful requirement for
this context if the fairness of the system is judged by the outcomes of the auctions, and not
the bids that are inputted. In fact, in Section 3.1, we demonstrate that requiring advertiser’s
bids to be similar across groups may actually hinder achieving parity with respect to auction
outcomes, and show that the utility of the optimal bidding strategy that satisfies parity
constraints at both the bid and outcome level can be far lower than the optimal bidding
strategy that requires group parity at the outcome level alone.

We use these arguments and examples to motivate an alternative approach to redesigning
auctions, which is to consider the perspective of an individual advertiser and design bidding
strategies that guarantee outcomes that meet the advertiser’s goals. This approach is often
referred to as an “autobidder,” and the adoption of such technologies as a way to control

1 https://www.eeoc.gov/prohibited-employment-policiespractices
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spending and budget depletion is growing increasingly popular. There are a few works
that consider autobidding for group parity goals [9, 23], but these approaches do not give
formal guarantees about how closely the resulting bidding strategies meet the desired parity
constraints.

We argue that due to their flexibility, practicality, and ease of implementation in exist-
ing systems, autobidding strategies that guarantee proportional representation across key
subgroups are a key direction for research in equitable online ads. In this paper, we show
how we can build on the autobidding framework of Aggarwal et al. [1] to develop an efficient
algorithm to compute bidding strategies with provable proportional group representation
guarantees in the offline setting. We additionally show how our constraints fit into the
model studied by Castiglioni et al. [7] to provide efficient online bidding algorithms with
sublinear regret. We focus on strategies for a single autobidder, though understanding market
dynamics when many autobidders with fairness constraints are deployed is a natural next
step for future work.

We supplement our arguments and algorithms with empirical evidence using data modified
from the American Community Survey. By comparing single bid, gender-based bids, and
our autobidder, we see that the autobidder achieves the best combination of utility and
representation across different job sectors with different levels of representation.

1.1 Contributions
Motivations and Fairness Notions

Through examples and qualitative analysis, we consider different potential notions of fairness
and group representation for ad auctions and make the case for using autobidders to achieve
equitable ad exposure (Sections 3 and 4.1).

Optimal Randomized Bidding Strategy for Budget and Group Representation
Constraints

Building on the autobidder with constraints framework suggested in [1], we add constraints
on the representation of key subgroups in the set of clicks resulting from a series of auctions
and show that it is possible to calculate an approximately optimal bidding strategy that
stays within budget while satisfying group representation constraints in expectation. We
consider two platform revenue schemes: one in which advertisers only pay for clicks and
another where advertisers pay for impressions (Section 4).

Bidding Strategy with Deterministic Constraint Guarantees

Our model assumes that each individual i clicks on an ad with some probability ctri, therefore
there is inherent randomness in the outcome, and it is not possible to have a deterministic
promise on any of the constraints. However, we give a modification to the algorithm that
results in slightly lower utility, but satisfies the constraints with high probability, and not
only in expectation. The randomized rounding method assumes that there exists a large
fraction of the population without representational constraints (Section 4.4).

Rounding for Deterministic Solutions When Groups are Disjoint

In the special case of disjoint groups and constraints on group representation with respect to
impressions (rather than clicks), we show how to achieve a deterministic solution with utility
that is close to optimal. This solution works also for a small number of intersection groups.
For intersecting groups, it is possible to use the randomized rounding described above, that
promises the constraints are met with high probability (Section 4.4).

FORC 2023



3:4 Bidding Strategies for Proportional Representation in Advertisement Campaigns

Extension to Autobidding with Representation Constraints in the Online Setting

We show that our constraints can be satisfied by an online algorithm with sublinear regret
using the online learning framework of Castiglioni et al. [7] (Section 4.5).

Empirical Data on Autobidder Performance

Using data adapted from the American Community Survey and the US Bureau of Labor
Statistics, we simulate the results of different bidding strategies. We show the advantage
of our proposed autobidder with proportional representation constraints and randomized
rounding for achieving both equitable exposure and high advertiser utility (Section 5).

2 Related Work

2.1 Mechanism Design
A number of existing works consider ways to design auctions that satisfy different choices of
fairness guarantees. Chawla et al. [11] design truthful auctions that guarantee individually
fair outcomes, Celis et al. [8] incorporate group parity constraints into an auction mechanism,
and Kuo et al. [20] propose a deep learning approach to approximately optimal auctions while
incorporating relaxed individual fairness constraints. Dwork et al. [15] observe that even
when advertisers place bids that fulfill their personal fairness goals, competition from other
advertisers may prevent the auction outcomes from satisfying advertisers’ fairness constraints.
Building on this observation, subsequent works design auction mechanisms whose outcomes
satisfy individual fairness constraints for each advertiser, assuming that advertisers’ bids
satisfy individual fairness guarantees with respect to their personal metrics [10, 12].

2.2 Autobidding Strategies
A different approach for achieving advertising auction goals is to consider the problem from
the point of view of the advertisers (bidders) and design bidding strategies that guarantee
the desired properties. This approach is often termed “autobidding”. While a number of
works explore autobidding strategies for a number of different budgets and spending-related
goals [4, 6, 13, 22, 1], autobidding strategies that optimize for fairness guarantees are still
relatively under explored. Nasr et al. [23] first suggest adding parity constraints specifically
to bidding strategies using an unlimited budget. Celli et al. [9] explore autobidding strategies
that incorporate parity constraints via a regularization term in the objective function.
However, this approach does not allow for any formal guarantees about how well these
fairness goals are achieved by the algorithm. More recently, Castiglioni et al. [7] consider
more general autobidding strategies that can handle a number of different types of constraints.
While they do not consider fairness guarantees in their main results, they note that fairness
constraints could be considered as a future direction and suggest one potential formulation
of fairness constraints. Unfortunately, the fairness constraints they suggest are not proven
to yield an efficient algorithm because the solutions are not guaranteed to be feasible. We
show that our constraints do satisfy feasibility requirements and yield an efficient online
autobidding algorithm.

Another related line of work considers how to “learn to bid” or how to discover bidding
strategies using feedback from the outcomes of repeated auctions [3, 16, 18, 19, 24, 25]. Our
work mostly considers the offline full information setting in which the winning bids, items,
and values are all known to the autobidding algorithm. In Section 4.5, we note that the
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online learning framework developed by Castiglioni et. al in [7] can be extended to give
online bidding algorithms that guarantee group proportionality constraints will be satisfied in
the long-term when slots and their associated values are drawn from a stationary distribution
at each step. However, further exploring how to learn fairness-aware bidding strategies in
the repeated auction setting is an interesting direction for future work.

3 Motivation

We consider a two-part system, in which advertisers place bids on individual ad slots according
to some bidding algorithm and a centralized auction mechanism decides which advertiser
gets a particular slot, and how much they will pay. In reality, platforms like Google will
often perform both parts of this process once an advertiser defines a campaign with a target
population, total budget (B), and potentially some additional desiderata. Currently, most
ad platforms use a standard second- or first-price auction to decide how ads are allocated,
though there have been proposals for alternative options that guarantee a variety of different
fairness objectives (See Section 2).

We observe that there are a number of different reasons why it makes sense to focus
on designing a new bidding algorithm rather than implementing alterations to the auction
mechanism itself when the system contains bidders who would like to ensure their ads result
in an even spread of clicks from their target population.

Cost to Platform

Most alternative options do not consider the potential loss in revenue for the platform
that would arise from implementing a new auction mechanism. Even when an alternative
mechanism can provide near-optimal platform utility, significant costs associated with
designing, implementing, and switching over to a new mechanism are likely to make such a
switch impractical from the point of view of a platform.

Loss of Flexibility

There are many different objectives and constraints that advertisers would like to optimize
for. While we focus on group representation constraints, some advertisers may be more
focused on other objectives such as alternative notions of fairness, or goals outside fairness
such as a limit on their rate of spending. Keeping the auction as a fixed mechanism allows
advertisers to specify their own individual constraints and optimize their bids to match.

Decreased Comprehension

Ad platforms prioritize simplicity in their auction mechanisms. For this reason, many
companies including Google have recently decided to switch from second- to first-price
auctions, citing concerns around simplifying the ad-purchasing process for advertisers [17]. It,
therefore, seems unrealistic to expect platforms to switch to the more complicated mechanisms
required to enforce fairness guarantees.

Due to these reasons, we concentrate on the question of designing optimal bidding
algorithms for advertisers with group representation constraints.

FORC 2023
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3.1 What Does it Mean to Bid Fairly in Second and First-Price
Auctions?

Prior works have observed a composition problem that arises in standard auction settings [15].
As a simple example, we assume that some advertiser values individuals from groups A and
B equally, and so bids the same value v on individuals from each group.

In a vacuum, such a strategy would result in having a proportional number of ads shown
to both groups. However, other advertisers in the market may not have the same goals, and
may specifically target one group by only bidding on individuals in group A. When composed
together, the many bidding strategies used by all the different advertisers in the market may
result in different winning bid values for the two groups. In particular, an individual from
group B may require a winning bid of v, but individuals from A may require a higher bid of
2v due to increased demand. In this situation, our advertiser’s strategy will result in ads
shown only to group B, rather than to both groups proportionally.

The perspective of existing work is that in this example, our advertiser was “doing the
right thing”, i.e. bidding on groups similarly, and it is a failure of the composition mechanism
(the auction) that causes differential rates of ad exposure. Instead, we argue that bidding in
a way that satisfies group parity constraints might not be the right notion for this context
given that practical goals of diverse recruitment are judged based on the auction outcomes.
In fact, there are three potential general types of fairness that could be considered here,
defined by different parts of the bidding process. We discuss these three options below in
terms of group parity guarantees. However, this framing applies to other notions such as
individual fairness as well.
1. (Bid Parity) The advertiser is required to bid similarly across different groups of interest.

This is the notion we considered in our above example, where we saw that bid parity
alone does not guarantee that yields will satisfy any sort of group proportionality goals.

2. (Outcome Parity) Instead, we could explicitly require that an advertiser’s yield (measured
either in terms of clicks or exposures, depending on the setting) has representation of key
groups that is proportional to their representation in the population. Here, we do not
put any constraint on how advertisers must bid to achieve a proportional yield.

3. (Bid-and-Outcome Parity) Lastly, we could potentially consider a stricter notion that
requires that both an advertiser’s bids be similar across groups and the resulting yields
be proportional.

If we care about the outcomes of ad auctions, it’s natural to focus on either outcome parity
or bid-and-outcome parity as goals for a bidding algorithm. On first glance, these might
seem somewhat similar. Clearly, any strategy satisfying bid-and-outcome parity will also
satisfy outcome parity, however, we can show that the opposite direction does not necessarily
hold. In fact, a simple example demonstrates that strategies satisfying bid-and-outcome
parity may result in arbitrarily large decreases in advertiser utility compared to strategies
that are only required to satisfy outcome parity in both second and first-price auctions.

▶ Example 1. We consider a second-price auction2 being run on a population partitioned
into two groups, A and B.

2 By similar reasoning, it’s easily verified that a first-price auction run in the same setting would result in
even larger gaps in utility, so we concentrate on second-price auctions for this example. We also only
focus on yield in terms of exposure here for simplicity, but the example can be easily extended to work
for yield that is measured in terms of clicks as well by incorporating click-through-rates.
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We suppose that an advertiser has a budget of $5 that it uses to bid on a population of
100 individuals (G, w) ∈ P ⊆ {A, B} ×W , where G corresponds to an individual’s group,
and w corresponds to the winning bid from a discrete set of bids W = {$0.1, $0.4, $1} (if an
advertiser bids b ≥ w, they win the auction and pay w, and do not win the auction and pay
nothing otherwise).

Groups are distributed evenly across the population, so there are 50 individuals from
group A and 50 individuals from group B. However, the distributions of winning bids are
skewed slightly to the right (higher cost) for individuals from group A compared to group B,
i.e. we have the following numbers of individuals with each winning bid:

w = $0.1 w = $0.4 w = $1
Group A 25 20 5
Group B 40 10 0

We consider an offline setting where these winning bids and numbers of individuals are
all known to an advertiser beforehand and used to set a bidding strategy, and then these 100
individuals arrive in a random order and the bidding strategy is applied until the budget
runs out. We consider two options for bidding strategies. First, a bid-constrained strategy
is one where an advertiser must set a maximum bid b, and bid b on every individual that
arrives until the budget runs out (this translates to bidding b on every individual with equal
probability because the order is randomized). In Appendix A, we discuss why this is a natural
definition of bid parity in this setting. The second option is to use a bid-unconstrained
strategy. In this approach, an advertiser can set a unique bid for each individual.

We assume that an advertiser values all individuals equally, and thus its utility is equal
to the number of individuals that are shown an ad. When the outcome is required to be
proportional to the group sizes, an advertiser must bid in such a way that the expected
number of ads shown to group A is equal to the number of ads shown to group B.

When bids are unconstrained and the advertiser can decide the bid amount for each
individual separately as long as the outcomes are proportional to group sizes, it’s optimal for
an advertiser to bid $0.1 on 25 individuals with w = $0.1 from group A and 25 individuals
with w = $0.1 from group B, and bid w = $0 on every other individual. This results in ads
shown to 50 individuals total, which is equal to the optimal number that could be reached
even when outcomes are unconstrained.

In contrast, when an advertiser must use a bid-constrained strategy, setting the maximum
bid b to be any value smaller than $1 cannot satisfy group proportionality constraints because
the expected number of individuals shown ads from group B will always be larger than for
group A. Thus, the only strategy that satisfies both bid and outcome parity is to bid the
maximum-possible bid of $1 on all individuals until the budget runs out.

This results in a strategy that shows ads to only 21.3 individuals in expectation, less
than half the utility of the bid-unconstrained strategy. Moreover, note that this strategy
provides the lowest utility of any of the potential bid-constrained strategies.

This example exhibits a setting in which requiring bid parity in addition to outcome parity
may result in much lower utility for advertisers. We note that this example can be extended
to even larger spreads of price distributions where the distribution of group A is slightly
skewed right in comparison to group B, again requiring a bid-constrained strategy to bid the
maximum possible winning bid of any individual to receive proportional outcomes, whereas
a bid unconstrained strategy can satisfy outcome parity while matching the utility of the
optimal unconstrained bidding strategy.

FORC 2023



3:8 Bidding Strategies for Proportional Representation in Advertisement Campaigns

We conclude that requiring advertisers to bid in a way that respects parity constraints
does not directly contribute to receiving group-proportional outcomes, and in some situations
may actually make achieving such outcomes incredibly costly compared to strategies where
bids are unconstrained. This motivates our interest in optimal bidding strategies that satisfy
outcome parity, which we explore in the following sections.

4 Autobidder with Constraints on Subgroup Representation

Now that we have justified our perspective and proposed approach, we describe how we
choose to model an ad auction from an advertiser’s point of view, and how to compute
optimal bidding strategies for this setting.

4.1 Setup

We consider a large set of queries (or individuals) I, each of which has a single slot that
can show an ad. For each query i, an auction determines which ad is shown as well as the
cost-per-click (cpci) of the ad.

We consider a static setting in which we are trying to set the bid of single advertiser
with full knowledge of the bids of other advertisers, i.e. there is a set cpci for each query,
and the advertiser wins the ad if and only if their bid is above that value. In a first-price
auction, the winning bidder pays their bid. In a second-price auction, the winning bidder
will pay cpci. This is a practical assumption in larger markets since cpci remains stable.
Because our model assumes that we know cpci for each individual, the optimal strategies for
first-price and second-price auctions are equivalent, because there is no need to bid higher
than whatever would be paid in a second-price auction.

Each query also has an associated click-through-rate (ctri ∈ [0, 1]) and value to the
advertiser: vi ≥ 0. A bidder’s goal is to select the optimal set of queries I∗ that maximize
its expected value

∑
i∈I∗ victri, subject to a set of budget constraints and representation

constraints. Budget constraints ensure that the advertiser’s expected cost stays below some
threshold. Here we will focus on the simplest type of budget constraint that just requires the
total expected cost is within a budget B:

∑
i∈I∗ ctricpci ≤ B. However, our approach can

be extended to more complicated sets of budgetary constraints.
The second type of constraint we consider is a group representation constraint, which

allows the advertiser to ensure that the clicks it receives contain sufficient representation from
key demographic groups. We allow an advertiser to specify its goal via a set of constraints
that require the proportion of clicks from a particular group g ⊆ I to be at least some goal
value µg, i.e.

∑
i∈I∗∩g ctri ≥ µg

∑
i∈I∗ ctri.

4.2 Optimal Ad Allocation as a Linear Program

We express the search for an optimal I∗ as described above as an integer linear program, in
which the variables xi correspond to whether or not the advertiser should win the auction
for the ith slot. We assume that the advertiser’s spending is limited by a budget B, and
we are given a set of groups G, where each g ∈ G is associated with a lower bound on the
desired fraction of total clicks that come from group g, µg ∈ [0, 1]. For a group g, denote
gi := 1[i ∈ g] as a binary indicator variable for query i’s membership in g.
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maximize
∑

i xictrivi

subject to
∑

i xictricpci ≤ B∑
i xictri(µg − gi) ≤ 0, ∀g ∈ G

xi ∈ {0, 1}, ∀i ∈ I.

(1)

We can relax the above program by allowing 0 ≤ xi ≤ 1, where fractional xis can represent
the probability the advertiser should win the auction for slot i. We denote it as the relaxed
ad allocation linear program.

▶ Theorem 2. Let P be a relaxed ad allocation linear program. Let V be an bound on
the objective value, and for each constraint c, let Vc be an upper bound on the violation of
constraint c. Then for every δ > 0, Algorithm 3 outputs a solution x ∈ [0, 1]n with utility
within δV of the optimal utility achievable by the relaxed linear program and violates the each
of the constraints with up to δVC additive error.

On Lemma 5 we show that under certain conditions it is possible to have a randomized
rounding algorithm satisfying all the constraints with high probability, and in Lemma 6
we show that for disjoint groups, there is a deterministic rounding algorithm satisfying the
constraints with a small additive error.

We prove the theorem by adapting the multiplicative weights algorithm presented in [1],
where it was used to solve a linear program with only budgetary constraints. We show that
this approach can be modified to work for our setting as well.

At a high level, the algorithm from [1] assumes some known rough bounds on the maximal
objective value of the linear program, V, and rough bounds on the amount of violation of
each constraint. It then searches for the optimal objective by considering candidate objective
values V and for each V , searching for a solution whose objective value is equal to V . The
search is done by a multiplicative weights algorithm that solves a series of one-dimensional
problems. In this setting, the solution for each of these one-dimensional problems has a
closed form in terms of a thresholds Ti. The algorithm runs in time O(n2/δ4|G|) to get
a δV-approximate solution, where V is a bound on the maximal possible utility value, i.e.∑

i xictrivi ≤ V for every x. The algorithm also uses bounds Vc on the constraint violations.
In Section 4.3 we show that there exists an equivalent threshold Ti for the linear program

with fairness constraints. In Appendix B we write the approximation algorithm for fairness
constraints and prove its correctness using the adapted threshold. Using our threshold, the
multiplicative weights algorithm can solve the 1-dimensional problem for the linear program
with fairness constraints.

▶ Note 3. It is important to note that when seeking integer solutions, certain choices of
fairness and budget constraints may be so strict that the only feasible solution is one where
no bids are made. This can happen even when fairness constraints would be feasible with an
unlimited budget, but are too costly to implement with limited funds.

In such cases, it would be easy for an autobidding algorithm to notify an advertiser that
an inputted constraint set is infeasible. There are many potential ways to relax the budget
and/or fairness constraints to achieve a non-trivial feasible solution. However, we want to
note that which relaxation an advertiser selects should be given careful consideration as to
whether it still aligns with the advertiser’s goals and does not disproportionately affect any
particular group. What constitutes a “fair” relaxation of a constraint set and how to find
minimal relaxations with these guarantees is an interesting question for future work.

FORC 2023



3:10 Bidding Strategies for Proportional Representation in Advertisement Campaigns

4.3 Solutions to the Linear Program
In this section we show that all optimal solutions to LPs of the type described in (1) have a
specific structure.

As a first step, we write the linear program and its dual, allowing the solution x to be
fractional.

maximize
∑

i xictrivi

s.t.
∑

i xictricpci ≤ B∑
i xictri(µg − gi) ≤ 0,∀g ∈ G

0 ≤ xi ≤ 1, ∀i ∈ I

(2)

minimize
∑

i δi + αB

s.t.
δi + αctricpci +

∑
g βgctri(µg − gi) ≥ ctrivi

α, δi, βg ≥ 0, ∀g ∈ G, i ∈ I

(3)

We show that there is an optimal bidding threshold Ti such that if x∗
i = 1 in the optimal

solution to the LP above, we have Ti ≥ cpci, and if x∗
i = 0, we have Ti ≤ cpci.

Note that if these inequalities were strict (i.e. Ti < cpci and not ≤), Ti would provide an
optimal bidding formula whose outcomes would match that of the optimal solution. For a
second-price auction, the bids would consist of exactly Ti, while for a first-price, the advertiser
should bid cpci 9or cpci + ϵ if this is the winning bid) whenever Ti > cpci. Because the
inequalities are not strict, these thresholds are only used as an intermediate step in the
algorithm used to solve the linear program (see Appendix B).

▶ Theorem 4. Let x∗ be the optimal solution to 2, and for each i ∈ I, let Ti be

Ti :=
vi −

∑
g∈G βg(µg − gi)

α
. (4)

Then, x∗
i = 0 implies that Ti ≤ cpci, and x∗

i = 1 implies Ti ≥ cpci, with the latter inequality
strict whenever δi > 0.

We prove the theorem via analyzing the complementary slackness conditions of the primal
and dual LPs. The proof appears on Appendix C.

4.4 Rounding the Solution
The solution to this linear program is a vector x ∈ [0, 1]n that maximizes the objective
subject to the given constraints. In this section, we show how to round a fractional solution
into an integer solution satisfying the constraints and achieving nearly optimal objective
value.

Randomized Rounding
One way to interpret the fractional solution x ∈ [0, 1]n is as a probabilistic solution. That
is, for every individual i ∈ [n], bid cpci with probability xi, and else bid 0. Let y ∈ {0, 1}n

be a vector corresponding to a run of this random process, i.e. for every i, yi ∼ Ber(xi)
independently. Let ri ∈ {0, 1}n be the vector indicating whether an individual clicked on
the ad, i.e. for all i, ri ∼ Ber(ctri). By definition, it means that for all i, E [yi] = xi and
E [ri] = ctri.

Since each ri is a random variable decided by individual i, there is an inherent randomness
in the outcome and constraint values. Even if we had a deterministic rounding algorithm
generating y from x, the uncertainty in r does not disappear and we do not get a deterministic
expression for the objective and constraints. This does not mean that the advertiser would
not prefer a stronger guarantee from the solution y. For example, the advertiser might want
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to never exceed the budget. Given a fractional solution x satisfying certain conditions, we
show a randomized rounding algorithm that generates y satisfying all of the constraints with
high probability, while only reducing the expected utility by a small factor.

For ease of notation, we say that an ad allocation linear program (2) and a solution
x ∈ [0, 1]n are γ-flexible if the set S0 =

{
i ∈ [n]

∣∣∣∑g∈G gi = 0
}

satisfies
∑

i∈S0
xictri ≥

γ
∑

i∈[n] xictri and
∑

i∈[n] xicpcictri ≥ γn. We remark that if an individual i has gi = 1 only
for groups g such that µg = 0, then effectively it is not in any constraint and therefore can
be added to S0.

Our rounding algorithm only works for γ-flexible solutions. We remark that some flexibility
in the constraints is required for any rounding algorithm, as can be seen from the following
example. Suppose G = {g1, g2} and that we have two constraints requiring that exactly 1/2
of the clicks should be from individuals i ∈ g1 and 1/2 from i ∈ g2. Then, because of the
inherent randomness in the clicks created by ri ∼ Ber(ctri), it is not possible to promise that
both constraints are satisfied with high probability.

Algorithm 1 Randomized rounding algorithm for γ-flexible linear programm and solution.

Input: x ∈ [0, 1]n, S0 ⊂ [n], ϵ > 0
Output: y ∈ {0, 1}n

for i = 1 to n do

x′
i ←

{
(1− ϵ)xi i ∈ S0

(1− ϵ/2)xi i /∈ S0.

yi ← Ber(x′
i)

▶ Lemma 5. Let P be an ad allocation linear program, and let x ∈ [0, 1]n be a fractional
solution such that P, x are γ-flexible and x matches the representation constraint values of
the optimal solution to P up to a multiplicative error at most 2. Then for every constant
ϵ > γ Algorithm 1 outputs a solution y ∈ {0, 1}n, satisfying the following. Let r be the
vector representing the individuals clicks, and µ = ming∈G{µg}. Then with probability
1− exp(−µϵ2γ3n) over the randomness of of y, r we have∑

i

yiricpci ≤
∑

i

xictricpci, (5)∑
i

yiri(µg − gi) ≤
∑

i

xictri(µg − gi) ∀g ∈ G, (6)

E

[∑
i

yirivi

]
≥ (1− ϵ)

∑
i

xictrivi. (7)

The lemma implies that if x ∈ [0, 1]n satisfies the constraints, then with high probability y

satisfies them also. If x approximately satisfies the constraints and has some small error δ,
then with high probability y approximately the constraints with the same error. The proof
appears on Appendix C.

Deterministic Rounding
An interesting variant of our autobidding problem is one in which the advertiser pays for
individuals to view the ad, rather than clicking on it. This can be modeled by the bid
allocation LP in (1) by setting ctri = 1 for every i ∈ [n]. In this setting there is no random
variable r representing the clicks and thus no inherent randomness in the outcome. Therefore,
we have motivation to discuss a deterministic rounding procedure.
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We focus on the special case of disjoint groups, where each individual i has g(i) = 1 for
exactly one g ∈ G (some groups might not have constraints). The rounding procedure we
present results in a deterministic solution that nearly satisfies all constraints and guarantees
approximately optimal utility for the advertiser. Our rounding algorithm works for every
solution x ∈ [0, 1]n satisfying the following condition

∀g ∈ G, i, i′ ∈ g such that xi, xi′ ∈ (0, 1), vi > vi′ =⇒ cpci > cpci′ . (8)

We remark that from the complimentary slackness, the optimal solution satisfies this condition.
Furthermore, for i, i′ ∈ g on which the condition does not hold, i is strictly better than
i′, so we can increase xi and reduce xi′ and get a better solution. More formally, suppose
x ∈ [0, 1]n is a solution that does not satisfy Equation (8) for some g and i, i′ ∈ g, then by
changing xi to min{1, xi + xi′} and xi′ to max{0, xi + xi′ − 1} we receive a new solution
satisfying all constraints as the original solution, and has at least as good objective. Since
checking this condition is efficient, we can easily turn every solution into one satisfying the
above without hurting the guarantees.

▶ Lemma 6. Let P be an ad allocation linear program with disjoint groups G and ctri = 1 for
all i ∈ [n], and let vmax = maxi∈I{vi}. For every g ∈ G, let Sg = {i ∈ [n] |gi = 1, xi ∈ (0, 1)}.
For every fractional solution x ∈ [0, 1]n satisfying the constraints of P and Equation (8),
Algorithm 2 applied on every set Sg outputs a solution y ∈ {0, 1}n such that∑

i∈[n]

yicpci ≤
∑
i∈[n]

xicpci ≤ B (9)

∑
i∈[n]

yigi + 1 ≥ µg

∑
i∈[n]

yi ∀g ∈ G, (10)

∑
i∈[n]

yivi ≥
∑
i∈[n]

xictrivi − |G| vmax. (11)

At a high level, the rounding algorithm round down each group separately. That is,
if y ∈ {0, 1}n are the rounded values, then for every group g and every value v we have∑

i∈g,vi≥v yi ≤
∑

i∈g,vi≥v xi. See the proof on Appendix C for more details.

Algorithm 2 Deterministic rounding for a single group S.

Input: S = {i1, . . . , it}, x ∈ [0, 1]n, v ∈ Rn

Output: y ∈ {0, 1}S

Assume that the elements in S are ordered according to v, i.e. vi1 ≤ vi2 · · · ≤ vit
and

in case of equality by cpci.
for j = t to 1 do

if xij +
∑

l>j(xil
− yil

) ≥ 1 then
yij
← 1;

else
yij ← 0;

We remark that Algorithm 2 can also be applied in the case of a few not-disjoint set of
groups G. In this case, we should run it separately over each possible intersection of the
groups, i.e. for every h ∈ {0, 1}|G| run is on Sh = {i ∈ [n] |∀g ∈ G, hg = gi }. In this case,
instead of violating each constraint by an additive factor of 1, we have an additive error of
2|G|, the loss to the objective value can be vmax2|G|. Therefore, it only makes sense to apply
this algorithm for either disjoint, or very few groups G.
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4.5 Extension to Online Bidding
Thus far, our autobidder formulation follows prior work which examines an offline setting [1].
For a large enough advertisement market, generating bids in an offline setting is sufficient
due to the high volume and frequency of slots. However, in settings where advertisement
slots may be more sparse and there is a fixed time horizon, generating bids that respect
budget and representation constraints can be modeled as an online stochastic optimization
problem. We assume cpct, ctrt, {gt}g∈G, and vt are stochastic, meaning that at each time
step t, a tuple consisting of these values are drawn i.i.d from some stationary distribution.

We can then define an objective ft(xt) and constraints c
(0)
t,g , ..., c

(3)
t,g for each group g ∈ G

to give the optimization problem at the tth step

ft(xt) = xtctrtvt

c
(0)
t,g (xt) = xtctrt(µg − gt) ≤ 0, ∀g ∈ G

c
(1)
t,g (xt) = xtctrtcpct − ρ ≤ 0

c
(2)
t,g (xt) = xt − 1

c
(3)
t,g (xt) = −xt

where ρ = B
T is the goal amount of budget used at every step and T is the time horizon in

consideration (i.e. campaign duration).
Using the algorithm for this problem proposed by [7] guarantees an approximate cumu-

lative constraint satisfaction of 1
T

∑T
t=1 c

(i)
t,g(xt) ≤ Õ(T −1/4) for all i ∈ [3] and g ∈ G. This

means that across T steps, our group representation goals can be approximately achieved.
Further, this algorithm also gives an upper bound of Õ(T −1/4) on the regret. While [7] also
proposed quota-based fairness constraints, they were unable to apply their algorithm because
they could not assume the existence of a feasible solution. In constrast, our ratio-based
representation constraints always yield a feasible solution: the zeros vector. Moreover, the
existence of a strictly feasible solution implies even better guarantees on the cumulative
constraint satisfaction and regret.

5 Experiments

To simulate the problem of an employer looking to advertise to a diverse set of candidates,
we use data from the US Bureau of Labor Statistics and the American Community Survey.
The American Community Survey is a yearly survey given to a sample of the United States
population in order to determine how federal and state funds should be distributed. The
survey collects information about employment, housing, education, demographic information,
and other topics3. Using 2021 records of individuals in California from this survey [14], we
construct cost-per-click based on an individual’s income and estimate advertiser value by
assigning a higher value for individuals in the same occupational category. To model the
higher cost of advertising to women observed by prior works [21], we add an additional
bump uniformly to the cost per click for women such that the average cost-per-click for
women is 10% higher than men. We define click-through rates by assuming an individual is
more likely to click on an ad if there are more people similar to themselves in the current
occupation. This modeling assumption corresponds to stereotype threat [5]; the negative

3 https://www.census.gov/programs-surveys/acs/about.html
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Figure 1 Men and women each represent half of the workforce among entertainment occupations
workers; we compare the consequences of different fairness objectives in a second price auction.
When women cost more to reach than men, using an approach that enforces bid parity guarantees
that ads will be shown disproportionately to men; this underrepresentation is particularly stark at
a lower budget. Using an auto-bidder with constraints achieves proportional representation while
maintaining higher utility than a strategy satisfying bid-and-outcome parity.

experience caused by being judged based on a negative group stereotype. Using Labor force
summary statistics from 2021 4, we use the gender and race distributions of occupational
categories to approximate the click-through rates for an individual query. To account for the
variance across income, demographic, and job categories, we add Gaussian noise to value
(vi), cost per click (cpci), and click-through-rate (ctri), and clip values to a small range.

In our experiment setting, we consider a larger pool of viewers both within and outside
the target job industry. We set the values of individuals within an industry to be 1.0 and
values for individuals in other occupations to be zero. For each budget, bids are estimated
using a disjoint sample from the population that maximizes budget use. We approximate
the parity-satisfying bid by finding the cpc threshold in the disjoint population where the
budget would become exhausted. For the bid satisfying bid-and-outcome parity, we compare
the cumulative distributions of cost-per-click for men and women respectively and find a
non-zero intersection point. The cost-per-click at this point reaches a proportional number
of men and women. And thus is both bid and outcome fair. While results from previous
sections apply to both first and second-price auctions, this set of experiments will be based on
second-price auctions. It is easy to see that if we looked at first-price auctions, the bid-parity
and bid-and-outcome-parity strategies would be even less efficient in utility with the same
budget.

Figure 1 compares the bid-parity and bid-and-outcome-parity strategies achieved by a
single max bid threshold against our autobidder with proportional group representation
constraints in the entertainment industry. This scenario in entertainment occupations is
motivated by our original example from the introduction, where showing ads to men and
women have different costs but men and women appear in the workforce in equal proportion.
We see that focusing on bid parity yields a low ratio of women; this effect is especially
stark when the total budget is lower. When bid-and-outcome parity is enforced, better
representation can be achieved but the utility is strictly lower than the strategy satisfying
bid parity. This is because requiring both bid-and-outcome parity results in inefficiency.
We apply our autobidder with randomized rounding with parity constraints since parity is
equivalent to proportional representation in this industry and plot autobidder candidates for
the entertainment industry only. Since the autobidder will use all of the available budget,

4 https://www.bls.gov/cps/cpsaat11.htm

https://www.bls.gov/cps/cpsaat11.htm
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Figure 2 Women only represent 21% of the workforce in the computer and mathematical
occupation; we again compare the consequences of various fairness strategies in a second price
auction. A bid-parity strategy yields very low female representation but high utility. In contrast, a
bid-and-outcome-parity strategy yields proportional representation but lower utility. Meanwhile
using an autobidder with proportional constraints yields both good representation and high utility.
For a large enough budget, the bid parity and bid-and-outcome parity bids are the same and achieve
similar utility and representation.

female candidates not in the entertainment industry may also be selected. Thus while the
total number of women candidates is exactly proportional, the number of women in the
entertainment industry might be slightly less than proportional. However, our simulations
show that the autobidder still achieves representation closer to proportional and yields higher
utility than solutions satisfying bid-and-outcome parity.

Next, we turn to computer and mathematical occupations where women only represent
21% of workers in our sampled data. Repeating the same process for finding the optimal
bid for strategies satisfying bid and bid-and-outcome parity, we can again compare these
approaches to our autobidder with proportional representation constraints. Since workers in
this industry have much higher incomes, we adjust the minimum cost per click to be slightly
higher. In Figure 2, we observe that both our autobidder and the bid-and-outcome-parity
strategy achieve better representation than the bid-parity strategy. Comparing utility, we
once again observe a significant gap between autobidder and bid-and-outcome-parity utility
where employing the autobidder achieves much higher utility. We once again see that the
autobidder has higher utility than the bid-parity strategy for the same reason as previously
mentioned. Utility-wise, for both occupations, the autobidder always matches or surpasses
the bid-parity strategy since some individuals under the threshold may not be the most
efficient choices; the autobidder might find a different combination of individuals which
maximizes utility that a single threshold cannot achieve.

In both industries with vastly different baseline demographic compositions, we see that
using our autobidder with proportional representation constraints achieves both high levels
of representation and utility. For any underrepresented group or intersectional group, we can
repeat these examples with similar expected results. If the required level of yield is beyond
the population proportion, we can also adjust the target ratio accordingly.

6 Discussion

Even in the specific setting of group fairness, there are many definitions of fairness and
parity that can arise in the advertisement auction and bidding process. We give examples
to motivate three potential objectives that have been scattered throughout prior work. We
discuss what different strategies for achieving each of these goals might look like and give
examples of when one notion of fairness (i.e. in bids) might contradict other notions of
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fairness (e.g. in yield outcome). Our experiments verify the observation from prior work that
a strategy satisfying bid parity may result in a lack of diversity when some subgroups are
more expensive to advertise to than others. Turning to the bid-and-outcome parity objective,
where proportional group representation must be achieved via a bidding strategy that satisfies
parity constraints, we show that these additional constraints require much higher bid values
to ensure that all populations can be reached. In our simulations, bid-and-outcome parity
does achieve better proportional representation than the bid-parity strategy but at the cost
of significant utility loss.

Motivating the case for strategies that satisfy outcome parity, we extend on an existing
autobidding framework to include group representation constraints based on the desired
ratio of individuals from different groups. Since we use a probabilistic model of cost that
is based on click-through rates, we also further modify the autobidder algorithm to satisfy
budget and representation constraints with high probability, rather than just in expectation.
Incorporating our proposed randomized rounding method that complements our autobidder
solution, we show in our experiments that we achieve better outcome fairness than the
bid-parity strategy and better utility than the bid-and-outcome-parity strategy.

In our simplified framework, we assumed that an individual’s value to an advertiser can
be easily derived based on information about the individual’s occupational record. In a real
advertising scenario, platforms might have only estimates of viewer employment. Furthermore,
there might be systematic biases in terms of missing features like current occupation and
income. Designing mechanisms to achieve outcome parity as well a other notions such as
individual fairness in the presence of real word data challenges is a promising direction for
future work. Furthermore, advertising for job recruitment is just one aspect of recruitment.
In reality, a pool of candidates can come from a variety of sources including recruitment
events, referrals, job search engines, and direct applications. Each stream of candidates
involves different recruitment costs and yield groups with different levels of diversity and
skill levels. Exploring composition effects across different sources of recruitment and the
underlying network effects that affect which audiences are reached is another interesting
direction for future research.
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A Remark on Definitions of Bid Parity

Throughout this paper, we define a strategy satisfying bid parity as one that selects a single
maximum bid bmax and bids this value on every member of the target population until
the budget runs out. We use this definition because it captures the standard setting in
which advertisers can specify their preferences to online advertising platforms by creating
a campaign parameterized by a budget, target population, and maximum bid. Moreover,
natural relaxations to this strict notion of parity may result in notions that don’t guarantee
parity with respect to outcomes even in the absence of composition effects. We consider two
potential relaxations here to illustrate.

A.1 Parity with Respect to Average Bids
We could imagine a situation in which rather than requiring advertisers bid the same bid
with the same probability on all key subgroups, they are instead only required to have the
same average bid for each group.

We show that even in the simplest case where we have two disjoint groups A and B of
equal size making up the population and every individual has the same winning bid w, only
requiring parity with respect to average bids can lead to outcomes where the representation
of A and B is far from proportional.

In particular, consider a strategy that bids w on all individuals from group A, while
bidding w − ϵ for some small ϵ > 0 on 90% of individuals from group B, and bidding w + 9ϵ

on the remaining 0.1%. For small ϵ the difference in bids is extremely small, but such a
strategy will result in 10x the number of individuals from group A shown ads compared to
group B.

A.2 Approximate Parity
Similar to above, we might loosen our definition to only require that bids on individuals be
close to eachother, i.e. for all individuals i and j, we have |bi − bj | < ϵ for some ϵ > 0.

However, as in our example above, such a constraint can still result in outcomes that
are far from proportional even for arbitrarily small values of ϵ. To see how this can occur,
consider our example from above where all individuals in A and B have a winning bid of ϵ.
One potential strategy in this setting would be to bid w on all individuals from A and w − ϵ

on all individuals from B. This results in a strategy that satisfies approximate bid parity
constraints, but never shows an ad to an individual from B.

B Algorithm for Solving the Linear Program

The bidding algorithm from [1] can be extended to work with additional group representation
constraints. In this section, we explain the bidding algorithm algorithm and prove its
correctness when there are additional representation constraints.

In the algorithm δ is the approximation parameter, V is an upper bound on the objective
and VB , VG are bounds on the value of the budget and group representation constraints.

https://proceedings.mlr.press/v49/weed16.html
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At a high level, the algorithm iterates over all possible objective values V , and for each
value tries to solve the following problem: “is there an x that satisfies the constraints and
has utility V ?”. This problem can be equivalently restated in matrix form, to ask whether
there is an x such that Ax ≥ u for the values of A, u described in the algorithm. We use the
multiplicative weights algorithm to solve each of these sub-problems. In the update step, the
problem is reduced to a problem in 1-dimension: “is there an x such that pT Ax ≥ pT u, where
p is the weights vector?”. For the 1-dimensional problem, the optimal threshold described on
Section 4.3 is an optimal solution, and therefore can be used for the update.

Algorithm 3 Finding the optimal strategy.

Input: δ > 0,V, VB , Vg∀g ∈ G

Output: x̂1, . . . , x̂n ∈ {0, 1}
/* V, Vg, VB , are bounds on the objective value and constraints violations. */

T1 ← c/δ;
T2 ← c/δ3;
x̂← 0n ;// output init

for i = 1, . . . , T1 do
V ← iδV;// V is the current objective we are trying to reach.

A←


ctr1v1/V ctr2v2/V . . . ctrnvn/V

−ctr1cpc1/VB . . . . . . −ctrncpcn/VB

ctr1(g1 − µg)/Vg . . . . . . ctrn(gn − µg)/Vg

...
...

...
...

; u←


V/V
−B/VB

0
...

;

/* MW algorithm solving: is there x, 0 ≤ xl ≤ 1 such that Ax ≥ u? */

FAIL← 0;
w ← 12+|G|; // Initialize weights

for t = 1, . . . , T2 do
/* Each iteration solving 1-dim problem: is there x, 0 ≤ xl ≤ 1 such that

wT Ax ≥ wT u? */

α← w2V
VBw1

;
βg ← VvBwg

w1w2VG
; // for g the j’th group, wg = wj+2

b(l)←
vl−
∑

g∈G
βg(µg−gl)

α ;
x

(t)
l ← 1(b(l) ≥ cpcl) ∀l ∈ [n];// x

(t)
l is the optimal solution to the 1-dim

problem.

if wT Ax(t) < wT u then
FAIL← 1;

else

wj ←

{
wj · (1− ϵ)Ajx(t)−uj Ajx(t) − uj ≥ 0
wj · (1 + ϵ)−Ajx(t)+uj Ajx(t) − uj < 0

, ∀j ∈ [2 + |G|];

if FAIL = 0 then
x̂ =

∑T2
t=1 x(t);

We state a more formal statement of Theorem 2 and prove it.

▶ Lemma 7. Let P be a relaxed ad allocation linear program, (2). Let V be an upper bound
on the objective value of (2) and VB , VG be be upper bounds on the amount of violation of
the budget and representation constraints. Then for every δ > 0, Algorithm 3 runs in time
and O(n2/δ4|G|) and outputs a solution x ∈ [0, 1]n such that

FORC 2023
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∑
i

xictrivi ≥ OPT− δV∑
i

xictricpci ≤ B + δVB∑
i

xictri(µg − gi) ≤ δVG ∀g ∈ G.

Proof. To prove the correctness of the algorithm, it is enough to prove that the x
(t)
l assigned

is indeed the optimal solution for the 1-dimensional problem. The rest is implied from the
correctness of the multiplicative weight algorithm, see [2]. Therefore, we prove that x

(t)
l is

the optimal solution to the 1-dimensional problem maxx{wT Ax− wT u}.

wT Ax− wT u =w1

n∑
l=1

vℓ

V
xl − w2

n∑
l=1

ctrlcpcl

VB
xl

+
|G|+2∑
j=3

wj

n∑
l=1

ctrl(gl − µg)
Vg

xl − w1
V

V
+ w2

B

VB

=
n∑

l=1
xl

w1
vℓ

V
− w2

ctrlcpcl

VB
+

|G|+2∑
j=3

wj
ctrl(gl − µg)

Vg

− w1
V

V
+ w2

B

VB
.

Denote Cl = w1
vℓ

V − w2
ctrlcpcl

VB
+
∑|G|+2

j=3 wj
ctrl(gl−µg)

Vg
. The maximal value of wT Ax− wT u

is given when in every l such that Cl ≥ 0 we have xl = 1, and for the rest we have xl = 0.
Notice that after switching α, βg (which we can think about just as renaming of wj) we

have that cl ≥ 0 is equivalent to b(l) ≥ cpcl, as

Cl =w1
ctrlvl

V
− w2

VB
ctrlcpcl +

∑
g

wg

Vg
ctrl(gl − µg) ≥ 0 ⇐⇒

cpcl ≤
VB

w2

(
w1vl

V
+
∑

g

wg

Vg
(gl − µg)

)

If we denote α = w2
VB

V
w1

and βg = VvBwg

w1w2VG
then we have that this is the same as b(l) ≥ cpcl.

The algorithm solves the 1-dimensional problem )(1/δ4) times, each takes O(|G|n2) time. ◀

C Proofs of Theorems and Lemmas

Proof of Theorem 4. First, suppose we have an i such that x∗
i = 0. By the slackness

conditions of the LPs, this implies that δi = 0. Substituting this fact into constraint 3 of the
dual tells us that we must have

αctricpci +
∑
g∈G

βgctri(µg − gi) ≥ ctrivi

Rearranging the terms of this inequality (and assuming ctri ̸= 0), we get

cpci ≥
vi −

∑
g∈G βg(µg − gi)

α
= Ti
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as desired. For the other direction, suppose that x∗
i = 1. Again applying complementary

slackness, we know that constraint 3 must be tight, and thus

δi + αctricpci +
∑
g∈G

βgctri(µg − gi) = ctrivi.

Again rearranging to solve for cpci, we get:

cpci =
vi −

∑
g∈G βg(µg − gi)

α
− δi

ctriα
= Ti −

δi

ctriα
.

We can conclude that this guarantees Ti ≥ cpci, and if δi > 0, then Ti > cpci. ◀

Proof of Lemma 5. Given a γ-flexible solution x, let y be the output of Algorithm 1, and
let x′ ∈ [0, 1]n be as in Algorithm 1. We show that all of the constraints hold with high
probability. We denote the realization of clicks from each individual as r, i.e. ri ∼ Ber(ctri).

For the budget constraint, we show that (5) holds with high probability,

Pr
y,r

∑
i∈[n]

yiricpci ≥ B

 ≤ Pr
y,r

[∑
i∈S

yiricpci ≥
(

1 + ϵ

2

)∑
i∈S

x′
ictricpci

]
≤ e−ϵ2γ2(1− ϵ

2 )2 n
4 ,

where the last inequality is due to Hoeffding’s inequality.
For the representation constraints, (6), we have that for every g ∈ G,

Pr
yi,ri

∑
i∈[n]

giyiri ≤
(

1− ϵ

2 −
γϵ

4

) ∑
i∈[n]

xictrigi

 (12)

≤ Pr
yi,ri

∑
i∈[n]

giyiri ≤
(

1− γϵ

4

) ∑
i∈[n]

x′
ictrigi

 ≤ e
− γ2ϵ2

32

∑
i∈[n]

gixictri
. (13)

Pr
y,r

∑
i∈[n]

yiri ≥
(

1− γϵ− (1− γ) ϵ

2 + γϵ

4

) ∑
i∈[n]

xictri

 (14)

≤ Pr
y,r

∑
i∈[n]

yiri ≥
(

1 + γϵ

4

) ∑
i∈[n]

x′
ictri

 ≤ e
− γ2ϵ2

32

∑
i∈[n]

xictri
. (15)

The solution x satisfies the constraint up to a constant error of 2, so
∑

i∈[n] gixictri ≥
1/2 · µG

∑
i∈[n] xictri. Therefore the bound in both (12) and (14) is at most exp(−γ3ϵ2µgn).

If the events in (12) and (14) do not hold, then the representation constraint on group g is
satisfied, as we have that

µg

∑
i∈[n]

yiri ≤
(

1− ϵ

2 −
γϵ

4

)
µg

∑
i∈[n]

xictri,
∑
i∈[n]

giyiri ≥
(

1− ϵ

2 −
γϵ

4

) ∑
i∈[n]

gixictri

By union bound over all group representation constraints for g ∈ G and over the budget
constraint, with probability 1− exp(−µγ2ϵ2n) all constraints hold.

We are left with showing that the objective is not reduced by much. We notice that
∀i ∈ [n], x′

i ≥ (1− ϵ)xi, so from the linearity of expectation we get (7). ◀
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Proof of Lemma 6. Let S = Sg for some g ∈ G. Let i1, . . . , it be the order of the elements
in S used by the algorithm. From (8), this order is also an order by cpci.

From the algorithm, we have that for every j ∈ [t],∑
l≥j

xil
− 1 ≤

∑
l≥j

yil
≤
∑
l≥j

xil
. (16)

For the budget constraint, (9), we claim that for every j ∈ [t],∑
l≥j

cpcil
(xil
− yil

) ≥ cpcij

∑
l≥j

(xil
− yil

). (17)

We prove it by induction on j, starting from j = t. The basis is implied from (16). The step,∑
l≥j

cpcil
(xil
− yil

) =cpcij
(xij
− yij

) +
∑
l>j

cpcil
(xil
− yil

)

≥cpcil
(xil
− yil

) + cpcij+1

∑
l>j

(xil
− yil

) (Inductive step)

≥cpcil
(xil
− yil

) + cpcij

∑
l>j

(xil
− yil

).

Where in the last inequality we use the facts that cpcij
≤ cpcij+1 and

∑
l>j(xil

− yil
) ≥ 0.

Applying (17) with j = 1 and using (16) implies that
∑

i∈S yicpci ≤
∑

i∈S xicpci, and in
general

∑
i∈[n] yicpci ≤

∑
i∈[n] xicpci, proving (9).

For the representation constraint, we have from (16) that for every g ∈ G,
∑

i∈[n] yigi ≥∑
i∈[n] xigi − 1. By summing up on all S, we get that

∑
i∈[n] yi ≤

∑
i∈[n] xi. Together with

the fact that x satisfy the representation constraint we get∑
i∈[n]

yigi + 1 ≥
∑
i∈[n]

xigi ≥ µg

∑
i∈[n]

xi ≥ µg

∑
i∈[n]

yi.

Therefore, y satisfy (10) for every group g.
For the objective value, (11), we fix a set S and let i1, . . . , it, be the order used in the

algorithm. To simplify the proof, we “split” elements in S and divide their xi in the following
way: if we have yij

= 1 because xij
+
∑

l>j(xil
− yil

) > 1, then we split ij to two elements
i, i′ with xi = 1 −

∑
l>j(xil

− yil
) and xi′ = xij

− xi. This “splitting” is for analysis only,
and we abuse notation by denoting S = {i1, . . . it} also after the splitting. After the splitting
we have that if yij = 1 then

∑
l≥j xl =

∑
l≥j yl.

Let j1, . . . jk ∈ [t] be the indices in which yj = 1. We have that for every m ∈ [k],∑jm+1−1
l=jm

xl = 1, and also
∑

l≥jk
xl = 1 and

∑
l<j1

xl < 1. Therefore,

∑
l∈[t]

vil
xil

=
j1−1∑
l=1

vil
xil

+
j2−1∑
l=j1

vil
xil

+ · · ·+
t∑

l=jm

vil
xil

≤vij1

j1−1∑
l=1

xil
+ vij2

j2−1∑
l=j1

xil
+ · · ·+ vit

t∑
l=jm

xil
(vi are increasing)

≤vij1
+ vij2

+ · · ·+ vit
≤ vit

+
∑
l∈[t]

yil
vil

,

which proves (11). ◀
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