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Preface

The Symposium on Foundations of Responsible Computing (FORC), now in its fourth year,
is a forum for mathematically rigorous research in computation and society writ large. The
Symposium aims to catalyze the formation of a community supportive of the application of
theoretical computer science, statistics, economics, and other relevant analytical fields to
problems of pressing and anticipated societal concern.

Twenty-seven papers were selected to appear at FORC 2023, held in Stanford, CA on
June 7–9, 2023. These papers were selected by the program committee, with the help
of additional expert reviewers, out of forty-nine submissions. FORC 2023 offered two
submission tracks: archival-option (giving authors of selected papers the option to appear in
this proceedings volume) and non-archival (in order to accommodate a variety of publication
cultures, and to offer a venue to showcase FORC-relevant work that will appear or has recently
appeared in another venue). Eleven archival-option and sixteen non-archival submissions
were selected for the program.

A smaller sub-committee was formed to choose best paper awards. The paper From
the Real Towards the Ideal: Risk Prediction in a Better World by Cynthia Dwork and Guy
Rothblum was selected for the best paper award. Three papers were selected for the best
student paper award: New Algorithms and Applications for Risk-Limiting Audits by Bar
Karov and Moni Naor; Fair Grading Algorithms for Randomized Exams by Jiale Chen, Jason
Hartline, and Onno Zoeter; and Resistance to Timing Attacks for Sampling and Privacy
Preserving Schemes by Yoav Ben Dov, Liron David, Moni Naor, and Elad Tzalik.

Thank you to the entire program committee and to the external reviewers for their hard
work during the review process. It has been an honor and a pleasure to work together
with you to shape the program of this young conference. Finally, I would like to thank our
generous sponsors: the Simons Collaboration on the Theory of Algorithmic Fairness for their
conference support.

Kunal Talwar
Cupertino, CA
April 26, 2023
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From the Real Towards the Ideal: Risk Prediction
in a Better World
Cynthia Dwork #

Harvard University, Cambridge, MA, USA

Omer Reingold #

Stanford University, CA, USA

Guy N. Rothblum #

Apple, Cupertino, CA, USA

Abstract
Prediction algorithms assign scores in [0, 1] to individuals, often interpreted as “probabilities” of a
positive outcome, for example, of repaying a loan or succeeding in a job. Success, however, rarely
depends only on the individual: it is a function of the individual’s interaction with the environment,
past and present. Environments do not treat all demographic groups equally.

We initiate the study of corrective transformations τ that map predictors of success in the real
world to predictors in a better world. In the language of algorithmic fairness, letting p∗ denote
the true probabilities of success in the real, unfair, world, we characterize the transformations τ

for which it is feasible to find a predictor q̃ that is indistinguishable from τ(p∗). The problem is
challenging because we do not have access to probabilities or even outcomes in a better world. Nor
do we have access to probabilities p∗ in the real world. The only data available for training are
outcomes from the real world.

We obtain a complete characterization of when it is possible to learn predictors that are
indistinguishable from τ(p∗), in the form of a simple-to-state criterion describing necessary and
sufficient conditions for doing so. This criterion is inextricably bound with the very existence of
uncertainty.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases Algorithmic Fairness, Affirmative Action, Learning, Predictions, Multicalib-
ration, Outcome Indistinguishability
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1 Introduction

Prediction algorithms assign scores in [0, 1] to individuals, often interpreted as “probabilities”
of a positive outcome, for example, of repaying a loan or succeeding in a job. Success, however,
rarely depends only on the individual: it is a function of the individual’s interaction with the
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1:2 From the Real Towards the Ideal: Risk Prediction in a Better World

environment, past and present. If we think of an individual x as a collection of features, past
interaction affects those very features; that is, the accomplishments that individuals bring
to a potential new job depend heavily on the opportunities afforded to the them and their
families in the past. In addition, given a collection of features x, an individual’s chance of a
positive outcome depends heavily on the future environment in which the individual will be
operating; for example, a woman with a given degree of talent and experience is less likely to
succeed at a news organization that is hostile to women than at an organization supportive
of women.

We initiate the study of corrective transformations τ that map predictors of success in
the real world to predictors in a better world. In the language of algorithmic fairness, letting
p∗ denote the true probabilities of success in the real, unfair, world, we characterize the
transformations τ for which it is feasible to find a predictor q̃ that is indistinguishable from
τ(p∗). The problem is challenging because we do not have access to probabilities or even
outcomes in a better world. Nor do we have access to probabilities p∗ in the real world. The
only data available for training are outcomes from the real world.

The meaning of a “probability” for a non-repeatable event is the subject of much debate [1],
giving rise to the question of what we should want from an ideal scoring function. In one
view, known as Outcome Indistinguishability, the scores offer a model for the real world,
and we want the modeled world to be indistinguishable from the real world; this leads to
a hierarchy of demands, according to the degree of access to the scoring function that is
granted to the distinguisher [3]. A different, but compatible, view arises from the perspective
of algorithmic fairness. Speaking informally, a scoring function is multi-calibrated with
respect to a collection C of arbitrarily intersecting subsets of the population if it is calibrated
simultaneously on each S ∈ C when viewed in isolation [6]. The sets in C need not be
restricted to the demographic groups often described as “protected sets,” but can (and
should) capture conditions that are predictive of positive or negative outcomes. With this
flexibility in mind, it is perhaps not surprising that multi-calibration has been shown to be
equivalent to the second level of the outcome-indistinguishability hierarchy [3]. We use the
term “MC/OI” to denote these equivalent properties.

Happily, MC/OI predictors can be learned from real-world Boolean outcomes data
o∗(x) ∼ Ber(p∗(x)), without access to p∗ [6]. Now, consider a corrective transformation τ

mapping individual-score pairs (x, p∗(x)) to [0, 1], where the intuition is that q∗(x) = [τ(p∗)](x)
is the probability of a positive outcome in a better world for the individual whose features in
the real world are given by x. Not only do we not have access to q∗, but we do not even have
outcomes data for the better world – that world does not exist! How, then, can we hope
to construct a predictor that is indistinguishable from q∗? That is the problem studied in
this work: for what kinds of corrective transformations τ can we obtain a predictor q̃ that is
MC/OI with respect to q∗?

Taxonomy of transformations. We consider three kinds of corrective transformations. The
conceptually simplest is fully deterministic transformations τ that are specified with no access
to the underlying distribution D∗. Due to the deterministic nature of the transformation, the
transformed predictor τ(p) is completely and uniquely defined for any given predictor p. For
example, the transformation that raises scores for members of a set S, setting [τ(p∗)](x) =
min{p∗(x) + 0.2, 1} for x ∈ S, is fully deterministic.

More generally, we consider parameterized transformations τπ, where the parameters π

are obtained via an efficient parameter-learning algorithm that operates on instance-outcome
samples (x, o∗(x)) for x ∼ DX , where o∗(x) ∼ Ber(p∗(x)). Here we must be careful in
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defining τπ(p), as different randomness – in the samples seen by the parameter-learner and
in random coins it may use – will lead to different choices of π. We also allow the resulting
transformation τπ to be randomized. We informally and implicitly cover all these sources of
randomness when we say that the transformation is randomized.

For example, suppose we have disjoint groups A and B and the goal of the transformation
is to ensure statistical parity, so that in the transformed world the probabilities of a positive
outcome are equalized between the two groups. The exact transformation depends the
disparity in the real world, p∗, between the two group, i.e., the difference between pA

def=
Ex∈A[p∗(x)] = Ex∈A[o∗x], and pB

def= Ex∈B [p∗(x)] = Ex∈B [o∗x]. Both of these quantities can
be estimated from real-world outcomes data during the parameter-learning phase, and from
these one can approximately determine α ∈ [0, 1] = pA−pB

1−pB
such that the transformation τα

that leaves scores unchanged for members of A and sets the new score for members x ∈ B to
[τα(p∗)](x) = α + (1− α)p∗(x) satisfies Ex∈A[(τ(p∗))(x)] ≈ Ex∈B [(τ(p∗))(x)].

In a third type of transformation the parameter-learner L has access to p∗. For example,
consider a population with two disjoint subgroups S, T . A predictor achieves balance for the
positive class [9] if the average score assigned to positive instances in S equals the average score
assigned to positive instances in T . Now, consider a transformation that takes an arbitrary
predictor p as input and produces a transformed τ(p) satisfying the balance condition. To
do this, the parameter-learner needs access to the average p∗ values for the members of T

and of S. For example, suppose that ∀x ∈ T , p∗(x) = 0.8, and ∀x ∈ S, p∗(x) = 0.2. Ensuring
balance for the positive class can then be achieved by setting [τ(p∗)](x) = 0.8 for all members
of S and setting [τ(p∗)](x) = p∗(x) for all members of T . Of course, our algorithms cannot
have access to p∗, but the prospect of building a predictor that is multicalibrated with respect
to τ(p∗) remains compelling.

Canonical transformed predictor. When the transformation is randomized, we cannot
simply speak of τ(p∗), as this is a random variable. However, given all the sources of
randomness and an initial predictor p, the expectation of the transformation τ(p), C[τ(p)] def=
E[τ(p)], where the expectation is taken over the samples fed to the parameter-learner, as
well as it randomness, and any randomness in the transformed predictor, is well defined. We
refer to this as the canonical transformed predictor, and use the special symbol C.

Uncertainty and randomized instantiations. A deep and unresolved question is whether
uncertainty exists, or if instead it only appears to exist because of insufficient information
about the state of the world and insufficient computing power to determine future outcomes.
Thus, when we talk about real-life probabilities p∗(x), we cannot know whether p∗(x) must
lie in {0, 1} (determinism) or whether values in (0, 1) are possible (uncertainty). In the real
world, we only observe outcomes, not individual probabilities. If uncertainty exists, then
real-world outcomes are consonant with a deterministic world p∗∗ that is a specific random
instantiation of the real-world probabilities p∗ in which each x is assigned a probability
p∗∗(x) ∼ Ber(p∗(x)) ∈ {0, 1}.

If uncertainty exists, there are many different possible random instantiations of p∗. The
central concept in a transformation τ is its robustness (or not) to random instantiations:
Does C[τ(p∗)] look like Ep∗∗←RI(p∗)[C[τ(p∗∗)]]? For example, are their average values, over
elements in a large set S, close in expectation? Example 1 above, in which scores of members
of S are increased by 0.2 but capped at 1, is not robust to random instantiations. To see this,
consider two possible choices of the real world p∗. In the first, p∗1(x) = 1/2 for all x ∈ S; in the
second, p∗2(x) = 0 for a random half of the x ∈ S and p∗2(x) = 1 for the remainder of S. Note

FORC 2023



1:4 From the Real Towards the Ideal: Risk Prediction in a Better World

that p∗2 is a random instantiation of p∗1. The average scores for members of S are different
under these two transformations: Ex∈S [(τ(p∗1))(x)] = 0.7, but Ex∈S [(τ(p∗2))(x)] = 0.6. The
Balance for the Positive Class transformation described above also fails to be robust to
random instantiations; in a nutshell, this is because in a random instantiation there is no
uncertainty, and all positive members of S have p∗∗(x) = 1.

In contrast, the parameterized statistical parity transformation described above is robust
to random instantiations. Roughly speaking this is because every random instantiation of p∗

yields (almost) the same value of the parameter α, and for any large set S the average value
Ex∈S [(τ(p∗))(x)] ≈ Ex∈S [(τ(p∗∗))(x)] depends only on α and the expectations Ex∈S∩A[p∗(x)]
and Ex∈S∩B [p∗(x)]. These expectations are invariant under random instantiations (assuming
the sizes of S ∩A, S ∩B are sufficiently large).

It is mathematically impossible, given only real-world instance-outcome pairs, to distin-
guish a real-world p∗ in which probabilities are real-valued (uncertainty exists) and a real
world which is a random instantiation p∗∗ of such a p∗ (no uncertainty), an epistemic state
of affairs we summarize as follows.
Unresolvability Axiom: The question of whether uncertainty exists cannot be resolved by
computing on finitely many samples from D∗.

A Complete Characterization. Quite surprisingly, the concept of robustness to random
instantiations provides a complete characterization of when it is possible to learn predictors
that are indistinguishable from q∗ = τ(p∗):

▶ Theorem 1 (Main Theorem – informal). There is a multiaccurate learning algorithm, and
a multi-calibrated learning algorithm, with respect to q∗ = τ(p∗), if and only if τ is robust to
random instantiations.

Thus, not only is it sometimes possible to build predictors for a transformed world, but there
is a simple-to-state criterion describing necessary and sufficient conditions for doing so, and
this criterion is inextricably bound with the very existence of uncertainty.

To prove sufficiency, we show how to exploit robustness to random instantiation to
create samples of outcomes in the better world of q∗. This sample generation process
involves partitioning samples from D∗ into groups, viewing each group as samples from an
independent random instantiation of p∗, and using these capture, on average, the behavior of
Ep∗∗←RI(p∗)[C[τ(p∗∗)]]. By employing known algorithms we can build the desired predictors
using these samples. We note that at no point does our multicalibration algorithm have access
to the probabilities p∗ or q∗; everything is done given access only to real-world outcomes
data.

To prove necessity, we argue that any transformation that is not robust to random
instantiations must behave very differently on p∗ than it behaves on random instantiations
p∗∗ ← RI(p∗). In principle, this is detectable (although not efficiently!), which would resolve
the question of whether uncertainty exists, contradicting the unresolvability axiom.

Stability. A final important stability notion tells us when multicalibration with respect to
the transformed world q∗ = τ(p∗) is meaningful. Globally stable transformations have the
property that for every fixed distribution D∗ on instance-outcome pairs, τ(p∗) is close to its
expectation C[τ(p)]. There is some flexibility in defining closeness; a natural choice is L1
norm. In fact, a weaker condition suffices for our purposes. Large-set stability requires only
that for any set S fixed a priori, with high probability over the samples and random bits fed
to the learner (and the randomness of the transformed predictor, if it, too, is randomized),
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the average prediction of τ(p∗) on x ∼ D∗|S is close to its expectation C[τ(p∗)](x). In
consequence, given a candidate q, large-set stability ensures that the average values of
q∗ = τ(p∗) on the level sets Sv of q(S) are well-defined. This is crucial for reasoning about
whether or not q is a multicalibrated with respect to q∗.

On related work. A vast body of work spanning many disciplines has studied corrective
transformations to real-life (for example, works that study affirmative action). This body
of work is too vast for us to survey here. Our work studies this question in the context of
risk prediction and through the lens of algorithmic fairness. While fairness in risk prediction
is a widely-studied topic in algorithmic fairness, the focus has been on learning a predictor
that satisfies fairness desiderata while maintaining fidelity to the underlying distribution
(e.g. [2, 6–8]), or on applying corrective transformations to learned risk predictors (e.g. [5]).
Our work, on the other hand, initiates a study of learning about (probabilities in) a better
world, where the better world is obtained by applying a corrective transformation on the
real world itself.

2 Preliminaries, Setup and Definitions

Notation. For a distribution D over domain X , we use Supp(D) to refer to the support
of the distribution (the set of elements in X that have non-zero probability). For x ∈ X
we use D[x] to refer to x’s probability. For a subset S ⊆ X we use D[S] to refer to the
aggregate probability of the set S under D (i.e. D[S] =

∑
x∈S D[x]). For a set S with

non-zero probability, we use (D|S) to refer to the conditional distribution of D, conditioned
on landing in S.

Underlying all of this is a modeling assumption, in which “Nature” assigns a probability
p∗(x) to each individual x. We are agnostic as to whether p∗(x) ∈ {0, 1} for all x or p∗(x)
can be arbitrary in [0, 1]. Since we cannot have access to p∗ (we don’t even know if it is
real-valued!), the OI/MC literature builds scoring functions trained on outcomes o∗(x) that
Nature provides. However, the nomenclature “Nature” (inherited from a long literature on
forecasting) is singularly inapt when viewed from a perspective of social justice, where one’s
“probability” of success and actual outcome are not solely intrinsic to the individual but are
influenced – positively or negatively – by family wealth, structural racism, antisemitism,
sexism, ableism, hetero-normativity, (lack of) availability of contraception and access to
abortion, and so on. These are not forces of “Nature”, they are social forces that shape the
reality in which we live.

We model real-life as a joint distribution over individuals and outcomes, denoted D∗.
An individual is described by a d-dimensional boolean string representing their “features”,
and we focus on Boolean outcomes. Thus, D∗ is supported on {0, 1}d × {0, 1}. We refer to
X = {0, 1}d as the feature space, and use x ∼ DX to denote a sample from real-life’s marginal
distribution over individuals.

A predictor is a function p : X → [0, 1] that maps individuals to an estimate of the
conditional probability of the individual’s outcome being 1. For ease of notation, we use
px = p(x) to denote a predictor’s estimate for individual x. The marginal distribution over
individuals DX paired with a predictor induce a joint distribution over X × Y. Given a
predictor p, we use (x, y) ∼ D(p) to denote an individual-outcome pair, where x ∼ DX
is sampled from real-life’s distribution over individuals, and the outcome y ∼ Ber(px)
is sampled – conditional on x – according to the Bernoulli distribution with parameter
px. We use p∗ : X → [0, 1] to denote the marginal distribution on outcomes of real-life’s
distribution D∗.

FORC 2023



1:6 From the Real Towards the Ideal: Risk Prediction in a Better World

A randomized instantiation of a predictor p is the randomized process of fixing the
prediction on each x ∈ X to be boolean, where the probability of 1 is exactly p(x) (the
boolean prediction for each x is drawn independently). We denote the (probabilistic) outcome
of this process by RI(p).

2.1 Multicalibration and Multiaccuracy
We start with the notion of multi-accuracy. Given a collection of subpopulations C, multi-
accuracy requires that a predictor p̃ reflect the expectations of p∗ correctly over each
subpopulation S ∈ C.

▶ Definition 2 (Multi-Accuracy [6]). Fix a feature distribution DX and a predictor p∗ : X →
[0, 1]. For a collection of sets C ⊆ {0, 1}X and α, γ ≥ 0, a predictor p̃ : X → [0, 1] satisfies
(C, α, γ)-multi-accuracy w.r.t. p∗ (under the feature distribution DX ) if for every S ∈ C s.t.
DX [S] ≥ γ:∣∣∣∣ E

x∼DX
[ p∗(x) | x ∈ S ]− E

x∼DX
[ p̃(x) | x ∈ S ]

∣∣∣∣ ≤ α (1)

Multi-calibration is a stronger notion, requiring the predictor p̃ to be calibrated with
respect to p∗ over each S ∈ C. Here, a set of predictions is calibrated if amongst the
individuals x ∈ X who receive prediction p̃(x) = v, their actual expectation is v. For a
set S and a value v ∈ [0, 1], let Sv be the subset of S to which p̃ assigns value v. We use
suppS(p̃) = {v ∈ [0, 1] : Prx∼DX [ p̃(x) = v | x ∈ S ] > 0} to denote the support of p̃ on S

(the set of values v s.t. Sv′ has non-zero mass).

▶ Definition 3 (Multi-Calibration [6]). Fix a feature distribution DX and a predictor p∗ : X →
[0, 1]. For a collection of sets C ⊆ {0, 1}X and parameters α, γ > 0, a predictor p̃ : X → [0, 1]
satisfies (C, α, γ)-multi-calibration w.r.t. p∗ (under the feature distribution DX ) if for every
set S ∈ C s.t. DX [S] ≥ γ, there exists a set S′ ⊆ S with DX [S′] ≥ (1− α)DX [S] where:

∀v ∈ suppS′(p̃) :
∣∣∣∣ E

x∼(DX |Sv′ )
[p∗(x)]− v

∣∣∣∣ ≤ α. (2)

When p∗ is real-life’s distribution, we simply refer to the predictor p̃ as multi-calibrated
or multi-accurate, but we will also discuss these requirements w.r.t predictors that are not
real-life. We often assume that the predictor p̃ is discretized to precision λ = Θ(α) (see [6]).

3 Corrective Transformations

We study corrective transformations that will be applied to risk predictors. The transform-
ation may include an optional parameter-learning phase. If the transformation does not
use a learning phase, then we say that it is fully explicit. Otherwise, the transformation
specifies a parameter-learner that can observe individual-outcome pairs drawn from the
underlying distribution, or even observe individual-prediction pairs (see Definition 5). The
learning phase outputs parameters π that are plugged into the transformation τ , which can
be deterministic or probabilistic.

We begin by defining fully explicit and deterministic corrective transformations.

▶ Definition 4 (Fully explicit and deterministic corrective transformation.). A fully explicit
(and deterministic) transformation is a mapping τ : X × [0, 1] → [0, 1] that transforms a
predictor p into a new predictor τ(p), where ∀x ∈ X , (τ(p))(x) = τ(x, p(x)).
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Parameterized transformations (see above) also include a parameter-learning phase:

▶ Definition 5 (Parameterized transformation τ). A transformation is a pair (L, τ), where L
is a parameter-learning algorithm that gets access to training data (see below) and outputs
parameters π. For any fixing of the parameters π, the mapping τ , using those parameters,
transforms a predictor p into a new predictor τπ(p), where ∀x ∈ X , (τπ(p))(x) = τπ(x, p(x)).

We consider different options for the parameter-learning algorithm L and its training
data:

Fully-explicit transformation: There is no parameter learning. The learner L always
outputs the empty string (if τ is deterministic, then this equivalent to Definition 4).
Outcome-based parameters: The transformation is applied to a predictor p with respect
to an underlying feature distribution DX . The learner L gets access to individual-outcome
examples (x, o), where x ∼ DX and o ∼ Ber(p(X)), and outputs parameters π.
Prediction-based parameters: The transformation is applied to a predictor p with respect to
an underlying feature distribution DX . The learner L gets access to individual-prediction
examples (x, p(x)), where x ∼ DX , and outputs parameters π.

We use π ← LDX ,p to denote the process of running the parameter learner w.r.t a feature
distribution DX and a predictor p, producing learned parameters π. We allow both the learner
and the mappting τ to be randomized, and denote the random strings they use by rL and rτ

(respectively).

We sometimes abuse notation and refer to the transformation as τ , where the parameter-
learning algorithm is implicit. We also use τ(p) as shorthand for τπ(p), where the parameters
π are learned by the parameter-learning process.

3.1 Stable Transformations
Our primary focus is on transformations that are stable with respect to the choice of samples
and random coins used by the learner, as well as the coins used by τ . We consider two
definitions of stability: global stability, which requires that the resulting predictor is close to
its expectation (globally, in L1 distance). The more relaxed property of Large-set stability
only requires that for any sufficiently large set (fixed a-priori), w.h.p. the average prediction is
close to the expectation (the latter expectation is over the learner’s and τ ’s random choices).

▶ Definition 6 (Canonical transformed predictor). Fix a feature distribution DX , a corrective
transformation (L, τ), and a predictor p. The canonical transformed predictor is defined as:

C[τ(p)] def= E
π←LDX ,p,rτ

[τπ,rτ (p)].

For the remainder of this writeup, We will reserve the special symbol “C” to remind the
reader that we are referring to the canonical predictor.

▶ Definition 7 (Globally stable transformation). Fix a feature distribution DX . A transforma-
tion (L, τ) is (α, β)-globally stable w.r.t. DX if for any predictor p, w.h.p. its (randomized)
transformation τ(p)is close to the canonical transformed predictor in L1 distance:

Pr
π←LDX ,p,rτ

[
E

x∼DX
[|[τπ,rτ

(p)](x)− C[τ(p)](x)|] > α

]
< β.

If (L, τ ) is (α, β)-globally stable for every distribution DX then we say that it is universally
globally stable.
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▶ Definition 8 (Large-set stable (LSS) transformation). Fix a feature distribution DX and let
α, β : [0, 1]→ [0, 1] be functions bounding the magnitude and probability of instability as a
function of the set size (see below). A transformation (L, τ) is (α, β)-large set stable (LSS)
w.r.t. DX if for any predictor p and for any fixed set S ⊆ X , taking γ = Prx∼DX [S]:

Pr
π←LDX ,p,rτ

[∣∣∣∣ E
x∼(DX |S)

[[τπ,rτ (p)](x)− C[τ(p)](x)]
∣∣∣∣ > α(γ)

]
< β(γ).

We emphasize that the absolute value in the above equation is external: we compare the
expectation of τ(p) on the entire set S with the expectation of the canonical transformed
predictor on that set.

If (L, τ ) is (α, β, γ)-LSS for every distribution DX then we say that it is universally LSS.

The error probability β will usually be exponentially small, so we can take a Union
bound over large collections of sets, and conclude that w.h.p. for all of them simultaneously,
the expectation of the transformed predictor is close to the expectation of the canonical
transformed predictor.

We omit the “universally” or “w.r.t a particular distribution” suffix when they are clear
from the context, simply referring to a corrective transformation as globally or large-set
stable.

3.2 Our Goal: Evidence-Based Corrective Action
Once a corrective transformation is specified, our goal is learning a risk predictor that is
“close to” the probabilities specified by the transformation, when it is applied to real-life’s
probabilities p∗, i.e. close to τ(p∗). However, we can only observe outcomes by real-life’s
distribution: the probabilities p∗ are unknowable. Thus, we study the relaxed (but still
significant!) goals of obtaining predictors that are multicalibrated or multiaccurate with
respect to τ(p∗).

Here the importance of stability (see Section 3.1) becomes apparent: parameter learners are
inherently randomized (as they draw samples), and there can also be additional randomization
in L or in τ . We want to be “close” to the transformed predictor, but which of the many
possibly predictors in the support of τ(p∗)’s output distribution should we aim to be close
to? For stable transformations, the behavior of τ(p∗) on any (large enough) set is close to
its expectation w.h.p. Thus, it is natural to aim to be close to the canonical transformed
predictor C[τ(p∗)]:

▶ Definition 9 (multiaccurate/multicalibrated learning algorithm for (L, τ)). Let (L, τ) be a
transformation. An algorithm A for learning a multi-calibrated (respectively, multi-accurate)
predictor for the transformation gets as input a collection of subsets C ⊆ 2X , an error bound
α ∈ [0, 1], a failure probability β ∈ [0, 1], a set size γ ∈ [0, 1], and labeled individual-outcomes
pairs drawn from a distribution D∗. Let C[τ(p∗)] be the canonical transformation of p∗ (see
Definition 6).

We say that A is a (C, α, β, γ)-multicalibration (respectively, multi-accuracy) learning
algorithm for the transformation (L, τ) if, when we run A on input (C, α, β, γ), with all but
β probability over A’s random coin tosses and the training samples drawn i.i.d. from D∗, it
outputs a predictor q̃ that is (C, α, γ) multi-calibrated (respectively, (C, α, γ) multi-accurate)
w.r.t C[τ(p∗)] (under the distribution D∗X ).
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Discussion. If (L, τ) satisfies large-set stability (or the more stringent requirement of
global stability), then multi-calibration w.r.t. C[τ(p∗)] is quite meaningful: suppose q̃ is a
C-multicalibarted predictor w.r.t. C[τ(p∗)]. Large-set stability implies that w.h.p. over the
coins and samples of the transformation, for each set S in the collection C, and for each
(sufficiently large) level set Sv of q̃ in S, the expectation of τ(p∗) (with the above random
choices and samples) is close to the expectation by the canonical transformed predictor.
Thus, with high probability over the coins and samples of the transformation, the predictions
of q̃ will be calibrated on all the sets in C w.r.t. the (probabilistic) outcome of the corrective
transformation applied to real-life. We find this to be a strong guarantee. Note that we
assume here that the high probability guarantee is strong enough to allow union bounding
over the sets in the collection and their prediction categories.

Multi-calibration with respect to C[τ(p∗)] is not appropriate for corrective transformations
that make arbitrary randomized distinctions between members of a protected class S, because
random but “baseless” distinctions can nonetheless be averaged out in C[τ(p∗)]. For example,
consider a protected group S where p∗ = 0.5 for all members of S, because the data
representation fails to capture appropriate features for members of S that permit accurate
prediction1. Suppose further that on T = Sc, half the elements have p∗(x) = 1 and half
have p∗(x) = 0. One might consider a corrective τ that addresses the situation by arbitrarily
assigning a random value in {0, 1} to each member of S. This transformation is large-set
stable (though it is very much not globally stable). However, we have that C[τ(p∗)] = p∗, so
the effect of the transformation is “washed out” in the canonical transformed predictor, and in
any q̃ that is multicalibrated w.r.t. C[τ(p∗)]. One can argue that a corrective transformation,
aiming to move the predictions towards a better world, should not make such arbitrary
distinctions, and we are sympathetic to this argument. In the full version of this work we
address this issue by including in the multicalibration set collect C sets that may depend on
the randomness used by the transformation τ . Finally, we remark that the above discussion
is mainly for interpreting the positive direction of our characterization (i.e., how meaningful
is multicalibration with respect to C[τ(p∗)]). The negative direction characterizes the
transformations for which achieving multicalibration with respect to C[τ(p∗)] is impossible,
regardless of how meaningful such a guarantee would be.

4 The Characterization

As discussed in the introduction (and the literature), we are agnostic on the question of
whether real-life’s outcomes are deterministic (binary) or probabilistic. Our view is that this
question is unanswerable, and thus corrective transformations should also be agnostic to it.
We formalize this as a robustness property from the transformation (L, τ): we require that
the canonical transformed predictor should be “similar” regardless of whether p∗ is binary
(deterministic) or not (probabilistic). Similarity is captured by requiring that C[τ(p∗)] is close
to the expectation, over a randomized instantiation p∗∗ of p∗, of the canonical transformation
of p∗∗. Closeness is measured in L1 distance, and recall that each x’s probability in p∗∗ is
binary, drawn from the Bernoulli distribution with expectation p∗(x) (see Section 2). For
example, this implies that (at least in expectation), the transformed probabilities should
look similar regardless of whether real-life assigned a 0.5 probability to all the individuals, or
whether the individuals were randomly partitioned into equally-sized sets with probability 0
and probability 1.

1 See Chapter 4 of [4] for a real life example involving child protective services.
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▶ Definition 10 (Robustness to RI.). Fix a feature space X and a distribution DX over
features. A transformation (L, τ) is (ε, δ)-robust to random instantiations w.r.t DX if for
every predictor p:

Pr
x∼DX

[∣∣∣∣C[τ(p)](x, p(x))−
(

E
p′←RI(p)

[C[τ(p′)](x, p′(x))]
)∣∣∣∣ > ε

]
≤ δ

▶ Theorem 11 (Main theorem: transformation characterization). Fix a feature space X and a
distribution DX . Let (L, τ) be a transformation. Then for every ε, δ > 0:

If (L, τ) is (ε, δ)-robust to random instantiations (as per Definition 10), then there is an
algorithm A s.t. for every collection C, and every (ᾱ, β̄, γ̄) s.t. ᾱ = O((δ/γ̄) + ε), A is a
(C, ᾱ, β̄, γ̄) multi-calibration learning algorithm for the tranformation (L, τ). The sample
complexity of A is poly(log |C|, 1/ᾱ, log(1/β̄), 1/γ̄).
If (L, τ) is not (ε, δ)-robust to random instantiations w.r.t DX , then there exists a set S

s.t. for any α, β s.t. (α + β) < (ε/2− negl) where negl bounds the probability that there is
a feature-collision in the algorithm’s training sample (some feature vector appears more
than once), there is no (C = {S}, α, β, γ = δ/2) multi-accurate learning algorithm for the
transformation.

Theorem 11 characterizes the transformations for which, for any given finite collection
of sets C, it is sample-theoretically possible to learn a predictor that is C-multi-calibrated
(or multi-accurate) with respect to C[τ(p∗)]. The positive direction constructs an algorithm
whose sample complexity is logarithmic in |C|, whereas the negative direction shows a
singleton collection for which even multi-accuracy is impossible to obtain. The impossibility
holds unless the algorithm uses sufficiently many samples to start observing “collisions” or
repeated events (i.e. multiple instances of the same feature vector), whereas we are interested
in the setting where events are non-repeatable. Thus, we think of the collision probability as
negligible. Finally, the theorem does not assume the transformation is stable; our study of
stability (Section 3.1) elucidates the qualitative significance of being multicalibrated with
respect to C[τ(p∗)], finding that the concept is meaningful under large-set stability.

Proof of Theorem 11.
Direction I: Non-Robustness ⇒ no multiaccuracy. If (L, τ) is not δ-robust to random
instantiations w.r.t DX , then there exists a predictor p : X → [0, 1] s.t.:

Pr
x∼DX

[∣∣∣∣C[τ(p)](x, p(x))−
(

E
p′←RI(p)

[C[τ(p′)]] (x, p′(x))
)∣∣∣∣ > ε

]
≥ δ.

The above probability considers the absolute value of the difference between the two terms.
Since the absolute value is large at least δ probability, there must be a subset S ⊆ X (defined
ex-post) where the predictions of the canonical transformed predictor are either significantly
larger or significantly smaller than those of the canonical transformation of a randomized
instantiation of p. Suppose w.l.o.g that the former is true, i.e. we have that:

DX [S] ≥ δ

2 , (3)

and that:

∀x ∈ S : C[τ(p)](x, p(x))− E
p′←RI(p)

[C[τ(p′)] (x, p′(x))] > ε. (4)

Suppose towards contradiction that A is an algorithm for learning a multi-accurate
transformed predictor q̃. We run A with parameters α, β (see below) and γ = δ/2 and on the
collection of sets {S} (i.e. the collection is a singleton). A gets i.i.d. feature-outcome samples
{(xi, yi)}, where xi ∈ X is sampled from DX and yi ∈ {0, 1} is Bernoulli with expectation
p∗(x). Consider two experiments of running A with different p∗’s:
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1. In Experiment 1, we set p∗ = p.
2. In Experiment 2, we draw p∗ ← RI(p).

In both experiments we run A on outcomes drawn by p∗, and let q̃ be the predictor that
A outputs.

Consider the random variables Q1 and Q2, where Qc is defined to be the value
Ex∼(DX |S)[q̃(x)] in Experiment c (the RVs Q1, Q2 are over the domain [0, 1]). If A is
an (α, β, γ = δ/2)-multiaccuracy learning algorithm for the transformation (L, τ ), then since
DX [S] ≥ γ (see Equation (3)), by Definition 9:

Pr
[∣∣∣∣Q1 − E

x∼(DX |S)
[C[τ(p)](x, p(x))]

∣∣∣∣ > α

]
< β. (5)

On the other hand, consider Experiment 2 and consider a fixed randomized instantiation p′

(Experiment 2 includes the random process of drawing the randomized instantiation, whereas
here we consider a fixed instantiation that has positive probability). Let (Q2|p′) be the RV
obtained by conditioning Q2 on this fixed p′. Again, since DX [S] ≥ γ, by Definition 9:

Pr
[∣∣∣∣(Q2|p′)− E

x∼(DX |S)
[C[τ(p′)](x, p′(x))]

∣∣∣∣ > α

]
< β.

Experiment 2 consists of choosing a random instantiation p′, and then running the learning
algorithm. By the above, adding an expectation over the randomized instantiation p′, we
have that:∣∣∣∣E[Q2]− E

x∼(DX |S),p′←RI(p)
[C[τ(p′)](x, p′(x))]

∣∣∣∣ ≤ α + β. (6)

Thus, by Equation (4), the value of Q1 is w.h.p. higher than the expectation of Q2. This
implies a lower bound on the statistical distance between Q1 and Q2

▷ Claim 12. ∆(Q1, Q2) > ε
2 − α− β.

Proof. The proof follows by the fact that the expectations of two random variables supported
on [0, 1] cannot differ by more than their statistical distance:

E[Q1]−E[Q2] =
∑

v∈[0,1]

(Q1[v] · v −Q2[v] · v) ≤
∑

v∈[0,1]

|Q1(v)−Q2(v)| = 2∆(Q1, Q2).

Further, putting together Equations (4), (5) and (6) we conclude that:

E[Q1]− E[Q2] > ε− 2(α + β).

The claim follows. ◁

The only difference between the two experiments is in the distributions of the feature-
outcome samples fed to the learning algorithm. In particular, the difference is in the
distribution of the binary outcomes: by p, or by a randomized instantiation of p. The feature-
vectors are identically distributed in both experiments (i.i.d. from DX ). If the feature-vectors
sampled by the learning algorithm are all distinct, then the conditional distributions on the
outcomes in the two experiments (for those fixed feature vectors) are also identical: for each
x, the outcome is Bernoulli with expectation p(x). In Experiment 1 this is by design. In
Experiment 2, this is due to the choice of a randomized instantiation p′ of p, and so long
as the samples are all distinct, the outcomes are drawn i.i.d. from the above distribution.
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The only difference between the experiments is that if the same feature vector x is observed
more than once, then in Experiment 1, the outcomes for the different occurrences of x will
be independent, whereas in Experiment 2 they will be identical (since the predictor p′ is
instantiated once). The random variable Q is just a function of the algorithm’s training
sample. Thus, so long as the probability of observing the same feature vector more than
once is negligible, we have:

▷ Claim 13. ∆(Q1, Q2) ≤ negl.

Claims 12 and 13 give a contradition to the assumption that A is a (α, β, γ = δ/2)
multiaccuracy algorithm for any values of α and β for which α + β < ε

2 − negl.

Direction II: Robustness implies calibration-feasibility. We construct an algorithm that
learns a predictor that is multicalibrated with respect to the canonical transformation of p∗

for any robust transformation. For a robust transformation, the canonical transformation of
any p∗ is close to the expectation, over a randomized instantiation p∗∗ of p∗, of the canonical
transformation of p∗∗. The main step in our algorithm is using outcomes drawn by p∗

to generate outcomes whose distributions are close to Ep∗∗←RI(p∗)[C[τ(p∗∗)]]. Robustness
guarantees that this distribution is close to that of the canonical transfomaion of p∗. We
then use a standard outcome-based multi-calibration learning algorithm (e.g. [6]), trained
over the aforementioned samples, to obtain a predictor q̃ that is multiclibrated w.r.t. the
canonical transformation of p∗. The theorem follows.

Our goal, then, is generating outcomes that are close in distribution to
Ep∗∗←RI(p∗)[C[τ(p∗∗)]]. To do this, we treat the observed outcomes drawn by p∗ as spe-
cifying probabilities according to a fictitious randomized instantiation p∗∗ of p∗. These
probabilities are fed into the (probability-based) parameter learner L to learn parameters π

for the transformation τ , towards applying it on (the fictitious) p∗∗. The key point is that
these learned parameters will be identically distributed to parameters learned by L on an
actual randomized instantiation of p∗. Algorithm 1 details the sample-generation procedure.

The predictor q. Step 1 of the sample generation algorithm produces a set of learned
parameters {πi}. These parameters are then used in Step 2 to generate new samples,
where we also take care (both in training and in sample generation) to ensure that the
unstransformed outcome for each feature vector x ∈ X is consistent across all its appearances
in training the i-th parameters and in generating samples. Fixing a run of Step 1 of the
sample generator, for any fixed feature vector x ∈ X that is in the support of DX , let q(x)
denote the conditional probability that Step 2 produces the sample (x, y′ = 1) (conditioned
on the feature vector x). The following claim shows that w.h.p. over the coins used in
Step 1, for almost all x drawn from DX , the conditional probability q(x) is close to the
expectation, over a randomized instantiation p∗∗ of p∗, of the probability assigned by the
canonical transformed predictor. The notation Eq←Step 1 emphasizes that we are taking
expectation only over the randomness in the first step, in which the parameters {π1, i ∈ [ℓ]}
are learned, and not over the randomness in Step 2 in which a random i ∈ [ℓ] is selected.

▷ Claim 14. Fix parameters µ, ρ ∈ [0, 1]. For the sample-generation algorithm (Algorithm 1)
it holds that:

Pr
q←Step 1,x∼D∗

X

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ ≥ µ

]
< ρ
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Algorithm 1 Sample Generation for Robust Transformations.

Input: feature-outcome pairs, outcomes by p∗, error parameters µ, ρ ∈ [0, 1]
Output: feature-outcome pairs, outcomes close to Ep∗∗←RI(p∗)[C[τ(p∗∗)]]

1. Run ℓ = O(
√

log(1/ρ)/µ2) indep. executions of the parameter learner L. For each i ∈ [ℓ]:

a. For every x ∈ X , the i-th untransformed outcome oi
x of x is initialized to be “undefined”.

b. The i-th execution uses freshly drawn random coins rL,i.
c. To produce the j-th feature-probability sample requested by the i-th execution of
L, sample (xi,j , yi,j ∈ {0, 1}) ∼ D(p∗). If xi,j ’s i-th untransformed outcome oi

xi,j
is

defined, then proceed to the next step. Otherwise, set it to yi,j .
d. Use (xi,j , oi

xi,j
) as the j-th sample in the i-th execution of the parameter-learner.

e. The parameter-learner outputs parameters πi.

2. Produce each new feature-outcome output sample as follows:

a. Draw (x, y ∈ {0, 1}) ∼ D(p∗). Pick i ∈ [ℓ] uniformly at random.
b. If x’s i-th untransformed outcome oi

x is defined, then proceed to the next step. Other-
wise, set it to y.

c. Draw y′ ∈ {0, 1} from the Bernoulli distribution with expectation τπi(x, oi
x) and output

the sample (x, y′).

Proof. In Step 1 of the algorithm, consider a single execution i of the parameter-learning
algorithm: the distribution of the learned parameters πi is identical to the distribution of
the parameters that would be learned by taking a randomized instantiation p∗∗ of p∗: the
randomized instantiation is simply determined by the observed binary outcomes (which are
drawn by p∗(x))), where we take care to make sure that if a feature-vector x appears more
than once in the training examples, then it is always “assigned” the binary outcome with
which it first appeared (the i-th untrasnformed outcome is set only once). Moreover, we also
take care that for any feature vector x that appears in Step 2, its untransformed outcome is
set only once (when it first appeared, in training or in sample-generation for the i-th learned
parameters).

Thus, for each i ∈ [ℓ], the distribution of outcomes that are generated in Step 2, conditioned
on that using the i-th learned parameters, is identical to the distribution that would be
obtained in a mental experiment, where we take a randomized instantiations p∗∗i ← RI(p∗),
and learn the parameters πi by training on examples drawn by p∗∗i .

For x in the support of DX , recall that q(x) denotes the probability that the sample
generator assigns outcome 1 to x. We conclude that q is in fact the average of ℓ predictors qi,
where each qi is drawn by choosing a random instantiation of p∗ and transforming it using
(L, τ). Thus:

Pr
q←Step 1

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ > µ

]
= Pr
{p∗∗

i
←RI(p∗),πi}i∈[ℓ]

[∣∣∣∣ E
i∈[ℓ]

[τπi
(x, p∗∗i (x))]− E

p∗∗←RI(p∗)
[C[τ(p∗∗)](x, p∗∗(x))]

∣∣∣∣ > µ

]
<ρ,
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where the first equality is by the mental experiment discussed above, and the second inequality
is by a Chernoff bound. The above holds for any fixed x in the support of DX , and thus it
also holds for a randomly drawn x ∼ DX . ◁

Speaking intuitively, Claim 14 tells us that, with high probability over the randomness
in defining the building blocks of q, the resulting predictor is close to the expectation, over
randomness in p∗∗ ← RI(p∗), of the canonical transformation of p∗∗. By the robustness of τ ,
this in turn is close to the canonical transformed C[τ(p∗)]. Hence, q is close to C[τ(p∗)]. The
remainder of the proof will show that this closeness is maintained under multicalibration;
that is, multicalibrating with respect to q yields a predictor that is close to something
multicalibrated with respect to C[τ(p∗)]. Before proceding with that argument, we first state
a corollary that follows directly from Claim 14 via a standard argument.

▶ Corollary 15. Fix parameters α′, β′, σ′, ρ′ ∈ [0, 1]. For the sample-generation algorithm
(Algorithm 1), run with parameters µ = α′ and ρ = (α′ · β′ · σ′ · ρ′) it holds that:

Pr
q←Step 1

[
Pr

x∼D∗
X

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ > α′

]
> (α′ · σ′ · ρ′)

]
< β′

Proof. Plugging the values of µ, ρ into Claim 14, we conclude that:

Pr
q←Step 1,x∼DX

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ > α′

]
< (α′ · β′ · σ′ · ρ′).

By a standard argument, it follows that it cannot be that with probability larger than β′

over the q that is defined by Step 1, the probability, over x ∼ DX , that q(x) is far from its
“target” in the above equation is larger than (α′ · σ′ · ρ′):

Pr
q←Step 1

[
Pr

x∼DX

[∣∣∣∣q(x)− E
p∗∗←RI(p∗)

[C[τ(p∗∗)](x, p∗∗(x))]
∣∣∣∣ > α′

]
> (α′ · β′ · σ′ · ρ′)

]
< β′.

◀

From MC w.r.t q to MC w.r.t. the canonical transformed predictor. Running a multical-
ibration algorithm on outcomes generated by the sample generation algorithm (Algorithm 1)
will w.h.p. produce a predictor q̃ that is approximately multicalibrated w.r.t. q. We use Corol-
lary 15 and the robustness of the transformation (L, τ) to show that q̃ is also approximately
MC w.r.t. the canonical transformation of p∗.

In more detail, let C be the collection of sets, and let α, β, γ be parameters to be set below.
We run the sample-generation algorithm (Algorithm 1) with parameters α′ = Θ(α), β′ =
Θ(β), σ′ = γ, ρ′ = Θ(α2). By Corollary 15, with all but Θ(β) probability over the training
in Step 1, the sample generator trains a predictor q for which there exists a “bad” set
Bq ⊆ Supp(DX ) s.t. DX [Bq] ≤ (α3 · γ)/100 where:

∀x ∈ (Supp(DX ) \Bq) :
∣∣∣∣q(x)− E

p∗∗←RI(p∗)
[C[τ(p∗∗)](x, p∗∗(x))]

∣∣∣∣ ≤ α/100. (7)

Further, by the (ε, δ)-robustness of the transformation (Definition 10), there exists a
“bad” set Brobust ⊆ X where DX [Brobust] ≤ δ and

∀x ∈ (Supp(DX ) \ Brobust) :
∣∣∣∣C[τ(p∗)](x, p∗(x)) −

(
E

p∗∗←RI(p∗)
[C[τ(p∗∗)](x, p∗∗(x))]

)∣∣∣∣ ≤ ε (8)
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We are now ready to analyze the guarantee of the multicalibrated predictor q̃ w.r.t. the
canonical transformation of p∗. We train q̃ by running an outcome-based multicalibration
algorithm on samples generated by Algorithm 1, where the MC algorithm is run on a
collection of sets C, and with parameters α′′ = Θ(α), β′′ = Θ(β) and γ′′ = γ. Let q̃ be the
predictor trained by the MC learning algorithm. We assume w.l.o.g. that q̃ is discretized
to precision λ = Θ(α). In what follows, we assume both that the MC algorithm does not
fail (this happens with all but β′′ probability), and that q trained by the sample generator
satisfies Equation (7) (happens with all but β′ probability). By a Union bound, this is the
case with all but β probability.

Let S ∈ C be a set in the collection s.t. DX [S] ≥ γ. For a value v ∈ [0, 1], let Sv be the
subset of S to which q̃ assigns value v. We define the “bad” level sets to be the elements
assigned values v for which the set Sv has small mass by DX :

Blevels(S) =
⋃

v∈[0,1]:DX (Sv)≤(α·λ·γ)/10

Sv, (9)

where recall that the predictor was discretized to precision λ = Θ(α), so there are at most
1/λ “level sets”. Thus, by construction, DX [Blevels(S)] ≤ (α · γ)/10.

By Definition 3, for any set S ∈ C, s.t. DX [S] ≥ γ, there is a subset S′ ⊆ S where
Equation (2) holds. Let S′′ be the subset of S′ that does not contain members of Bq, of
Brobust, or of Blevels(S). We have that:

DX [S′′] ≥ DX [S′]−DX [Bq]−DX [Brobust]−DX [Blevels(S)]

≥ (1− α′′)DX [S]− α3γ

100 − δ − α · γ
10

≥
(

1− α′′ − α3

100 −
δ

γ
− α

10

)
DX [S]

≥
(

1− α− δ

γ

)
DX [S].

Since we removed the members of Blevels(S) from S′′, it is the case that for every v ∈ [0, 1]
for which S′′v has non-zero mass, it has mass at least (α · λ · γ)/10 (see Equation (9)). Thus:∣∣∣∣ E

x∼(DX |S′′
v )

[C[τ(p∗)](x, p∗(x))] − v

∣∣∣∣ ≤
∣∣∣∣ E
x∼(DX |S′′

v )
[Ep∗∗←RI(p∗)[C[τ(p∗∗)](x, p∗∗(x))]] − v

∣∣∣∣ + ε (10)

≤
∣∣∣∣ E
x∼(DX |S′′

v )
[q(x)] − v

∣∣∣∣ + ε + α

100 (11)

≤
∣∣∣∣ E
x∼(DX |S′

v)
[q(x)] − v

∣∣∣∣ + ε + α

100 + Θ
(

α + δ

α2 · γ

)
(12)

≤ α′′ + ε + Θ
(

α + δ

α2 · γ

)
(13)

= Θ
(

α + δ

α2 · γ

)
+ ε. (14)

Where in the above: Equation (10) follows by the definition of S′′ (which excludes elements
in Brobust, and by Equation (8)). Equation (11) follows because S′′ excludes elements in
Bq (and by Equation (7)). In Equation (12) we switch the expectation from S′′v to S′v using
Proposition 16 below, which follows by standard manipulations. Finally, Equation (13) is by
the multicalibration guarantee of q̃ w.r.t q.
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▶ Proposition 16. For v ∈ [0, 1] s.t. S′′v has non-zero mass:∣∣∣∣ E
x∼(DX |S′

v)
[q(x)]− E

x∼(DX |S′′
v )

[q(x)]
∣∣∣∣ = Θ

(
α + δ

α2 · γ

)
Proof. The proof is by a case analysis on the sign of the difference in the absolute value.
Suppose that the sign is positive, i.e. the first term is larger, then the absolute value is
bounded by:

E
x∼(DX |S′

v)
[q(x)] − E

x∼(DX |S′′
v )

[q(x)] ≤ 1
DX [S′′v ] ·

 ∑
x∈S′

v

DX [x] · q(x) −
∑

x∈S′′
v

DX [x] · q(x)


= 1

DX [S′′v ] ·
∑

x∈(S′
v\S′′

v )

DX [x] · q(x)

≤ DX [(S′v \ S′′v )]
DX [S′′v ]

≤ (α3 · γ/100) + δ

(α · λ · γ)/10 .

If the second term is larger, then the absolute value is bounded by:

E
x∼(DX |S′′

v )
[q(x)] − E

x∼(DX |S′
v)

[q(x)] = 1
DX [S′′v ] ·

 ∑
x∈S′′

v

DX [x] · q(x) − DX [S′′v ]
DX [S′v] ·

∑
x∈S′

v

DX [x] · q(x)


≤

∑
x∈S′

v
DX [x] · q(x) − DX [S′′

v ]
DX [S′

v ] ·
∑

x∈S′
v

DX [x] · q(x)
DX [S′′v ]

=

(
1 − DX [S′′

v ]
DX [S′

v ]

)
·
∑

x∈S′
v

DX [x] · q(x)

DX [S′′v ]

≤
(

DX [S′v]
DX [S′′v ] − 1

)
· DX [S′v]

DX [S′′v ] ,

where the last inequality holds because DX [S′′
v ]

DX [S′
v ] ∈ (0, 1], and thus:

1− DX [S′′v ]
DX [S′v] ≤

1− DX [S′′
v ]

DX [S′
v ]

DX [S′′
v ]

DX [S′
v ]

= DX [S′v]
DX [S′′v ] − 1.

The claim follows by observing that:

DX [S′v]
DX [S′′v ] ≤

DX [S′′v ] + (α3 · γ/100) + δ

DX [S′′v ]

≤ 1 + (α3 · γ/100) + δ

(α · λ · γ)/10 ◀

We conclude that, with all but β probability over the sample generation and learning
procedures, q̃ is (Θ(α + δ/(α2 · γ)) + ε, γ)-multicalibrated w.r.t. the canonical transformation
of p∗. The second direction of the theorem follows by setting β = β̄, γ = γ̄ and setting:

α = ᾱ−Θ
(

(δ/γ)1/3
)
− ε.

The restriction on ᾱ implies that α = Ω(ᾱ) (so the sample complexity of the multicalibrated
learning algorithm will be polynomial in (1/ᾱ)), and that α > (δ/γ)1/3. Thus:

Θ(α + δ/(α2 · γ)) + ε ≤ Θ(α + (δ/γ)1/3) + ε = ᾱ.

We conclude that the algorithm indeed achieves (ᾱ, β̄, γ̄) multicalibration w.r.t. the trans-
formed predictor, and (this direction of) the theorem follows. ◀
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New Algorithms and Applications for Risk-Limiting
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Abstract
Risk-limiting audits (RLAs) are a significant tool in increasing confidence in the accuracy of elections.
They consist of randomized algorithms which check that an election’s vote tally, as reported by a
vote tabulation system, corresponds to the correct candidates winning. If an initial vote count leads
to the wrong election winner, an RLA guarantees to identify the error with high probability over its
own randomness. These audits operate by sequentially sampling and examining ballots until they
can either confirm the reported winner or identify the true winner.

The first part of this work suggests a new generic method, called “Batchcomp”, for converting
classical (ballot-level) RLAs into ones that operate on batches. As a concrete application of the
suggested method, we develop the first RLA for the Israeli Knesset elections, and convert it to one
which operates on batches using “Batchcomp”. We ran this suggested method on the real results of
recent Knesset elections.

The second part of this work suggests a new use-case for RLAs: verifying that a population
census leads to the correct allocation of parliament seats to a nation’s federal-states. We present an
adaptation of ALPHA [12], an existing RLA method, to a method which applies to censuses. This
suggested census RLA relies on data from both the census and from an additional procedure which
is already conducted in many countries today, called a post-enumeration survey.
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1 Introduction

Running an election is a delicate endeavour, since casting and tallying votes entails seemingly
contradictory requirements: counting the votes should be accurate and it must also be
confidential. A risk-limiting audit (RLA) is a process whose goal is to increase the confidence
that results of an election were tallied appropriately, or more accurately that the winner/s
were chosen correctly. It is usually described for election systems where there is an electronic
vote tabulation, whose tally is referred to as the reported results, but also backup paper-
ballots, whose tally is assumed to be the true results. The procedure examines what is
hopefully a relatively small number of the backup paper-ballots, and comparing them to the
full reported results of the electronic voting system. These audits are randomized algorithms,
where the randomization is manifested in the choice of ballots to examine, and potentially
the order in which they are examined.
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A risk-limiting audit ends either when the reported winners of the election are confirmed,
or after a full recount of the backup paper-ballots of all voters. The audit’s goal is to confirm
that the reported winners according to the electronic vote tabulation (the reported tally)
match the winners according to the paper-backups (the true tally). Note that RLAs verify
that the elections resulted in the correct winners according to the backup paper-ballots,
and not that the reported vote tally was completely accurate; an RLA will approve election
results that contain counting errors which do not change the winners of the elections. This
fact is useful since it would be infeasible to expect the vote tally to be accurate up to every
single ballot, but we should avoid at all cost counting errors which change the winners of the
elections.

The claimed guarantee of RLAs is that if the reported winners of the elections are not
correct (with regards to the full paper count), then the probability that the audit will
mistakenly confirm the results is lower than some predetermined parameter, referred to as
the risk-limit of the audit.

▶ Definition 1. The RLA Guarantee: If the reported winners of the elections are not
correct, an RLA will approve them w.p. of at most α, where α is a parameter which is set
before the audit begins. α is referred to as the audit’s risk-limit.

The efficiency of an RLA is measured by the number of paper-ballots it requires to read,
given that the reported tally matches the true one. In most cases, an RLA should remain
relatively efficient even if the reported tally isn’t completely accurate, as long as it results in
the same winners as the true tally. The efficiency of any specific RLA method is limited by
the election system it operates on. If a system has a sensitive social choice function, meaning
that small tallying errors can often change the election winners, then it is more difficult to
audit efficiently.

RLA methods generally belong to one of three categories, as defined by Lindeman and
Stark [9]:
1. Ballot-comparison: In ballot-comparison audits, the auditor knows which paper-ballot

matches which electronic-ballot. This category of audits is the most efficient, since it
contains the most information about the election results.

2. Ballot-polling: In ballot-polling audits, a single paper-ballot can be sampled and
examined, but it does not need to be matched to its corresponding electronic-ballot.

3. Batch-level: In batch-level audits, ballots are partitioned into batches, usually according
to the prescient in which they were cast. The reported tally of each batch is available,
but there’s no guarantee that a paper-ballot in the batch can be matched to its electronic
counterpart. Ballots are usually not randomly partitioned, and different batches are of
different sizes. Batch-level audits are generally the least efficient of the three categor-
ies, since the partition into batches is not random, making it more difficult to get a
representative sample of the overall vote distribution.

1.1 Our Contributions
The goal of the work is to expand the realm where RLAs are used. Its new contributions are:
1. A new and general method for performing batch-level RLAs, which can be applied

for many election systems, is presented in Section 3. This method, which we call
“Batchcomp”, is usable for any election system that can be audited using the SHANGRLA
framework [11].

2. An RLA method for the Israeli Knesset (The Israeli parliament) elections, based on the
SHANGRLA framework, is presented in Section 4. This method can be applied as-is to
conduct ballot-level RLAs, or be combined with Batchcomp to conduct a batch-level RLA.
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To test both the Knesset RLA method and Batchcomp, we simulate their combination
on real election results. While our Knesset RLA method is essentially a synthesis and
adaptation of previous suggestions in the literature, it is the first time RLAs are applied
to this setting.

3. A new type of RLA that applies to population censuses. This new type of audit is applic-
able in nations where political representatives are allocated to the nation’s geographical
regions based on their population, like the United States, Germany, Cyprus and more. It
relies on data that is already collected in many countries, as part of an existing method for
assessing the accuracy of population censuses called a “post enumeration survey” (PES).
To the best of our knowledge, this is the first and only method which verifies the census’
resulting allocation of representatives to federal-states with a clear statistical guarantee.
The method is presented in Section 5.

2 Related Work

2.1 SHANGRLA

SHANGRLA [11] is an auditing framework which aids in adapting existing RLA algorithms
to new social choice functions. It can be applied to a variety of election methods used
globally, such as plurality, Hamiltonian elections [2], many proportional representation
methods [1], and more.
This method is based on an abstraction called “sets of half-average nulls” (SHAN), where
given a collection of finite lists containing unknown non-negative numbers, we wish to
test whether the average of all of those lists is greater than 1

2 by querying for the values
at different indexes. Each query in this problem returns the values all lists hold at some
specified index. An election system can be audited using SHANGRLA by reducing the
problem of approving its reported winners to the SHAN problem. Once such a reduction
is found, a number of existing algorithms [12, 11, 14] for the SHAN problem can be used
to perform an RLA on that system.
This reduction is found by defining ℓ mappings a1, ..., aℓ from the paper-ballots to non-
negative values, such that the mean of every mapping across all backup paper-ballots is
above 1

2 iff the reported winner/s of the election are true.
▶ Definition 2. The reported winners of an election system can be audited using
SHANGRLA if there exist ℓ non-negative functions a1, ..., aℓ, called assorters, such that
the reported winners of the elections are true iff for every k ∈ [ℓ]:

1
|B|

∑
b∈B

ak(b) >
1
2 , (1)

where B is a list of the backup paper-ballots of the elections. The ℓ inequalities above (for
each k ∈ [ℓ]) are referred to as the election’s assertions.

Some social choice functions have simple conversions to SHANGRLA assertions. E.g., a ma-
jority election between two candidates, Alice and Bob, can be audited using SHANGRLA
with a single assorter. If Alice won the election according to the reported vote tally,
this can be verified by using an assorter which has a mean greater than 1

2 iff Alice truly
received more votes than Bob:
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▶ Definition 3. An assorter which verifies that Alice received more votes from Bob in
majority elections is:

a(b) =


1 if b is for Alice
0 if b is for Bob
1
2 if b is invalid

2.2 Finding SHANGRLA Assertions
In the example above, finding the correct assorter is relatively simple. For other election
systems, which use more complicated social choice functions, verifying the correctness of
the election winners can sometimes be reduced to verifying a set of linear inequalities
regarding the various vote tallies. In such situations, it may not be immediately clear
how to reduce them to assertions of the form 1

|B|
∑

b∈B a(b) > 1
2 . For such cases, Blom et

al. [1] suggests a generic solution. This solution reduces the problem of verifying that a set
of linear inequalities that depend on the various vote tallies are all true to the problem of
verifying that a set of assorters all have a mean greater than 1

2 across all paper-ballots. We
describe this solution for a single inequality. Given multiple inequalities, each inequality
can be converted to a single SHANGRLA assertion in the same manner.
Say we have a linear inequality which is true iff the reported winner/s of some election
system are the true ones:∑

c∈C
βcvtrue(c) > d, (2)

where C is the set of all ballots that a single voter may cast (e.g. in plurality elections,
C would be the set of candidates), vtrue(c) is the number of cast ballots of of type c

according to the true results, and d and βc (for each c ∈ C) are constants. To perform an
RLA for this election system, we wish to find a SHANGRLA assertion which is equivalent
to (2). Meaning, given (2), we wish to find a non-negative function a : C → [0,∞) such
that (1) is equivalent to (2). As Blom et al. suggest, this can be achieved by defining:

a(b) := q − βb

2
(

q − d
|B|

) , (3)

where q := minc∈C {βc}, and βb is determined by the type of ballot b is - if b is of type
c ∈ C, we have βb = βc. As noted by Blom et al., the assorters generated by this method
are non-negative as long as the inequality they are derived from isn’t trivially true or
trivially false, for any distribution of votes.

2.3 The ALPHA Martingale Test
The ALPHA Martingale Test [12] is a specific RLA algorithm for election systems which
have a SHANGRLA reduction as described in Section 2.1. I.e., when there exist ℓ assorters
a1, ..., aℓ such that the reported winners of the elections are true iff for all k ∈ [ℓ] the
inequality (1) is true.
The test operates by keeping ℓ variables T1, ..., Tℓ, each representing the inverse of a
p-value for the hypothesis that a certain list has an average greater than 1

2 . It then
queries sequentially for random backup paper-ballots, where after each ballot it updates
these ℓ variables. If at any point Tk for some k ∈ [ℓ] surpasses the threshold 1

α , it means
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that we have sufficient evidence that the mean of its corresponding assorter ak over all
ballots is greater than 1

2 . If after a certain query, all of T1, ..., Tℓ have surpassed 1
α at

some point during the audit, then the reported winners of the elections are approved.
After each queried backup paper-ballot bi, the algorithm updates Tk for every k ∈ [ℓ] by
comparing ak(bi) to the following values, which are set before bi is revealed:
a. µk: The mean value of ak over all ballots that have yet to be audited, given that the

mean of ak over all ballots is 1
2 . Recall that if the mean of ak over all ballots is at

most 1
2 , then the reported winners of the elections are wrong, which is the case the

algorithm wishes to detect. Thus, if at some point during the audit we sample a ballot
b with ak(b) ≤ µk, it provides evidence that the reported winners of the elections are
less likely to be correct, and vice-versa.

b. ηk: A guess for what we would expect ak(bi) to be based on the reported results
and the ballots we previously queried. This guess can be made in several ways while
maintaining the algorithm’s correctness. One reasonable way to do so is to set ηk to
be the mean of ak over ballots that have yet to be audited, assuming that the reported
tally is completely accurate. As explained by Stark [12], The audit becomes more
efficient, meaning less ballots need to be examined, the more accurate this guess is.

c. uk: In the paper presenting ALPHA, uk was defined as the maximal value ak may
return. In reality, the ALPHA Martingale Test is risk-limiting even for other choices of
uk, as long as the inequality µk < ηk < uk is always maintained. For our purposes, uk

can be thought of as a guess for whether the next sampled ballot would indicate that
assertion k is more or less likely to be true. If the next ballot to be sampled increases
our confidence that the assertion is true, the audit is more efficient when uk is large,
and vice-versa.

The ALPHA Martingale Test can be adapted to sample ballots either with or without
replacement. It can also be adapted to perform batch-level audits, where batches of ballots
are sampled instead of individual ones. We refer to this batch-level version of the ALPHA
Martingale Test as ALPHA-Batch. The Batchcomp method presented in Section 3 is
based on ALPHA-Batch and attempts to improve on it by adjusting its assorters and
utilizing the new definition for uk.

3 The Batchcomp RLA

This section describes a generic way of performing batch-level RLAs, when the results of
the elections can be verified using SHANGRLA assertions, as described in Section 2.1. This
algorithm is original to this work and is based on ALPHA-Batch. Batchcomp relies on the
following assumptions:
1. The election’s social choice function can be audited using the SHANGRLA framework.
2. The reported and true results agree on the total number of ballots within each batch.

3.1 Model and Notation

Fix some elections system with a set of ballots B and a partition of these ballots into d batches
B1, ..., Bd. We make no assumptions regarding this partition, and different batches may be
of different size. By assuming that the election system can be audited using SHANGRLA,
we assume the following:
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▶ Assumption. There are ℓ assorters a1, .., aℓ such that the reported winners are true iff for
all k ∈ [ℓ]:

1
|B|

∑
b∈B

ak(b) >
1
2 .

Throughout the following sections, we sometimes abuse notation and apply assorters over
entire batches. When doing so, ak(Bi) is defined as the mean of ak over all ballots in Bi:

ak(Bi) := 1
|Bi|

∑
b∈Bi

ak(b). (4)

In accordance with this, ak(B) denotes the mean value of ak across all ballots.
Finally, note that each batch has a reported tally, which is known before the audit begins,

and a true tally, which we may only learn during the audit. Therefore, each assorter has a
reported and true mean value over each batch, which can be calculated from its reported
and true tally, respectively. We denote the reported mean of an assorter ak over a batch Bi

as arep
k (Bi), and its true mean over that batch as atrue

k (Bi). Using this notation, the audit’s
goal is to test whether atrue

k (B) > 1
2 for all k ∈ [ℓ].

3.2 Batchcomp Overview
Batchcomp attempts to confirm that the mean of ℓ assorters over all ballots are all greater
than 1

2 by sequentially sampling batches of backup paper-ballots and examining them. In
each iteration, it samples a previously unsampled batch, such that each batch is sampled
w.p. proportional to its size.

After each sampled batch, it updates ℓ p-values, each corresponding to the hypothesis
that an assorter has a mean greater than 1

2 across all ballots. The algorithm keeps the
inverses of these p-values, T1, ..., Tℓ. Each variable Tk is updated according to the backup
paper-ballots in the sampled batch and according to 3 additional variables - µk, ηk, Uk. µk

and ηk are defined as they were in the ALPHA Martingale Test (see Section 2.3). Uk, which
is Batchcomp’s version of uk from the ALPHA Martingale Test, controls how significantly
Tk changes per audited batch. µk, ηk and Uk are updated after each iteration, while always
maintaining Uk > ηk > µk.

During the audit, Batchcomp uses a modified version of the election’s assorters a1, ..., aℓ.
We denote these modified assorters as A1, ..., Aℓ. Each new assorter Ak has a mean greater
than 1

2 iff its corresponding assorter ak also has a mean which is greater than 1
2 . Thus, to

approve that the reported winners of the elections are correct, it suffices to approve that
Ak(B) > 1

2 for all k ∈ [ℓ]. Auditing A1, ..., Aℓ instead of a1, ..., aℓ makes the audit agnostic
to the order in which batches are sampled, as long as the reported batch-level vote tallies are
accurate. As explained in the following section, this can increase the audit’s efficiency.

3.3 Comparing Batchcomp and ALPHA-Batch
The ALPHA-Batch method, which Batchcomp is based on, is performed by examining the
mean of every assorter over each sampled batch according to its backup paper-ballots. It
does not use the reported vote tally of the batches beyond the total number of ballots they
contain. Batchcomp attempts to improve on the efficiency of ALPHA-Batch by auditing
something slightly different - instead of auditing the mean value of an assorter ak over the
backup paper-ballots (true results) in a sampled batch, it audits the discrepancy between
the mean value taken by ak over a batch according to its reported tally, and the mean value
it returns over the same batch according to its paper-ballots.
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The values returned by the ALPHA-Batch assorters can change drastically from batch
to batch, depending on their vote distribution according to the true results. The values
the Batchcomp assorters return depend only on the accuracy of the reported tally; if two
batches with different vote distributions were both counted accurately in the reported results,
a Batchcomp assorter will return the same value when applied on each of them. This fact is
shown in Section 3.4.

As an example of this, examine majority elections with accurate reported tallies. In such
elections, ALPHA-Batch operates by applying the assorter from Definition 3 on the sampled
batches. Applying this assorter on a batch returns the share of votes won by the reported
winner of the elections inside that batch. This value can swing heavily depending on the
specific batch that is sampled. A batchcomp assorter for the same elections returns the same
value on every batch, regardless of the vote distribution within it.

Recall that before sampling and reading a backup paper-ballot, the ALPHA Martingale
Test guesses the value that each assorter would return on this ballot (this guess is ηk, for
each assorter ak). As explained by Stark when presenting ALPHA [12], the audit is more
efficient when these guesses are accurate. If each assorter returns a similar value for all
batches, as happens in Batchcomp, then the audit can make guesses which are more accurate.
This is the root cause for Batchcomp outperforming ALPHA-Batch in the simulations shown
in Section 4.3.

3.4 The Batchcomp Assorters
This section converts the election assorters a1, ..., aℓ to equivalent assorters A1, ..., Aℓ which
depend on the accuracy of the batch-level tallies instead of their vote distribution. These
new assorters, which we refer to as the Batchcomp assorters, are equivalent to the original
ones in the sense that they all have a mean greater than 1

2 iff the original ones all have a
mean greater than 1

2 .

▶ Definition 4. For each assorter ak, define the Batchcomp-assorter Ak : C∗ → [0,∞):

Ak(Bi) := 1
2 +

Mk + atrue
k (Bi)− arep

k (Bi)
2(wk −Mk) .

Where Mk is the reported margin of assorter ak across all batches, and wk is the maximal
reported value of ak, across all batches:

Mk := arep
k (B)− 1

2 , wk := max
j∈[d]
{arep

k (Bj)}.

As explained in Section 3.3, when the reported batch-level tallies are accurate, each
Batchcomp assorter returns the same value on all batches. This is since accurate batch-level
tallies indicate that for any batch Bi we have arep(Bi) = atrue(Bi), and:

Ak(Bi) = 1
2 + Mk

2(wk −Mk) .

To use these Batchcomp assorters instead of the original assorters a1, ..., aℓ, we need to show
that they are non-negative and that Ak(B) > 1

2 iff atrue
k (B) > 1

2 (recall that a(B) denotes
the mean of an assorter a over all ballots).

▷ Claim 5. For any assorter ak, its conversion to a Batchcomp assorter Ak is non-negative.
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Proof. Fix an assorter ak and its Batchcomp counterpart Ak. Examine the minimum of
atrue

k and the maximum of arep
k . Recall that assorters are always non-negative, and that wk

is defined as the maximum of arep
k across all batches. Thus, for any batch Bi:

Ak(Bi) = 1
2 +

Mk +

≥0︷ ︸︸ ︷
atrue

k (Bi)−

≤wk︷ ︸︸ ︷
arep

k (Bi)
2(wk −Mk) ≥ 1

2 + Mk − wk

2(wk −Mk) = 0. ◁

▷ Claim 6. For any assorter ak and its conversion to a Batchcomp assorter Ak, we have
atrue

k (B) > 1
2 iff Ak(B) > 1

2 .

Proof. By the definition of Ak and Mk (Definition 4):

Ak(B) = 1
2 +

Mk + atrue
k (B)− arep

k (B)
2(wk −Mk)

= 1
2 +

arep
k (B)− 1

2 + atrue
k (B)− arep

k (B)
2(wk −Mk)

= 1
2 +

atrue
k (B)− 1

2
2(wk −Mk) .

And since wk > Mk, as wk ≥ arep
k (B) > Mk, this value is greater than 1

2 iff atrue
k (B) > 1

2 .
◁

The Batchcomp assorters A1, ..., Aℓ can also be used by the ALPHA-Batch algorithm in
place of the original assorters a1, ..., aℓ. This, however, does not lead to an increase in the
audit’s efficiency by itself, at least in the settings we simulated. Batchcomp attempts to
improve on ALPHA-Batch’s efficiency by combining these new assorters with the re-definition
of uk (see Section 2.3).

3.5 The Batchcomp Algorithm
1. Initialization:

(a) Initialize K = [ℓ], which holds the indexes of assertions we have yet to approve.
(b) Initialize B1 = (B1, B2, ..., Bd) and B0 = ∅. As the algorithm progresses, B0 holds the

batches which were already audited and B1 the batches that have yet to be audited.
(c) For each k ∈ K initialize:

TK := 1, µj := 1
2 , ηk := 1

2 + Mk

2(wk −Mk) , Uk := 1
2 + Mk + δ

2(wk −Mk) .

For some δ > 0. Appendix B examines how to choose δ. For definitions of Mk and
wk see Definition 4. Note that since wk > Mk > 0 we have Uk > ηk > µk.

2. Auditing Stage: As long as B1 ̸= ∅, perform:
(a) Sample a batch from B1 and denote it as Bi. Each batch Bj in B1 is sampled with

probability proportional to its size: |Bj |∑
Bt∈B1 |Bt|

.

(b) Remove Bi from B1 and add it to B0.
(c) For each k ∈ K, update Tk by the same update rule as in ALPHA-Batch:

Tk ← Tk

(
Ak(Bi)

µk

ηk − µk

Uk − µk
+ Uk − ηk

Uk − µk

)
.

(d) For each k ∈ K, if Tk > 1
α , the kth assertion can be approved, so remove k from K.
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(e) For each k ∈ K update uk, µk and ηk, in this order:

µk ←
1
2 n−
∑

Bj ∈B0 |Bj |Ak(Bj)

n−
∑

Bj ∈B0 |Bj |
.

ηk ← max
{

1
2 + Mk

2(wk−Mk) , µk + ϵ
}

.
Uk ← max {Uk, ηk + ϵ}.

Where ϵ is some very small positive meant to ensure that µk < ηk < Uk.
(f) If µk < 0, The kth assertion is necessarily true, so remove k from K.
(g) If K = ∅, all assertions were approved, so approve the reported winners.

3. Output: If the audit hasn’t approved after examining all batches, it can calculate the
true winners of the elections.

Any initialization and update rule for the variables ηk and Uk that always maintains
µk < ηk < Uk also yields a risk-limiting audit. The update rules shown here lead to increased
efficiency when the batch-level tallies are accurate. ηk, the algorithm’s guess for the value
Ak would return on the next sampled batch, is set to the value Ak returns on each batch
given that the reported batch-level tallies is accurate, as calculated in Section 3.4.

▶ Theorem 7. Batchcomp fulfills the RLA guarantee (Definition 1).

Proof. Batchcomp is a modified version of ALPHA-Batch, and fulfills the RLA guarantee
for the same reasons as ALPHA-Batch. It makes two modifications to the ALPHA-Batch
algorithm, which maintain it being risk-limiting:
1. For every k ∈ [ℓ], Batchcomp verifies that Ak(B) > 1

2 while ALPHA-Batch verifies that
atrue

k (B) > 1
2 . By Claim 6, verifying these two conditions is equivalent. ALPHA-Batch

also relies on a1, ..., aℓ being non-negative. Switching to auditing A1, ..., Aℓ requires them
to be non-negative as well, which is proven in Claim 5.

2. Batchcomp uses a different initialization and update rule for Uk. While ALPHA-Batch
defines Uk differently than Batchcomp, it only requires to have Uk > ηk for every k ∈ [ℓ]
for the audit to fulfill the RLA guarantee. Batchcomp’s update rule for Uk and ηk

(step 2e) always maintains Uk > ηk, meaning that it fulfills the guarantee as well. ◀

4 Israeli Knesset Elections RLA

This section describes how to perform an RLA to verify the results of the Israeli Knesset
elections. The Knesset is the Israeli parliament and its sole legislative authority. It comprises
of 120 members who are elected according to closed party-list proportional representation.
The goal of this suggested Knesset RLA is to verify that each party won the correct number
of seats, meaning that the correct Knesset members were elected.

This method can be used in Israel currently to verify the initial hand-count of the votes,
which is not performed centrally - each polling place independently tallies its own ballots. It
can also become useful if, in the future, the vote tallying will be done by some electronic
means, such as an optical reader. In such cases, this method could confirm that the winners
outputted by the electronic vote tabulation system are likely to be correct.

Before moving to explain the social choice function of the Knesset elections, we define
some notation. Let P be the set of all parties running in the elections, and let S := 120 be
the number of available seats. For every party p ∈ P , let vtrue(p) denote the true number of
votes p received, according to the backup paper-ballots.
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4.1 Knesset Election Method
Before each election cycle, each running party submits a ranked list of its candidates. On
polling day, each voter votes for a single party, and parties receive seats in proportion to
the share of the votes they received. The seats each party wins are given to the top-ranked
candidates in the party’s list. Allocating Knesset seats to the various parties is done as
follows [8]:
Electoral Threshold: In the Knesset elections, only parties who receive a share of at least

t := 0.0325 of the valid votes are eligible to win seats.
Seat allocation: The allocation of seats is done according to the D’Hondt method, a highest

averages method, and can be formulated in multiple ways. We present a description of a
general highest averages method which was suggested previously by Gallagher [5]. Each
specific highest averages method is characterized by a unique monotonically increasing
function d : N→ N which is used during the seat allocation process. D’Hondt, the method
used in the Israeli Knesset, uses d(n) = n. To find how many seats a party is awarded for
a highest averages method with some function d:
1. Imagine a table with a row for each party which is above the threshold, and S columns.

At column s In the row of party p, write vtrue(p)/d(s). All cells are initially unmarked.
2. Mark the S cells with the largest values in the table.
3. The number of marked cells a party has in its row is the number of seats it receives.
Note that the values in each row are monotonically decreasing, as d is monotonically
increasing, so each row would be fully marked up to a certain column, and unmarked for
the rest of it.

Apparentment (Also Known as Electoral Alliances): Prior to election day, two parties may
sign an apparentment agreement, which may allow one of them to gain an extra seat. If
two parties sign an apparentment agreement, and only if both are above the threshold,
they unite to a single allied party during the seat allocation stage. Then, the number of
seats their alliance received is split between them according to the same seat allocation
method (D’Hondt). If one of the parties in the apparentment is below the electoral
threshold while using only its own votes, the apparentment is ignored. Each party may
only sign a single apparentment agreement.

4.2 Knesset RLA Assorters
This section presents assorters that can be used to perform an RLA for the Knesset elections,
using the SHANGRLA framework. We begin by presenting three conditions which all hold
true iff the reported winners of the elections are correct. We then proceed to show assorters
for these conditions, such that the assorters all have a mean greater than 1

2 iff these conditions
all hold true.

▶ Theorem 8. Let srep(p) and strue(p) be the reported and true number of seats that a party
p won in a Knesset elections, respectively. We have it that srep(p) = strue(p) for every party
p ∈ P , iff these 3 conditions all hold true:
1. Every party who is reportedly above the electoral threshold, is truly above it.
2. Every party who is reportedly below the electoral threshold, is truly below it.
3. For every two parties p1, p2 who are reportedly above the electoral threshold, the condition

(srep(p1) ≥ strue(p1)) ∨ (srep(p2) ≤ strue(p2)) is true.

Proof. Fix some reported and true tallies for the elections, and calculate the number of
seats each party reportedly and truly won according to these tallies. If the reported and true
number of seats each party won are equal, then the 3 conditions above hold true trivially.
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Otherwise, assume there is a discrepancy between the reported and true seat allocation.
There must be at least one party who won more seats according to the reported results
compared to the true results, which we denote as pr, and at least one party who won less
seats according to the reported results compared to the true results, which we denote as pt.

We now show that at least one of the three conditions above are violated. If pr is not
truly above the electoral threshold, then Condition 1 is violated, as it receives seats according
to the reported tally. Similarly, if pt is below the threshold according to the reported tally,
then Condition 2 is violated. Otherwise, both parties are truly above the threshold.

If both parties are reportedly above the electoral threshold, then pt reportedly won
less seats than it truly deserves, meaning that srep(pt) < strue(pt). Similarly, we have
srep(pr) > strue(pr). This violates Condition 3 and concludes the proof. ◀

Above Threshold Assertion
The role of this assertion is to check that Condition 1 holds. Stark [11] has previously suggested
a SHANGRLA assertion for this condition exactly. For every party p who reportedly is above
the electoral threshold, we add a single SHANGRLA assorter to the set we audit:

▶ Definition 9. An above threshold assorter for a party p is defined as:

aabove
p (b) :=


1
2t if b is for party p
1
2 if b is invalid
0 otherwise

Below Threshold Assertion
This assertion verifies Condition 2. Confirming that a party is below the threshold is equivalent
to verifying that all other parties received at least 1 − t of the valid votes. Therefore, we
can use an assorter similar to the one above. For every party p who is reportedly below the
electoral threshold, we add the following assorter to the set we audit:

▶ Definition 10. A below-threshold assorter for party p is defined as:

abelow
p (b) :=


0 if b is for party p
1
2 if b is invalid

1
2(1−t) otherwise

Move-Seat Assertion
This assertion is verifies that Condition 3. For any pair of parties p1, p2, this essentially
verifies that compared to the reported results, p1 does not deserve extra seats at the expense
of p2. An assertion for this condition was previously suggested by Blom et al. [1] (Section 5.2.)
when auditing elections using highest averages methods. For every ordered pair of parties
(p1, p2) who are reportedly above the electoral threshold, we add the following assorter to
the set we audit:

▶ Definition 11. A move-seat assorter for two parties p1, p2 is defined as:

amove
p1,p2

(b) :=


1
2 + srep(p1)+1

2srep(p2) if b is for p2

0 if b is for p1
1
2 otherwise
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Handling Apparentments
The assertions above ignore the existence of apparentments. To handle them, we can simply
treat each two allied parties who are reportedly above the electoral threshold as a united
party when adding move-seat assertions. Additionally, to verify that the seat allocation
between every two allied parties is correct, two move-seat assertions (one in each direction)
are added to the audit for every two allied parties who are reportedly above the electoral
threshold.

4.3 Simulations Based on Recent Elections
We describe the results of simulating the execution of a batch-level RLA over the real election
results for the 24th Knesset in 2021. The partition of ballots to batches used in this simulation
is done according to the real election results, and each batch contains ballots from a single
polling place. The audit uses assertions as described in Section 4.2, converts their assorters to
Batchcomp assorters as described in Section 3.4 and runs the Batchcomp method described
in Section 3.5 to audit them.

We compare the performance of Batchcomp with the performance of the ALPHA-Batch
algorithm described in section 4.2 of ALPHA [12]. ALPHA-batch uses the SHANGRLA
assertions from Section 4.2 of this work, without converting their assorters to Batchcomp-
assorters. For each assertion, we measure the number of ballots required to approve it by
each algorithm, as a factor of the assertion’s margin (minimal number of ballots that would
need to be altered, compared to the reported vote tally for the assertion to become false).

The results presented here assume that all vote tallies are accurate. Similar plots for
results with small tabulation errors, as well as results for additional election cycles, are
available in the paper’s GitHub repository. The election cycle described here is representative
of the trends present in the other examined cycles.

Technical Details
The simulated RLA uses a risk-limit of α = 0.05 and δ = 10−10. The latter was determined
after some experimentation - lower choices for δ do not improve efficiency when the reported
results are accurate, while higher values reduce the audit’s efficiency.

The number of audited ballots by each method is averaged across 10 simulations. An
examination of these simulations shows that the number of ballots required to approve each
assertion by Batchcomp has very low standard deviation. The mean standard deviation
across all assertions is 1,888, while the maximal standard deviation across all assertions is
5,291. The code used to generate these simulations was written in Python, and is available at
the paper’s GitHub repository (see title page), along with plots for additional election cycles.

Results
Figure 1 and Table 1 show that approving the reported winners for this election cycle required
auditing 85% of ballots by Batchcomp, while requiring virtually all ballots by ALPHA-Batch.
If it wasn’t for a single assertion which had a very small margin (367 ballots), the Batchcomp
audit would be done after auditing 3̃2% of the ballots, while ALPHA-Batch would still
require reading nearly all ballots.

The most glaring conclusion from this simulation, as well as ones we performed for
additional election cycles, is that Knesset elections have very tight margins, which make
them difficult to audit in a risk-limiting manner. If the election winners win with a margin
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Figure 1 The first two plots present the number of ballots required to approve each assertion
during the audit, either by the ALPHA-Batch method or by our Batchcomp method. Each point
in these plots represents a single assertion, where its value on the x axis is its margin in log-scale,
and its value on the y axis is the number of ballots that the audit examined before approving the
assertion. Each point in the plot is colored by the type of assertion it represents. The final plot
presents the difference in ballots required per assertion between ALPHA-Batch and Batchcomp.

of below 0.01% of the total ballots, it’s unlikely that any RLA method could approve them
without close to a full manual recount. Appendix D examines ways of relaxing the RLA’s
guarantee to decrease the number of ballots the audit has to read.

While auditing the entire Knesset elections proves to be difficult, examining the number
of ballots required to approve the various assertions shows that Batchcomp significantly
outperforms ALPHA-Batch. Generally, assertions that had very small or fairly large margins
required a similar number of ballots by both algorithms, while assertions with margins of
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Table 1 The last three assertions to be approved by the Batchcomp, including their margin and
the number of ballots they required to be approved by each method.

Margin Batchcomp ALPHA
Assertion (% of votes) (% of votes) (% of votes)

Don’t move a seat from 367 3,782,269 4,435,198
Meretz to Labor (0.008%) (85%) (≈ 100%)

Don’t move a seat from 2,567 1,411,262 4,424,877
The Joint List to Likud & Religious Zionist (0.06%) (32%) (≈ 100%)

Don’t move a seat from 2,162 1,394,595 4,412,625
New Hope to Yamina (0.05%) (31%) (99%)

between 0.01% and 2% were significantly easier to audit using Batchcomp. Some assertions
which ALPHA-Batch could not approve without a nearly full manual recount were approved
by Batchcomp while examining less than 20% of the backup paper-ballots.

5 The Census RLA

This section presents a risk-limiting audit method for a population census. It applies to
nations which allocate political power to their constituencies or federal-states in proportion to
their population according to a certain class of methods (highest averages), and who conduct
a post-enumeration survey (PES) as recommended by United Nations guidelines [13]. By
these guidelines, a PES is performed by randomly sampling a small number of households,
re-running the census over this chosen sample, and then comparing the results to the original
census. For consistency, throughout this section, we assume that this allocated political
power is manifested as the number of representatives a region receives in parliament, and
refer to these regions as the nation’s federal-states.

The goal of our audit is to provide a clear statistical guarantee regarding the correctness
of this census’ resulting allocation of representatives. To achieve such a guarantee, we first
need to define what allocation is considered correct. The allocation which results from the
PES would not be sufficient here, since it may change based on the subset of households
which were sampled. To avoid this potential issue, we view the true results of the census
as the results the PES would have if it was to run over all households. This means that
technically, a census RLA assumes that the PES surveyed all households. During the actual
audit, however, it only asks for the information the PES collected on a small, randomly
chosen sample of households, which is exactly the data that the PES actually has.

The census RLA is performed by sequentially sampling households and processing the
census and PES information regarding them. Since the PES only runs over a small sample
of households, the audit is limited in its length. Therefore, setting a risk-limit (probability of
approving wrong results) ahead of the audit, as done in election RLAs, could be problematic.
Were we to do so, then the audit might fail to approve a correct representative allocation
even when using the entire PES sample, resulting in an inconclusive outcome.

The observation above leads us to slightly change the statistical guarantee that a census
RLA provides: instead of setting the risk-limit and then running the audit, the census RLA
runs over the entire PES and then returns the risk-limit with which it can approve the census
representative allocation. If the risk-limit returned by census RLA is insufficient, a governing
body may decide to conduct a second round of re-surveying, and to continue the audit on
these newly re-surveyed households.
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▶ Definition 12. The census RLA guarantee: For any 0 < α ≤ 1, if running the PES
over all households would lead to a different allocation of representatives than the census,
then the probability that a census RLA returns a value α′ such that α′ ≤ α is at most α. α′

is referred to as the audit’s outputted risk-limit.

5.1 Post Enumeration Survey (PES)
A post enumeration survey is a process which measures the accuracy of a population census
by conducting an independent population survey over a small portion of randomly chosen
households. According to the guidelines published by the Department of Economic and
Social Affairs of the United Nations [13], a PES begins by choosing a partial sample of the
households in a nation, such that each household has an equal probability of being included
in this sample. Afterwards, a new survey contacts each sampled household and asks them
the exact same questions as the original census.

For our purposes, the only information of interest is the number of residents at each
household. In reality, some countries may allocate representatives to federal-states according
to the number of a specific sector of the population that they hold (e.g. eligible voters or
citizens). In our model, we assume it is simply the number of residents, but our method
applies in the same manner otherwise.

5.2 Model and Notation
In our model, a nation measures its population using a nation-wide census and then conducts
a PES as described in the previous section. Denote the information given by the census as:

H: A list of households that were surveyed.
gcen(h): The number of residents a household h ∈ H has according to the census.

And denote the information given by the PES as:
HP ES : A list of households which were surveyed by the PES. Must be a subset of H.
gP ES(h): The number of residents a household h ∈ HP ES holds according to the PES.

The nation then allocates R representatives to its federal-states, whose set we denote as S, by
using a highest averages method, as described in Section 4.1. Recall that each specific highest
averages method is defined by a different monotonically increasing function d : N→ N.

Our model assumes each state also has a constant additive factor which is added to
its census population count during the representative allocation process. We denote this
constant as cs for each s ∈ S. Meaning, the value written at cell [s, r] of the imaginary table
used during the representative allocation, for s ∈ S and r ∈ [R], is:

gcen(s) + cs

d(r) , (5)

The additive factor, cs, allows our model some added flexibility, meaning it can cover more
political systems. In the United States, for example, we would want to exclude people living
in group residence (e.g. homeless people, nursing home residents, etc’) from the audit, since
they are not covered by the PES. To do so, we can assume their number according to the
census is accurate and run the audit over the rest of the population. This can be achieved
by defining cs to be the number of persons who live in a group residence in state s according
to the census.

Our census RLA method relies on one simplifying assumption:

▶ Assumption. In both the census and in the PES, the number of residents in a single
household is upper-bounded by a known value, denoted as gmax.
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The value gmax must be set before the PES is conducted. Both the census and the PES
must report that all households have gmax residents at most.

This assumption is necessary due to a critical difference between elections and censuses; In
elections, a single ballot has very limited power. In a census, if it was not for this assumption,
a single household could hold an arbitrarily large number of residents and completely swing
the allocation of representatives to the states.

Finally, denote the number of representatives awarded to state s ∈ S according to the
census as rcen(s).

5.3 Census RLA Overview
The following sections suggest a new method for census RLAs, which relies on the SHANGRLA
framework. In the following section, we design SHANGRLA assertions for auditing the
census’ resulting allocation of representatives to the federal-states. While these assertions can
be used as-is to perform a census RLA, they are only an intermediate step in the development
of more efficient assertions. These more efficient assertions are used by a modified version of
the ALPHA Martingale Test to perform a census RLA, as described in Section 5.5.

5.4 Census RLA Assorters
We begin by adapting the definition of assertions and assorters to the language of census
RLAs. When auditing elections, an assorter is defined as a non-negative function over the
set of possible ballots a voter may cast. When auditing a census, we define an assorter as a
non-negative function over the set of all households, meaning a : H → [0,∞). An assorter
a satisfies the assertion 1

|H|
∑

h∈H a(h) > 1
2 iff some condition regarding the allocation of

representatives to the federal states is true.

▶ Definition 13. Census assorters are functions a1, ..., aℓ : H → [0,∞) with the following
property: Given some census results, if the PES surveyed all households, the allocation of
representatives according to the census and according to the PES match iff for all k ∈ [ℓ]:

1
|H|

∑
h∈H

ak(h) >
1
2 . (6)

These ℓ inequalities are referred to as the census assertions.

The census assorters for our setting are developed by finding a set linear inequalities
which all hold true iff a full PES leads to the same allocation of representatives as the
census. These inequalities are then converted to SHANGRLA style assertions by the method
described by Blom et al. [1] (see Section 2.1).

▶ Theorem 14. Assume the PES surveyed all households. The allocation of representatives
according to the census and according to the PES match, iff for any two states s1, s2 ∈ S:∑

h∈H gP ES
s1

(h) + cs1

d(rcen(s1)) >

∑
h∈H gP ES

s2
(h) + cs2

d(rcen(s2) + 1) . (7)

The proof of this theorem appears in Appendix A.1. By the method suggested by Blom et
al. [1], confirming Equation (7) is equivalent to confirming the SHANGRLA style assertion:

1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2 ,

where:
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▶ Definition 15. The census assorter aP ES
s1,s2

is defined as:

aP ES
s1,s2

(h) :=
gP ES

s1
(h)

cd(rcen(s1)) +
gmax − gP ES

s2
(h)

cd(rcen(s2) + 1) ,

where c denotes:

c := 2
(

gmax

d(rcen(s2) + 1) −
cs1

|H|d(rcen(s1)) + cs2

|H|d(rcen(s2) + 1)

)
.

▶ Theorem 16. Assume that the PES surveyed all households. The assorters {aP ES
s1,s2
| s1, s2 ∈

S, s1 ≠ s2} are all non-negative and satisfy the following condition: The allocation of
representatives according to the census and the PES match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2 . (8)

Proof. The non-negativity of these assorters is due to the method by Blom et al., which
generates non-negative assorters. Additionally, by this method, for any two states s1, s2,
verifying (8) is equivalent to verifying (7). By Theorem 14, verifying (7) for every two states
is equivalent to verifying that the full PES leads to the same representative allocation as the
census, concluding this proof. ◀

For each assorter aP ES
s1,s2

, we now define a new assorter As1,s2 which can also be used to
audit the same census. As1,s2 has a significant advantage over aP ES

s1,s2
, which motivates us to

use it instead. Each assorter aP ES
s1,s2

essentially audits the number of residents per household
according to the PES, without using the per-household census data. Meanwhile, As1,s2 audits
the discrepancy in the number of household members between the census and the PES. Since
we typically expect this discrepancy to be small, this yields a more stable and efficient audit.

Before defining As1,s2 , note that each assorter aP ES
s1,s2

can also be defined over the census
population counts instead of the PES counts. We denote this as acen

s1,s2
:

▶ Definition 17. The value of an assorter aP ES
s1,s2

as in Definition 15 over the census population
count is defined as:

acen
s1,s2

(h) :=
gcen

s1
(h)

cd(rcen(s1)) +
gmax − gcen

s2
(h)

cd(rcen(s2) + 1) .

Using this reported (by the census) and true (by the PES) resident counts, we define
new assorters which audit the discrepancy between them. This is similar to the Batchcomp
assorters from Section 3.4, which audit the batch-level discrepancy between the reported and
true vote tallies.

▶ Definition 18. The census comparison assorter As1,s2 for states s1, s2 ∈ S is defined as:

As1,s2(h) := 1
2 +

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2) ,

where ms1,s2 is the margin of as1,s2 according to the census population counts:

ms1,s2 := 1
|H|

∑
h∈H

acen
s1,s2

(h)− 1
2 ,

and:

zs1,s2 := max
{

gmax

cd(rcen(s2) + 1) ,
gmax

cd(rcen(s1)) , 0
}

.
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▶ Theorem 19. Assume that the PES surveyed all households. The assorters {As1,s2 | s1, s2 ∈
S}, as defined in Definition 18, are all non-negative and satisfy the following condition: the
allocation of representatives according to the census and the PES match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

As1,s2(h) >
1
2 .

The proof for this theorem is presented in Appendix A.2.

5.5 Census RLA Algorithm
The algorithm presented next is a slightly altered version of the ALPHA Martingale Test, when
thinking of each household as a ballot whose content is the household’s state and its number
of residents. We denote the households surveyed by the PES as HP ES = (h1, h2, ..., hd) for
some d ∈ N, and assume that they are given in random order.

1. Initialization
(a) For each (s1, s2) ∈ S × S s.t. s1 ̸= s2, initialize:

Ts1,s2 := 1.
T max

s1,s2
:= 1.

µs1,s2 := 1
2 .

ηs1,s2 := 1
2 + ms1,s2

2(zs1,s2 −ms1,s2 ) .

Us1,s2 := 1
2 + ms1,s2 +δ

2(zs1,s2 −ms1,s2 ) , where δ > 0.
2. Auditing Stage: Iterate over the households in HP ES , for the ith household hi perform

for each ordered pair of states (s1, s2):
(a) Update Ts1,s2 and T max

s1,s2
:

Ts1,s2 ← Ts1,s2

(
As1,s2 (hi)

µs1,s2

ηs1,s2 −µs1,s2
Us1,s2 −µs1,s2

+ Us1,s2 −ηs1,s2
Us1,s2 −µs1,s2

)
.

T max
s1,s2

← max
{

T max
s1,s2

, Ts1,s2

}
.

(b) Update µs1,s2 , ηs1,s2 and Us1,s2 , in this order:

µs1,s2 ←
1
2 |H|−

∑i

j=1
As1,s2 (hj)

|H|−i .

ηs1,s2 ← max
{

1
2 + ms1,s2

2(zs1,s2 −ms1,s2 ) , µs1,s2 + ϵ
}

.
Us1,s2 ← max{Us1,s2 , ηs1,s2 + ϵ}.

Where ϵ is some very small positive meant to ensure that µs1,s2 < ηs1,s2 < Us1,s2 .
(c) For each s1, s2, if µs1,s2 < 0, the corresponding assertion must be true, so set

T max
s1,s2

=∞.
3. Output: The result of the audit is the maximal risk-limit across all assertions:

max
s1,s2∈S

{
1

T max
s1,s2

}
.

▶ Theorem 20. The census RLA fulfills the census RLA guarantee (Definition 12).

Proof. The census RLA is essentially the ALPHA Martingale Test, with four modifica-
tions. We explain why these modifications maintain the risk-limiting nature of the ALPHA
Martingale Test:

Instead of sampling and examining ballots, the census RLA samples and examines
households. This does not effect the fact that the ALPHA Martingale Test is risk-limiting
- a census RLA can be viewed as a classical election RLA where every ballot correspond
to a household, and holds that household’s state and number of residents.
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The census RLA doesn’t sample households at random, it iterates over the households
sampled by the PES. Despite this, since the PES surveys randomly selected households,
the algorithm audits a previously unsampled household selected uniformly at random in
each iteration. This is just as the ALPHA Martingale Test requires.
Instead of pre-setting the risk-limit, the risk-limit with which the census representative
allocation can be approved is outputted after iterating over all PES households. This
outputted risk-limit is already available as part of the ALPHA Martingale Test. In
election RLAs, the audit approves the reported winners when this running risk-limit
drops below the pre-set risk-limit. Here it outputs it after examining all PES households.
The census RLA defines Us1,s2 (which corresponds to uk in the ALPHA Martingale Test)
differently. As mentioned previously, it always maintains Us1,s2 > ηs1,s2 , so the audit
remains risk-limiting. ◀

5.6 Simulations

This section simulates the suggested census RLA on the Cypriot census and its resulting
allocation of representatives to districts in the House of Representatives of Cyprus. Our
original intention was to simulate the suggested census RLA method on the US census and
its resulting allocation of representatives in the US House of Representatives to the states.
This turned out to be infeasible, however, as the audit outputted an insufficient risk-limit.
This is a result of the relatively large number of states (50) and representatives (435) in the
American system. Allocating many representatives to many states increases the probability
of there being a single representative whose allocation is determined by a very small number
of state residents.

To show that the census RLA is useful in other settings, we chose to simulate the audit on
the House of representatives of Cyprus, where 56 representatives are allocated to 5 districts.
This should be viewed as a pet-setting for testing the census RLA method, and not as a
ready-as-is implementation for the Cypriot system.

The House of Representatives of Cyprus

The House of representatives of Cyprus is its sole legislating body, and holds 56 occupied
seats. An additional 24 seats are reserved for the Turkish Cypriot community, who withdrew
from the political decision-making process in 1964, leaving their house seats vacant [4].

The remaining 56 seats of the house are allocated to 5 districts. Currently, the allocation
of seats to the districts is amended by law when found necessary, and does not change
automatically following a census according to a set method. A census RLA could be useful
when performing these amendments, to ensure that the resulting allocation of seats to
districts is sufficiently reliable.

Technical Details

We allocated representatives to districts using the D’Hondt method. D’Hondt was chosen
since it’s currently used in the Cypriot elections to allocate seats to political parties. The
audit was run assuming that each household holds 15 residents at most, and with δ = 10−10.

The census data used in the simulation is based on the results of the 2021 Cypriot census.
For more details regarding the census data generation, see Appendix C. The simulation’s
code is available at the paper’s GitHub repository (see title page).
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Figure 2 The census RLA output when the census and PES fully agree on the number of residents
in each household, as a factor of the share of households that were surveyed by the PES.

Results
To examine the census RLA method, we present in Figure 2 the outputted risk-limit of the
census RLA as a factor of the size of the PES. This simulation assumes that the census and
the PES agree on the number of residents in each PES-surveyed households. Results with
small census and PES disagreement, which are largely similar to the ones presented here, are
available at the paper’s GitHub repository.

Under the specified conditions, a PES which samples 0.66% of households is sufficient for
a risk limit of 0.1, and a sample of 0.85% is sufficient for a risk-limit of 0.05. A PES often
surveys around 1% of households [7], meaning that our census RLA can confidently approve
the census’ resulting allocation of representatives to districts under these conditions.

These results show that the census RLA method is applicable in some settings, when the
number of representatives and federal-states to allocate them to is relatively small. When
there are many representatives and federal-states, even a small error in the census can lead
to a wrongful allocation of representatives, and auditing the census results requires a larger
PES sample.

6 Discussion and Further Research

Throughout this work, we can observe that an election’s social choice function and setting
can severely limit the efficiency of their RLAs. Systems like the Israeli Knesset elections and
the US House of Representatives’ allocation of representatives to states are very sensitive to
enumeration errors, making it difficult to audit them efficiently.

The simulation of the Batchcomp method on the Israeli Knesset elections (Section 4.3)
indicates that Batchcomp provides a noticeable improvement over ALPHA-Batch in the
limited settings that were tested. Despite this relative success, we cannot definitively say it
outperforms existing methods without a clear, rigorous way of analyzing their efficiency.

The census RLA method appears to be useful in some limited settings, and can be
implemented using existing post-enumeration surveys. In systems where our method is
currently not sufficient, a census RLA could perhaps aim for a weaker guarantee - that the
number of representatives each state should receive according to the PES is close to the
number it has according to the census. This option is discussed in Appendix D.

The work raises many open questions and potential research directions:
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Applying RLAs in Additional Settings: Generally speaking, RLAs can be applied whenever
one wishes to verify the computation of some function over a large number of inputs
obtained through potentially error-prone processes. While political elections provide a
natural environment for their application, we advocate for their use in a wider range of
settings to ensure reliable results.
As an example of such settings, RLAs could potentially be used to verify that decisions
taken based on datasets which were altered in order to satisfy differential privacy are
correct according to the real data. This could be achieved by running an RLA in a
protected environment (enclave) which holds a subsample of the original, noiseless data.
In this setting, the noisy, (differential private) dataset is seen as the reported result, while
the noiseless dataset is the true results. An RLA can verify that the results of some
computation over the differential private dataset and over the original noiseless dataset
are likely to be identical, based on a (hopefully) small random sample from the original
dataset. One challenge is to make sure that the very fact that the data passed the test
does not hurt the desired differential privacy property.

Analytical Analysis of the Efficiency of RLAs: Most recent literature in the field, including
this work, focuses on suggesting new RLA algorithms and fitting them to additional
electoral systems and settings. There is little to no analytical analysis of the efficiency
and capabilities of many RLA methods. Without a more rigorous analysis, it is not
possible to definitively determine which RLA methods are better for which settings. Such
analysis could help, for instance, to argue analytically whether Batchcomp is indeed
preferable over ALPHA-Batch.

Connection Between RLAs and Computational Models: Thus far, advancements in the
field of RLAs were done mostly independently and without connection to computational
models. Finding such connections may inspire new RLA algorithms, or suggest new
methods for analyzing the capabilities and efficiency of existing methods. As an example
of these connections, RLAs can essentially be viewed as randomized decision trees, where
each branch represents a different sequence of paper-ballots that can be uncovered during
the audit. Viewing RLAs in this manner may allow us to analyze their query complexity
(number of ballots examined) or instance complexity (best possible performance over
specific election results) and to apply existing results from other fields onto RLAs.
As a potential example for this, viewing RLAs as randomized decision trees may allow
us to find lower bounds for the query-complexity of RLAs by analyzing the randomized
unlabeled certificate complexity of the social choice function they operate on, as defined
by Grossman, Komargodski and Naor [6]. Randomized unlabeled certificate complexity
is a complexity measure of a function over some specific input. It’s defined roughly as
the minimal number of queries, in expectation, that any randomized decision tree which
computes this function has to perform over the specified input, given a permuted version
of it as a certificate. This notion could be relevant for RLAs since they are essentially
randomized decision trees which calculate a social choice function’s output (the true
winners) while using the reported election results as a certificate.
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A Proofs

A.1 Proof of Theorem 14
▶ Theorem 14. Assume the PES surveyed all households. The allocation of representatives
according to the census and according to the PES match, iff for any two states s1, s2 ∈ S:∑

h∈H gP ES
s1

(h) + cs1

d(rcen(s1)) >

∑
h∈H gP ES

s2
(h) + cs2

d(rcen(s2) + 1) . (7)

Proof. First, assume that the two allocations of representatives match. Examine the
imaginary table with which representatives are allocated to states according to the PES.
Recall that each state has exactly its first rP ES(s) cells marked. Since we assume that for any
s ∈ S, rP ES(s) = rcen(s), we have it that for any s1, s2 ∈ S, the cell at index [s1, rcen(s1)] is
marked, while the cell at [s2, rcen(s2) + 1] is not. Since the marked cells are the ones which
hold the largest values in the table, the cell at [s1, rcen(s1)] has a larger value than the cell
at [s2, rcen(s2) + 1]. Writing these values out results exactly in (7)- the larger term is the
value at [s2, rcen(s2) + 1], and the smaller is the value at [s1, rcen(s1)].

https://www.census.gov/data/tables/time-series/demo/families/households.html
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https://m.knesset.gov.il/en/about/lexicon/pages/seats.aspx
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https://www.pio.gov.cy/en/press-releases-article.html?id=27965
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Towards proving the other direction of the equivalence, we show that if (7) is true for
any s1, s2 ∈ S, then a certain condition (9) holds for any s1, s2. We then show that if this
condition is true, then the allocation of representatives according to the census and according
to the PES match.

▷ Claim 21. Let rP ES(s) be the number of representatives a state s is allocated according
to the full PES results. For any s1, s2 ∈ S, if (7) is true then:(

rP ES(s1) ≥ rcen(s1)
)
∨
(
rP ES(s2) ≤ rcen(s2)

)
. (9)

Proof. Assume towards contradiction that for some s1, s2 ∈ S, the condition (9) is false,
meaning that

(
rP ES(s1) < rcen(s1)

)
∧
(
rP ES(s2) > rcen(s2)

)
is true.

Examine the table used to allocate representatives to states according to the PES results.
According to this table, s2 is awarded rP ES(s2) representatives. Since rP ES(s2) > rcen(s2),
and since the row s2 has exactly its first rP ES(s2) cells marked, the cell at [s2, rcen(s2) + 1]
is marked. Additionally, since s1 was awarded exactly rP ES(s1) seats and since rP ES(s1) <

rcen(s1), the cell at [s1, rcen(s1)] is not marked.
By the paragraph above, if

(
rP ES(s1) ≥ rcen(s1)

)
∨
(
rP ES(s2) ≤ rcen(s2)

)
is false, then

the cell at [s2, rcen(s2) + 1] is marked while the cell at [s1, rcen(s1)] is not. Since the marked
cells are the ones which hold the largest values, it follows that the cell at [s2, rcen(s2) + 1]
has a larger value than the cell at [s1, rcen(s1)], meaning that:∑

h∈H gP ES
s1

(h) + cs1

d(rcen(s1)) ≤
∑

h∈H gP ES
s2

(h) + cs2

d(rcen(s2) + 1) .

The larger term in this inequality is the value at index [s2, rcen(s2) + 1] and the smaller one
is the value at index [s1, rcen(s1)]. This contradicts (7), and thereby proves this claim. ◁

▷ Claim 22. If (9) is true for any s1, s2 ∈ S, then the allocation of representatives according
to the census and according to the full PES are identical.

Proof. Assume towards contradiction that the two allocations are not identical. Therefore,
there must be at least one state s with rP ES(s) ̸= rcen(s). If rP ES(s) > rcen(s), since the
number of total representatives is constant, there must be another state s′ with rP ES(s′) <

rcen(s′). Similarly, if rP ES(s) < rcen(s), there must be another state s′ with rP ES(s′) >

rcen(s′). Either way, (9) is false. Thus, if (9) is true for every pair of states, then the two
allocations must be identical, completing the proof. ◁

Using these two claims, we can now complete the proof of this theorem. Assume (7) is true
for any pair of states. By Claim 21, (9) is also true for any pair of states, and by Claim 22,
this makes the allocation of representatives according to the census and according to the PES
identical. This proves the other direction of the equivalence and concludes the proof. ◀

A.2 Proof of Theorem 19
▶ Theorem 19. Assume that the PES surveyed all households. The assorters {As1,s2 | s1, s2 ∈
S}, as defined in Definition 18, are all non-negative and satisfy the following condition: the
allocation of representatives according to the census and the PES match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

As1,s2(h) >
1
2 .

Proof. We show that As1,s2 is non-negative and that the required equivalence holds.
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▷ Claim 23. For any s1, s2 ∈ S, As1,s2 is non-negative.

Proof. Fix two states s1, s2 ∈ S. Recall the definition of As1,s2 :

As1,s2(h) := 1
2 +

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2) .

By the definition of aP ES
s1,s2

and acen
s1,s2

, the value of the nominator in the expression above is:

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h) =ms1,s2 +
gP ES

s1
(h)− gcen

s1
(h)

cd(rcen(s1)) +
gcen

s2
(h)− gP ES

s2
(h)

cd(rcen(s2) + 1) .

h is either from s1, from s2 or from neither of them. If it’s from neither, this expression
equals ms1,s2 . If it’s from s1, then:

ms1,s2 +

≥0︷ ︸︸ ︷
gP ES

s1
(h)−

≤gmax︷ ︸︸ ︷
gcen

s1
(h)

cd(rcen(s1)) +

=0︷ ︸︸ ︷
gcen

s2
(h)− gP ES

s2
(h)

cd(rcen(s2) + 1) ≥ ms1,s2 −
gmax

cd(rcen(s1))

where gmax is the maximal number of residents a single household may have. If h is from s2,
then:

ms1,s2 +

=0︷ ︸︸ ︷
gP ES

s1
(h)− gcen

s1
(h)

cd(rcen(s1)) +

≥0︷ ︸︸ ︷
gcen

s2
(h)−

≤gmax︷ ︸︸ ︷
gP ES

s2
(h)

cd(rcen(s2) + 1) ≥ ms1,s2 −
gmax

cd(rcen(s2) + 1) .

So for any h ∈ H:

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)

≥min
{

ms1,s2 , ms1,s2 −
gmax

cd(rcen(s2) + 1) , ms1,s2 −
gmax

cd(rcen(s1))

}
. (10)

By (10) and by the definition of zs1,s2 (Definition 18):

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h) ≥ ms1,s2 − zs1,s2 . (11)

Meaning that for any h ∈ H:

As1,s2(h) = 1
2 +

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2) ≥ 1

2 + ms1,s2 − zs1,s2

2(zs1,s2 −ms1,s2) = 0,

proving the claim. ◁

▷ Claim 24. Assume the PES surveyed all households. The allocation of representatives
according to the census and the PES match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

As1,s2(h) >
1
2 .

Proof. By Theorem 16, the allocation of representatives according to the census and the PES
match iff for all s1, s2 ∈ S:

1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2 .
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Therefore, to prove this claim, it suffices to prove that for every s1, s2 ∈ S:(
1
|H|

∑
h∈H

As1,s2(h) >
1
2

)
⇐⇒

(
1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2

)
.

Fix any two federal-states s1, s2 ∈ S. We show that the two inequalities above are equivalent:

1
|H|

∑
h∈H

As1,s2(h) >
1
2

⇐⇒ 1
|H|

∑
h∈H

(
1
2 +

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2)

)
>

1
2

⇐⇒ 1
|H|

∑
h∈H

ms1,s2 + aP ES
s1,s2

(h)− acen
s1,s2

(h)
2(zs1,s2 −ms1,s2) > 0.

Now, using the definition of ms1,s2 and re-arranging the summation yields the desired
equivalence:

⇐⇒ 1
|H|

∑
h∈H

1
|H|
∑

h′∈H acen
s1,s2

(h′)− 1
2 + aP ES

s1,s2
(h)− acen

s1,s2
(h)

2(zs1,s2 −ms1,s2) > 0

⇐⇒
1

|H|
∑

h∈H aP ES
s1,s2

(h)− 1
2

2(zs1,s2 −ms1,s2) > 0

⇐⇒ 1
|H|

∑
h∈H

aP ES
s1,s2

(h) >
1
2 .

The last transition relies on the fact that zs1,s2 > ms1,s2 , which is true since zs1,s2 ≥
maxh∈H acen(h) ≥ ms1,s2 (see Definition 18). This concludes the proof of this claim. ◁

The combination of these two claims completes this theorem’s proof. ◀

B Batchcomp – Choosing δ

As seen in Section 3.5, for every assorter ak and its Batchcomp counterpart Ak we initialize:

Uk = 1
2 + Mk + δ

2(wk −Mk) ,

where δ > 0. Different choices for δ all maintain the RLA guarantee, but under certain
conditions, certain values of δ yield more efficient audits. This section attempts to give
intuition regarding the ideal choice of δ. Generally, the more we expect the reported vote
tallies of the different batches to be accurate, the smaller δ should be. We show this by
comparing µk to the expected value of a Batchcomp assorter on the next batch to be sampled.

▷ Claim 25. During a Batchcomp RLA, if the next sampled batch Bi satisfies Ak(Bi) ≥ µk

for some batch-assorter Ak, then choosing a smaller Uk increases the audit’s efficiency, and
vice-versa; if Ak(Bi) < µk, then setting a larger Uk increases the audit’s efficiency.

Proof. Examine some Batchcomp assorter Ak. Approving its assertion requires fewer ballots
the more significantly Tk grows per batch. This is because the audit approves assertion
k when Tk > 1

α . Therefore, it suffices to show that if Ak(Bi) ≥ µk, then Tk grows more
significantly when Uk is small, and vice-versa.
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Towards this purpose, denote the next audited batch as Bi. To prove this claim, we take
the derivative by Uk of the update rule of Tk in step 2c of the Batchcomp algorithm:

Tk ← Tk

(
Ak(Bi)

µk

ηk − µk

Uk − µk
+ Uk − ηk

Uk − µk

)
.

Taking its derivative by Uk results in:

Tk

(
−Ak(Bi)

µk

ηk − µk

(Uk − µk)2 + 1
Uk − µk

− Uk − ηk

(Uk − µk)2

)
= Tk

(Uk − µk)2

(
−Ak(Bi)

µk
(ηk − µk) + Uk − µk − Uk + ηk

)
= Tk

(Uk − µk)2

(
−Ak(Bi)

µk
(ηk − µk)− µk + ηk

)
= Tk

ηk − µk

(Uk − µk)2︸ ︷︷ ︸
>0

(
1− Ak(Bi)

µk

)
.

Where the term above the under-brace is positive since Tk is positive, and since we always
have Uk > ηk > µk ≥ 0. We can observe that if Ak(Bi) > µk, this derivative is negative,
meaning that choosing a smaller value for Uk causes Tk to increase more significantly. If
Ak(Bi) < µk, then the opposite is true. This concludes the proof of this claim. ◁

According to this claim, if we expect to have Ak(Bi) > µk for all batch-assorters and batches,
we should choose a smaller δ, and vice versa. When using a Batchcomp assorter, we have:

Ak(Bi) = 1
2 +

Mk + atrue
k (Bi)− arep

k (Bi)
2(wk −Mk) .

And wk > Mk > 0 by the definition of Mk. Therefore, as long as the batch-level discrepancies
between the reported and true vote counts are small, we expect to consistently have Ak(Bi) ≥
µk, meaning we should choose a smaller δ. To get Ak(Bi) < µk, we would need to have
atrue

k (Bi)− arep
k (Bi) > Mk, meaning that the discrepancy in vote counts, as it relates to the

assorter ak, is greater than its reported margin. If the margin isn’t extremely small, and
the errors in the vote count are uncorrelated and rare, this is very unlikely to happen. We
believe that this should encourage choosing a very small value for δ, since it would only make
the audit inefficient if it’s likely that the vote counting was malicious.

▶ Conclusion (informal). A Batchcomp RLA is more efficient when δ > 0 is very small, as
long as the vote tallying is not done maliciously.

C Census RLA – Data Generation

The data used to perform this simulation is based on the population census conducted in
2021 [10]. The Statistical Service of Cyprus publicly reports the total number of residents in
every district, but not the individual household data, which the census RLA requires. To
generate this data, we assumed that the number of residents per household distributes as it
does in the United States, as reported by its census [3]. We additionally assumed that 1% of
households do not respond to the census and are counted as if they have no residents. The
per-household data used in these simulations was generated as follows:
1. The number of households per district was calculated by dividing the district’s population

by the expected number of residents per household.



B. Karov and M. Naor 2:27

2. The number of residents in each household was drawn from the distribution specified in
the US census [3].

3. Due to the randomness involved in the previous step, the real census and our generated
one might disagree on the population of the districts. To balance this, the constant of
each district (cs in (5) at Section 5.2) was set as the difference between the population of
the district according to the real census and according to our generated one. With this
definition, the allocations of representatives to districts by the real census and by our
generated one are necessarily identical.

D Weakening the RLA Guarantee

When conducting a SHANGRLA based RLA, a single assertion may be the difference between
reading relatively few or a relatively many ballots or households to approve the reported
outcome. As an example of this, in the Knesset elections examined in Section 4.3, a single
assertion causes the Batchcomp audit to read 85% of ballots, instead of only 32% without
it. In such cases, the auditing body may decide in advance that a certain assertion is too
difficult to audit, and forgo approving it. This decision can be taken based on the assertion’s
margin, or by simulating the audit in advance and checking the number of ballots required
per assertion.

For RLAs which approve an allocation of parliament seats to different political parties
or federal-states, tight assertions can be altered to verify that the reported allocation of
seats is nearly accurate. For example, in the Knesset elections, if an assertion which involves
some specific party drastically increases the number of ballots the audit reads, an RLA can
approve that the number of seats that this party wins according to the reported results is
at most ±1 from its true number. This would result in a shorter audit, at the expense of a
slightly weaker guarantee.

To achieve this, when designing move-seat assertions which involve some difficult-to-audit
party p, we alter the number of seats it reportedly won. For every assertion which verifies
that seats shouldn’t be moved from p to some other party p′, we imagine p reportedly won
one seat less than it actually did. Similarly, when verifying that seats shouldn’t be moved
from p′ to p, we imagine p has reportedly won one seat more than it did. The same notion
also applies for census RLAs and their assorters.

Alternatively, if some assertions are too difficult to audit, the auditing body can decide
to verify that certain blocks of parties or federal-states get the correct number of seats. For
parliamentary elections, this is achieved by partitioning the parties to electoral blocks, and
verifying that no seats should be moved between every two parties who belong to different
blocks.
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3:2 Bidding Strategies for Proportional Representation in Advertisement Campaigns

1 Introduction

For many institutions, hiring a diverse workforce is crucial to achieving and retaining an
equitable environment. While there are many strategies that can be employed to ensure that
each stage of the hiring process, from initial resume screening to a final hiring decision, can
be done equitably, even the best of attempts may fall short if the initial pool of applicants
lacks sufficient diversity. As a result, many companies rely on online advertising platforms
such as Google, Facebook, or Instagram to recruit a wider applicant pool for job openings.

Advertising platforms sell slots to advertisers through auction mechanisms. Toward the
goal of yielding a diverse applicant pool, advertisers are able to create recruitment and
marketing campaigns to target users of different demographic groups. This specific but
salient setting of job advertisements is bound by policy oversight from different government
entities. In the United States, the Equal Employment Opportunity Commission enforces
discrimination laws that prohibit employers from “publishing a job advertisement that shows a
preference for or discourages someone from applying for a job based on his or her race, color,
religion, sex, national origin, age, disability or genetic information”1. However, it is unclear
whether this guidance refers to bidding equally on individuals from different demographics,
or to achieving a proportional yield for all demographics regardless of protected class status.

Prior work has observed that these two goals may not be equivalent. Due to differences
in advertiser demand, the required costs to reach users of various demographic groups can
be very different; women in particular may see fewer job ads due to competition from retail
brands that do not target men [21]. As a result, setting the same bid value for all groups may
still result in a disproportionate representation in downstream yield when there are different
levels of competition for different groups of users on the platform [15, 10]. Existing work
(such as [10, 12] with more discussed in Section 2) interprets this behavior as a failure of the
mechanism due to composition, and suggests ways that ad auctions could be redesigned to
guarantee fair outcomes despite these composition effects.

However, an advertising platform may be unlikely to implement a new auction mechanism
for a number of reasons, even if the revenue of the new alternative can be shown to be close
to that of the original mechanism. For instance, the costs necessary to research, deploy,
and completely redesign the current auction system may make such a change undesirable.
Moreover, a new auction might make the mechanism far more complex and difficult for
advertisers to understand as well as offer less flexibility if it is designed with only a few
specific types of constraints and objectives in mind. We discuss these concerns in more detail
in Section 3.

Instead, we take the perspective that perhaps only requiring advertisers to bid values
that are similar across different groups of interest may not be the most useful requirement for
this context if the fairness of the system is judged by the outcomes of the auctions, and not
the bids that are inputted. In fact, in Section 3.1, we demonstrate that requiring advertiser’s
bids to be similar across groups may actually hinder achieving parity with respect to auction
outcomes, and show that the utility of the optimal bidding strategy that satisfies parity
constraints at both the bid and outcome level can be far lower than the optimal bidding
strategy that requires group parity at the outcome level alone.

We use these arguments and examples to motivate an alternative approach to redesigning
auctions, which is to consider the perspective of an individual advertiser and design bidding
strategies that guarantee outcomes that meet the advertiser’s goals. This approach is often
referred to as an “autobidder,” and the adoption of such technologies as a way to control

1 https://www.eeoc.gov/prohibited-employment-policiespractices

https://www.eeoc.gov/prohibited-employment-policiespractices
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spending and budget depletion is growing increasingly popular. There are a few works
that consider autobidding for group parity goals [9, 23], but these approaches do not give
formal guarantees about how closely the resulting bidding strategies meet the desired parity
constraints.

We argue that due to their flexibility, practicality, and ease of implementation in exist-
ing systems, autobidding strategies that guarantee proportional representation across key
subgroups are a key direction for research in equitable online ads. In this paper, we show
how we can build on the autobidding framework of Aggarwal et al. [1] to develop an efficient
algorithm to compute bidding strategies with provable proportional group representation
guarantees in the offline setting. We additionally show how our constraints fit into the
model studied by Castiglioni et al. [7] to provide efficient online bidding algorithms with
sublinear regret. We focus on strategies for a single autobidder, though understanding market
dynamics when many autobidders with fairness constraints are deployed is a natural next
step for future work.

We supplement our arguments and algorithms with empirical evidence using data modified
from the American Community Survey. By comparing single bid, gender-based bids, and
our autobidder, we see that the autobidder achieves the best combination of utility and
representation across different job sectors with different levels of representation.

1.1 Contributions
Motivations and Fairness Notions

Through examples and qualitative analysis, we consider different potential notions of fairness
and group representation for ad auctions and make the case for using autobidders to achieve
equitable ad exposure (Sections 3 and 4.1).

Optimal Randomized Bidding Strategy for Budget and Group Representation
Constraints

Building on the autobidder with constraints framework suggested in [1], we add constraints
on the representation of key subgroups in the set of clicks resulting from a series of auctions
and show that it is possible to calculate an approximately optimal bidding strategy that
stays within budget while satisfying group representation constraints in expectation. We
consider two platform revenue schemes: one in which advertisers only pay for clicks and
another where advertisers pay for impressions (Section 4).

Bidding Strategy with Deterministic Constraint Guarantees

Our model assumes that each individual i clicks on an ad with some probability ctri, therefore
there is inherent randomness in the outcome, and it is not possible to have a deterministic
promise on any of the constraints. However, we give a modification to the algorithm that
results in slightly lower utility, but satisfies the constraints with high probability, and not
only in expectation. The randomized rounding method assumes that there exists a large
fraction of the population without representational constraints (Section 4.4).

Rounding for Deterministic Solutions When Groups are Disjoint

In the special case of disjoint groups and constraints on group representation with respect to
impressions (rather than clicks), we show how to achieve a deterministic solution with utility
that is close to optimal. This solution works also for a small number of intersection groups.
For intersecting groups, it is possible to use the randomized rounding described above, that
promises the constraints are met with high probability (Section 4.4).
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Extension to Autobidding with Representation Constraints in the Online Setting

We show that our constraints can be satisfied by an online algorithm with sublinear regret
using the online learning framework of Castiglioni et al. [7] (Section 4.5).

Empirical Data on Autobidder Performance

Using data adapted from the American Community Survey and the US Bureau of Labor
Statistics, we simulate the results of different bidding strategies. We show the advantage
of our proposed autobidder with proportional representation constraints and randomized
rounding for achieving both equitable exposure and high advertiser utility (Section 5).

2 Related Work

2.1 Mechanism Design
A number of existing works consider ways to design auctions that satisfy different choices of
fairness guarantees. Chawla et al. [11] design truthful auctions that guarantee individually
fair outcomes, Celis et al. [8] incorporate group parity constraints into an auction mechanism,
and Kuo et al. [20] propose a deep learning approach to approximately optimal auctions while
incorporating relaxed individual fairness constraints. Dwork et al. [15] observe that even
when advertisers place bids that fulfill their personal fairness goals, competition from other
advertisers may prevent the auction outcomes from satisfying advertisers’ fairness constraints.
Building on this observation, subsequent works design auction mechanisms whose outcomes
satisfy individual fairness constraints for each advertiser, assuming that advertisers’ bids
satisfy individual fairness guarantees with respect to their personal metrics [10, 12].

2.2 Autobidding Strategies
A different approach for achieving advertising auction goals is to consider the problem from
the point of view of the advertisers (bidders) and design bidding strategies that guarantee
the desired properties. This approach is often termed “autobidding”. While a number of
works explore autobidding strategies for a number of different budgets and spending-related
goals [4, 6, 13, 22, 1], autobidding strategies that optimize for fairness guarantees are still
relatively under explored. Nasr et al. [23] first suggest adding parity constraints specifically
to bidding strategies using an unlimited budget. Celli et al. [9] explore autobidding strategies
that incorporate parity constraints via a regularization term in the objective function.
However, this approach does not allow for any formal guarantees about how well these
fairness goals are achieved by the algorithm. More recently, Castiglioni et al. [7] consider
more general autobidding strategies that can handle a number of different types of constraints.
While they do not consider fairness guarantees in their main results, they note that fairness
constraints could be considered as a future direction and suggest one potential formulation
of fairness constraints. Unfortunately, the fairness constraints they suggest are not proven
to yield an efficient algorithm because the solutions are not guaranteed to be feasible. We
show that our constraints do satisfy feasibility requirements and yield an efficient online
autobidding algorithm.

Another related line of work considers how to “learn to bid” or how to discover bidding
strategies using feedback from the outcomes of repeated auctions [3, 16, 18, 19, 24, 25]. Our
work mostly considers the offline full information setting in which the winning bids, items,
and values are all known to the autobidding algorithm. In Section 4.5, we note that the
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online learning framework developed by Castiglioni et. al in [7] can be extended to give
online bidding algorithms that guarantee group proportionality constraints will be satisfied in
the long-term when slots and their associated values are drawn from a stationary distribution
at each step. However, further exploring how to learn fairness-aware bidding strategies in
the repeated auction setting is an interesting direction for future work.

3 Motivation

We consider a two-part system, in which advertisers place bids on individual ad slots according
to some bidding algorithm and a centralized auction mechanism decides which advertiser
gets a particular slot, and how much they will pay. In reality, platforms like Google will
often perform both parts of this process once an advertiser defines a campaign with a target
population, total budget (B), and potentially some additional desiderata. Currently, most
ad platforms use a standard second- or first-price auction to decide how ads are allocated,
though there have been proposals for alternative options that guarantee a variety of different
fairness objectives (See Section 2).

We observe that there are a number of different reasons why it makes sense to focus
on designing a new bidding algorithm rather than implementing alterations to the auction
mechanism itself when the system contains bidders who would like to ensure their ads result
in an even spread of clicks from their target population.

Cost to Platform

Most alternative options do not consider the potential loss in revenue for the platform
that would arise from implementing a new auction mechanism. Even when an alternative
mechanism can provide near-optimal platform utility, significant costs associated with
designing, implementing, and switching over to a new mechanism are likely to make such a
switch impractical from the point of view of a platform.

Loss of Flexibility

There are many different objectives and constraints that advertisers would like to optimize
for. While we focus on group representation constraints, some advertisers may be more
focused on other objectives such as alternative notions of fairness, or goals outside fairness
such as a limit on their rate of spending. Keeping the auction as a fixed mechanism allows
advertisers to specify their own individual constraints and optimize their bids to match.

Decreased Comprehension

Ad platforms prioritize simplicity in their auction mechanisms. For this reason, many
companies including Google have recently decided to switch from second- to first-price
auctions, citing concerns around simplifying the ad-purchasing process for advertisers [17]. It,
therefore, seems unrealistic to expect platforms to switch to the more complicated mechanisms
required to enforce fairness guarantees.

Due to these reasons, we concentrate on the question of designing optimal bidding
algorithms for advertisers with group representation constraints.
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3.1 What Does it Mean to Bid Fairly in Second and First-Price
Auctions?

Prior works have observed a composition problem that arises in standard auction settings [15].
As a simple example, we assume that some advertiser values individuals from groups A and
B equally, and so bids the same value v on individuals from each group.

In a vacuum, such a strategy would result in having a proportional number of ads shown
to both groups. However, other advertisers in the market may not have the same goals, and
may specifically target one group by only bidding on individuals in group A. When composed
together, the many bidding strategies used by all the different advertisers in the market may
result in different winning bid values for the two groups. In particular, an individual from
group B may require a winning bid of v, but individuals from A may require a higher bid of
2v due to increased demand. In this situation, our advertiser’s strategy will result in ads
shown only to group B, rather than to both groups proportionally.

The perspective of existing work is that in this example, our advertiser was “doing the
right thing”, i.e. bidding on groups similarly, and it is a failure of the composition mechanism
(the auction) that causes differential rates of ad exposure. Instead, we argue that bidding in
a way that satisfies group parity constraints might not be the right notion for this context
given that practical goals of diverse recruitment are judged based on the auction outcomes.
In fact, there are three potential general types of fairness that could be considered here,
defined by different parts of the bidding process. We discuss these three options below in
terms of group parity guarantees. However, this framing applies to other notions such as
individual fairness as well.
1. (Bid Parity) The advertiser is required to bid similarly across different groups of interest.

This is the notion we considered in our above example, where we saw that bid parity
alone does not guarantee that yields will satisfy any sort of group proportionality goals.

2. (Outcome Parity) Instead, we could explicitly require that an advertiser’s yield (measured
either in terms of clicks or exposures, depending on the setting) has representation of key
groups that is proportional to their representation in the population. Here, we do not
put any constraint on how advertisers must bid to achieve a proportional yield.

3. (Bid-and-Outcome Parity) Lastly, we could potentially consider a stricter notion that
requires that both an advertiser’s bids be similar across groups and the resulting yields
be proportional.

If we care about the outcomes of ad auctions, it’s natural to focus on either outcome parity
or bid-and-outcome parity as goals for a bidding algorithm. On first glance, these might
seem somewhat similar. Clearly, any strategy satisfying bid-and-outcome parity will also
satisfy outcome parity, however, we can show that the opposite direction does not necessarily
hold. In fact, a simple example demonstrates that strategies satisfying bid-and-outcome
parity may result in arbitrarily large decreases in advertiser utility compared to strategies
that are only required to satisfy outcome parity in both second and first-price auctions.

▶ Example 1. We consider a second-price auction2 being run on a population partitioned
into two groups, A and B.

2 By similar reasoning, it’s easily verified that a first-price auction run in the same setting would result in
even larger gaps in utility, so we concentrate on second-price auctions for this example. We also only
focus on yield in terms of exposure here for simplicity, but the example can be easily extended to work
for yield that is measured in terms of clicks as well by incorporating click-through-rates.
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We suppose that an advertiser has a budget of $5 that it uses to bid on a population of
100 individuals (G, w) ∈ P ⊆ {A, B} ×W , where G corresponds to an individual’s group,
and w corresponds to the winning bid from a discrete set of bids W = {$0.1, $0.4, $1} (if an
advertiser bids b ≥ w, they win the auction and pay w, and do not win the auction and pay
nothing otherwise).

Groups are distributed evenly across the population, so there are 50 individuals from
group A and 50 individuals from group B. However, the distributions of winning bids are
skewed slightly to the right (higher cost) for individuals from group A compared to group B,
i.e. we have the following numbers of individuals with each winning bid:

w = $0.1 w = $0.4 w = $1
Group A 25 20 5
Group B 40 10 0

We consider an offline setting where these winning bids and numbers of individuals are
all known to an advertiser beforehand and used to set a bidding strategy, and then these 100
individuals arrive in a random order and the bidding strategy is applied until the budget
runs out. We consider two options for bidding strategies. First, a bid-constrained strategy
is one where an advertiser must set a maximum bid b, and bid b on every individual that
arrives until the budget runs out (this translates to bidding b on every individual with equal
probability because the order is randomized). In Appendix A, we discuss why this is a natural
definition of bid parity in this setting. The second option is to use a bid-unconstrained
strategy. In this approach, an advertiser can set a unique bid for each individual.

We assume that an advertiser values all individuals equally, and thus its utility is equal
to the number of individuals that are shown an ad. When the outcome is required to be
proportional to the group sizes, an advertiser must bid in such a way that the expected
number of ads shown to group A is equal to the number of ads shown to group B.

When bids are unconstrained and the advertiser can decide the bid amount for each
individual separately as long as the outcomes are proportional to group sizes, it’s optimal for
an advertiser to bid $0.1 on 25 individuals with w = $0.1 from group A and 25 individuals
with w = $0.1 from group B, and bid w = $0 on every other individual. This results in ads
shown to 50 individuals total, which is equal to the optimal number that could be reached
even when outcomes are unconstrained.

In contrast, when an advertiser must use a bid-constrained strategy, setting the maximum
bid b to be any value smaller than $1 cannot satisfy group proportionality constraints because
the expected number of individuals shown ads from group B will always be larger than for
group A. Thus, the only strategy that satisfies both bid and outcome parity is to bid the
maximum-possible bid of $1 on all individuals until the budget runs out.

This results in a strategy that shows ads to only 21.3 individuals in expectation, less
than half the utility of the bid-unconstrained strategy. Moreover, note that this strategy
provides the lowest utility of any of the potential bid-constrained strategies.

This example exhibits a setting in which requiring bid parity in addition to outcome parity
may result in much lower utility for advertisers. We note that this example can be extended
to even larger spreads of price distributions where the distribution of group A is slightly
skewed right in comparison to group B, again requiring a bid-constrained strategy to bid the
maximum possible winning bid of any individual to receive proportional outcomes, whereas
a bid unconstrained strategy can satisfy outcome parity while matching the utility of the
optimal unconstrained bidding strategy.
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We conclude that requiring advertisers to bid in a way that respects parity constraints
does not directly contribute to receiving group-proportional outcomes, and in some situations
may actually make achieving such outcomes incredibly costly compared to strategies where
bids are unconstrained. This motivates our interest in optimal bidding strategies that satisfy
outcome parity, which we explore in the following sections.

4 Autobidder with Constraints on Subgroup Representation

Now that we have justified our perspective and proposed approach, we describe how we
choose to model an ad auction from an advertiser’s point of view, and how to compute
optimal bidding strategies for this setting.

4.1 Setup

We consider a large set of queries (or individuals) I, each of which has a single slot that
can show an ad. For each query i, an auction determines which ad is shown as well as the
cost-per-click (cpci) of the ad.

We consider a static setting in which we are trying to set the bid of single advertiser
with full knowledge of the bids of other advertisers, i.e. there is a set cpci for each query,
and the advertiser wins the ad if and only if their bid is above that value. In a first-price
auction, the winning bidder pays their bid. In a second-price auction, the winning bidder
will pay cpci. This is a practical assumption in larger markets since cpci remains stable.
Because our model assumes that we know cpci for each individual, the optimal strategies for
first-price and second-price auctions are equivalent, because there is no need to bid higher
than whatever would be paid in a second-price auction.

Each query also has an associated click-through-rate (ctri ∈ [0, 1]) and value to the
advertiser: vi ≥ 0. A bidder’s goal is to select the optimal set of queries I∗ that maximize
its expected value

∑
i∈I∗ victri, subject to a set of budget constraints and representation

constraints. Budget constraints ensure that the advertiser’s expected cost stays below some
threshold. Here we will focus on the simplest type of budget constraint that just requires the
total expected cost is within a budget B:

∑
i∈I∗ ctricpci ≤ B. However, our approach can

be extended to more complicated sets of budgetary constraints.
The second type of constraint we consider is a group representation constraint, which

allows the advertiser to ensure that the clicks it receives contain sufficient representation from
key demographic groups. We allow an advertiser to specify its goal via a set of constraints
that require the proportion of clicks from a particular group g ⊆ I to be at least some goal
value µg, i.e.

∑
i∈I∗∩g ctri ≥ µg

∑
i∈I∗ ctri.

4.2 Optimal Ad Allocation as a Linear Program

We express the search for an optimal I∗ as described above as an integer linear program, in
which the variables xi correspond to whether or not the advertiser should win the auction
for the ith slot. We assume that the advertiser’s spending is limited by a budget B, and
we are given a set of groups G, where each g ∈ G is associated with a lower bound on the
desired fraction of total clicks that come from group g, µg ∈ [0, 1]. For a group g, denote
gi := 1[i ∈ g] as a binary indicator variable for query i’s membership in g.
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maximize
∑

i xictrivi

subject to
∑

i xictricpci ≤ B∑
i xictri(µg − gi) ≤ 0, ∀g ∈ G

xi ∈ {0, 1}, ∀i ∈ I.

(1)

We can relax the above program by allowing 0 ≤ xi ≤ 1, where fractional xis can represent
the probability the advertiser should win the auction for slot i. We denote it as the relaxed
ad allocation linear program.

▶ Theorem 2. Let P be a relaxed ad allocation linear program. Let V be an bound on
the objective value, and for each constraint c, let Vc be an upper bound on the violation of
constraint c. Then for every δ > 0, Algorithm 3 outputs a solution x ∈ [0, 1]n with utility
within δV of the optimal utility achievable by the relaxed linear program and violates the each
of the constraints with up to δVC additive error.

On Lemma 5 we show that under certain conditions it is possible to have a randomized
rounding algorithm satisfying all the constraints with high probability, and in Lemma 6
we show that for disjoint groups, there is a deterministic rounding algorithm satisfying the
constraints with a small additive error.

We prove the theorem by adapting the multiplicative weights algorithm presented in [1],
where it was used to solve a linear program with only budgetary constraints. We show that
this approach can be modified to work for our setting as well.

At a high level, the algorithm from [1] assumes some known rough bounds on the maximal
objective value of the linear program, V, and rough bounds on the amount of violation of
each constraint. It then searches for the optimal objective by considering candidate objective
values V and for each V , searching for a solution whose objective value is equal to V . The
search is done by a multiplicative weights algorithm that solves a series of one-dimensional
problems. In this setting, the solution for each of these one-dimensional problems has a
closed form in terms of a thresholds Ti. The algorithm runs in time O(n2/δ4|G|) to get
a δV-approximate solution, where V is a bound on the maximal possible utility value, i.e.∑

i xictrivi ≤ V for every x. The algorithm also uses bounds Vc on the constraint violations.
In Section 4.3 we show that there exists an equivalent threshold Ti for the linear program

with fairness constraints. In Appendix B we write the approximation algorithm for fairness
constraints and prove its correctness using the adapted threshold. Using our threshold, the
multiplicative weights algorithm can solve the 1-dimensional problem for the linear program
with fairness constraints.

▶ Note 3. It is important to note that when seeking integer solutions, certain choices of
fairness and budget constraints may be so strict that the only feasible solution is one where
no bids are made. This can happen even when fairness constraints would be feasible with an
unlimited budget, but are too costly to implement with limited funds.

In such cases, it would be easy for an autobidding algorithm to notify an advertiser that
an inputted constraint set is infeasible. There are many potential ways to relax the budget
and/or fairness constraints to achieve a non-trivial feasible solution. However, we want to
note that which relaxation an advertiser selects should be given careful consideration as to
whether it still aligns with the advertiser’s goals and does not disproportionately affect any
particular group. What constitutes a “fair” relaxation of a constraint set and how to find
minimal relaxations with these guarantees is an interesting question for future work.
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4.3 Solutions to the Linear Program
In this section we show that all optimal solutions to LPs of the type described in (1) have a
specific structure.

As a first step, we write the linear program and its dual, allowing the solution x to be
fractional.

maximize
∑

i xictrivi

s.t.
∑

i xictricpci ≤ B∑
i xictri(µg − gi) ≤ 0, ∀g ∈ G

0 ≤ xi ≤ 1, ∀i ∈ I

(2)

minimize
∑

i δi + αB

s.t.
δi + αctricpci +

∑
g βgctri(µg − gi) ≥ ctrivi

α, δi, βg ≥ 0, ∀g ∈ G, i ∈ I

(3)

We show that there is an optimal bidding threshold Ti such that if x∗
i = 1 in the optimal

solution to the LP above, we have Ti ≥ cpci, and if x∗
i = 0, we have Ti ≤ cpci.

Note that if these inequalities were strict (i.e. Ti < cpci and not ≤), Ti would provide an
optimal bidding formula whose outcomes would match that of the optimal solution. For a
second-price auction, the bids would consist of exactly Ti, while for a first-price, the advertiser
should bid cpci 9or cpci + ϵ if this is the winning bid) whenever Ti > cpci. Because the
inequalities are not strict, these thresholds are only used as an intermediate step in the
algorithm used to solve the linear program (see Appendix B).

▶ Theorem 4. Let x∗ be the optimal solution to 2, and for each i ∈ I, let Ti be

Ti :=
vi −

∑
g∈G βg(µg − gi)

α
. (4)

Then, x∗
i = 0 implies that Ti ≤ cpci, and x∗

i = 1 implies Ti ≥ cpci, with the latter inequality
strict whenever δi > 0.

We prove the theorem via analyzing the complementary slackness conditions of the primal
and dual LPs. The proof appears on Appendix C.

4.4 Rounding the Solution
The solution to this linear program is a vector x ∈ [0, 1]n that maximizes the objective
subject to the given constraints. In this section, we show how to round a fractional solution
into an integer solution satisfying the constraints and achieving nearly optimal objective
value.

Randomized Rounding
One way to interpret the fractional solution x ∈ [0, 1]n is as a probabilistic solution. That
is, for every individual i ∈ [n], bid cpci with probability xi, and else bid 0. Let y ∈ {0, 1}n

be a vector corresponding to a run of this random process, i.e. for every i, yi ∼ Ber(xi)
independently. Let ri ∈ {0, 1}n be the vector indicating whether an individual clicked on
the ad, i.e. for all i, ri ∼ Ber(ctri). By definition, it means that for all i, E [yi] = xi and
E [ri] = ctri.

Since each ri is a random variable decided by individual i, there is an inherent randomness
in the outcome and constraint values. Even if we had a deterministic rounding algorithm
generating y from x, the uncertainty in r does not disappear and we do not get a deterministic
expression for the objective and constraints. This does not mean that the advertiser would
not prefer a stronger guarantee from the solution y. For example, the advertiser might want
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to never exceed the budget. Given a fractional solution x satisfying certain conditions, we
show a randomized rounding algorithm that generates y satisfying all of the constraints with
high probability, while only reducing the expected utility by a small factor.

For ease of notation, we say that an ad allocation linear program (2) and a solution
x ∈ [0, 1]n are γ-flexible if the set S0 =

{
i ∈ [n]

∣∣∣∑g∈G gi = 0
}

satisfies
∑

i∈S0
xictri ≥

γ
∑

i∈[n] xictri and
∑

i∈[n] xicpcictri ≥ γn. We remark that if an individual i has gi = 1 only
for groups g such that µg = 0, then effectively it is not in any constraint and therefore can
be added to S0.

Our rounding algorithm only works for γ-flexible solutions. We remark that some flexibility
in the constraints is required for any rounding algorithm, as can be seen from the following
example. Suppose G = {g1, g2} and that we have two constraints requiring that exactly 1/2
of the clicks should be from individuals i ∈ g1 and 1/2 from i ∈ g2. Then, because of the
inherent randomness in the clicks created by ri ∼ Ber(ctri), it is not possible to promise that
both constraints are satisfied with high probability.

Algorithm 1 Randomized rounding algorithm for γ-flexible linear programm and solution.

Input: x ∈ [0, 1]n, S0 ⊂ [n], ϵ > 0
Output: y ∈ {0, 1}n

for i = 1 to n do

x′
i ←

{
(1− ϵ)xi i ∈ S0

(1− ϵ/2)xi i /∈ S0.

yi ← Ber(x′
i)

▶ Lemma 5. Let P be an ad allocation linear program, and let x ∈ [0, 1]n be a fractional
solution such that P, x are γ-flexible and x matches the representation constraint values of
the optimal solution to P up to a multiplicative error at most 2. Then for every constant
ϵ > γ Algorithm 1 outputs a solution y ∈ {0, 1}n, satisfying the following. Let r be the
vector representing the individuals clicks, and µ = ming∈G{µg}. Then with probability
1− exp(−µϵ2γ3n) over the randomness of of y, r we have∑

i

yiricpci ≤
∑

i

xictricpci, (5)∑
i

yiri(µg − gi) ≤
∑

i

xictri(µg − gi) ∀g ∈ G, (6)

E

[∑
i

yirivi

]
≥ (1− ϵ)

∑
i

xictrivi. (7)

The lemma implies that if x ∈ [0, 1]n satisfies the constraints, then with high probability y

satisfies them also. If x approximately satisfies the constraints and has some small error δ,
then with high probability y approximately the constraints with the same error. The proof
appears on Appendix C.

Deterministic Rounding
An interesting variant of our autobidding problem is one in which the advertiser pays for
individuals to view the ad, rather than clicking on it. This can be modeled by the bid
allocation LP in (1) by setting ctri = 1 for every i ∈ [n]. In this setting there is no random
variable r representing the clicks and thus no inherent randomness in the outcome. Therefore,
we have motivation to discuss a deterministic rounding procedure.
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We focus on the special case of disjoint groups, where each individual i has g(i) = 1 for
exactly one g ∈ G (some groups might not have constraints). The rounding procedure we
present results in a deterministic solution that nearly satisfies all constraints and guarantees
approximately optimal utility for the advertiser. Our rounding algorithm works for every
solution x ∈ [0, 1]n satisfying the following condition

∀g ∈ G, i, i′ ∈ g such that xi, xi′ ∈ (0, 1), vi > vi′ =⇒ cpci > cpci′ . (8)

We remark that from the complimentary slackness, the optimal solution satisfies this condition.
Furthermore, for i, i′ ∈ g on which the condition does not hold, i is strictly better than
i′, so we can increase xi and reduce xi′ and get a better solution. More formally, suppose
x ∈ [0, 1]n is a solution that does not satisfy Equation (8) for some g and i, i′ ∈ g, then by
changing xi to min{1, xi + xi′} and xi′ to max{0, xi + xi′ − 1} we receive a new solution
satisfying all constraints as the original solution, and has at least as good objective. Since
checking this condition is efficient, we can easily turn every solution into one satisfying the
above without hurting the guarantees.

▶ Lemma 6. Let P be an ad allocation linear program with disjoint groups G and ctri = 1 for
all i ∈ [n], and let vmax = maxi∈I{vi}. For every g ∈ G, let Sg = {i ∈ [n] |gi = 1, xi ∈ (0, 1)}.
For every fractional solution x ∈ [0, 1]n satisfying the constraints of P and Equation (8),
Algorithm 2 applied on every set Sg outputs a solution y ∈ {0, 1}n such that∑

i∈[n]

yicpci ≤
∑
i∈[n]

xicpci ≤ B (9)

∑
i∈[n]

yigi + 1 ≥ µg

∑
i∈[n]

yi ∀g ∈ G, (10)

∑
i∈[n]

yivi ≥
∑
i∈[n]

xictrivi − |G| vmax. (11)

At a high level, the rounding algorithm round down each group separately. That is,
if y ∈ {0, 1}n are the rounded values, then for every group g and every value v we have∑

i∈g,vi≥v yi ≤
∑

i∈g,vi≥v xi. See the proof on Appendix C for more details.

Algorithm 2 Deterministic rounding for a single group S.

Input: S = {i1, . . . , it}, x ∈ [0, 1]n, v ∈ Rn

Output: y ∈ {0, 1}S

Assume that the elements in S are ordered according to v, i.e. vi1 ≤ vi2 · · · ≤ vit
and

in case of equality by cpci.
for j = t to 1 do

if xij +
∑

l>j(xil
− yil

) ≥ 1 then
yij
← 1;

else
yij ← 0;

We remark that Algorithm 2 can also be applied in the case of a few not-disjoint set of
groups G. In this case, we should run it separately over each possible intersection of the
groups, i.e. for every h ∈ {0, 1}|G| run is on Sh = {i ∈ [n] |∀g ∈ G, hg = gi }. In this case,
instead of violating each constraint by an additive factor of 1, we have an additive error of
2|G|, the loss to the objective value can be vmax2|G|. Therefore, it only makes sense to apply
this algorithm for either disjoint, or very few groups G.
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4.5 Extension to Online Bidding
Thus far, our autobidder formulation follows prior work which examines an offline setting [1].
For a large enough advertisement market, generating bids in an offline setting is sufficient
due to the high volume and frequency of slots. However, in settings where advertisement
slots may be more sparse and there is a fixed time horizon, generating bids that respect
budget and representation constraints can be modeled as an online stochastic optimization
problem. We assume cpct, ctrt, {gt}g∈G, and vt are stochastic, meaning that at each time
step t, a tuple consisting of these values are drawn i.i.d from some stationary distribution.

We can then define an objective ft(xt) and constraints c
(0)
t,g , ..., c

(3)
t,g for each group g ∈ G

to give the optimization problem at the tth step

ft(xt) = xtctrtvt

c
(0)
t,g (xt) = xtctrt(µg − gt) ≤ 0, ∀g ∈ G

c
(1)
t,g (xt) = xtctrtcpct − ρ ≤ 0

c
(2)
t,g (xt) = xt − 1

c
(3)
t,g (xt) = −xt

where ρ = B
T is the goal amount of budget used at every step and T is the time horizon in

consideration (i.e. campaign duration).
Using the algorithm for this problem proposed by [7] guarantees an approximate cumu-

lative constraint satisfaction of 1
T

∑T
t=1 c

(i)
t,g(xt) ≤ Õ(T −1/4) for all i ∈ [3] and g ∈ G. This

means that across T steps, our group representation goals can be approximately achieved.
Further, this algorithm also gives an upper bound of Õ(T −1/4) on the regret. While [7] also
proposed quota-based fairness constraints, they were unable to apply their algorithm because
they could not assume the existence of a feasible solution. In constrast, our ratio-based
representation constraints always yield a feasible solution: the zeros vector. Moreover, the
existence of a strictly feasible solution implies even better guarantees on the cumulative
constraint satisfaction and regret.

5 Experiments

To simulate the problem of an employer looking to advertise to a diverse set of candidates,
we use data from the US Bureau of Labor Statistics and the American Community Survey.
The American Community Survey is a yearly survey given to a sample of the United States
population in order to determine how federal and state funds should be distributed. The
survey collects information about employment, housing, education, demographic information,
and other topics3. Using 2021 records of individuals in California from this survey [14], we
construct cost-per-click based on an individual’s income and estimate advertiser value by
assigning a higher value for individuals in the same occupational category. To model the
higher cost of advertising to women observed by prior works [21], we add an additional
bump uniformly to the cost per click for women such that the average cost-per-click for
women is 10% higher than men. We define click-through rates by assuming an individual is
more likely to click on an ad if there are more people similar to themselves in the current
occupation. This modeling assumption corresponds to stereotype threat [5]; the negative

3 https://www.census.gov/programs-surveys/acs/about.html
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Figure 1 Men and women each represent half of the workforce among entertainment occupations
workers; we compare the consequences of different fairness objectives in a second price auction.
When women cost more to reach than men, using an approach that enforces bid parity guarantees
that ads will be shown disproportionately to men; this underrepresentation is particularly stark at
a lower budget. Using an auto-bidder with constraints achieves proportional representation while
maintaining higher utility than a strategy satisfying bid-and-outcome parity.

experience caused by being judged based on a negative group stereotype. Using Labor force
summary statistics from 2021 4, we use the gender and race distributions of occupational
categories to approximate the click-through rates for an individual query. To account for the
variance across income, demographic, and job categories, we add Gaussian noise to value
(vi), cost per click (cpci), and click-through-rate (ctri), and clip values to a small range.

In our experiment setting, we consider a larger pool of viewers both within and outside
the target job industry. We set the values of individuals within an industry to be 1.0 and
values for individuals in other occupations to be zero. For each budget, bids are estimated
using a disjoint sample from the population that maximizes budget use. We approximate
the parity-satisfying bid by finding the cpc threshold in the disjoint population where the
budget would become exhausted. For the bid satisfying bid-and-outcome parity, we compare
the cumulative distributions of cost-per-click for men and women respectively and find a
non-zero intersection point. The cost-per-click at this point reaches a proportional number
of men and women. And thus is both bid and outcome fair. While results from previous
sections apply to both first and second-price auctions, this set of experiments will be based on
second-price auctions. It is easy to see that if we looked at first-price auctions, the bid-parity
and bid-and-outcome-parity strategies would be even less efficient in utility with the same
budget.

Figure 1 compares the bid-parity and bid-and-outcome-parity strategies achieved by a
single max bid threshold against our autobidder with proportional group representation
constraints in the entertainment industry. This scenario in entertainment occupations is
motivated by our original example from the introduction, where showing ads to men and
women have different costs but men and women appear in the workforce in equal proportion.
We see that focusing on bid parity yields a low ratio of women; this effect is especially
stark when the total budget is lower. When bid-and-outcome parity is enforced, better
representation can be achieved but the utility is strictly lower than the strategy satisfying
bid parity. This is because requiring both bid-and-outcome parity results in inefficiency.
We apply our autobidder with randomized rounding with parity constraints since parity is
equivalent to proportional representation in this industry and plot autobidder candidates for
the entertainment industry only. Since the autobidder will use all of the available budget,

4 https://www.bls.gov/cps/cpsaat11.htm

https://www.bls.gov/cps/cpsaat11.htm
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Figure 2 Women only represent 21% of the workforce in the computer and mathematical
occupation; we again compare the consequences of various fairness strategies in a second price
auction. A bid-parity strategy yields very low female representation but high utility. In contrast, a
bid-and-outcome-parity strategy yields proportional representation but lower utility. Meanwhile
using an autobidder with proportional constraints yields both good representation and high utility.
For a large enough budget, the bid parity and bid-and-outcome parity bids are the same and achieve
similar utility and representation.

female candidates not in the entertainment industry may also be selected. Thus while the
total number of women candidates is exactly proportional, the number of women in the
entertainment industry might be slightly less than proportional. However, our simulations
show that the autobidder still achieves representation closer to proportional and yields higher
utility than solutions satisfying bid-and-outcome parity.

Next, we turn to computer and mathematical occupations where women only represent
21% of workers in our sampled data. Repeating the same process for finding the optimal
bid for strategies satisfying bid and bid-and-outcome parity, we can again compare these
approaches to our autobidder with proportional representation constraints. Since workers in
this industry have much higher incomes, we adjust the minimum cost per click to be slightly
higher. In Figure 2, we observe that both our autobidder and the bid-and-outcome-parity
strategy achieve better representation than the bid-parity strategy. Comparing utility, we
once again observe a significant gap between autobidder and bid-and-outcome-parity utility
where employing the autobidder achieves much higher utility. We once again see that the
autobidder has higher utility than the bid-parity strategy for the same reason as previously
mentioned. Utility-wise, for both occupations, the autobidder always matches or surpasses
the bid-parity strategy since some individuals under the threshold may not be the most
efficient choices; the autobidder might find a different combination of individuals which
maximizes utility that a single threshold cannot achieve.

In both industries with vastly different baseline demographic compositions, we see that
using our autobidder with proportional representation constraints achieves both high levels
of representation and utility. For any underrepresented group or intersectional group, we can
repeat these examples with similar expected results. If the required level of yield is beyond
the population proportion, we can also adjust the target ratio accordingly.

6 Discussion

Even in the specific setting of group fairness, there are many definitions of fairness and
parity that can arise in the advertisement auction and bidding process. We give examples
to motivate three potential objectives that have been scattered throughout prior work. We
discuss what different strategies for achieving each of these goals might look like and give
examples of when one notion of fairness (i.e. in bids) might contradict other notions of
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fairness (e.g. in yield outcome). Our experiments verify the observation from prior work that
a strategy satisfying bid parity may result in a lack of diversity when some subgroups are
more expensive to advertise to than others. Turning to the bid-and-outcome parity objective,
where proportional group representation must be achieved via a bidding strategy that satisfies
parity constraints, we show that these additional constraints require much higher bid values
to ensure that all populations can be reached. In our simulations, bid-and-outcome parity
does achieve better proportional representation than the bid-parity strategy but at the cost
of significant utility loss.

Motivating the case for strategies that satisfy outcome parity, we extend on an existing
autobidding framework to include group representation constraints based on the desired
ratio of individuals from different groups. Since we use a probabilistic model of cost that
is based on click-through rates, we also further modify the autobidder algorithm to satisfy
budget and representation constraints with high probability, rather than just in expectation.
Incorporating our proposed randomized rounding method that complements our autobidder
solution, we show in our experiments that we achieve better outcome fairness than the
bid-parity strategy and better utility than the bid-and-outcome-parity strategy.

In our simplified framework, we assumed that an individual’s value to an advertiser can
be easily derived based on information about the individual’s occupational record. In a real
advertising scenario, platforms might have only estimates of viewer employment. Furthermore,
there might be systematic biases in terms of missing features like current occupation and
income. Designing mechanisms to achieve outcome parity as well a other notions such as
individual fairness in the presence of real word data challenges is a promising direction for
future work. Furthermore, advertising for job recruitment is just one aspect of recruitment.
In reality, a pool of candidates can come from a variety of sources including recruitment
events, referrals, job search engines, and direct applications. Each stream of candidates
involves different recruitment costs and yield groups with different levels of diversity and
skill levels. Exploring composition effects across different sources of recruitment and the
underlying network effects that affect which audiences are reached is another interesting
direction for future research.
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A Remark on Definitions of Bid Parity

Throughout this paper, we define a strategy satisfying bid parity as one that selects a single
maximum bid bmax and bids this value on every member of the target population until
the budget runs out. We use this definition because it captures the standard setting in
which advertisers can specify their preferences to online advertising platforms by creating
a campaign parameterized by a budget, target population, and maximum bid. Moreover,
natural relaxations to this strict notion of parity may result in notions that don’t guarantee
parity with respect to outcomes even in the absence of composition effects. We consider two
potential relaxations here to illustrate.

A.1 Parity with Respect to Average Bids
We could imagine a situation in which rather than requiring advertisers bid the same bid
with the same probability on all key subgroups, they are instead only required to have the
same average bid for each group.

We show that even in the simplest case where we have two disjoint groups A and B of
equal size making up the population and every individual has the same winning bid w, only
requiring parity with respect to average bids can lead to outcomes where the representation
of A and B is far from proportional.

In particular, consider a strategy that bids w on all individuals from group A, while
bidding w − ϵ for some small ϵ > 0 on 90% of individuals from group B, and bidding w + 9ϵ

on the remaining 0.1%. For small ϵ the difference in bids is extremely small, but such a
strategy will result in 10x the number of individuals from group A shown ads compared to
group B.

A.2 Approximate Parity
Similar to above, we might loosen our definition to only require that bids on individuals be
close to eachother, i.e. for all individuals i and j, we have |bi − bj | < ϵ for some ϵ > 0.

However, as in our example above, such a constraint can still result in outcomes that
are far from proportional even for arbitrarily small values of ϵ. To see how this can occur,
consider our example from above where all individuals in A and B have a winning bid of ϵ.
One potential strategy in this setting would be to bid w on all individuals from A and w − ϵ

on all individuals from B. This results in a strategy that satisfies approximate bid parity
constraints, but never shows an ad to an individual from B.

B Algorithm for Solving the Linear Program

The bidding algorithm from [1] can be extended to work with additional group representation
constraints. In this section, we explain the bidding algorithm algorithm and prove its
correctness when there are additional representation constraints.

In the algorithm δ is the approximation parameter, V is an upper bound on the objective
and VB , VG are bounds on the value of the budget and group representation constraints.

https://proceedings.mlr.press/v49/weed16.html
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At a high level, the algorithm iterates over all possible objective values V , and for each
value tries to solve the following problem: “is there an x that satisfies the constraints and
has utility V ?”. This problem can be equivalently restated in matrix form, to ask whether
there is an x such that Ax ≥ u for the values of A, u described in the algorithm. We use the
multiplicative weights algorithm to solve each of these sub-problems. In the update step, the
problem is reduced to a problem in 1-dimension: “is there an x such that pT Ax ≥ pT u, where
p is the weights vector?”. For the 1-dimensional problem, the optimal threshold described on
Section 4.3 is an optimal solution, and therefore can be used for the update.

Algorithm 3 Finding the optimal strategy.

Input: δ > 0,V, VB , Vg∀g ∈ G

Output: x̂1, . . . , x̂n ∈ {0, 1}
/* V, Vg, VB , are bounds on the objective value and constraints violations. */

T1 ← c/δ;
T2 ← c/δ3;
x̂← 0n ;// output init

for i = 1, . . . , T1 do
V ← iδV;// V is the current objective we are trying to reach.

A←


ctr1v1/V ctr2v2/V . . . ctrnvn/V

−ctr1cpc1/VB . . . . . . −ctrncpcn/VB

ctr1(g1 − µg)/Vg . . . . . . ctrn(gn − µg)/Vg

...
...

...
...

; u←


V/V
−B/VB

0
...

;

/* MW algorithm solving: is there x, 0 ≤ xl ≤ 1 such that Ax ≥ u? */

FAIL← 0;
w ← 12+|G|; // Initialize weights

for t = 1, . . . , T2 do
/* Each iteration solving 1-dim problem: is there x, 0 ≤ xl ≤ 1 such that

wT Ax ≥ wT u? */

α← w2V
VBw1

;
βg ← VvBwg

w1w2VG
; // for g the j’th group, wg = wj+2

b(l)←
vl−
∑

g∈G
βg(µg−gl)

α ;
x

(t)
l ← 1(b(l) ≥ cpcl) ∀l ∈ [n];// x

(t)
l is the optimal solution to the 1-dim

problem.

if wT Ax(t) < wT u then
FAIL← 1;

else

wj ←

{
wj · (1− ϵ)Ajx(t)−uj Ajx(t) − uj ≥ 0
wj · (1 + ϵ)−Ajx(t)+uj Ajx(t) − uj < 0

, ∀j ∈ [2 + |G|];

if FAIL = 0 then
x̂ =

∑T2
t=1 x(t);

We state a more formal statement of Theorem 2 and prove it.

▶ Lemma 7. Let P be a relaxed ad allocation linear program, (2). Let V be an upper bound
on the objective value of (2) and VB , VG be be upper bounds on the amount of violation of
the budget and representation constraints. Then for every δ > 0, Algorithm 3 runs in time
and O(n2/δ4|G|) and outputs a solution x ∈ [0, 1]n such that
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∑
i

xictrivi ≥ OPT− δV∑
i

xictricpci ≤ B + δVB∑
i

xictri(µg − gi) ≤ δVG ∀g ∈ G.

Proof. To prove the correctness of the algorithm, it is enough to prove that the x
(t)
l assigned

is indeed the optimal solution for the 1-dimensional problem. The rest is implied from the
correctness of the multiplicative weight algorithm, see [2]. Therefore, we prove that x

(t)
l is

the optimal solution to the 1-dimensional problem maxx{wT Ax− wT u}.

wT Ax− wT u =w1

n∑
l=1

vℓ

V
xl − w2

n∑
l=1

ctrlcpcl

VB
xl

+
|G|+2∑
j=3

wj

n∑
l=1

ctrl(gl − µg)
Vg

xl − w1
V

V
+ w2

B

VB

=
n∑

l=1
xl

w1
vℓ

V
− w2

ctrlcpcl

VB
+

|G|+2∑
j=3

wj
ctrl(gl − µg)

Vg

− w1
V

V
+ w2

B

VB
.

Denote Cl = w1
vℓ

V − w2
ctrlcpcl

VB
+
∑|G|+2

j=3 wj
ctrl(gl−µg)

Vg
. The maximal value of wT Ax− wT u

is given when in every l such that Cl ≥ 0 we have xl = 1, and for the rest we have xl = 0.
Notice that after switching α, βg (which we can think about just as renaming of wj) we

have that cl ≥ 0 is equivalent to b(l) ≥ cpcl, as

Cl =w1
ctrlvl

V
− w2

VB
ctrlcpcl +

∑
g

wg

Vg
ctrl(gl − µg) ≥ 0 ⇐⇒

cpcl ≤
VB

w2

(
w1vl

V
+
∑

g

wg

Vg
(gl − µg)

)

If we denote α = w2
VB

V
w1

and βg = VvBwg

w1w2VG
then we have that this is the same as b(l) ≥ cpcl.

The algorithm solves the 1-dimensional problem )(1/δ4) times, each takes O(|G|n2) time. ◀

C Proofs of Theorems and Lemmas

Proof of Theorem 4. First, suppose we have an i such that x∗
i = 0. By the slackness

conditions of the LPs, this implies that δi = 0. Substituting this fact into constraint 3 of the
dual tells us that we must have

αctricpci +
∑
g∈G

βgctri(µg − gi) ≥ ctrivi

Rearranging the terms of this inequality (and assuming ctri ̸= 0), we get

cpci ≥
vi −

∑
g∈G βg(µg − gi)

α
= Ti
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as desired. For the other direction, suppose that x∗
i = 1. Again applying complementary

slackness, we know that constraint 3 must be tight, and thus

δi + αctricpci +
∑
g∈G

βgctri(µg − gi) = ctrivi.

Again rearranging to solve for cpci, we get:

cpci =
vi −

∑
g∈G βg(µg − gi)

α
− δi

ctriα
= Ti −

δi

ctriα
.

We can conclude that this guarantees Ti ≥ cpci, and if δi > 0, then Ti > cpci. ◀

Proof of Lemma 5. Given a γ-flexible solution x, let y be the output of Algorithm 1, and
let x′ ∈ [0, 1]n be as in Algorithm 1. We show that all of the constraints hold with high
probability. We denote the realization of clicks from each individual as r, i.e. ri ∼ Ber(ctri).

For the budget constraint, we show that (5) holds with high probability,

Pr
y,r

∑
i∈[n]

yiricpci ≥ B

 ≤ Pr
y,r

[∑
i∈S

yiricpci ≥
(

1 + ϵ

2

)∑
i∈S

x′
ictricpci

]
≤ e−ϵ2γ2(1− ϵ

2 )2 n
4 ,

where the last inequality is due to Hoeffding’s inequality.
For the representation constraints, (6), we have that for every g ∈ G,

Pr
yi,ri

∑
i∈[n]

giyiri ≤
(

1− ϵ

2 −
γϵ

4

) ∑
i∈[n]

xictrigi

 (12)

≤ Pr
yi,ri

∑
i∈[n]

giyiri ≤
(

1− γϵ

4

) ∑
i∈[n]

x′
ictrigi

 ≤ e
− γ2ϵ2

32

∑
i∈[n]

gixictri
. (13)

Pr
y,r

∑
i∈[n]

yiri ≥
(

1− γϵ− (1− γ) ϵ

2 + γϵ

4

) ∑
i∈[n]

xictri

 (14)

≤ Pr
y,r

∑
i∈[n]

yiri ≥
(

1 + γϵ

4

) ∑
i∈[n]

x′
ictri

 ≤ e
− γ2ϵ2

32

∑
i∈[n]

xictri
. (15)

The solution x satisfies the constraint up to a constant error of 2, so
∑

i∈[n] gixictri ≥
1/2 · µG

∑
i∈[n] xictri. Therefore the bound in both (12) and (14) is at most exp(−γ3ϵ2µgn).

If the events in (12) and (14) do not hold, then the representation constraint on group g is
satisfied, as we have that

µg

∑
i∈[n]

yiri ≤
(

1− ϵ

2 −
γϵ

4

)
µg

∑
i∈[n]

xictri,
∑
i∈[n]

giyiri ≥
(

1− ϵ

2 −
γϵ

4

) ∑
i∈[n]

gixictri

By union bound over all group representation constraints for g ∈ G and over the budget
constraint, with probability 1− exp(−µγ2ϵ2n) all constraints hold.

We are left with showing that the objective is not reduced by much. We notice that
∀i ∈ [n], x′

i ≥ (1− ϵ)xi, so from the linearity of expectation we get (7). ◀
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Proof of Lemma 6. Let S = Sg for some g ∈ G. Let i1, . . . , it be the order of the elements
in S used by the algorithm. From (8), this order is also an order by cpci.

From the algorithm, we have that for every j ∈ [t],∑
l≥j

xil
− 1 ≤

∑
l≥j

yil
≤
∑
l≥j

xil
. (16)

For the budget constraint, (9), we claim that for every j ∈ [t],∑
l≥j

cpcil
(xil
− yil

) ≥ cpcij

∑
l≥j

(xil
− yil

). (17)

We prove it by induction on j, starting from j = t. The basis is implied from (16). The step,∑
l≥j

cpcil
(xil
− yil

) =cpcij
(xij
− yij

) +
∑
l>j

cpcil
(xil
− yil

)

≥cpcil
(xil
− yil

) + cpcij+1

∑
l>j

(xil
− yil

) (Inductive step)

≥cpcil
(xil
− yil

) + cpcij

∑
l>j

(xil
− yil

).

Where in the last inequality we use the facts that cpcij
≤ cpcij+1 and

∑
l>j(xil

− yil
) ≥ 0.

Applying (17) with j = 1 and using (16) implies that
∑

i∈S yicpci ≤
∑

i∈S xicpci, and in
general

∑
i∈[n] yicpci ≤

∑
i∈[n] xicpci, proving (9).

For the representation constraint, we have from (16) that for every g ∈ G,
∑

i∈[n] yigi ≥∑
i∈[n] xigi − 1. By summing up on all S, we get that

∑
i∈[n] yi ≤

∑
i∈[n] xi. Together with

the fact that x satisfy the representation constraint we get∑
i∈[n]

yigi + 1 ≥
∑
i∈[n]

xigi ≥ µg

∑
i∈[n]

xi ≥ µg

∑
i∈[n]

yi.

Therefore, y satisfy (10) for every group g.
For the objective value, (11), we fix a set S and let i1, . . . , it, be the order used in the

algorithm. To simplify the proof, we “split” elements in S and divide their xi in the following
way: if we have yij

= 1 because xij
+
∑

l>j(xil
− yil

) > 1, then we split ij to two elements
i, i′ with xi = 1 −

∑
l>j(xil

− yil
) and xi′ = xij

− xi. This “splitting” is for analysis only,
and we abuse notation by denoting S = {i1, . . . it} also after the splitting. After the splitting
we have that if yij = 1 then

∑
l≥j xl =

∑
l≥j yl.

Let j1, . . . jk ∈ [t] be the indices in which yj = 1. We have that for every m ∈ [k],∑jm+1−1
l=jm

xl = 1, and also
∑

l≥jk
xl = 1 and

∑
l<j1

xl < 1. Therefore,

∑
l∈[t]

vil
xil

=
j1−1∑
l=1

vil
xil

+
j2−1∑
l=j1

vil
xil

+ · · ·+
t∑

l=jm

vil
xil

≤vij1

j1−1∑
l=1

xil
+ vij2

j2−1∑
l=j1

xil
+ · · ·+ vit

t∑
l=jm

xil
(vi are increasing)

≤vij1
+ vij2

+ · · ·+ vit
≤ vit

+
∑
l∈[t]

yil
vil

,

which proves (11). ◀
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Abstract
Dwork, Hardt, Pitassi, Reingold, & Zemel [6] introduced two notions of fairness, each of which is
meant to formalize the notion of similar treatment for similarly qualified individuals. The first of
these notions, which we call additive metric fairness, has received much attention in subsequent work
studying the fairness of a system composed of classifiers which are fair when considered in isolation
[3, 4, 7, 8, 12] and in work studying the relationship between fair treatment of individuals and fair
treatment of groups [6, 7, 13]. Here, we extend these lines of research to the second, less-studied
notion, which we call multiplicative metric fairness. In particular, we exactly characterize the fairness
of conjunctions and disjunctions of multiplicative metric fair classifiers, and the extent to which a
classifier which satisfies multiplicative metric fairness also treats groups fairly. This characterization
reveals that whereas additive metric fairness becomes easier to satisfy when probabilities of acceptance
are small, leading to unfairness under functional and group compositions, multiplicative metric
fairness is better-behaved, due to its scale-invariance.
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1 Introduction

We study the fairness of a decision-maker, modeled as a classifier C, which takes as input an
individual and outputs a label 1 or 0, each with some probability. For example, C could take
as input an individual applying for a loan and output 1 if it decides that they will receive the
loan and 0 if not, and C could have high likelihood of approving application of individuals
with high credit scores and a low likelihood of approving applications of individuals with low
credit scores.

One plausible constraint on a fair decision-maker requires that it treat similarly qualified
individuals similarly. Dwork, Hardt, Pitassi, Reingold, & Zemel [6] introduced two notions of
fairness, each meant to formalize this constraint. The first of these, additive metric fairness,
has received much attention in subsequent work [3, 4, 7, 8, 12, 13]:

▶ Definition 1 (Additive metric fairness). Let U denote a set of individuals. A classifier C is
additive metric fair with respect to a metric d : U × U → [0, 1] if for all u, v ∈ U ,

| Pr[C(u) = 1] − Pr[C(v) = 1]| ≤ d(u, v).

The difference in two individuals’ treatment is modeled as the additive difference in their
likelihoods of acceptance by the classifier, and the difference in their qualifications is given by
a metric. Additive metric fairness thus requires that two individuals’ difference in treatment
not exceed their difference in qualifications. For example, where Pr[C(u) = 1] is the likelihood
that the loan application of u is approved, d(u, v) could be the normalized difference between
the credit scores of u and v.

Additive metric fairness becomes easy to satisfy when the probabilities Pr[C(u) = 1] are
small:
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4:2 Multiplicative Metric Fairness Under Composition

▶ Example 2 (An unfair lottery). Suppose that every pair of individuals u, v differs in
qualifications by at least some amount δ. Then provided that for all individuals u, the
likelihood Pr[C(u) = 1] is at most some sufficiently small value ϵ, the classifier C will be
additive metric fair:

| Pr[C(u) = 1] − Pr[C(v) = 1]| ≤ max(Pr[C(u) = 1], Pr[C(v) = 1])
≤ ϵ ≤ δ ≤ d(u, v).

For example, C could be a highly selective university, so that C(u) = 1 means that u is
accepted; an investment with a low likelihood of return, so that C(u) = 1 means that u

received a return on the investment; or a lottery, so that C(u) = 1 means that u had a
winning lottery ticket.

As a result, additive metric fairness is compatible with the following kinds of unfairness:

▶ Example 3 (Unfairness for groups). Suppose that there are two groups A and B of investors.
If those in group B invested a cent more than those in group A, we may set d(u, v) = .01 for
u ∈ A and v ∈ B. A classifier C can satisfy additive metric fairness by giving those in group
A no chance of receiving a return on their sizable investment while giving those in group
B some sufficiently small chance ϵ of receiving a return on their similarly-sized investment.
However, this is manifestly unfair to those in group A.

▶ Example 4 (Unfairness under functional composition). Suppose u and v each apply to several
universities C1, ..., Ck, such that at each university Ci, the likelihood that u is accepted is 0
while Pr[Ci(v) = 1] = ϵ. Then the likelihood that v is accepted by at least one university may
approach 1, while u has no chance of acceptance at any university. Even if the universities
satisfy additive metric fairness when considered in isolation, because the likelihoods of
acceptance are sufficiently small, they compose to create system which fails to treat similarly
qualified applicants similarly.

Thus additive metric fairness is easier to satisfy when probabilities of acceptance are
small, and this can lead to unfairness for groups and under functional composition. In this
paper we find that the second, scale-invariant notion of fairness introduced by Dwork, Hardt,
Pitassi, Reingold, & Zemel, multiplicative metric fairness, is better-behaved in its treatment
of groups and under functional composition:

▶ Definition 5 (Multiplicative metric fairness). A classifier C is multiplicative metric fair
with respect to a metric d : U × U → R≥0 if for all u, v ∈ U ,

Pr[C(u) = 1] ≤ Pr[C(v) = 1] · exp(d(u, v)).

Multiplicative metric fairness models the difference in treatment between two individuals not
as an additive difference, but as a ratio; it does not become easy to satisfy when probabilities
are small. In order to state our results, we now introduce the relevant notions of group
fairness and of fairness under functional composition.

Group fairness

We propose the following notion of group fairness:

▶ Definition 6 (Geometric Metric Fairness). Fix a collection of protected attributes A ⊆ 2U

(e.g. races, ages, genders, etc.). A classifier C satisfies geometric metric fairness with respect
to a metric d : A × A → R≥0 when for all A, B ∈ A,

pΠ(A) ≤ pΠ(B) · exp (d(A, B)),

where pΠ(A) =
∏

u∈A Pr[C(u) = 1]1/|A| is the geometric mean likelihood of acceptance.
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In the above definition, a metric quantifies differences in qualifications between groups, just
as in Definitions 1 and 5, a metric quantifies differences in qualifications between individuals.
For example, suppose that every job applicant u ∈ A can be paired with some unique
applicant v ∈ B who is equally qualified, and vice versa. Then even if individual applicants
within each group differ in their qualifications, there is no difference in qualifications between
the groups: d(A, B) = 0. In this case, geometric metric fairness amounts to the constraint
that

pΠ(A) = pΠ(B).

This contrasts with a well-studied notion of group fairness:

▶ Definition 7 (Conditional Parity). Fix Q ⊆ 2U and a collection of protected attributes
A ⊆ 2U (e.g. races, ages, genders, etc.). A classifier C satisfies conditional parity if for all
Q ∈ Q, A, B ∈ A,

pΣ(A ∩ Q) = pΣ(B ∩ Q)

where pΣ = 1
|A∩Q|

∑
u∈A∩Q Pr[C(u) = 1] is the arithmetic mean likelihood of acceptance.

Conditional parity was introduced by Ritov, Sun, & Zhao [14] and plays a central role in
Dwork & Ilvento’s study of fairness under composition [7]. Conditional parity generalizes
other group notions of fairness. For example, one recovers parity by setting Q = {U}; one
recovers equalized odds by setting Q = {{u : Y (u) = y} : y ∈ {0, 1}}, where Y (u) denotes the
true label of u; and one recovers equal opportunity by setting Q = {{u : Y (u) = 1}} [11, 15].
In general, we think of Q as a collection of sets of individuals who are similarly qualified for
the purposes of classification.

Plausibly, one should not be able to “make up for” mistreatment of some individuals
within a group by treating other individuals within the group better; a radical departure
from the mean treatment for any sub-group should register as unfair. However, because
conditional parity only constrains the arithmetic mean probability of acceptance across
members of a group, it allows for large variance in treatment of individuals within a group.
In 2010, this feature of the arithmetic mean led the United Nations to change its way of
calculating the Human Development Index (HDI):

In 2010, the geometric mean was introduced to compute the HDI [which was previously
computed with the arithemtic mean]. Poor performance in any dimension is directly
reflected in the geometric mean. In other words, a low achievement in one dimension
is not linearly compensated for by a higher achievement in another dimension. The
geometric mean reduces the level of substitutability between dimensions and at the
same time ensures that a 1 percent decline in the index of, say, life expectancy has
the same impact on the HDI as a 1 percent decline in the education or income index.
Thus, as a basis for comparisons of achievements, this method is also more respectful
of the intrinsic differences across the dimensions than a simple average.

Just as the geometric mean index value is thought to better respect differences and
non-substitutability across the dimensions of the HDI, the geometric mean likelihood of
acceptance across a group might be thought to also better respect differences and non-
substituability across individuals within a group; this motivates the constraint of geometric
metric fairness.1

1 When any factor of the geometric mean is 0, of course the geometric mean is itself 0, and it becomes
trivial to ensure geometric metric fairness; one merely has to assign Pr[C(u) = 1] = Pr[C(v) = 1] = 0 for
one person u ∈ A and another person v ∈ B. For this reason, the geometric mean (and the associated
definition of fairness) is most meaningful when probabilities are nonzero.

FORC 2023
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Fairness under functional composition

We focus on the two kinds of functional composition introduced (with the following examples)
by Dwork & Ilvento [7]:

AND. Suppose that, considered in isolation from one another, a university’s admissions
and financial aid committees treat every pair of similarly qualified prospective students
similarly. To what degree do similarly qualified students have similar likelihoods of
receiving admission and financial aid offers?
OR. Suppose that, considered in isolation from one another, several universities’ admissions
committees treat every pair of similarly qualified prospective students similarly. To what
degree do two similarly qualified individuals have very different overall likelihoods of
being accepted by at least one university?

More formally, we can define the AND and OR compositions of several classifiers:

▶ Definition 8. Fix classifiers C1, ..., Ck. Where u is an individual to be classified, define
the classifiers

CAND(u) =
∧

i∈[k]

Ci(u)

COR(u) =
∨

i∈[k]

Ci(u).

In other words, CAND accepts individual u if and only if each of C1, ..., Ck accepts u, and
COR accepts u if and only if at least one of the classifiers C1, ..., Ck accepts u.
Supposing Ci is (additive or multiplicative) metric fair with respect to di(u, v) for i ∈ [k], in
fairness under functional composition, we ask: With respect to what metric are CAND and
COR (additive or multiplicative) metric fair?

Our results

Having introduced the relevant definitions, we can state the paper’s results:

▶ Theorem 9 (Groups). If C is multiplicative metric fair with respect to d, then it is
geometric metric fair with respect to EMDd(A, B), the earth-mover distance between uniform
distributions on A and B, with d(u, v) giving the cost of moving a unit of probability from
u to v. Further, this is tight: for any metric d on U , there exists a classifier C which is
multiplicative metric fair with respect to d and for which

pΠ(A) = pΠ(B) · exp (EMDd(A, B)).

▶ Theorem 10 (Functions). If Ci is multiplicative metric fair with respect to di(u, v) for
i ∈ [k], then:

CAND is multiplicative metric fair with respect to dΣ(u, v) =
∑

i di(u, v).
COR is multiplicative metric fair with respect to dmax(u, v) = maxi di(u, v).

Further, these results are tight: for each of the above forms of composition and for any choices
of di for i ∈ [k], there exist classifiers Ci for i ∈ [k] which are multiplicative metric fair with
respect to di and whose composition is multiplicative metric fair with respect to no metric
smaller than the one stated above.

The rest of the paper is organized as follows. §1.1 discusses related work. §1.2 summarizes
the notation used in the paper. §2 discusses the relationship between notions of metric
fairness and the above notions of group fairness, proving the paper’s first main result. §3
discusses how notions of metric fairness behave under functional composition, proving the
paper’s second main result.
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1.1 Related work
Several recent works in algorithmic fairness studies how the fairness of classifiers locally
relates to that of the classifiers’ global behavior composed over many decisions, or to
that of a classifier that in some way composes the decisions of the individual classifiers
[6, 2, 7, 9, 10, 8, 12, 3, 4].

The need for work in this area is underscored by the fact that in practice, classifiers are
often trained separately and without communication, so that any guarantees on their global
behavior must rest solely on the decisions the designers of the classifiers are able to make
in isolation. In a recent survey of work on fairness in machine learning, Chouldechova and
Roth make exactly this point, calling for work exploring fairness under composition [5]:2

Experience from differential privacy suggests that graceful degradation under com-
position is key to designing complicated algorithms satisfying desirable statistical
properties, because it allows algorithm design and analysis to be modular. Thus, it
seems important to find satisfying fairness definitions and richer frameworks that
behave well under composition.

Much recent work on fairness under composition focuses in particular on the behavior
of additive metric fairness under various kinds of composition [7, 8, 12, 3]. There are two
papers which relate especially closely to this one. The first, written by Dwork, Hardt, Pitassi,
Reingold, & Zemel [6], introduced the notion of additive metric fairness and characterized
its relation to conditional parity. The second, written by Dwork & Ilvento [7], introduced
the kinds of functional composition (AND and OR) studied in this paper and made progress
in showing that additive metric fairness is not always well-behaved under these kinds of
composition; we summarize some of this work in §3.1. Our results are meant to complement
this line of research, by showing that multiplicative metric fairness is better-behaved in
treatment of groups and under functional composition.

1.2 Notation
A classifier C : U × {0, 1}∗ → {0, 1} is a (possibly randomized) Boolean-valued map, defined
on a universe U of individuals u ∈ U . We denote by 1 − C the classifier C ′ which accepts
precisely the individuals rejected by C: C ′(u) := ¬C(u). We say that a classifier accepts an
individual when it assigns them a label of 1 and rejects an individual when it assigns them a
label of 0. Throughout, d is a metric on U . For classifiers C1, ..., Ck, we use d1, ..., dk to denote
their corresponding metrics. We define dΣ(u, v) =

∑
i di(u, v) and dmax(u, v) = maxi di(u, v).

Subsets A, B ⊆ U denote protected groups. For a classifier C, we denote by pΠ(A) the
geometric mean likelihood of acceptance and by pΣ(A) the arithmetic mean likelihood of
acceptance. When there are multiple classifiers C1, ..., Ck, we assume the randomness of the
classifiers Ci to be mutually independent, and we use pi(u) to denote Pr[Ci(u) = 1]. We
define pAND(u) = Pr[CAND(u) = 1] and pOR(u) = Pr[COR(u) = 1], where CAND is the
AND composition and COR the OR composition of some classifiers C1, ..., Ck.

2 Dwork & Ilvento [7] point out an important difference between differential privacy and fairness under
composition: “Comparing functional composition to differential privacy, it is important to understand
that each component satisfying individual fairness separately (and for different metrics) is not analogous
to the composition properties of differential privacy. With differential privacy, we assume a single
privacy loss random variable which evolves gracefully with each release of information, increasing in
expectation over time. However, with fairness, we may see that fairness loss increases or decreases
(depending on the number and type of compositions) in idiosyncratic ways. Moreover, we may need to
simultaneously satisfy many different task-specific ‘fairness budgets,’ and a bounded increase in distance
based on one task may be catastrophically large for another.”

FORC 2023
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2 Treatment of groups

The relation of (conditional) parity to additive metric fairness has garnered recent interest
[1, 6].3 Dwork, Hardt, Pitassi, Reingold, & Zemel [6] give a tight characterization of
the relationship between additive metric fairness and parity, using the following notion of
earth-mover’s distance:

▶ Definition 11 (Earth-Mover’s Distance). Fix sets A, B ⊆ U and a collection of associated
costs d(u, v) ≥ 0 for each u ∈ A, v ∈ B. The earth-mover’s distance EMDd(A, B) is the
minimum amount of work required to transform a uniform distribution on A into one on
B, where the amount of work required to move a unit of probability from individual u to
individual v is given by d(u, v). Formally,

EMDd(A, B) =
∑

u∈A,v∈B

fu,v · d(u, v),

where the variables fu,v give an optimal solution to the following linear program (LP):

min
∑

u∈A,v∈B

fu,v · d(u, v)

fu,v ≥ 0
fu,v = 0 if u ̸∈ A or v ̸∈ B∑
v∈B

fu,v = 1
|A|

,
∑
u∈A

fu,v = 1
|B|

,
∑

u∈A,v∈B

fu,v = 1

Dwork, Hardt, Pitassi, Reingold, & Zemel [6] prove the following by LP duality, applied
to the LP in Definition 11:

▶ Theorem 12. If C is additive metric fair with respect to d, then for all A, B ⊆ U ,

|pΣ(A) − pΣ(B)| ≤ EMDd(A, B).

Further, this is tight: for all metrics d and choices of A, B, there exists a classifier C that is
additive metric fair with respect to d, such that the above inequality is an equality.

The above result says that if C is additive metric fair, then the earth-mover distance
gives a tight characterization of the extent to which C satisfies conditional parity. The same
authors observe that an identical upper bound holds if we instead assume that C and 1 − C

are multiplicative metric fair:

▶ Corollary 13. If C and 1 − C are multiplicative metric fair with respect to d, then for all
A, B ⊆ U ,

|pΣ(A) − pΣ(B)| ≤ EMDd(A, B).

3 We observe that there is no deep difference been parity (i.e. conditional parity where Q = U) and
conditional parity. It is clear that conditional parity is a generalization of parity. Conversely, conditional
parity is a version of parity where we stipulate that A and B are equally qualified.
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Thus the relationship between additive metric fairness and parity is well-understood, and it is
known already that multiplicative metric fairness performs “at least as well” as additive metric
fairness, in the sense that one can only get closer to satisfying parity in the multiplicative
case.

However, because Theorem 12 only provides a bound on the difference between arithmetic
mean conditional probabilities of acceptance, the guarantee can still hold when sub-groups
are treated very differently, so long as advantages and disadvantages of different sub-groups
are traded off in a way that maintains conditional parity. We now show Theorem 9, according
to which multiplicative metric fairness, in contrast to additive metric fairness, provides a
bound on the ratio of the geometric mean probabilities of acceptance:

Proof. We first show the upper bound and next show the lower bound. Fix a classifier C

which is multiplicative metric fair with respect to d, and fix any flow {fu,v}u∈A,v∈B solving
the earth-mover LP. Using the multiplicative metric fairness constraint, note that for all
u ∈ A, v ∈ B, we have

Pr[C(u) = 1]fu,v ≤ ed(u,v)·fu,v · Pr[C(v) = 1]fu,v .

Taking the product on both sides over all u ∈ A, v ∈ B gives∏
u∈A

Pr[C(u) = 1]
∑

v∈B
fu,v ≤

∏
u∈A,v∈B

ed(u,v)·fu,v ·
∏
v∈B

Pr[C(v) = 1]
∑

u∈A
fu,v .

Note that for u ∈ A, we have
∑

v∈B fu,v = 1/|A|, while for v ∈ B, we have
∑

u∈A fu,v = 1/|B|.
Thus

pΠ(A) ≤ exp{EMDd(A, B)} · pΠ(B)

Now, we show the lower bound. Fix any metric d. Let c be a constant with 1 ≤ c such
that d(u, v) ≤ c for all u, v ∈ U . Define the metric d′(u, v) = d(u, v)/c, so that d′(u, v) ∈ [0, 1]
for all u, v ∈ U . By Theorem 12, there exists a classifier C ′ which is additive metric fair with
respect to d′ and for which

|p′
Σ(A) − p′

Σ(B)| = EMDd′(A, B). (1)

Define C by

Pr[C(u) = 1] = exp{− Pr[C ′(u) = 1] · c}.

Because C ′ is additive metric fair with respect to d′, it follows that C is multiplicative metric
fair with respect to d:

ln
[

Pr[C(u) = 1]
Pr[C(v) = 1]

]
= − Pr[C ′(u) = 1] · c + Pr[C ′(v) = 1] · c ≤ d′(u, v) · c = d(u, v).

Suppose without loss of generality that p′
Σ(B) ≥ p′

Σ(A). Let us restate Equation 1 using the
definition of C:

1
c

·
∑
u∈B

− ln Pr[C(u) = 1]
|B|

− 1
c

·
∑
v∈A

− ln Pr[C(v) = 1]
|A|

= EMDd′(A, B)

= EMDd(A, B)
c

.

Eliminating the factor 1/c and making both sides the exponent of e, we obtain∏
u∈B Pr[C(u) = 1]−1/|B|∏
u∈A Pr[C(u) = 1]−1/|A| = pΠ(A)

pΠ(B) = exp{EMDd(A, B)},

as desired. ◀
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3 Functional composition

We first overview known results for additive metric fairness under functional composition;
this will serve to illustrate the contrast with multiplicative metric fairness.

3.1 Additive metric fairness under functional composition
Here, we rehearse known limitations and positive results for additive metric fairness of AND
and OR compositions, with an eye to explaining some of the difficulties that arise.

We start with AND fairness. Given the following result, it is tempting to conjecture that
CAND is additive metric fair with respect to the maximum of the individual metrics:

▶ Proposition 14 (Dwork & Ilvento [7]). Fix nontrivial metrics d1, d2 and let d be any metric.
If there exist u, v ∈ U such that

d(u, v) ≤ d1(u, v), d2(u, v), and
d1(u, v), d2(u, v) > 0,

there exist C1, C2, fair with respect to d1, d2, such that CAND is unfair with respect to d.

dxBut in fact even picking dmax does not guarantee additive metric fairness:

▶ Example 15. Let C1 and C2 be copies of the same classifier: pi(u) = 1, pi(v) = 1/2, and
di(u, v) = 1/2 for i = 1, 2. Then the classifiers Ci are individually additive metric fair with
respect to di(u, v), but their composition is not fair with respect to dmax(u, v) = maxi di(u, v).

In a sense, when probabilities are small, the choice of metric for the AND composition in the
additive case does not matter: as long as for each u, there exists some i with pi(u) ≤ d(u, v),
a fortiori pAND(u) ≤ d(u, v). Since without loss of generality pAND(u) ≥ pAND(v), we
have |pAND(u) − pAND(v)| ≤ d(u, v), giving fairness with respect to the arbitrary metric
d. In other words, if probabilities are small enough, additive metric fairness for the AND
composition trivializes.

We turn now to OR fairness. Dwork & Ilvento [7] observe that in the case of OR fairness,
it is natural to suppose that the metrics are identical; returning to an earlier example, if
the individual classifiers are admissions committees for different universities, it is natural to
suppose that the admissions committees compare candidates using similar metrics. In this
case the problem just discussed of picking a metric against which to compare the composition
is more tractable: one can pick the composition metric to be the same as the metrics of the
individual classifiers. Dwork & Ilvento’s results imply the following:

▶ Proposition 16 (Dwork & Ilvento [7]). Fix classifiers C1, ..., Ck that are additive metric
fair with respect to d. Consider two cases. If for all u, we have

Pr[COR(u) = 1] ≥ 1
2 ,

then for any classifier Ck+1 with Pr[Ck+1(u) ≥ 1/2] for all u ∈ U , the OR composition of
C1, ..., Ck+1 is additive metric fair with respect to d. If instead the above condition fails for
some u, v with nontrivial distance (d(u, v) > 0), then there exist two classifiers Ck+1, Ck+2,
additive metric fair with respect to d, such that the OR composition of C1, ..., Ck+2 is not
additive metric fair with respect to d.

In other words, the first, positive part of the above result says that if an initial collection
of classifiers is more likely than not to accept every individual, adding a classifier that shares
this property makes the entire collection’s OR composition fair. The second, negative part
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of the result says that if there are even two (nontrivially different) individuals the initial
collection is more likely to reject than accept, one can add two fair classifiers that make
the OR composition of the entire collection unfair. We earlier found that when when the
probabilities pi(u) are small enough, additive fairness for the AND composition trivializes;
we now find that when the probabilities are small, we have no positive result for the additive
metric fairness of the OR composition.

3.2 Multiplicative metric fairness under functional composition
We now show Theorem 10, which provides substantive fairness guarantees even when prob-
abilities of acceptance are small:4

Proof. For u, v ∈ U

pAND(u) =
∏

i

pi(u) ≤
∏

i

pi(v) · edi(u,v) = pAND(v) · e
∑

i
di(u,v).

This shows that CAND is multiplicative metric fair with respect to dΣ. To see that the
result is tight, one simply picks classifiers such that pi(u) = edi(u,v) · pi(v), so that indeed
pAND(u) = edΣ(u,v)pAND(v).

We next show that COR is multiplicative metric fair with respect to dmax and show that
this is tight. We only consider the case where k = 2, since iterating the argument then
gives the result for general k. Suppose without loss of generality that pOR(u) ≥ pOR(v). By
assumption C1, C2 are multiplicative metric fair with respect to dmax, so it suffices to show
the first inequality:

pOR(u)
pOR(v) ≤ max

[
p1(u)
p1(v) ,

p2(u)
p2(v)

]
≤ edmax(u,v).

To show the first inequality, we suppose pOR(u)/pOR(v) > p1(u)/p1(v) and show that it
follows that

pOR(u)
pOR(v) <

p2(u)
p2(v) .

Noting that pOR(u) = p1(u) + p2(u) − p1(u)p2(u), let us rephrase pOR(u)
pOR(v) > p1(u)/p1(v) after

clearing denominators:

p1(v)[p1(u) + p2(u) − p1(u)p2(u)] > p1(u)[p1(v) + p2(v) − p1(v)p2(v)].

After removing p1(v)p1(u) from both sides and factoring, the above says that

p2(u)p1(v)(1 − p1(u)) > p2(v)p1(u)(1 − p1(v)).

In other words,

p2(u)
p2(v) >

p1(u)
p1(v) · 1 − p1(v)

1 − p1(u) .

4 Dwork, Hardt, Pitassi, Reingold & Zemel [6] introduce the constraint equivalent to multiplicative
metric fairness for C and 1 − C. Theorem 10 illustrates why this paper has separated their definition
into two components: multiplicative metric fairness of 1 − Ci for i ∈ [k] does not yield multiplicative
metric fairness for 1 − CAND, where CAND is the AND composition of C1, ..., Ck, but instead yields
multiplicative metric fairness for the AND composition of 1 − C1, ..., 1 − Ck.
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We will later show that 1−p1(v)
1−p1(u) ≥ 1−p2(u)

1−p2(v) , but let us finish the proof on this assumption.
Combining this with the above inequality gives

p2(u)
p2(v) >

p1(u)
p1(v) · 1 − p2(u)

1 − p2(v) .

Clearing denominators, the above says that

p2(u)[p1(v) − p1(v)p2(v)] > p2(v)[p1(u) − p1(u)p2(u)]

Add p2(u)p2(v) to both sides. Then the above says that

p2(u)[p1(v) + p2(v) − p1(v)p2(v)] > p2(v)[p1(u) + p2(u) − p1(u)p2(u)],

or in other words, p2(u)/p2(v) > pOR(u)/pOR(v), as desired.
It remains for us to show that

1 − p1(v)
1 − p1(u) ≥ 1 − p2(u)

1 − p2(v) .

Since by assumption pOR(u) ≥ pOR(v), of course 1 − pOR(v) ≥ 1 − pOR(u). Noting that
pOR(v) = 1 − (1 − p1(v))(1 − p2(v)), we can rephrase 1 − pOR(v) ≥ 1 − pOR(u) as

(1 − p1(v))(1 − p2(v)) ≥ (1 − p1(u))(1 − p2(u)) ⇐⇒ 1 − p1(v)
1 − p1(u) ≥ 1 − p2(u)

1 − p2(v) .

We now show that the result for OR is tight. It again suffices to consider the case for
k = 2. Fix any metric d1(u, v) and put d2(u, v) = d1(u, v) − α for an arbitrarily small α > 0.
We claim there exist classifiers C1, C2 such that:

The classifiers C1, C2 are (respectively) multiplicative metric fair with respect to d1, d2.
COR is not multiplicative metric fair with respect to d2(u, v).

Let β1 ∈ (0, e−d1(u,v)], β2 ∈ (0, e−d2(u,v)] be parameters to be chosen later and define

p1(u) = β1 · exp[d1(u, v)]
p1(v) = β1

p2(u) = β2 · exp[d2(u, v)]
p2(v) = β2.

Then the classifiers C1, C2 defined by the above probabilities are multiplicative metric fair
with respect to d1, d2 (respectively). We claim that for β2 < β1·α

exp[d2(u,v)]·(1−β1) , we have

pOR(u) ≥ p1(u) > exp[d2(u, v)] · pOR(v),

so that COR is indeed not multiplicative metric fair with respect to d2. It suffices to show
the inequality on the right, which says that

p1(u) > exp[d2(u, v)][β1 + β2 − β1β2] = exp[d2(u, v)] · β1 + β2 · exp[d2(u, v)] · (1 − β1).

Subtracting exp[d2(u, v)] · β1 from both sides, this says that

β1 · α = p1(u) − exp[d2(u, v)] · β1 > β2 · exp[d2(u, v)] · (1 − β1),

which holds by our choice of β2. ◀
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1 Introduction

One of the principal practices in policy making is setting reasonable expectations for the
groups or individuals involved in the policy. Whether it is in the context of public policy,
education, or career development, a too low expectation (i.e., an easy-to-achieve goal) may be
a cause for not improving at one’s capacity, while a too high expectation (i.e., an out-of-reach
goal) may be discouraging to even make an attempt. To accommodate different levels of
participants’ abilities, the policy-maker may consider different levels of expectations and
design goals at various levels so that all (or most of) the participants have a goal within
their reach but not too easily achieved. At the other side from the policy-maker are the
participants who may view their goal as a mere requirement for accessing other benefits, e.g.,
increasing their chances of promotion or gaining freedom to pursue other opportunities. In
this case, the individuals may choose an easy-to-achieve goal rather than aim for maximal
improvement. Examples of such expectations include reading goals for youth, language
proficiency goals for applicants, outreach activities for employers, etc.

In this work, we consider the problem of helping agents improve by setting goals. Given
a set of target “skill levels”, we assume each agent will try to improve from their initial skill
level to the closest target level within reach (or do nothing if no target level is within reach).
The designer’s goal is to maximize the total improvement both with and without fairness
considerations.

Mathematically, we formulate this problem as follows. There are n agents belonging to g

distinct groups. Agent i has an initial skill level, pi ∈ Z≥0, and can increase their skill by at
most ∆i which is called its “improvement capacity”. Given a set of target levels T ⊂ Z≥0,
agent i improves to the closest target τ ∈ T such that τ > pi and τ ≤ pi + ∆i if such target
exists; otherwise it stays at pi.1

This problem formulation gives rise to multiple challenges. First, optimizing improvement
for a set of agents may conflict with another set. Consider a beginner-level agent (skill level
B) and an intermediate-level (skill level I). Agent I finds any level up to τI within reach.
Therefore, we need to design a project at level τI for this agent to improve maximally. On
the other hand, B has the capacity to improve until τB , where I < τB < τI – See Figure 1a.
Now, consider both target levels τB and τI . Since agent I now has a closer target of τB , this
agent no longer achieves its maximum improvement, and only reaches skill level τB . Secondly,
there is non-monotonicity in the placement of target levels, i.e., adding a new target to the
current placement may decrease the total amount of improvement. Consider a beginner-level
(B) and an intermediate-level (I) agent and a target, τ , achievable by both agents – See
Figure 1b. Designing a new project at level τ ′ between B and τ decreases the total amount
of improvement since one agent (if B < τ ′ ≤ I) or both agents (if I < τ ′ < τ) switch from
improving to τ to improving to τ ′, which requires less improvement.

𝑩 𝑰 𝝉𝑩 𝝉𝑰

(a) Conflict in optimizing improvement.

𝝉𝝉’𝑩 𝑰

(b) Non-monotonicity in set of target levels.

Figure 1 Challenges in designing optimal target levels.

1 We assume the policy-maker can disallow agent i from choosing a target τ ≤ pi. For example, in
designing reading goals for grade-school students, the fifth graders are not allowed to choose materials
from the second-grade level, although the reverse is allowed. Setting the base for each agent at their
true skill level is an abstraction of our mathematical model.



S. Ahmadi, H. Beyhaghi, A. Blum, and K. Naggita 5:3

Main Results. In this work, we consider algorithmic, fairness, and learning-theoretic
formulations, where a set of optimal target levels must be found in the presence of effort-
bounded agents. We use social welfare as the notion of efficiency and define it as the total
amount of improvement. Also, we define social welfare for a given group as the amount of
improvement that group achieves. We consider two models: (1) the common improvement
capacity model, where agents have the same limit ∆ on how much they can improve, and (2)
the individualized improvement capacity model, where agents have individualized limits ∆i.

The main results of the paper are:
1. An efficient algorithm for placement of target levels to maximize social welfare. (Section 3)
2. An efficient algorithm for outputting the Pareto-optimal outcome for the social welfare of

multiple groups. In particular, this can output the max-min fair solution that maximizes
the minimum total improvement across groups. (Section 4)

3. A structural result on Pareto-optimal solutions: there exists a placement of target levels
that simultaneously is approximately optimal for each group. More explicitly, when there
are a constant number of groups, the total improvement for each group is a constant-factor
approximation of the maximum improvement that we could provide that group if it were
the only group under consideration. This is our main contribution. (Section 5)

4. An efficient learning algorithm for near-optimal placement of target levels. (Section 6)
The algorithmic results work for both the common and individualized improvement

capacity models. However, the structural result only holds in the common improvement
capacity model, and we illustrate examples where achieving any nontrivial fraction of optimal
for all groups is not possible in the individualized capacity model.

Related work

Our work broadly falls under two general research areas: social welfare maximization in
mechanism design and algorithmic fairness. Specifically, the closest topics to our paper are
designing portfolios for consumers to minimize loss of returns [13], designing badges to steer
users’ behavior [4], and the literature on strategic classification.

Closest to our work is Diana et al.[13] who consider a model where each agent has a risk
tolerance, observed as a real number, and must be assigned to a portfolio with risk lower
than what they can tolerate. The goal of the mechanism designer is to design a small number
of portfolios that minimizes the sum of the differences between the agent’s risk tolerance and
the risk of the portfolio they take; in other words, it minimizes the loss of returns. Since this
is a minimization problem where each agent selects the closest target (portfolio) below their
risk tolerance, adding any new target can only help with the objective function. Therefore,
unlike our model, there is no conflict between targets, and the objective function is monotone
in the set of targets.

Designing targets to incentivize agents to take specific actions is also a common feature
of online communities and social media sites. In these platforms, there is a mechanism for
rewarding user achievements based on a system of badges (similar to targets in our model)
[4, 15, 5, 11, 12]. Among such papers, the closest to ours is Anderson et al.[4] who investigate
how to optimally place badges in order to induce particular user behaviors, among other
things. They consider a dynamic setting with a single user type interested in a particular
distribution of actions and a mechanism designer whose objective is to set badges to motivate
a different distribution of actions. Compared to our work, their model is more general in the
sense that users can spend effort on different actions (improve in multiple dimensions), but
also more specific, in the sense that there is only one user type; therefore, unlike our model
there is no conflict between different users and adding more badges for the desired action
always helps with steering the users in that direction (it is a monotone setting).
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Another line of work that is relevant is strategic classification. In most cases, agents
are fraudulently strategic, that is to say, game the decision-making model to get desired
outcomes (see [18, 14, 20, 23, 1, 10, 16, 9, 26] among others). In other cases, in addition to
actions only involving gaming the system, agents can also perform actions that truthfully
change themselves to become truly qualified (see [21, 19, 3, 28, 22, 17, 7, 25, 8, 2] among
others). In this paper, we assume agents only truthfully change themselves and, therefore,
focus on incentivizing agents to improve as much as they can.

Within the combinatorial optimization literature, our work is related to the uncapacitated
facility location (UFL) problem (see Chapter 4.5 of [27] for the problem definition). The main
distinction between our problem and UFL is that the objective in UFL is to minimize the
total distance traveled by the clients to reach their closest facility; whereas in our problem,
the goal is to maximize the total distance traveled by agents to their closest target within
reach.

Organization of the Paper

Section 2 formally introduces the general model settings and definitions used in the paper, and
Section 3 provides an efficient algorithm for the problem of maximizing total improvement.
Section 4 provides algorithms that output Pareto optimal solutions for groups’ social welfare,
including a solution that maximizes the minimum improvement per group. Section 5 provides
an algorithm that finds the best simultaneously approximately optimal improvement per
group and show it provides a constant approximation when the number of groups is constant.
In Section 6, we provide efficient learning algorithms which generalize the previous results
to a setting where there is only sample access to agents, and Appendix E provides further
extensions to our main problems. All missing proofs are deferred to the appendix.

2 Model and Preliminaries

There are n agents 1, . . . , n. Agent i is associated with two quantifiers: initial skill level, pi,
and improvement capacity, ∆i, which determines the maximum amount agent i can improve
its skill. For the majority of the paper, we assume pi and ∆i belong to Z≥0; however, some
of our results hold more generally for real numbers. We consider two different models. The
common and the individualized improvement capacity models. In the first model, all agents
have the same improvement capacity, i.e., ∆i are equal across agents; we substitute ∆i with
∆ in this case. The second model is a generalization where ∆i may have different values.
We use ∆max = max{∆1, · · · , ∆n}. Our solution is a finite set of target levels T ⊂ Z≥0.
We assume we are given a maximum number of allowed target levels k (if k = n, this is
equivalent to allowing an unbounded number of target levels).

Agents behavior. Given target levels T ⊂ Z≥0, agent i aims for the closest target above
its initial skill if it can reach to that target given its improvement capacity. More formally,
agent i aims for min{τ ∈ T : pi < τ ≤ pi + ∆i} if such τ exists and improves from pi to τ . If
no such target exists, agent i does not improve and its final skill level remains the same as
the initial skill level pi.

We use social welfare (SW) as our notion of efficiency and define it as the total amount
of improvement of agents.
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Groups and fairness notion. Each agent belongs to one of g distinct groups G1, · · · , Gg.
Given any set of target levels, the social welfare of group ℓ, SWℓ, is defined as the total
amount of improvement for agents in that group.2 We are interested in Pareto-optimal
solutions for groups’ social welfare. A solution T is Pareto-optimal (is on the Pareto frontier)
if there does not exist T ′ in which all groups gain at least as much social welfare, and one
group gains strictly higher. In particular, the Pareto frontier includes the max-min solution
that maximizes the minimum social welfare across groups. In this paper, we focus on two
natural fairness notions: one is the max-min solution described above, and the other is the
notion of simultaneous approximate optimality given below.

▶ Definition 1 (Simultaneous α-approximate optimality.). A solution with at most k targets is
simultaneously approximately optimal for each group with approximation factor 0 ≤ α ≤ 1 if,
for each group ℓ, the social welfare of group ℓ is at least an α fraction of the maximum social
welfare achievable for group ℓ using at most k targets.

Observation 2 determines the potential positions of the targets in an optimal solution.

▶ Observation 2. Without loss of optimality, the targets in an optimal solution are either at
positions pi + ∆i or pi for some i ∈ {1, 2, . . . , n}. Consider a solution where target τ does
not satisfy this condition. By shifting τ to the right as long as it does not cross pi + ∆i or
pi for any i, the total amount of improvement weakly increases: This transformation does
not change the sets of agents that reach each target, and only increases the improvement of
agents aiming for τ .

▶ Definition 3 (T p). The set of potential optimal target levels, T p, is
⋃n

i=1{pi, pi + ∆i}.

3 Maximizing Total Improvement

Algorithm 1 provides an efficient dynamic programming algorithm for finding a set of k

target levels that maximizes total improvement for a collection of n agents. The recursion
function T (τ, κ) finds the best set of at most κ target levels for agents on or to the right of
τ . Recall that any target τ only affects the agents on its left, and agent i such that pi < τ

never selects τ ′ > τ in presence of τ . In the recursive step (item 3 in Algorithm 1), T (τ, k) is
optimized by picking a target τ ′ > τ that maximizes the total improvement achieved by τ ′

plus the total improvement achieved in the subproblem T (τ ′, κ − 1).

▶ Algorithm 1. Run dynamic program based on function T , defined below, that takes ∪i{pi}
and k as input and outputs T (τmin, k), as the optimal improvement, and S(τmin, k), as the
optimal set of targets; where τmin = min{τ ∈ T p} and τmax = max{τ ∈ T p}. T (τ, κ) captures
the maximum improvement possible for agents on or to the right of τ ∈ T p when at most κ

target levels can be selected. Function T is defined as follows.
1) For any τ ∈ T p, T (τ, 0) = 0.
2) For any 1 ≤ κ ≤ k, T (τmax, κ) = 0.
3) For any τ ∈ T p, τ < τmax and 1 ≤ κ ≤ k:

T (τ, κ) = max
τ ′∈Tp s.t τ ′>τ

(
T (τ ′, κ − 1) +

∑
τ≤pi<τ ′ s.t. τ ′−pi≤∆i

(τ ′ − pi)
)

S(τ, κ) keeps track of the optimal set of targets corresponding to T (τ, κ).

2 Although the results are presented for the total improvement objective, they also hold for the average
improvement objective.
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▶ Theorem 4. Algorithm 1 finds a set of targets that achieves the optimal social welfare
(maximum total improvement) that is feasible using at most k targets given n agents. The
algorithm runs in O(n3).

4 Pareto Optimality and Maximizing Minimum Improvement

Algorithm 2 provides a dynamic programming algorithm that constructs the Pareto frontier
for groups’ social welfare. By iterating through all Pareto-optimal solutions, we can find
the solution that maximizes minimum improvement across all groups in pseudo-polynomial
time. In contrast to Algorithm 1 where the algorithm only needs to store an optimal solution
for each subproblem, here for each subproblem the algorithm stores a set containing all g-
tuples of groups’ improvements (I1, I2, · · · , Ig) that are simultaneously achievable for groups
{G1, · · · , Gg}.

▶ Algorithm 2. Run dynamic program based on function T , defined below, that takes
∀ℓ ∪i∈Gℓ

{pi} and k as input and outputs T (τmin, k), as the Pareto-frontier improvement
tuples, and S(τmin, k), as the Pareto-frontier sets of targets ; where τmin = min{τ ∈ T p} and
τmax = max{τ ∈ T p}. T (τ, κ) constructs the Pareto frontier for groups’ social welfare for
agents on or to the right of τ ∈ T p when at most κ target levels can be selected. Function T

is defined as follows.
1) For any τ ∈ T p, T (τ, 0) = 0g.
2) For any 1 ≤ κ ≤ k, T (τmax, κ) = 0g.
3) For any τ ∈ T p, τ < τmax and 1 ≤ κ ≤ k:

T (τ, κ) =
{(

Iℓ+
( ∑

τ≤pi<τ ′

s.t. τ ′−pi≤∆i

1

{
i ∈ Gℓ

}
(τ ′−pi)

))g

ℓ=1

, s.t. (Iℓ)g
ℓ=1 ∈ T (τ ′, κ−1), τ ′ ∈ Tp, τ ′ > τ

}

All the dominated solutions are removed from T (τ, κ). S(τ, κ) stores the sets of targets
corresponding to the improvement tuples in T (τ, κ).

▶ Theorem 5. Algorithm 2 constructs the Pareto frontier for groups’ social welfare using
at most k targets given n agents in g groups. When all pi, ∆i values are integral, it has a
time-complexity of O(ng+2kg∆g

max), where ∆max is the maximum improvement capacity.

▶ Corollary 6. There is an efficient algorithm that finds a set of at most k targets that
maximizes minimum improvement across all groups, i.e., maximizing min1≤ℓ≤g SWℓ.

The algorithm mentioned in Corollary 6 is pseudo-polytime since its time-complexity
depends on the numeric value of ∆max. Appendix C provides a Fully Polynomial Time
Approximation Scheme (FPTAS) to maximize the minimum improvement across all groups
for the setting where each group Gℓ has its own improvement capacity ∆ℓ. In the FPTAS,
we assume that pi, ∆i values are real numbers.

5 Simultaneous Approximate Optimality

In this section, we establish a structural result about the Pareto optimal solutions in the
common improvement capacity model, and show there exists a simultaneously approximately
optimal solution on the Pareto frontier, where the approximation factor depends on the
number of groups. More specifically, given g groups, and limit k ≥ g on the number of
target levels, we provide Algorithm 3 whose improvement per group is simultaneously an
Ω(1/g3) approximation of the optimal k-target solution for each group; implying a constant
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approximation when the number of groups is constant. This result is of significance because
natural outcomes such as the max-min fair solution and the union of group-optimal targets
may lead to arbitrarily poor performance in terms of simultaneous approximate optimality
– See Examples 10 and 11. This result only holds for the common improvement capacity
model, and in Example 12, we show such a solution does not exist for the individualized
improvement capacity model.

▶ Theorem 7. Algorithm 3, given limit k ≥ g on the number of target levels, outputs a
solution that is simultaneously Ω(1/g3)-approximately optimal for each group, in the common
improvement capacity model. More specifically, it provides a solution such that for all
1 ≤ ℓ ≤ g, SWℓ ≥ 1/(16g3)OPTk

ℓ , where OPTk
ℓ is the optimal social welfare of group ℓ

using at most k target levels.

▶ Corollary 8. There is an efficient algorithm to find a simultaneously α∗-approximately
optimal solution for each group in the common improvement capacity model, where α∗, defined
as the best approximation factor possible, is Ω(1/g3).

We are not aware if Ω(1/g3) is the best possible ratio; however, the following example
shows there are no simultaneously approximately optimal solutions with approximation factor
> 1/g.

▶ Example 9. Let ∆ = 1. Suppose group ℓ ∈ {1, 2, . . . , g} has a single agent at position
(ℓ − 1)/g; i.e., the agents are at 0, 1/g, . . . , (g − 1)/g. For each group, the optimal total
improvement is 1 in isolation (independent of the limit on the number of targets). However,
using any number of targets in total there are no solutions with > 1/g improvement for all
groups.

The following example shows that the max-min fair solution does not satisfy a simultaneous
constant approximation per group even when there are only two groups.

▶ Example 10. Let ∆ = 1. Group A has n agents; one agent at each position 1, 2, . . . , n.
Group B has n agents in k bundles of size n/k. The bundles of agents are at positions
n + 1 − k2/n, . . . , n + k − k2/n. The unique max-min solution has targets at n − k + 1, n −
k + 2, . . . , n + 1, and leads to k total improvement for each group which is k/n of the optimal
total improvement for group B.

The following example shows solving the optimization problem separately per group and
outputting the union of the targets can lead to arbitrarily low group improvement compared
to the optimum.

▶ Example 11. Suppose there are two groups A and B and no limit on the number of
targets. Group A has n agents at positions 1, 3, 5, . . . , 2n − 1. Group B has n agents at
positions 2 − ε, 4 − ε, . . . , 2n − ε. First, consider the common capacity model, where ∆ = 1.
In this case, the optimal solution for group A in isolation consists of targets at positions
{2, 4, . . . , 2n} and the optimal solution for group B is isolation is {3 − ε, 5 − ε, . . . , 2n + 1 − ε}.
Now, consider a solution that is the union of the targets in the two separate solution. Since
each agent in group B is in ε proximity of a target from group A, the total improvement in
group B is nε. Therefore, the total improvement in group B can be arbitrarily close to 0.
Next, consider the individualized capacity model, where agents in group A have ∆A = 1, and
agents in group B have ∆B = 1 + 2ε. The optimal set of targets in isolation for group A is
{2, 4, . . . , 2n}, and for group B is {3 + ε, 5 + ε, . . . , 2n + 1 + ε}. The union of these solutions
result in 1 + (n − 1)ε for group A, and nε for group B which are arbitrarily low compared to
the optimum, which is simultaneously ≥ n(1 − ϵ) for group A and ≥ n for group B.
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5:8 Setting Fair Incentives to Maximize Improvement

The following example shows that if agents can improve by different amounts (the
individualized improvement capacity model), then no approximation factor only as a function
of g of optimal improvement per group is possible.

▶ Example 12. Suppose groups A and B each have a single agent at position 0. The agent
in group A has improvement capacity ∆A = ε and the agent in group B has improvement
capacity ∆B = 1. The optimal total improvement in isolation for group A is ε, and for
group B is 1. However, when considering both groups, no placement of targets with positive
improvement for group A leads to > ε improvement for group B.

First, we describe a high-level overview of Algorithm 3 that proceeds in four main steps.
1. Optimal targets in isolation. Run Algorithm 1 separately for each group to find an

optimal allocation of at most ⌈k/g⌉ targets 3. Let T ℓ be the output for group ℓ.
2. Distant targets in isolation. Delete 3/4 fraction of each set of target levels, T ℓ, such

that (1) the distance between every two consecutive targets in each set is at least 2∆ and
(2) the new T ℓ (after deletion) guarantees an Ω(1) approximation of the previous step
when the targets for each group are considered in isolation. Section 5.2 below shows this
is possible.

3. Locally optimized distant targets in isolation. For each ℓ and τ ∈ T ℓ, consider
the agents in group ℓ that afford to reach τ (agents in Gℓ ∩[τ − ∆, τ)). Optimize τ to
maximize the total improvement for this set of agents.

4. Resolve interference of targets. Consider sets of interfering targets. Relocate these
targets locally to guarantee Ω(1/g2) approximation per group compared to the previous
step where each group was considered in isolation. Section 5.4 below shows this is possible.

5.1 Step 1: Optimal targets in isolation
At the end of step 1, T ℓ is the optimal set of targets for Gℓ in isolation. The following
observation shows that without loss of optimality, we may assume the distance between every
other target level is at least ∆.4

▶ Observation 13. Consider a set of target levels T : τ1 < τ2 < . . .. Suppose τj+2 < τj + ∆.
By removing τj+1, any agent with τj ≤ pi < τj+1 improves strictly more, and other agents
improve the same amount. This weakly increases social welfare.

5.2 Step 2: Distant targets in isolation
Step 2 of the algorithm runs the following procedure for T ℓ.

▶ Definition 14 (Distant targets procedure). Consider solution T : τ1 < τ2 < . . ., where for
all j, τj+2 − τj ≥ ∆ as input to the following procedure.

Partition T into 4 parts, P1, P2, P3, P4, where Pi =: τi, τ4+i, τ8+i, . . .. Consider the part
Pi that introduces the highest improvement. Update T to Pi (and delete the rest).

Lemma 15 shows that at the end of this step, target levels in T ℓ are 2∆ apart, this
step provides a 4-approximation compared to the previous step, and the number of targets
designated to each group is at most ⌊k/g⌋.

3 Although the total number of targets used in this step can be more than k, after the algorithm ends at
most k targets are being used in total.

4 Example 30, however, shows the distance between two consecutive targets may be arbitrarily smaller
than ∆.
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Algorithm 3 Simultaneous approximate optimality per group.

1 for ℓ = 1 to g do
/* Step 1 */

2 Let T ℓ : τ1 < τ2 < . . . be the output of Algorithm 1 for agents in Gℓ and limit
⌈k/g⌉ on the number of targets.

/* Step 2 */

3 Partition T ℓ to 4 parts P1, P2, P3, P4, where Pi := τi, τ4+i, τ8+i, . . ..
4 Update T ℓ by keeping the part with the highest improvement and deleting the

rest.
/* Step 3 */

5 Update Gℓ by deleting the agents that do not improve given T ℓ.
6 For all τ ∈ T ℓ, replace τ with the output of Algorithm 1 for agents in

[τ − ∆, τ) ∩ Gℓ and limit 1 on the number of targets.
/* Step 4 */

7 T : τ1 < τ2 < . . . = ∪ℓ T ℓ

8 S, T ∗ = ∅
9 for τj ∈ T do

10 sj = τj − ∆
11 S = S ∪ {sj}
12 Partition S : s1 < s2 < . . . into the least number of parts of consecutive points:

S1, S2, . . ., such that in each part, Si, each two consecutive points are at distance less
than ∆/g.

13 for all Si : su < su+1 < . . . < sv do
14 τ∗

i = min{τu, sv+1}.
15 T ∗ = T ∗ ∪τ∗

i .
16 return T ∗

▶ Lemma 15. Consider solution T : τ1 < τ2 < . . . with total improvement I such that for
all j, τj+2 − τj ≥ ∆. Consider the procedure in Definition 14. This procedure results in a
solution T ′ : τ ′

1 < τ ′
2 < . . . where ∀j τ ′

j+1 − τ ′
j ≥ 2∆, has total improvement at least I/4, and

| T ′ | ≤ ⌈| T |/4⌉. Particularly, for | T | ≤ ⌈k/g⌉ where k ≥ g, the number of final targets,
| T ′ |, is at most ⌊k/g⌋.

Proof. Since the best out of 4 parts have been selected, the total improvement at the end
of the procedure is at least 1/4 fraction of I. In addition, in the final set, every pair of
consecutive targets are indexed τj and τj+4. Therefore, since originally for all j, τj+2−τj ≥ ∆,
we have τj+4 −τj ≥ 2∆. Finally, since in each set of τj , . . . , τj+4 exactly one target is selected,
the final number of targets is at most ⌈| T |/4⌉. ◀

5.3 Step 3: Locally optimized distant targets in isolation
At the end of step 2, every two targets in T ℓ, the set of targets for group ℓ, are at distance
at least 2∆. Consider only the targets and agents in group ℓ. For each τ ∈ T ℓ, agents in
[τ − ∆, τ) improve to τ and the remaining agents do not improve. To continue with the
algorithm, we first delete the agents that do not improve (and update Gℓ accordingly). Then,
we optimize T ℓ for the set of agents that do improve. This modification is necessary for
the next step. To do the optimization, we use Algorithm 1 for agents in [τ − ∆, τ) for any
τ ∈ T ℓ and limit 1 on the number of targets, and replace τ with the output of the algorithm.

FORC 2023



5:10 Setting Fair Incentives to Maximize Improvement

▶ Lemma 16. At the end of step 3 in Algorithm 3, (i) the distance between every two targets
in T ℓ is at least ∆; (ii) each target τ ∈ T ℓ is optimal, i.e., maximizes total improvement for
the remaining agents in Gℓ ∩ [τ − ∆, τ); and (iii) the total amount of improvement of Gℓ

using solution T ℓ does not decrease compared to the previous step.

Proof. Let τ be a target at the beginning of step 3 and τ ′ be its replacement at the end of
this step.

We first prove statement (i). First, we argue for agents in [τ − ∆, τ), the optimal target
τ ′ belongs to [τ, τ + ∆]. Intuitively, the reason is that all these agents afford to improve to τ ;
therefore, a target smaller than τ is suboptimal. Also, none of the agents affords to improve
beyond τ + ∆. More formally, if τ ′ < τ , agents in [τ − ∆, τ ′) improve less compared to a
target at τ and agents in [τ ′, τ) do not improve. On the other hand, if τ ′ > τ + ∆, none of
the agents can reach τ ′ and the total improvement for these agents will be 0. Therefore, at
the end of this step, every target τ is replaced with τ ′ ∈ [τ, τ + ∆]. Now, by Observation 13
and Lemma 15, the distance between consecutive targets at the end of step 2 is at least 2∆.
Therefore, after the modification explained (shifting each target to the right by less than ∆)
this distance decreases by at most ∆ and becomes at least ∆.

Now, we move on to statement (ii). We need to argue if τ ′ is optimal for agents in
[τ − ∆, τ), it is also optimal for agents in [τ ′ − ∆, τ ′). By Lemma 15, at the beginning of
step 3, there are no targets in (τ, τ + 2∆); more specifically, there are no targets for agents
in [τ, τ + ∆) and these agents get eliminated in this step. Therefore, since τ ′ belongs to
[τ, τ + ∆], as shown in the proof of statement (i), we only need to argue that if τ ′ is optimal
for [τ − ∆, τ), it is also optimal for [τ ′ − ∆, τ). Suppose this was not the case, and there was
another target τ ′′ which was optimal for this set. Since the agents in [τ ′ − ∆, τ) are the only
agents with positive amount of improvement for target τ ′, replacing τ ′ with τ ′′ would result
in higher improvement for the whole set of agents in [τ − ∆, τ) which is in contradiction with
definition of τ ′.

Finally, we argue statement (iii). In step 3, we consider two sets of agents: those who do
not improve in step 2, and those who do. The new targets in this step have been optimized
for the second set and (weakly) increase their total improvement. Since the first set did not
have any improvement in the first place, the total amount of improvement (for the first and
second set) does not decrease in this step. ◀

Next, we extract properties about optimal solutions. Since at the end of step 3, T ℓ is
optimal for Gℓ we take advantage of these properties in the remaining steps of the algorithm.
Lemma 17 shows that if τ is optimal for agents in [τ − ∆, τ), a considerable fraction of these
agents reside in the left-most part of the interval. Lemma 18 shows that if τ is optimal for
agents in [τ − ∆, τ), substituting τ with another target in this interval, far enough from the
left endpoint, τ − ∆, guarantees a considerable fraction of the optimal improvement.

▶ Lemma 17. Consider optimal target τ for the set of agents A in [τ − ∆, τ) in absence of
other targets. For each 0 ≤ x ≤ 1, at least x fraction of A belong to [τ − ∆, τ − ∆ + x∆). In
particular, at least 1/(2g) fraction of the agents are in [τ − ∆, τ − (2g − 1)/(2g)∆).

Proof. Let px be the fraction of agents in A in [τ − ∆, τ − ∆ + x∆). Each of these agents
is improving by at least (1 − x)∆. Therefore, the contribution of these agents to total
improvement of A is at least px|A|(1 − x)∆. Since τ is the optimal target, it introduces at
least as much improvement as any other target, and in particular a target at τ ′ = τ + x.
Consider the total improvement introduced by τ ′ compared to τ (in absence of target τ).
The contribution of the agents in [τ − ∆, τ − ∆ + x∆) to total improvement reduces to 0, but
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the contribution of the agents in [τ − ∆ + x∆, τ) increases by (1 − px)|A|x∆. Since τ is the
optimal target, the loss of substituting it with τ ′ is at least as much as the gain. Therefore,
px(1 − x)∆ ≥ (1 − px)x∆; which implies px ≥ x. ◀

▶ Lemma 18. Consider optimal target τ for agents A in [τ −∆, τ) in absence of other targets.
By relocating τ to any point in [τ − ∆ + x∆, τ ], for 0 ≤ x ≤ 1, the total improvement of A is
at least x2/4 of the optimum. In particular, by relocating τ to any point in [τ − ∆ + ∆/g, τ ],
the total improvement is at least 1/(4g2) of the optimum.

Proof. Similar to the previous lemma, let px/2 be the fraction of agents in [τ − ∆, τ − ∆ +
(x/2)∆). After the relocation, each such agent improves by at least (x/2)∆; therefore, the
contribution of these agents to total improvement is at least px/2|A|(x/2)∆. The optimal
total improvement is bounded by |A|∆. Therefore, using px/2 ≥ x/2, by Lemma 17, the
total improvement after relocation is at least x2/4 of the optimum. ◀

5.4 Step 4: Resolve interference of targets
In this step, we consider the solutions for all groups together and resolve the interference of
targets designed for different groups. As illustrated in Example 11, this interference can lead
to arbitrarily low social welfare. To resolve this issue, we take advantage of sparsity of the
targets designed for the same group (step 2) and optimality of T ℓ for Gℓ (step 3).

The main purpose of this step is to recover an approximation guarantee of the total
improvement of each target in isolation at the end of step 3 by removing the interference
among the targets. Particularly, for each target τ ∈ T ℓ in isolation, we consider agents in Gℓ

reaching to that, i.e., agents in interval [τ − ∆, τ). By Lemma 17, a considerable fraction
of these agents are on the left-most side of the interval. And as shown in Lemma 18, as
long as there exists a target far enough from the left endpoint we are in good shape. More
precisely, if for all τ at the beginning of this step, there is a target in the final solution
in [τ − ∆ + ∆/g, τ ] (property 1), and no targets in (τ − ∆, τ − ∆ + ∆/g) (property 2), a
1/(4g2) fraction is achievable. The set of targets at the end of step 3 may fail to satisfy these
properties, because there may be targets τ ′ < τ such that τ ′ is not far enough from the left
endpoint of the interval corresponding to τ ; i.e., for s = τ − ∆, s < τ ′ < s + ∆/g.

To resolve the interference among the targets, in step 4, we work as follows. First, we
consider the left endpoints of improvement intervals corresponding to the targets; i.e., ∀τj , at
the end of step 3, consider sj = τj − ∆. Then, we partition these left endpoints into maximal
parts S1, S2, . . ., such that in each part, the distance between every two consecutive points
is small, particularly, less than ∆/g. Using the sparsity of the targets (step 2) the number
of points in each part is bounded. Finally, we design a new target τ∗

i (defined formally
below) corresponding to part Si, such that τ∗

i is to the left of any Sj with j > i, and at
distance between ∆/g and ∆ to the right of the points in Si (satisfying properties 1 and 2).
Using optimality of T ℓ for Gℓ (step 3) this results in the desired approximation factor. More
formally, this step proceeds as follows.
1. Let T : τ1 < τ2 < . . . be the union of the set of targets found at the end of step 3.
2. Construct S : s1 < s2 < . . . from T , such that ∀τj ∈ T , include sj = τj − ∆ in S.
3. Partition S into the least number of parts of consecutive points: S1, S2, . . ., such that in

each part Si : su < su+1 < . . . < sv, each two consecutive points are at distance less than
∆/g; i.e., ∀sr, sr+1 ∈ Si, sr+1 − sr < ∆/g. By construction of the first three steps (and
as shown in the proof of Lemma 19), the number of points in each part is at most g.

4. For each Si : su < su+1 < . . . < sv, consider new target τ∗
i = min{τu, sv+1}.

5. Output the set of new targets.
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▶ Lemma 19. Consider T as the union of all solutions at the end of step 3. For all τ ∈ T ,
consider the interval [τ − ∆, τ) which consists of agents that improve to target τ if it were
the only target available. At the end of step 4, (i) there will be a target in [τ − ∆ + ∆/g, τ ],
and (ii) there will be no targets in (τ − ∆, τ − ∆ + ∆/g).

Proof. Statement (i) is equivalent to (i’) for any s ∈ S, there will be a target in [s+∆/g, s+∆);
and statement (ii) is equivalent to (ii’) for any s ∈ S, there will be no targets in (s, s + ∆/g).
We prove (i’) and (ii’).

We first show the size of each part is at most g; i.e. ∀i, |Si| ≥ g. The proof is by
contradiction. Suppose there exists |Si| ≥ g + 1. Therefore, there exist sj < sj′ ∈ Si

and group index ℓ, such that sj + ∆, sj′ + ∆ ∈ T ℓ, and all s satisfying sj < s < sj′ ∈ Si

corresponding to targets in distinct groups other than ℓ. Therefore, there are at most g − 1
such s. Hence, sj′ − sj < g × ∆/g = ∆, implying there are two targets in T ℓ at distance
strictly less than ∆ which is in contradiction with Lemma 16.

Now, we prove statement (i”). In step 4, the final target corresponding to part Si : su ≤
su+1 ≤ . . . ≤ sv is defined as τ∗

i = min{τv, sv+1}. By definition, τ∗
i ≤ sv+1; therefore, it is

(weakly) to the left of any sj for j ≥ v + 1. Also, using |Si| ≤ g, sv < su + (g − 1)∆/g, which
implies τu − sv > ∆/g, and since by definition, sv+1 − sv ≥ ∆/g, both sv+1 and τu are at
least at distance ∆/g to the right of sv and any sj such that j ≤ v. This proves statement
(i”).

Finally, we prove (i’). In the proof of (ii’), we showed that τ∗
i ≥ sv + ∆/g which implies

τ∗
i ≥ s + ∆/g, ∀s ∈ Si. Therefore, it suffices to show τ∗

i ≤ su + ∆, which then implies
τ∗

i ≤ s + ∆, ∀s ∈ Si. The definition of τ∗
i directly implies τ∗

i ≤ su + ∆. ◀

5.5 Putting everything together
▶ Theorem 20. Algorithm 3, given k ≥ g, provides a solution with at most k number of
targets, such that for all 1 ≤ ℓ ≤ g, SWℓ ≥ 1/(16g2)OPT⌈k/g⌉

ℓ , where OPTk
ℓ is the optimal

social welfare of group ℓ using at most k target levels. This statement holds in the common
improvement capacity model.

Proof. By Observation 13 and Lemma 15, when the targets designed for each group are
considered separately and in isolation, at the end of step 2, there are at most ⌊k/g⌋ targets
designed for group ℓ and the total improvement in this group is 1/4-approximation of
OPT⌈k/g⌉

ℓ . By Lemma 16, Lemma 18, and Lemma 19, we lose another 4g2 factor compared
to step 2. In total, Algorithm 3 results in SWℓ ≥ 1/(16g2)OPT⌈k/g⌉

ℓ , for all groups 1 ≤ ℓ ≤ g.
Also, when k ≥ g, the total number of targets is at most g⌊k/g⌋ ≤ k. ◀

Proof of Theorem 7. Given Theorem 20, it suffices to argue OPT⌈k/g⌉
ℓ ≥ OPTk

ℓ /g; i.e.,
when the number of targets increases by a factor, here g, the optimal total improvement
increases by at most that factor. The argument follows using the subadditivity of total
improvement as a function of the set of targets. Specifically, consider the optimal k-target
solution and an arbitrary partition with g parts of size ⌈k/g⌉ or ⌊k/g⌋; by subadditivity, one
of the parts provides at least 1/g of the total improvement. ◀

Proof of Corollary 8. Algorithm 2 in Section 4 outputs the Pareto frontier for groups’
social welfare. By definition, the solution provided in Algorithm 3 is dominated by a
solution on the Pareto frontier. By computing the factor of simultaneous approximate
optimality of each solution on the Pareto frontier, we find the solution that achieves the best
simultaneous approximation factor α∗, and by Theorem 7, this solution is simultaneously
Ω(1/g3)-approximately optimal. ◀
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▶ Remark 21 (a weaker benchmark and a tighter gap). In contrast with Theorem 7 that
measures the performance of Algorithm 3 with respect to the optimal k-target solution for
each group (the notion of simultaneous approximate optimality), Theorem 20 measures the
performance with respect to the optimal ⌈k/g⌉-target solution for each group. Since the lower
bound provided in Example 9 shows achieving better than 1/g of either of these benchmarks
is not possible, there is only a factor g gap in the performance of the algorithm and the lower
bound with respect to the optimal ⌈k/g⌉-target solution.

6 Generalization Guarantees

In this section, we generalize our results to a setting where we only have sample access
to agents and provide sample complexity results. Section 6.1 provides a guarantee for the
maximization objective in absence of fairness, and Section 6.1 provides a guarantee for the
fairness objectives.

6.1 Generalization Guarantees For the Maximization Objective
Suppose there is a distribution D over agents’ positions. Our goal is to find a set of k

targets T that maximizes expected improvement of an agent when we only have access
to n agents sampled from D. For any distribution D over agents’ positions, we define
ID(T ) = Ep∼D[Ip(T )], where Ip(T ) captures the improvement of agent p given the targets
in T . In Theorem 22, we provide a generalization guarantee that shows if we sample a set S

of size n ≥ ε−2(∆2
max(k ln(k) + ln(1/δ))

)
drawn i.i.d from D, then with probability at least

1 − δ, for all sets T of k targets, we can bound the difference between average performance
over S and actual expected performance, such that

∣∣IS(T ) − ID(T )
∣∣ ≤ O(ε). Formally, we

show the following theorem holds:

▶ Theorem 22 (Generalization of the maximization objective). Let D be a distribution over
agents’ positions. For any ε > 0, δ > 0, and number of targets k, if S = {pi}n

i=1 is drawn
i.i.d. from D where n ≥ ε−2∆2

max
(
k ln(k) + ln(1/δ)

)
, then with probability at least 1 − δ, for

all sets T of k targets,
∣∣IS(T ) − ID(T )

∣∣ ≤ O(ε).

In particular, the solution T ∗ that maximizes improvement on S, also maximizes improvement
on D within an additive factor of O(ε).

In order to prove Theorem 22, we use two main ideas. First, using a framework developed
by Balcan et al. [6], we bound the pseudo-dimension complexity of our improvement function.
Then, using classic results from learning theory [24], we show how to translate pseudo-
dimension bounds into generalization guarantees. The framework proposed by Balcan et
al. [6] depends on the relationship between primal and dual functions. When the dual
function is piece-wise constant, piece-wise linear or generally piece-wise structured, they
show a general theorem that bounds the pseudo-dimension of the primal function. Formally
pseudo-dimension is defined as following:

▶ Definition 23 (Pollard’s Pseudo-Dimension). A class F of real-valued functions P -shatters
a set of points X = {x1, x2, · · · , xn} if there exists a set of thresholds γ1, γ2, · · · , γn such that
for every subset T ⊆ X , there exists a function fT ∈ F such that fT (xi) ≥ γi if and only
if xi ∈ T . In other words, all 2n possible above/below patterns are achievable for targets
γ1, · · · , γn. The pseudo-dimension of F , denoted by PDim(F), is the size of the largest set
of points that it P -shatters.
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Balcan et al. [6] show when the dual function is piece-wise structured, the pseudo-
dimension of the primal function gets bounded as following:

▶ Theorem 24 (Bounding Pseudo-Dimension [6]). Let U = {uρ | ρ ∈ P ⊆ Rd} be a class of
utility functions defined over a d-dimensional parameter space. Suppose the dual class U∗

is (F , G, m)-piecewise decomposable, where the boundary functions G = {fa,θ : U → {0, 1} |
a ∈ Rd, θ ∈ R} are halfspace indicator functions ga,θ : uρ → Ia·ρ≤θ and the piece functions
F = {fa,θ : U → R | a ∈ Rd, θ ∈ R} are linear functions fa,θ : uρ → a · ρ + θ, and m shows
the number of boundary functions. Then, PDim(U) = O(d ln(dm)).

We use Theorem 24 to bound the pseudo-dimension of the improvement function.

▶ Lemma 25. Let U = {uT : p → uT (p) | T ∈ Rk, p ∈ R} be a set of functions, where each
function defined by a set of k targets, takes as input a point p ∈ R that captures an agent’s
position, and outputs a number showing the improvement that the agent can make. Then,
PDim(U) = O(k ln(k)).

Proof. We use Theorem 24 to bound PDim(U). First, we define the dual class of U denoted
by U∗. The function class U∗ = {u∗

p : T → up(T ) | T ∈ Rk, p ∈ R} is a set of functions,
where each function defined by an agent p, takes as input a set T ∈ Rk of k targets 5, and
outputs the improvement that p can make given T . Geometrically, in the dual space, there
are k dimensions τ1, · · · , τk, and each dimension is corresponding to one target. In order
to use Theorem 24, we show that U∗ = (F , G, k) is piecewise-structured. The boundary
functions in G are defined as follows. If agent p improves to a target τi, then 0 < τi − p ≤ ∆,
where ∆ is the improvement capacity of p. Additionally, between all the targets within a
distance of at most ∆, p improves to the closest one. For each pair of integers (i, j), where
1 ≤ i, j ≤ k, we add the hyperplane τi − τj = 0 to G. Above this hyperplane is the region
where τi > τj , implying that τi comes after τj . Below the hyperplane is the region where
the ordering is reversed. In addition, for each target τi, we add the boundary functions
τi = p and τi = p + ∆ to G. In the region between τi = p and τi = p + ∆, τi is effective
and the agent can improve to it. Now, the dual space is partitioned into a set of regions. In
each region, either there exists a unique closest effective target (τr), or all the targets are
ineffective. In the former case, the improvement that the agent makes is a linear function
of its distance from the closest effective target (f = τr − p). In the later case, the agent
makes no improvement (f = 0). Therefore, the piece functions in F are either constant or
linear. Now, since the total number of boundary functions is m = O(k2) and the space is
k-dimensional, using Theorem 24, PDim(U) is O(k ln(k3)) = O(k ln(k)). ◀

Now, we are ready to prove Theorem 22.

Proof. Classic results from learning theory [24] show the following generalization guarantees:
Suppose [0, H] is the range of functions in hypothesis class H. For any δ ∈ (0, 1), and any
distribution D over X , with probability 1 − δ over the draw of S ∼ Dn, for all functions
h ∈ H, the difference between the average value of h over S and its expected value gets
bounded as follows:∣∣∣ 1

n

∑
x∈S

h(x) − Ey∼D[h(y)]
∣∣∣ = O

(
H

√
1
n

(
PDim(H) + ln(1

δ
)
))

5 If the input consists of k′ targets where k′ < k, it resembles the case where k targets are used and k − k′

of them are ineffective, i.e., are put at position τmin.
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In the case of maximizing improvement, H = ∆max and PDim(H) = O(k ln(k)). By
setting n ≥ ε−2∆2

max

(
k ln(k)+ln(1/δ)

)
, with probability at least 1−δ, the difference between

the average performance over S and the expected performance on D gets upper-bounded by
O(ε). ◀

6.2 Generalization Guarantees For Fairness Objectives
Suppose there is a distribution Dℓ of agents’ positions for each group ℓ. Let D =

∑g
ℓ=1 αℓDℓ

be a weighted mixture of distributions D1, · · · , Dg. Let αmin = min1≤ℓ≤g αℓ. Suppose we
have sampling access to D and cannot directly sample from D1, · · · , Dg. Our goal is to derive
generalization guarantees for different objective functions across multiple groups when we only
have access to a set S of n agents sampled from distribution D. Let IGℓ

(T ) denote the average
improvement of agents in group Gℓ ⊆ S given a set T of k targets. Let IDℓ

(T ) = Ep∼Dℓ
[Ip(T )],

where Ip(T ) captures the improvement of agent p given T . In Theorem 26, we show if we
sample a set S of O

(
α−1

min

(
ε−2∆2

max
(
k ln(k) + ln(g/δ)

)
+ ln(g/δ)

))
examples drawn i.i.d.

from D, then for all sets T of k targets and for all groups ℓ,
∣∣IGℓ

(T ) − IDℓ
(T )
∣∣ ≤ O(ε).

▶ Theorem 26 (Generalization across multiple groups). Let D be a distribution over agents’
positions. For any ε > 0, δ > 0, and number of targets k, if S = {pi}n

i=1 consisting of g

groups {Gℓ}g
ℓ=1 is drawn i.i.d. from D, where n ≥ (2/αmin)

(
ε−2∆2

max(k ln(k) + ln(2g/δ)) +
4 ln(2g/δ)

)
, then with probability at least 1 − δ, for all sets T of k targets, for all groups ℓ,∣∣IGℓ

(T ) − IDℓ
(T )
∣∣ ≤ O(ε).

Proof. Let S be partitioned into g groups where each group Gℓ has size nℓ. First, for each
group ℓ, let Aℓ denote the event that nℓ ≥ (nαℓ)/2. Using Chernoff-Hoeffding bounds we have
Pr[nℓ < (nαℓ)/2] ≤ e(−nαℓ)/8 ≤ δ/(2g). The last inequality holds since n ≥ 8 ln(2g/δ)/αℓ.
Next, for each group ℓ, let Bℓ denote the event that

∣∣IGℓ
(T ) − IDℓ

(T )
∣∣ ≤ O(ε), then:

Pr[Bℓ] ≥ Pr[Bℓ ∩ Aℓ] = Pr[Bℓ | Aℓ] · Pr[Aℓ] ≥ (1 − δ/(2g))(1 − δ/(2g)) ≥ (1 − δ/g) (1)

In the above statement, inequality Pr[Bℓ | Aℓ] ≥ (1 − δ/(2g)) holds since given Aℓ happens,
then nℓ ≥ ε−2∆2

max(k ln(k) + ln(2g/δ)), and by Theorem 22, event Bℓ happens with prob-
ability at least 1 − δ/(2g). Now, by Equation (1), Pr[Bℓ] ≥ 1 − δ/g. By applying a union
bound, event Bℓ happens with probability at least 1 − δ for any group ℓ. ◀

In particular, solution T ∗ satisfying one of the fairness notions considered in this paper,
e.g., simultaneous approximate optimality or maxmizing minimum improvement across
groups, on input S, achieves a performance guarantee within an additive factor of O(ε) on
inputs drawn from D.
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A Missing Proofs of Theorem 3

A.1 Proof of Theorem 4
▶ Theorem 4. Algorithm 1 finds a set of targets that achieves the optimal social welfare
(maximum total improvement) that is feasible using at most k targets given n agents. The
algorithm runs in O(n3).

Proof. Proof of correctness follows by induction. Suppose that the value computed for all
T (τ ′, κ′) where (τ ′, κ′) < (τ, κ) is correct. Here “<” means (τ ′, κ′) is computed before (τ, κ)
which is when κ′ < κ and τ ′ ≥ τ . First, if either τ = τmax or κ = 0, the induction hypothesis
holds since T (τmax, κ) = 0 for all 1 ≤ κ ≤ k, and T (τ, 0) = 0, for all τ ∈ T p. To show the
inductive step holds note that the algorithm considers the optimal value for T (τ, κ) as the
maximum of the T (τ ′, κ−1) +

∑
τ≤pi<τ ′ s.t. τ ′−pi≤∆i

(τ ′ −pi) over all the possible placement
of the leftmost target τ ′. Since T (τ ′, κ− 1) is computed correctly by the induction hypothesis
and all the possible placements of the leftmost target are considered, the value obtained at
T (τ, κ) is optimal and correct.

Now we proceed to bounding the time-complexity. There are O(nk) subproblems to
be computed. Consider a pre-computation stage where

∑
τ≤pi<τ ′ s.t. τ ′−pi≤∆i

(τ ′ − pi) is
computed for all pairs of τ, τ ′ ∈ T p. This stage takes O(n3) time. Computation of each
subproblem T (τ, κ) for all τ ∈ T p and 1 ≤ κ ≤ k requires O(n) operations. This is because
to compute max in property 3), we compute T (τ ′, κ − 1) +

∑
τ≤pi<τ ′ s.t. τ ′−pi≤∆i

(τ ′ − pi)
for O(n) potential target levels greater than τ , for which each takes O(1) time. Since there
are O(nk) subproblems, the running time of the algorithm is O(n2k + n3) = O(n3). ◀

B Missing Proofs of Section 4

B.1 Proof of Theorem 5
▶ Theorem 5. Algorithm 2 constructs the Pareto frontier for groups’ social welfare using
at most k targets given n agents in g groups, and has a running time of O(ng+2kg∆g

max),
where ∆max is the maximum improvement capacity.

Proof. Proof of correctness follows by induction and it is along the same lines as proof
of Algorithm 1. Suppose that Pareto-frontiers constructed for all T (τ ′, κ′) where (τ ′, κ′) <

(τ, κ) is correct. Here “<” means (τ ′, κ′) is computed before (τ, κ) which is when κ′ < κ and
τ ′ ≥ τ . First, if either τ = τmax or κ = 0, the induction hypothesis holds since T (τmax, κ) = ∅
for all 1 ≤ κ ≤ k, and T (τ, 0) = ∅, for all τ ∈ T p. The inductive step holds since the
algorithm considers all the possible placement of the leftmost target τ ′. Since T (τ ′, κ − 1)
is computed correctly by the induction hypothesis and all the possible placements of the
leftmost target are considered, the Pareto-frontier constructed at T (τ, κ) is correct.

Now we proceed to bounding the time complexity. Initially, in a pre-computation stage,
for each pair of targets τ, τ ′ ∈ Tp,

∑
τ≤pi<τ ′ s.t. τ ′−pi≤∆ℓ

1
{

i ∈ Gℓ

}
(τ ′ − pi) is pre-computed

for all groups and is stored in a tuple of size g. This stage can be done in O(n3). Each
set T (τ, κ) has size at most (n∆max + 1)g, since each individual can move for one of the
values {0, · · · , ∆max} and therefore, the total improvement in each group is one of the values
{0, · · · , n∆max}. At each step of the recurrence, given the information stored in the pre-
computation stage, the summation can be computed in O(g). When computing a subproblem
T (τ, κ), the recurrence searches over O(n) targets τ ′ ∈ T p, and at most (n∆max +1)g tuples of
group improvement in T (τ ′, κ−1). As a result, solving each subproblem takes O(ng(n∆max)g).
The total number of subproblems that need to get solved is O(nk). Therefore, the total
running time of the algorithm is O(ng+2kg∆g

max + n3) = O(ng+2kg∆g
max). ◀
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B.2 Proof of Corollary 6
▶ Corollary 6. There is an efficient algorithm that finds a set of at most k targets that
maximizes minimum improvement across all groups, i.e., maximizing min1≤ℓ≤g SWℓ.

Proof. Algorithm 2 constructs the Pareto frontier for groups’ social welfare. By iterating
through all Pareto-optimal solutions, we can find the solution that maximizes the minimum
improvement across all groups. There are at most (n∆max + 1)g Pareto-optimal solutions.
Finding the minimum improvement in each solution takes O(g). Therefore, in total, finding the
solution that maximizes the minimum improvement across all groups takes O(g(n∆max)g). ◀

C An FPTAS for Maximizing Minimum Group Improvement

In this section, we present a Fully Polynomial Time Approximation Scheme (FPTAS) to
maximize minimum improvement across all groups. Here, we assume that each group ℓ

has its own improvement capacity ∆ℓ. The algorithm finds a set of at most k targets that
approximates the max-min objective within a factor of 1 − ε for any arbitrary value of ε > 0.
Here, we relax the assumption on the integrality of pi, ∆i values needed for the running
time guarantee in Theorem 5, and suppose all pi, ∆i values are real numbers. Similar to the
dynamic program based on Algorithm 2, for each subproblem, a set containing all g-tuples
of improvements (I1, I2, · · · , Ig) that are simultaneously achievable for all groups is stored.
However, computing all such tuples takes exponential time since

∑k
i=1
(2n

i

)
possible cases of

targets’ placements need to be considered. Therefore, we discretize the set of all possible
improvements for this problem by rounding all the improvement tuples, and develop an
FPTAS algorithm. The recurrence for the dynamic program is given in Algorithm 4. The
algorithm runs efficiently when the number of groups is a constant.

▶ Algorithm 4. The algorithm considers two separate cases of k < g, and k ≥ g. For the
k ≥ g case, the algorithm finds a set of k targets that approximates the max-min objective
within a factor of 1 − ε for any arbitrary value of ε > 0. For the k < g case, it finds an
optimal solution for the max-min objective.

For the k ≥ g case, there exists an FPTAS for the max-min objective as follows. First,
run a dynamic program using the following recursive function to get a set of Pareto-optimal
solutions. In this Pareto-frontier, we show the solution that maximizes minimum improvement
across all groups, gives a (1 − ε)-approximation for the max-min objective. In the recurrence,
µℓ = ε∆ℓ/(16kg3) for 1 ≤ ℓ ≤ g, and ∆ℓ is the improvement capacity of agents in group ℓ.

F(τ ′, k′) =
{(

µℓ


I ′

ℓ +
(∑

τ ′≤pi<τ
s.t. τ−pi≤∆ℓ

1

{
i ∈ Gℓ

}
(τ − pi)

)
µℓ


)g

ℓ=1

,

s.t. (I ′
ℓ)

g
ℓ=1 ∈ F(τ, k′ − 1), τ ∈ Tp, τ ≥ τ ′

}
Intuitively, F(τ ′, k′) stores the rounded down values of the feasible tuples of group im-

provements when all agents on or to the right of τ ′ are available and k′ targets are used.
The corresponding set of targets used to construct the improvement tuples in F(τ ′, k′) is kept
in a hash table S(τ ′, k′), whose keys are the improvement tuples in F(τ ′, k′). The dynamic
program ends after computing F(τmin, k) and S(τmin, k). At the end, we output the set of
targets in S(τmin, k) corresponding to the improvement tuple that maximizes the improvement
of the worst-off group. Lemma 27 shows that this algorithm gives a (1 − ε)-approximation
for the max-min objective when k ≥ g.
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When k < g, for each subset of T p of size at most k that is corresponding to a placement
of targets, we store its corresponding improvement tuple. Next, we iterate through all
improvement tuples and output the one that maximizes minimum improvement.

▶ Lemma 27. Algorithm 4 gives a (1 − ε)-approximation for the max-min objective when
k ≥ g.

Proof. The proof is by induction. Consider an improvement tuple (I1, · · · , Ig) corresponding
to an arbitrary set of k − 1 targets, and let (I ′

1, · · · , I ′
g) denote the rounded down values

where I ′
ℓ = µℓ⌊ Iℓ

µℓ
⌋ for all 1 ≤ ℓ ≤ g. Suppose that for all 1 ≤ ℓ ≤ g, I ′

ℓ ≥ Iℓ − (k − 1)µℓ.
Now consider an improvement tuple (J1, · · · , Jg) corresponding to an arbitrary set of k

targets. For each 1 ≤ ℓ ≤ g, let J ′
ℓ = µℓ⌊ Jℓ

µℓ
⌋. We show that for each 1 ≤ ℓ ≤ g, J ′

ℓ ≥ Jℓ − kµℓ.
For all 1 ≤ ℓ ≤ g, let Jℓ = Lℓ + Iℓ, where Lℓ is the improvement of group ℓ that the leftmost
target provides, and Iℓ captures the true improvement of group ℓ that the remaining k − 1
targets provide. Let I ′

ℓ = µℓ⌊ Iℓ

µℓ
⌋. Then J ′

ℓ = µℓ⌊ Lℓ+I′
ℓ

µℓ
⌋ implying that J ′

ℓ ≥ Lℓ + I ′
ℓ − µℓ. By

the induction hypothesis, I ′
ℓ ≥ Iℓ − (k − 1)µℓ. Therefore,

J ′
ℓ ≥ Lℓ + I ′

ℓ − µℓ ≥ Lℓ + Iℓ − (k − 1)µℓ − µℓ = Lℓ + Iℓ − kµℓ

Therefore, for each set of k targets, the rounded improvement of each group ℓ stored in the
table is within an additive factor of kµℓ = ε∆ℓ/(16g3) of its true improvement. We argue that
in the solution returned by the algorithm, improvement of each group is at least (1 − ε)OPT .
First, when k ≥ 1, each group can improve for at least ∆ℓ by setting a target within a
distance of ∆ℓ from its rightmost agent. Now, using Theorem 7 when k ≥ g, there exists a
solution that is simultaneously 1/(16g3)-optimal for all groups. Therefore, the optimum value
of the max-min objective is at least OPT ≥ ∆ℓ/(16g3) for all 1 ≤ ℓ ≤ g. Therefore, for each
solution consisting of k targets, the rounded improvement of each group is within an additive
factor of εOPT of its true improvement. As a result, the minimum group improvement in
the returned solution is at least (1 − ε)OPT . ◀

In the following, we bound the approximation factor of our algorithm in both cases of
k ≥ g and k < g.

▶ Corollary 28. Algorithm 4 described above gives a (1 − ε)-approximation for the max-min
objective.

Proof. For the case of k ≥ g, by Lemma 27 the algorithm outputs a (1 − ε)-approximation.
For k < g, it outputs an optimum solution. Therefore, in total, it gives a (1−ε)-approximation
for the max-min objective. ◀

In the following, we bound the time-complexity of the algorithm.

▶ Theorem 29. Algorithm 4 has a running time of O(ng+2kg+1g3g+1/εg).

Proof. Initially, in a pre-computation stage, for each pair of targets τ, τ ′ ∈ Tp,∑
τ ′≤pi<τ s.t. τ−pi≤∆ℓ

1

{
i ∈ Gℓ

}
(τ − pi) is pre-computed for all groups and is stored in

a tuple of size g. This stage can be done in O(n3). Now, first consider the case where
k ≥ g. We show the dynamic programming algorithm using recurrence F(τ ′, k′) has a
running time of O(ng+2kg+1g3g+1/εg). Each set F(τ ′, k′) and S(τ ′, k′) has size at most∏g

ℓ=1(n∆ℓ/µℓ)g = (16nkg3/ε)g. At each step of the recurrence, given the information
stored in the pre-computation stage, the summation can be computed in O(g) . When
computing F(τ ′, k′), the recurrence searches over O(n) targets τ ∈ Tp, and at most
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∏g
ℓ=1(n∆ℓ/µℓ)g = (16nkg3/ε)g tuples of group improvement in F(τ, k′ − 1). As a res-

ult, solving each subproblem takes O(ng(nkg3/ε)g). The total number of subproblems that
need to get solved is O(nk). Therefore, the total running time of computing F(τmin, k) is
O(ng+2kg+1g3g+1/εg).

Next, consider the case where k < g. The algorithm considers O(ng) placements of
targets. Given the pre-computation stage, computing the improvement tuple corresponding
to each placement of targets takes O(kg). As a result, this case takes O(kgng).

Therefore, the total running time of algorithm is O(n3 + ng+2kg+1g3g+1/εg + kgng) =
O(ng+2kg+1g3g+1/εg). ◀

D Distance between consecutive target levels

Observation 13 shows it is without loss of optimality to assume the distance between every
other targets is at least ∆ in the common improvement capacity model. The following
example investigates this property for consecutive targets, and shows an instance where the
distance between two consecutive targets is arbitrarily small compared to ∆ in the optimal
solution.

▶ Example 30. Suppose ∆ = 1 and there is no limit on the number of targets. Suppose
there is an agent at position 0, an agent at position 1, and m agents at position 1 + 1/m.
The optimal solution is T = {τ1 = 1, τ2 = 1 + 1/m, τ3 = 2 + 1/m}. As m → ∞, the distance
between τ1 and τ2 approaches 0.

E Extensions and Open Problems

E.1 Extension 1: A lower bound on the number of agents that improve
Consider Algorithm 1 whose goal is to find a set of at most k target levels that maximizes
the total improvement for a collection of n agents. It is possible that the solution of this
algorithm focuses on a small fraction of the agents and does not help many agents to improve.
In Algorithm 5, we show how to modify Algorithm 1 to ensure at least nℓb agents improve.
The main idea for the recursive step (item 4 in Algorithm 5) is to first consider the potential
leftmost targets τ ′ > τ , let x denote the number of agents that are within reach to τ ′, and use
the smaller subproblem of finding the optimal targets for agents on or to the right of τ ′ with
one less available target level and an updated lower bound of η − x, i.e., S(τ ′, κ − 1, η − x).
We add the performance of each potential leftmost target to the optimal improvement of the
remaining subproblem and pick the leftmost target that maximizes this summation.

▶ Algorithm 5. Run dynamic program based on function S, defined below, that takes ∪i{pi}
and k as input and outputs S(τmin, k, nℓb), as the optimal improvement, and S′(τmin, k, nℓb),
as the optimal set of targets; where τmin = min{τ ∈ T p} and τmax = max{τ ∈ T p}. S(τ, κ, η)
captures the maximum improvement possible for agents on or to the right of τ ∈ T p when κ

target levels can be selected and at least η agents need to improve. If S(τmin, k, nℓb) = −∞
then incentivizing at least nlb agents to improve is impossible. Function S is defined as
follows.
1) For any τ ∈ T p, η ≥ 1, we have S(τ, 0, η) = −∞.
2) For any 1 ≤ κ ≤ k, η ≥ 1, S(τmax, κ, η) = −∞, where τmax = max{τ ∈ T p}. This holds

since no agents can improve to τmax, however at least η agents to the right of τmax need
to improve which is a contradiction.
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3) For any τ ∈ T p, 0 ≤ κ ≤ k, η ≤ 0, S(τ, κ, η) = T (τ, κ) where function T is defined
in Algorithm 1.

4) For any τ ∈ T p, τ < τmax, 1 ≤ κ ≤ k, and 1 ≤ η ≤ n:

S(τ, κ, η) = max
τ ′∈Tp

s.t τ ′>τ

(
S(τ ′, κ−1, η−1

[
i | τ ≤ pi < τ ′ s.t. τ ′ −pi ≤ ∆i

]
) +

∑
τ≤pi<τ ′

s.t. τ ′−pi≤∆i

(τ ′ −pi)
)

S′(τ, κ, η) keeps track of the optimal set of targets corresponding to S(τ, κ, η).

E.2 Extension 2: Optimizing the number of target levels
The nonmonotonicity property may make adding a new target level to the current placement
reduce the maximum improvement (see Figure 1b), or wasteful if we place the new target level
somewhere no agent can reach or on top of an existing target. Therefore, when considering
k = 1, 2, . . . , n, it is possible that the maximum total improvement is achieved at k < n.
Using the dynamic program based on Algorithm 1 we can find the minimum value of k that
satisfies this property and minimizes the number of targets subject to achieving maximum
total improvement. Furthermore, by finding the total amount of improvement for different
values of k, the principal can decide how many targets are sufficient to achieve a desirable
total improvement (bi-criteria objective).

E.3 Open Problem: Tightening the approximation gap
Algorithm 3, as stated in Theorem 7, provides an Ω(1/g3)-approximation simultaneous
guarantee compared to the optimal solution for each group using at most k targets; and as
stated in Theorem 20, provides an Ω(1/g2)-approximation simultaneous guarantee compared
to the optimal solution for each group using at most ⌈k/g⌉ targets. Example 9, on the other
hand, shows an instance where no solutions with > 1/g simultaneous approximation for the
groups is possible for either of the benchmarks. Therefore, there is a gap of O(g2) for the first,
and a gap of O(g) for the second benchmark. Finding the optimal order of approximation
guarantees for these benchmarks and tight lower bounds are the main problems left open by
our work.
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prestigious awards, qualifying applicants for government-issued licenses, assigning school
grades at any level of evaluation (from homework grades to testing grades to overall-course
grades), drug-testing, tournament-qualifying, . . . , all of these and many more scenarios may
be modeled as problems of screening.

The challenge of screening is that the principal has only indirect access to the agents’
private types, and critically, the agents are either unwilling to reveal their types or are
incentivized to take actions that make it difficult for the principal to infer their types. Since
these agents are strategic, their private information is only fully or partially elicited by
offering appropriate incentives.

This paper considers a screening model of school admissions where some students may
be disadvantaged relative to others. The school seeks the most skilled students but only
has access to an imperfect measure of skill, via test scores. Relative to their inherent skill,
disadvantaged students may perform worse on tests because they have less time to prepare
(e.g., due to work obligations or childcare). Advantaged students may perform better on tests
relative to their skill because they have access to additional resources (e.g., a private tutor
or test prep). We model this heterogeneity by assuming that applicants are distinguished
both in their skill as well as their budget (i.e., how much time and resources they are able to
put towards the test). Students with high skill and high budget are able to excel, provided
that they are willing to put in the effort. However, students with similarly high skill may
test poorly if their budgets are too low.

More precisely, we study a mechanism design problem for screening of budgeted agents. A
principal is interested in admitting only an agent with high skill-type above a given threshold.
The agent can only reveal private skill-level to the principal indirectly, by combining it
with an amount of effort into a publicly displayable signal of quality. However, the agent
is limited by a budget on effort, which induces a key difficulty for the principal: amongst
agent types exhibiting similar-quality signals, how to distinguish between talented agents
with high-skill-low-budget types and endowed agents with low-skill-high-budget types, while
contending with agents’ incentive-compatability constraints.

A key observation from the model is that it may be beneficial to admit students with
average test scores with nonzero probability, while at the same time always admitting students
with the highest test scores. By not guaranteeing admission for students with average test
scores, we limit the incentive for those students to put in effort. High-skill agents (regardless
of their budget) find effort less costly than low-skill students; therefore, as we decrease the
probability of admission, the low-skill students will reduce their effort more sharply than
high-skill students. Loosely speaking, if we lower the probability of admission enough for
students with average test scores, the equilibrium level of effort will drop until the high-skill
disadvantaged students’ budget constraint is no longer binding. This allows the school to
screen efficiently, at the cost of admitting high-skill students at a lower rate.

As a result, these randomized admission policies make it possible to implement a counter-
intuitive outcome. A student with high skill but low maximum test score (due to limited
budget) can receive strictly larger allocation than a student with low skill but high maximum
test score. The latter student is able to achieve scores that are strictly higher than the former
student can achieve, but the benefit of obtaining those scores (some probability of admission)
is not worth the effort for a low-skill student.

Our main result formalizes this intuition. It gives (1) a characterization of the structure
of the optimal mechanism for a (one-agent) setting with 2 skill types and n budget types,
and (2) a polynomial-time algorithm to find it. An interpretation of our main result is that
high-skill agent types may be shown preference over high-budget types despite the difference
in the types’ exogenous resources. Thus, our setting effectively studies the possibilities and
limits of improved-welfare of allocation to effort-budgeted agents.
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The paper ends with an introductory study of an extended setting which introduces
uniform, exogenous, unconditional subsidies to relax the agents’ budget constraints.2 Intu-
itively, the goal is to modify the environment of the admissions problem (as screening) to
further increase the balance of allocation in favor of high-skilled types. Subsidies are a potent
intervention because high-skill, budget-constrained agents are best able to use additional
effort to increase their highly-valued allocations. We show that the setting with subsidies
has optimal mechanisms with the same characterization as the original screening problem.

Related Works

Previous literature has varied its modeling of this central challenge of screening. [27] models
agents as having private abilities (types) that the market doesn’t observe, and agents with
higher abilities have economic incentives to be identified. [26] studied the role of interest
rates as a screening device, and showed that returns are not necessarily monotone with
respect to interest rates – a result that holds in equilibrium whenever borrowers strategically
react to the interest-rate mechanism.

In addition to the economics literature on screening, this work contributes to ongoing
research on strategic classification, mechanism design with budgeted agents, and fairness.

There is a well-developed literature on mechanism design where agents face budget
constraints. Earlier work focused on the case where budgets were public knowledge (e.g.,
[20, 21]). More recent work, like ours, focuses on the case where the agents’ budgets are
their private knowledge (e.g., [24, 11, 9]). Typically, budgets are monetary: they represent
upper bounds on how much each agent can transfer to the principal. In contrast, we consider
budgets on effort: upper bounds on how much effort the agent can put into its task.

In recent years, there has been a lot of interest in strategic classification problems, where
a principal is trying to classify agents on the basis of observed scores and agents are able to
manipulate (or “game”) the scores to influence the principal’s actions [13, 8, 15, 23, 1, 6, 10,
5, 18, 14, 3, 28, 22, 12, 4, 2]. Our model can be considered a strategic classification problem
where the school attempts to classify students into “admit” or “not admit”, but students are
strategic in how much effort they put in. The closest to our work are [15] and [5]. [5] show
the power of randomization when agents are able to manipulate their scores, while [15] study
a similar problem where disadvantaged students find it more difficult to manipulate their
scores.

In most models of strategic classification, agents obscure their true type at a cost. As
a result, costly effort makes scores less informative. In contrast, in our model of screening,
even high skill students need to put in effort in order to achieve a high score (albeit less effort
than low-skill students). If no students put in effort, they will all achieve a score of zero, and
the school will not be able to distinguish high-skill from low-skill students. As a result, costly
effort is necessary for scores to be informative in our model. We must balance the benefits of
costly effort in screening with the challenges of costly effort in strategic classification.

Finally, our work relates to a growing literature on fairness in mechanism design and
algorithms. Much of this literature is concerned with fair treatment of different subgroups
(e.g., based on demographic variables like race or gender), and various different definitions of
fairness have been proposed and criticized (see e.g., [7, 19]). Some of this work, like ours, has
been explicitly applied to school admissions (e.g., [17]). In line with the fairness literature,

2 Subsidies, measured in units of effort, can for example be monetary transfers from third-parties that
increase an agent’s effort-budget by freeing up time by reducing other paid work or by buying services.
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we consider the implications of a biased test (where high budget students may perform
better, regardless of their skill) for admissions. Unlike race and gender, the subgroups we
are interested in (students with a particular budget) are not publicly observable. Like [25]
and [16], we explicitly consider how economic incentives interact with policies designed to
correct for sources of unfairness.

2 Setting and Fundamental Structures

A principal P considers admitting an agent A = (s, b) with private types as skill s and budget
b (budget on effort, see below). The agent’s skill and budget are treated as independent,
positive Bayesian variables drawn respectively from known distributions S with support
S ∈ R+ and B with support B ∈ [0, 1], i.e., s ∼ S and b ∼ B. The principal only wants to
admit the agent in the case that the agent’s skill is above a threshold τ ∈ R+ (which we
implicitly treat as the principal’s fixed type). In summary, the principal’s problem is an
admission game G = (S, B, τ).

An agent of any skill will want to be admitted and thus, the principal must design a test
which uses incentives to elicit information from the agent. The principal will ask the agent to
commit to a private level of effort e which (a) is constrained by individual budget b, and (b)
induces a public, deterministic signal of quality q = s · e. Note that quality is a multiplicative
function of effort, rather than additive. This captures two features of our motivating example
of school admissions: (i) even high-skill agents that put in no effort will obtain a low score,
but (ii) high-skill agents require less effort to achieve a given score than low-skill agents.3

The principal’s problem will be to design an admission allocation rule y : R+ → [0, 1]
which maps quality q to a stochastic allocation x of admitting the agent. Practically, the
principal’s challenge is to optimally discriminate against resource-rich agent types with
quality resulting from large effort-budgets, in favor of agents with quality resulting from high
skill. (Note, any “reasonable” rule will inherently admit all high-skill-high-budget agents.)

The agent’s utility is defined to be −∞ if effort exceeds budget, and otherwise is defined
to be the probability of allocation minus effort:

uA(e, x) = x − e (1)

which implicitly sets the agent’s value of being admitted to 1. Utility can be equivalently
written as a function of the allocation rule y and either effort or quality:

uA(y, e) = y(s · e) − e or uA(y, q) = y(q) − q/s (2)

(Further, we may drop the input y where its assignment is clear from context.) The agent
perceives the allocation rule y as a menu (for which the domain is quality space), albeit
top-truncated at the agent’s maximum quality set by q† = s · b. This perspective induces
for the agent an optimal utility function u∗

A and an allocation rule x in skill space (which
overloads notation):

u∗
A(y, s) := max

e∈[0,b]
y(s · e) − e = max

q∈[0,q†]
y(q) − q/s (3)

x = x(y, s) := y(s ·

[
argmax

e∈[0,b]
y(s · e) − e

]
) (4)

3In contrast, suppose quality were an additive function q = s + e of skill and effort. Then property (ii)
would hold, but not property (i).
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For a given agent A, the principal’s utility from admitting A is uP (A | admitted) = s − τ .
Thus, our principal’s mechanism design problem is to maximize uP (G, y) which is the expected
utility from an admitted agent’s skill versus the threshold, weighted by allocation probability:

max
y

uP (G, y) := max
y

EA∼(S×B) [x(y, s) · (s − τ)] (5)

Threshold Mechanisms

A natural mechanism to consider is a threshold mechanism with the threshold set in quality
space.

▶ Definition 1. A (deterministic) threshold mechanism yq′ sets a quality threshold q′ ∈ R+
and admits an agent if and only if the agent exhibits public quality q ≥ q′.

The intuition for a threshold mechanism is that an agent who is able to exhibit the threshold
quality with effort less than budget will put in the (minimal amount of) effort necessary to
be admitted with probability 1; versus, an agent with maximum-quality q† less than the
threshold will put in zero effort and get passed. Recall that the agent’s skill and budget
are independent in our setting. The role of thresholds generally is to conditionally allocate
agents in decreasing order of skill:

▶ Fact 2. Given a population of agents as S × B, consider the subset Bb̄ of agent types
which conditionally have a specific budget b̄. For a threshold mechanism with any q′ > 0, the
subset of Bb̄ of agent skill-types which are admitted is upward-closed.

Fact 2 implies that threshold mechanisms are sufficient for the special case in which there is
only one budget type (with the proof of Proposition 3 in Appendix A.1):

▶ Proposition 3. Assume that an agent has constant budget b̄ on effort, i.e., the distribution
B is a singular point mass. The threshold mechanism yq′ with q′ = τ · b̄ is optimal.

Intuitively, Proposition 3 holds because single-budget is a simple setting in which quality-
thresholds directly implement skill-thresholds, in particular for the principal’s threshold τ .

To outline this section: Section 2.1 shows that threshold mechanisms are not optimal
for arbitrary distributions B and thus, we will need more-complicated mechanism forms.
Section 2.2 quantifies agent feasibility to achieve a given quality-allocation pair and, given
an allocation rule y, discusses implications of feasibility for optimal design. Section 2.3 gives
geometric interpretation of agent types (s, b) and their demand under an allocation rule y

(for input as quality q).

2.1 Generalization of Threshold Mechanisms to Lottery Menus
This section states that deterministic threshold mechanisms are not optimal in general (when
the distribution over budgets has multiple support). Consequently, we need to generalize the
class of mechanisms being considered. This section gives the sufficient extension to lottery
menus (Definition 6 below).

Insufficiency of deterministic thresholds is stated simply:

▶ Proposition 4. For admission games G in which the set of budgets is multiple, i.e. |B| > 1,
(deterministic) threshold mechanisms are not optimal generally.

The proof is by counter-example – we give the details and analysis of Example 28 in
Appendix A.2 where we conclude that all deterministic threshold mechanisms are dominated
by stochastic allocation x = (1 − ϵL/1 + ϵL − ϵx) with “small” ϵx for agents exhibiting at least
a minimum quality.
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Although we must now consider allocation rules y more generally than threshold mechan-
isms, without loss of generality, we may assume monotonicity of y:

▶ Lemma 5 (Monotonicity). For every admission game G, there exists an optimal allocation
rule that is weakly monotone increasing.

Proof. For every allocation rule ỹ that is strictly decreasing somewhere on its domain, the
principal gets the same utility from the “ratcheted” allocation rule ȳ(ỹ) which increases the
allocation in every decreasing region of ỹ to be equal to the left end point of the region, i.e.,
flat on the region. (The resulting ȳ(ỹ) is weakly monotone increasing.)

Principal utility is the same for ȳ and ỹ because every agent A = (s, b) gets the same
allocation: all qualities q where ȳ(q) ̸= ỹ(q) are ignored because they are dominated for both
functions by the “ratchet point”-quality (a weakly larger allocation requiring strictly less
effort is preferred). ◀

Thus, in order to identify the optimal mechanism, we propose lottery menus:4

▶ Definition 6 (Menu). A lottery menu mechanism is a (weakly) monotone allocation rule y

with menu options (q, x = y(q)), where x is the allocation probability for an agent exhibiting
quality q.

2.2 Leveraging Agent Feasibility to Improve Screening
This section formalizes the feasibility for an agent to choose a given menu option. Sub-
sequently, this section explains how lottery menus effectively leverage feasibility to promote
the principal’s objective: decreasing allocation necessarily discriminates in favor of higher-skill
agents (summarized below as Proposition 9; note, we can already observe this effect working
in Example 28).

Feasibility is due to (a) the budget constraint, and (b) a non-negative utility requirement:

▶ Definition 7. Menu option (q, x) is feasible for agent A = (s, b) if:
1. (affordability) minimal effort e∗ = q/s (to achieve quality q) is at most b, i.e., e∗ ≤ b; and
2. (rationality) (q, x) induces non-negative utility for A, i.e., uA(e∗, x) = x − e∗ ≥ 0.

▶ Fact 8. Menu option (q, x) is feasible for agent A = (s, b) if and only if q/s ≤ min{b, x}.
Upon choosing this option, A achieves utility uA(q) = x − q/s.

Fact 8 implies that we can use stochastic (partial) allocation to improve the principal’s
expected utility by discouraging a low-skill agent from applying. Consider two agents
described qualitatively as: high-skill-low-budget (AH) and low-skill-high-budget (AL), where
we naturally prefer to admit AH . Intuitively, we decrease x for a fixed q̄, we get the following
effects: (a) for larger b, the upper bound on q̄/s is set by x “sooner” (as it decreases, rather
than by budget); and (b) rationality is violated for AL before it is violated for AH . Both
effects (a) and (b) threaten AL’s utility. We state this formally as a ceteris paribus result,
where dependence on feasibility is clear in the proof:

4 If we consider admitting multiple agents drawn independently from S × B and our utility is
(independently) additive across decisions, it may be possible to negatively correlate admission decisions to
target the total number of admits. For example, if our setting is discrete and we choose an allocation rule
y, if kq agents apply with the same quality q, we may decide to run a lottery which admits exactly 1/y(q)
of the agents uniformly at random.
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▶ Proposition 9 (The Lotteries-in-Screening Proposition). For a fixed quality q̄, decreasing
the allocation y(q̄) when an agent exhibits quality q̄ increases the lower bound on the skill of
agents who feasibly choose (q̄, y(q̄)).

Proof. The agent’s utility is the difference between allocation and effort: y(q̄) − e. Utility
is 0 for a marginally-skilled agent with skill s∗ who must put in effort e∗ = y(q̄) to achieve
quality q̄. We also have the abstract definition: q = s · e. Substituting from the definition, we
have y(q̄) = q̄/s∗. The quality q̄ is fixed, thus decreasing the left-hand side requires increasing
the skill threshold s∗. ◀

2.3 Geometric Interpretation
This section introduces geometric interpretations of the problem (that will be useful for our
analysis of optimal mechanisms). The first of these visualizations is graphical representation
of an agent’s feasible allocations. Regions of feasibility map directly onto a graph of an
allocation rule y which has quality space as its domain and allocation as its output. As
exhibited in Figure 1(Top) which gives two graphic examples of these regions, we have the
following geometric observations:

▶ Fact 10. An agent A with skill s (ignoring budget and affordability):
is partially identified by a ray out of the origin with slope 1/s; this ray necessarily lower-
bounds A’s feasible region because this is the zero-utility line, i.e., points (q, x) on this
line result in A achieving utility of 0;
who chooses a menu option (q, x) – independent of being rational or not – will get utility
equal to the vertical difference between the chosen allocation x and the height q · (1/s) of
the zero-utility line at q (which directly interprets from definitions: uA(q) = x − q/s).

From the points of Fact 10, agent types partitioned by skill si ∈ S are identified with
their respective zero-utility lines. We illustrate this in Figure 1(Bottom) by expanding its
(Top)graphics to show a setting with two skill types: low skill sL and high skill sH . Within
this context, we give formal definitions:

▶ Definition 11. The low-skill agents’ line is their zero-utility line with slope 1/sL on the
(quality, allocation) graph for (budget-unconstrained) low-skill agents. Similarly, the high-skill
agents’ line is their zero-utilily line with slope 1/sH. Generally, we refer to zero-utility lines
as skill lines.

3 The Optimal Mechanism for 2-skill, Discrete-budget Types

This section solves the discrete-type setting for a principal with skill threshold τ and a
stochastic agent A = (s, b) with type-space defined by two skill-types with sL < τ < sH and
n budget-types with 0 < b1 < b2 < . . . < bn. Due to the discrete type-space, the optimal
mechanism may not be unique. Theorem 13 is sufficient to identify an optimal mechanism,
which is a slanted-stair function:

▶ Definition 12. A slanted-stair function f : R+ → [0, 1] (as an allocation rule) has f(0) = 0;
and is a weakly increasing function that begins as a sequence of line segments that all have
the same (constant), positive derivative. Each line segment has open lower bound and closed
upper bound. (The function’s output must reach 1 and is identically 1 for larger inputs.)

We refer to the line segments as slanted-steps. We refer to the (necessarily positive)
vertical gaps between slanted-steps as jumps.
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Figure 1 (Top) A menu option is a point (q, x) with coordinates respectively from quality space
R+ and allocation space [0, 1]. The blue regions are feasible for agent A = (si, b), i.e., A can select
these menu options (when they exist) and achieve non-negative utility. The regions’ lower-bound line
has slope 1/si. (Bottom) The red region is feasible for an agent AL = (sL, b). The blue region (which
entirely encompasses red) is feasible for agent AH = (sH , b). Regarding discussion of Proposition 9
in Section 2.2, observe how for fixed quality set by q = sL · b, it is possible to use decreased allocation
awarded to a fixed quality (at/below the vertical boundary between red and blue regions), in order
to exclusively admit a high-skill agent.

For a set of types T , let ∆(T ) be the probability simplex over the elements of T . Before
giving our main result, we state an interesting observation: there will be nothing in the
proof of Theorem 13 that requires the independence of S and B. Thus to state a stronger
main result, we define a correlated admission game by H = (S, BS , τ) where BS is a set of
conditional budget-distributions: one budget-distribution corresponding to each skill-type
with positive support in S.5

Agents in a correlated game have the same description as in the original, independent
game. By contrast, the principal’s objective must be updated to reflect the correlation:

max
y

uP (H, y) := max
y

EA∼(S, BS) [x(y, s) · (s − τ)] (6)

▶ Theorem 13 (Main Result). Given a correlated admission game H = (S = ∆({sL, sH}),
BS = {BsL

= ∆sL
({b1, . . . , bn}), BsH

= ∆sH
({b1, . . . , bn})}, τ) with 0 < sL < τ < sH and

0 < b1 < b2 < . . . < bn. There exists an optimal mechanism y∗ for the correlated admission
game H that is a slanted-stair function f with constant slope equal to 1/sL and at most one
jump, and with:
1. the region of the first slanted-step characterized by: equality to the low-skill agents’

zero-utility line;
2. the quality-index at which f jumps qjump (if it exists) characterized by: occurring either

at quality q0 = 0, or occurring at some maximum-possible quality exhibited by some
low-skilled agent AL,i = (sL, bi), i.e., at some qjump = q†

L,i = sL · bi;

5 Assuming discrete budget-distributions, while elements of BS may have distinct support, it is without
loss of generality to assume that they all have common, enumerated support b1, . . . , bn because any
locally-unused budget type bi can be locally assigned probability 0.
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Figure 2 (Top) A one-jump, slanted-stair allocation curve y (solid green) with qjump = sL · bi

and qx=1 = sH · bj . The black dots are an example of discrete menu options. Recall that agent
utility is interpretable as the vertical difference between allocation and (zero-utility) skill line. Any
low-skilled agent AL = (sL, bk) with q†

L,k = sL · bk ≤ sL · bi will choose menu option (0, 0) (per the
tie-breaking rule, see Definition 18). Any low-skilled agent with q†

L,k = sL · bk > sL · bi will choose
(sLbi + ϵ, y(sLbi + ϵ)) with ϵ → 0. Each high-skilled agent AH = (sH , bk) with k < j will achieve
maximum quality q†

H,k = sH · bk < sHbj ; and those with k ≥ j will achieve quality sHbj (and are
allocated with probability 1). (Bottom) A two-jump, slanted-stair allocation curve y (solid green).

3. the region of the second slanted-step (if it exists) characterized by: the quality at which f

intersects the allocation-of-1 horizontal line is the maximum-possible quality exhibited by
some high-skilled agent AH,j = (sH , bj), i.e., at some qx=1 = q†

H,j = sH · bj.
(Note, optimal assignment of mechanism parameters and the given characterizations of
Theorem 13 are sufficient to identify the height of the vertical jump, starting from the
low-skill agents’ line.)

The proof of Theorem 13 depends on a sequence of lemmas which we state at the end
of this section. The proofs of Theorem 13 and its supporting lemmas appear in the main
version of the paper. Graphically, the optimal menu (which may be discrete, corresponding
to our discrete setting) will qualitatively have the single-jump structure of Figure 2(Top)
with menu options on only two line segments (as two slanted-steps). Multi-jump structures
are precluded, such as the three-slanted-steps in Figure 2(Bottom).

The statement of Theorem 13 induces the following corollary regarding the polynomial
running time of a brute-force algorithm that searches over the possible combinations of jump-
points and jump-heights, which is sufficient to find the optimal algorithm of the statement’s
setting.

▶ Corollary 14 (Running Time). Given a correlated admission game H = (S = ∆({sL, sH}),
BS = {BsL

= ∆sL
({b1, . . . , bn}), BsH

= ∆sH
({b1, . . . , bn})}, τ) with 0 < sL < τ < sH and

0 < b1 < b2 < . . . < bn and – per Theorem 13 – the sufficient, discrete search space for an
optimal algorithm.

The optimal mechanism may be identified by a brute-force search over the O(n2) unknown
combinations of parameters of the optimal characterization (Theorem 13). The time to
evaluate each allocation rule (resulting from a combination of parameters) also runs in
polynomial time.
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3.1 Discussion of Optimal Characterization in Theorem 13
Having a characterization of optimal mechanisms, we would like to understand qualitatively
their performance. We will discuss two dimensions of efficacy: (1) mechanism performance, of
course, as the originally-defined objective; and (2) fairness, which informally is a measurement
of how well outcomes-per-agent-type conform to some definition of what outcomes the agents
arguably deserve, specifically compared to other agents’ type-outcome pairs.

Regarding mechanism performance, we know that the single-jump, slanted-stair character-
ization of Theorem 13 improves on the (deterministic) threshold mechanisms of Definition 1
which are not generally optimal (by Proposition 4), except for games with convenient distri-
butions S and B (e.g., Proposition 3). On the other hand, optimal mechanism performance
still falls short of the offline optimal benchmark which has full information and which is
generally unachievable; rather, we may use it as a reference mechanism to which we compare
performance:

▶ Definition 15. Given a stochastic agent A = (s, b), the offline optimal mechanism for a
principal requiring skill-threshold τ – which is assumed to know the realized skill type of the
agent as ŝ ∼ S – admits the agent if ŝ > τ and only if ŝ ≥ τ ; and this admission decision is
independent of the agent’s realized budget type b̂ ∼ B.

The offline optimal mechanism is unconditionally optimal, as it fully allocates every agent
with skill above the threshold and fully rejects every agent with skill below it. In order to
increase the performance of mechanisms beyond what is possible from Theorem 13 – i.e.,
from standard mechanism design subject to agents’ incentive compatibility constraints – in
Section 4 we consider a modified admission problem in which the agent may have exogenous
access to a subsidy.

Regarding fairness, we first must consider the philosophical concept of what comparisons
between distinct agents’ type-outcome pairs may arise as fair or as unfair within the para-
meters of our model (Section 2). Loosely summarizing: our agents independently have higher
or lower skills and higher or lower budgets; and by best-responding to a given allocation rule
based on skill and budget, agents are consequently admitted with larger or smaller probability.
Reasonably, agent “skill” is positively correlated with student value and agent budget is
independent, so we posit that higher skill types are more-deserving of being admitted than
lower types, independent of budget. Moreover, the degree of worthiness should increase with
increasing cardinal difference in skill types.

Thus, we consider the following concept of fairness: regardless of budget, larger (admission)
allocations given to lower-skilled agents are comparatively judged to be unfair outcomes as
the higher-skilled type is more-deserving; and the larger the skill-difference, the larger the
unfairness. Furthermore the strict contrapositive also holds: comparatively larger allocations
given to higher-skilled agents are more fair. However, the choice of function used to measure
technically the unfairness of an allocation rule remains debatable.

From the following intuition, the mechanism design problem of our admission-game model
should be positively aligned with objectives resulting from our concept of fairness. First,
recall the principal’s utility from admitting an agent A, which is uP (A | admitted) = s − τ .
Given this utility function, the principal has a precise, cardinal utility measure over admitting
agent skill-types, which has both order and cardinality aligned with fairness as desired,
regardless of the technical fairness measure. I.e., the principal is incentivized to choose
an allocation rule that increases fairness. In at least one sense, this is strictly true, which
moreover motivates the principal’s objective function itself (see equation (6)) as a formal
example of fairness measure:
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▶ Fact 16. Where incentive compatibility permits, the principal is incentivized to inherently
prefer that between two agent types with different skill levels, the agent type with higher skill
will receive the larger allocation probability.

▶ Corollary 17. Given a correlated admission game H = (S = ∆({sL, sH}),
BS = {BsL

, BsH
}, τ) with 0 < sL < τ < sH and 0 < b1 < b2 < . . . < bn. For the fair

mechanism design problem which maximizes the fairness measure set equal to the principal’s
utility function, the optimal mechanism and characterization of optimal mechanisms are
determined identically to Theorem 13.

Second, the offline optimal mechanism can illustrate the alignment between the principal’s
mechanism design incentives and fairness. On one hand, offline optimal represents perfect –
albeit generally unachievable – performance for the mechanism. On the other hand, by giving
allocation 1 to an upward-closed set of skill-types above τ , allocation 0 to a downward-closed
set of skill-types below τ , and any constant allocation to skill-type exactly τ , the allocation is
arguably fair because no rejected skill-type can protest for increased allocation on the basis
that it is strictly more-deserving than any admitted skill-type. Thus, the offline optimal
mechanism as ideal-objective further aligns the principal and fairness.

For purposes of space, we defer discussion of a third intuitive perspective supporting the
alignment of optimal mechanisms and fairness to Appendix A.3.

3.2 The Proof of Theorem 13
We need one more critical detail to set up the proof of Theorem 13. Depending on allocation
rule y, an agent A may be indifferent between a set of quality-allocation menu options that
are optimal for A. To address this, we define our tie-breaking rule:

▶ Definition 18. When an agent’s set of optimal menu options is multiple, the tie-breaking
rule is: all agents choose the smallest menu option of the set. (Note, “smallest” is the same
in either dimension of quality or allocation.)

This tie-breaking rule is material for our results: it is sufficient to break ties optimally in
favor of the principal’s objective.6 Recalling that utility is equal to the vertical difference
between the allocation and the height of the zero-utility line (Fact 10), the key effect of
tie-breaking is observed in Figure 2: within a region of a single slanted-step, low-skill agents
are indifferent everywhere and choose the minimal allocation at the left endpoint of the region.
This tie-breaking rule applies for all result statements and proofs in this paper.

As an overview, the proof of Theorem 13 proceeds as a search for the optimal mechanism.
This search is organized as a sequence of reductions of the search space: it starts with an
allocation rule that is monotone (Lemma 5 on page 6) but is otherwise arbitrary; and then
with each successive lemma, we prove that it is sufficient to restrict attention to a smaller
set of allocation rules. Lemma 23 is the last reduction in the sequence and states that
the optimal mechanism must be a slanted-stair function (Definition 12) with at most one
jump. The final proof of Theorem 13 starts from the statement of Lemma 23 and proves the
additional details in its own statement.

6 This tie-breaking rule is justified similarly to tie-breaking in other areas of mechanism design, e.g.,
in auctions with a revenue objective in which agents with value equal to price are assumed to buy, in
favor of the designer’s objective. Intuitively, the justification is that small perturbations to the design can
achieve the same outcome within arbitrary (lossy) required precision; so instead, we simplify the analysis
by allowing ties and breaking them favorably, rather than accounting for a notation-heavy perturbation.
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All of the following lemmas assume the same setting as the statement of Theorem 13,
which is: given a correlated admission game H = (S = ∆({sL, sH}), BS = {BsL

=
∆sL

({b1, . . . , bn}), BsH
= ∆sH

({b1, . . . , bn})}, τ) with 0 < sL < τ < sH and 0 < b1 <

b2 < . . . < bn.
With this overview in place, the sequence of reductions of the search space is:

▶ Lemma 19 (Lower bound). An optimal allocation rule is never under the low-skill agents’
line.

▶ Lemma 20 (Strong monotonicity). There exists an optimal allocation rule y∗ that everywhere
has a derivative lower bound set by 1/sL (the slope of the low-skill agents’ line).

▶ Lemma 21 (Constant allocation slope). There exists an optimal allocation rule y∗ that is a
slanted-stair function, i.e., it everywhere has constant derivative equal to 1/sL (the slope of a
low-skill agents’ line), allowing for arbitrary, discretely-indexed, positive, vertical jumps.

▶ Lemma 22 (A corner-case exclusion). There exists an optimal allocation rule y∗ for which
the optimal menu option of the agent type with smallest maximum-quality gives 0-allocation.
(This agent is A = (sL, b1) with q†

L,1 = sL · b1.)

▶ Lemma 23 (Sufficiency of at-most one jump). There exists an optimal allocation rule y∗

that is a slanted-stair function with at most one jump; furthermore, if there is a jump in
a given y∗, then its allocation in the region of the first slanted-step must be equal to the
low-skilled agents’ line.

The proofs for each lemma in this sequence appear in the full version of the paper.

4 Mechanisms for Agents with Subsidized Effort

This section considers agent subsidies directly in effort-space. A budget on effort implies a
time-constraint. Effort-subsidies are an intervention that increases the agent’s effort-budget
by freeing up an agent’s time spent on other obligatory activities. Technically, we consider
subsidies as uniform, additive increases to agents’ budget constraints. These subsidies are
offered unconditionally: agents may spend the time on an outside-option (leisure) activity; or
they may invest the time in effort, which they experience as costly (i.e., as the opportunity
cost of the forfeited leisure time). E.g., subsidies may be provided by performing time-costly
tasks for agents’ benefit (like uniformly offering free postal pickup/delivery) – freed from the
burden of the task, agents enjoy leisure or spend their time exerting effort in our model.

The main goal of this section is to solve for the characterization of the optimal mechanism
of the (modified) admission game which has expanded setting parameters that make it
possible to consider a combined-question of screening and design of unconditional subsidies.
Corollary 24 states that its characterization is the same as Theorem 13. We also show that
this subsidies setting can only help the principal’s objective (in Proposition 26).

4.1 The Setting with Subsidies
We add the following elements to the correlated setting of Theorem 13 (based on Section 2).

The mechanism designer may a priori offer to the agent A = (s, b) an effort-budget subsidy
d from a non-negative range, i.e., the subsidy is d ∈ [D−, D+]. The agent accepts the whole
subsidy unconditionally and the agent’s new budget is b + d.
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It is not possible to restrict access to the subsidy to sub-classes of agent-types: not to
high-skill agents and not to disadvantaged agents. The constant subsidy amount is necessarily
available to each type indiscriminately because the realizations of an agent’s skill/budget
types are unknown at the time of the offer, i.e., at the time of subsidized-mechanism design.
While we can not use uniform subsidies to discriminate directly, we will be able to improve
the principal’s objective using the following observation: given an optimal single-jump,
slanted-stair allocation (as characterized by Theorem 13), note that the budget constraint
binds for all high-skill agents receiving allocation less than 1 and they would benefit from
relaxing the budget constraint; but for almost all low-skill agents, the budget constraint is
not binding because their utility is constant on each slanted-step. This first-order-condition
analysis suggests that high-skill agents will voluntarily convert unconditional subsidies to
effort and increased allocation, whereas low-skill agents will not.

The subsidy (to increase effort-budget) is exogenous as if enacted and paid by an unrelated
third party at no cost to the mechanism. E.g., in an admission problem, the school may be a
city’s unique, public, magnet high school. The subsidy may be paid uniformly to each eligible
applicant by a citywide scholarship program which is separate from the school’s admissions
office but which has the money to provide the subsidy (up to D+ per student) and must
support a citywide goal of maximizing utility from specifically the magnet school’s admissions
policies. In this case, the magnet school admissions office (as our model’s principal) optimizes
d ∈ [D−, D+] and the scholarship program must approve it.

For this Section 4, the updated correlated admission game with subsidies is given by
D = (S, BS , τ, D−, D+). For a given subsidy d > 0, agent A = (s, b) has maximum quality
q‡ = s · (b + d), which is larger than the maximum quality without the subsidy (q† = s · b).
The agent’s updated optimal utility function v∗

A and updated optimal allocation rule w in
skill space – subject to allocation rule y – are:

v∗
A(y, s, d) := max

e∈[0,b+d]
y(s · e) − e = max

q∈[0,q‡]
y(q) − q/s (7)

x = w(y, s, d) := y(s ·

[
argmax
e∈[0,b+d]

y(s · e) − e

]
) (8)

In equation (8), note that because the subsidy is unconditional, the agent pays the full cost
of effort e, including the (opportunity) cost of effort above the original budget b.

For a given agent A, the principal’s utility from admitting A remains the function
uP (A | admitted) = s − τ . Thus, the principal’s updated mechanism design problem
is to maximize vP (D, y, d) which is the expected utility from an admitted agent’s skill versus
the principal’s threshold τ , weighted by allocation probability according to w (which accounts
for the subsidy):

max
y, d∈[D−,D+]

vP (D, y, d) := max
y

EA∼(S, BS) [w(y, s, d) · (s − τ)] (9)

4.2 Results with Subsidies
The main result of this section is: the optimal mechanism when agents have access to
unconditional subsidies has the same characterization as the original game, as described in
Theorem 13. Moreover, we are immediately ready to state and prove it as a corollary:

▶ Corollary 24. Given a correlated admission game with subsidies D = (S = ∆({sL, sH}),
BS = {BsL

= ∆sL
({b1, . . . , bn}), BsH

= ∆sH
({b1, . . . , bn})}, τ, D−, D+) with 0 < sL < τ <

sH and 0 < b1 < b2 < . . . < bn. The structure of the optimal mechanism has the same
characterization as the standard game, as given in Theorem 13.
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Proof. As part of identifying the optimal mechanism – according to equation (9) – the
designer selects an optimal assignment to the subsidy variable d ∈ [D−, D+].

Consider an optimal assignment d∗ (any element of the argmax is fine). The optimal
mechanism associated with d∗ must be the same as the optimal mechanism for an alternative
game D′ which sets parameters S, BS , τ to be the same as D, but which assigns the endpoints
of allowable subsidies to both be d∗, i.e., D′ has D− = D+ = d∗.

This corollary then follows directly from Lemma 25(2) below. ◀

While Corollary 24 is sufficient to give us characterization, it does not give us an algorithm
to find the optimal mechanism because it uses theoretical existence of the optimal subsidy
d∗ without identifying it.

The following observations regarding correlated admission games with subsidies are
straightforward. Omitted proofs in this section appear in the full version of the paper.

▶ Lemma 25. A correlated admission game with subsidies is D = (S = ∆({sL, sH}), BS =
{BsL

= ∆sL
({b1, . . . , bn}), BsH

= ∆sH
({b1, . . . , bn})}, τ, D−, D+). Consider arbitrary D,

i.e., consider its inputs as variables.
1. Without loss of generality, we may reduce D to a correlated game D′ which has D′

− = 0.
2. A game D fixing an exact subsidy by setting D− = D+ is equivalently described by a game

HD and thus is characterized by the statement of Theorem 13.
3. If D− = 0, then expanding the original correlated admission game H = (S, BS , τ) to

consider admissions with subsidies – formulated as the updated game D – can only increase
the utility of the principal.

4. Given S, BS , τ , there exists a minimal subsidy upper bound Dm
+ such that for all D+ ≥ Dm

+ ,
the optimal mechanism achieves the offline optimal performance (see Definition 15), i.e.,
it is able to perfectly discriminate between high-skill and low-skill agent types regardless
of their budgets.

Lemma 25(3) is fairly obvious: if D− = 0, then the principal has the option of “free disposal”
of the subsidy-variable and can do no worse than the game without subsidies. The more
interesting statement is that the principal’s objective can only improve for D− > 0 generally:

▶ Proposition 26. For arbitrary D− ≥ 0, expanding the original correlated admission game
H = (S, BS , τ) to consider admissions with subsidies can only increase the utility of the
principal.
In the proof of Proposition 26, we consider specifically the subsidy d = D− > 0 and (determ-
inistically) transform the optimal allocation rule without subsidies into a new allocation rule
with weakly larger performance given the uniform, unconditional agent’s budget-subsidy D−.
In particular in comparison to the optimal allocation without subsidies, the new allocation
gives all low-skill agent-types weakly smaller allocation, and gives all high-skill agent-types
weakly larger allocation.

This new allocation rule is not necessarily optimal for its (subsidized) setting, but by
dominating the original setting, its existence proves that the principal’s objective can only
improve. On the other hand, the new allocation rule may harm the agents’ utilities (for any
agent type, except low-skill-low-budget agents who already get 0-allocation before subsidies
and who still get 0). While this assessment is not a final judgment (because the new
allocation is not necessarily optimal), it is consistent with observations in [15] which showed
that subsidies for disadvantaged agents might harm their utilities.
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A Deferred Proofs of Propositions and Lemmas

A.1 Proof that a Threshold Mechanism is Optimal for Single-budget
▶ Proposition 3. Assume that an agent has constant budget b̄ on effort, i.e., the distribution
B is a singular point mass. The threshold mechanism yq′ with q′ = τ · b̄ is optimal.

Proof. The optimality of yq′ in fact follows from the stronger statement in Lemma 27
(below). ◀

The offline optimal mechanism (Definition 15) is generally unachievable. Despite that caveat,
it is possible to achieve the offline optimal mechanism for the special case of singular budgets,
as subsequently stated in Lemma 27. Recall the intuition given in the main body of the paper:
“Proposition 3 holds because single-budget is a simple setting in which quality-thresholds
directly implement skill-thresholds, in particular for the principal’s threshold τ .”

▶ Lemma 27. Assume that an agent has constant budget b̄ on effort, i.e., the distribution
B is a singleton point mass. Without directly observing the realization of the agent’s skill
ŝ ∼ S, the threshold mechanism yq′ with q′ = τ · b̄ is offline optimal.

Proof. We will show that yq′ is offline optimal by showing that it gives allocation 1 to
every (randomized) agent skill-type which gives positive utility to the principal, and gives
allocation 0 to every agent skill-type which gives negative utility to the principal, thus
pointwise-maximizing the principal’s utility function.

For agent A = (s, b̄), the minimum effort required to reach threshold q′ is e′ = q′/s = (τ/s) b̄.
Then e′ ≤ b̄ is affordable (and rational) for A if and only if τ/s ≤ 1, an inequality which itself
is true if and only the principal’s utility s − τ ≥ 0 (from admitting A; see page 5). By setting
the quality threshold to be the maximum achievable by the skill level τ (which corresponds
to 0-utility for skill-type τ), the mechanism allocates to exactly the upward closed set of all
agent types from which it receives positive utility (Fact 2), and no others. ◀

A.2 Example of Insufficiency of Deterministic Mechanisms
The following Example 28 provides the proof-by-counterexample for Proposition 4.

▶ Example 28. Admission game admission game G = (S, B, τ) is defined as follows.
Agent A has discrete skill space with two types (i.e, |S| = 2) with low skill sL = 1 + ϵL

(for ϵL → 0) and high skill sH = 2. Agent A has discrete budget space with two types
(|B| = 2) with low budget bL = 1/2 and high budget bH = 1. The distributions S and B

have positive mass on each element of their respective supports but otherwise we leave them
indeterminate. The principal P ’s skill threshold to measure utility is τ = 3/2.

The following analysis will show that for the setting of Example 28, all deterministic threshold
mechanisms are dominated by stochastic allocation x = (1−ϵL/1 + ϵL−ϵx) for agents exhibiting
quality at least 1.

As a starting point, consider the deterministic threshold mechanism yq′ which picks
q′ = 1. The following gives initial analysis of an agent with high skill type sH :

minimum effort to achieve q′ is: eH = 1/2;
utility from achieving threshold q′ is: 1 − 1/2 = 1/2;
an agent of type (sH , bH) will put in effort to be admitted (given q′ = 1 and furthermore,
whenever q′ < 2);
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an agent of type (sH , bL) will also put in effort to be admitted, but critically, can not put
in effort to be admitted if q′ is increased above 1 by any ϵq > 0 because this agent-type
(sH , bL) is bounded by maximum quality q† = sH · bL = 2 · 1/2 = 1.

Alternatively, the following gives initial analysis of an agent with low skill type sL:
minimum effort to achieve q′ is: eL = 1/1 + ϵL;
utility from achieving threshold q′ is: 1 − 1/1 + ϵL = ϵL/1 + ϵL;
an agent of type (sL, bH) will put in effort to be admitted (given q′ = 1);
an agent of type (sL, bL) will put in 0 effort (because maximum quality is less than q′).

Offline-optimal (Definition 15) allocates all agents with skill (sH , ·) and rejects all agents
(sL, ·). The current quality threshold under consideration q′ = 1 is the largest threshold
that will admit types (sH , bL). Let πa,T be the probability corresponding to arbitrary agent
type-attribute a ∈ {s, b} and tier T ∈ {L, H}. The performance of every threshold mechanism
fails to approach the performance of offline optimal (we write “≫” to indicate that the gap
is bounded away from 0):

thresholds q′
+ > q′ = 1 will not admit types (sH , bL) and thus will additively underperform

offline optimal by at least:

πs,H · πb,L · (sH − τ) = πs,H · πb,L · (1/2) ≫ 0

thresholds q′
− ≤ q′ = 1 will admit types (sL, bH) and thus will additively underperform

offline optimal by at least:

πs,L · πb,H · (τ − sL) = πs,L · πb,H · (1/2 − ϵL) ≫ 0

However, if we maintain q′ = 1 and rather decrease the probability of allocation from 1 to
(1 − ϵL/1 + ϵL − ϵx) for ϵx → 0, then all high types still strictly put in effort and will be
admitted (with near-certainty), but the low types now strictly prefer to put in 0 effort.

Formally, for (single-menu-option) allocation x = y(1) = (1 − ϵL/1 + ϵL − ϵx), the utility
calculations are (assuming minimum effort to be admitted, ignoring affordability due to
budget):

agents with high skill type sH have utility: u(H,·) = y(1) − eH = 1/2 − ϵL/1 + ϵL − ϵx > 0;
agents with low skill type sL have utility: u(L,·) = y(1) − eL = −ϵx < 0.

Considering, ϵL → 0 and ϵx → 0, the admission-rate of high-skill agents approaches 1 and thus
the expected performance of this mechanism becomes arbitrarily close to the performance of
offline optimal. Therefore, it strictly improves on the best of any deterministic threshold
mechanism (which can’t approach performance of offline optimal by the analysis above).

This completes the counterexample to illustrate that deterministic mechanisms are not
sufficient.

A.3 A Comparison of Slanted-Stair Allocation to Deterministic
Threshold

Section 3.1 gives discussion of the optimal characterization of mechanisms in Theorem 13. For
purposes of space, we complete here the discussion of alignment between optimal mechanisms
and fairness. To summarize the initial discussion in the main body, this alignment first is
observed intuitively from the structure of the principal’s utility from admitting an agent A,
which is uP (A | admitted) = s − τ . Second, the offline optimal allocation is the “perfect”
mechanism performance and is also arguably an ideal allocation in terms of fairness. We
now give an additional intuitive perspective supporting this alignment.
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Figure 3 (Top) Illustration of a one-jump, slanted-stair allocation curve y∗ (solid green), which
is assumed to be optimal for its game parameters (for analysis purposes). The black dots are an
example of discrete menu options. The single jump occurs at qjump = sLbi. Regarding discussion in
Appendix A.3: the first, left-most region is “below the jump;” the second, middle region is “above
the jump but not fully allocated;” and the third, right-most region is “full allocation.” (Bottom) The
(strictly-greater-than) threshold mechanism with threshold set equal to the jump-point in (Top), i.e.,
with q′ = qjump = sLbi.

Third – analyzing qualitatively for both mechanism performance and fairness – we can
make a comparison between (a) an optimal single-jump-at-qjump, slanted-stair allocation rule
y∗ of Theorem 13; and (b) the specific – albeit modified – threshold mechanism that jumps
from allocation 0 to 1 at the same quality qjump. For convenience, we copy Figure 2(Top)
into Figure 3.

The modification is that the threshold mechanism in this section will require for admission
that an agent’s exhibited quality be strictly greater than the threshold. This organizes the
closed-versus-open endpoints of the threshold-step in a way that allows for a more-direct
comparison to slanted-stair functions. This is illustrated in Figure 3(Bottom).

Graphically, the optimal mechanism y∗ (which may be a discrete menu, corresponding
to our discrete setting) will qualitatively have the single-jump structure of Figure 3(Top).
Using agent skill/budget-indexing of Figure 3 (i.e., notation), the general structure of y∗ has
three regions:
1. the left-most region is “below the jump” defined by qualities q ∈ [0, qjump = sLbj ];
2. the middle region is “above the jump but not full allocation” defined by qualities q ∈

(qjump = sLbj , sHbL);
3. the right-most region is “full allocation” defined by the quality q = sHbL (and all larger

qualities, though rational agents never choose these larger levels, which require exerting
superfluous effort to achieve, without an increase in allocation).

The allocation rule y∗ is optimal for the standard principal-objective, so it obviously dominates
the threshold mechanism with its quality-space threshold set to be q′ = qjump = sLbj . In
the following discussion, agents are considered to be “in” the region which contains their
optimally-chosen quality for the given mechanism (subject to tie-breaking). We qualitatively
analyze the same comparison for fairness:
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1. in the left-most region, low-skill agents receive 0-allocation according to both y∗ and
the threshold mechanism; by contrast, high-skill agents receive 0-allocation according to
the threshold mechanism, but positive allocation according to y∗ (the solid green line in
Figure 3(Top); we suggest in this first region – regardless of the choice of fairness measure
– that the fairness of y∗ dominates the fairness of the threshold mechanism;

2. in the middle region, all low-skill agents receive allocation y∗(q) for q → (qjump)+ (from
above) according to y∗ (by tie-breaking), which for all low-skill agents increases to
full-allocation of 1 according to the threshold mechanism; whereas each high-skill agent
(sH , bj is exhibiting its respective maximum quality q†

H,j = sH · bj and receives allocation
y∗(q†

H,j) according to y∗ which increases to full-allocation of 1 according to the threshold
mechanism;
in this second region, we can not make a dominance argument because it partially depends
on the unknown densities of agent-types represented in this region and it also depends
on the technical measure of fairness; however, ignoring expectation and proportional
density and instead simply comparing agents one-to-one, we do observe that low-skill
types receive the larger benefit (increase in allocation) if we start with y∗ as our default
mechanism and consider changing to the threshold mechanism; furthermore, the threshold
mechanism abolishes the (properly oriented) cardinal difference between low-skill and
high-skill agents by instead awarding them an “arguably unfair” constant allocation (of 1);

3. in the right-most region, all skill-types in all mechanisms receive the same allocation of 1;
thus in this third region, the mechanism y∗ and the threshold mechanism are equally fair
(or equally unfair).

Intuitively, the preceding comparison between the optimal mechanism y∗ and the threshold
mechanism – which specifically have jumps at the same quality-index qjump – suggests that
(single-jump) slanted-stair mechanisms are indeed more fair. In fact, we have already stated
a strict dominance relationship for an obvious, special-case choice of the technical fairness
measure.

▶ Corollary 17. Given a correlated admission game H = (S = ∆({sL, sH}),
BS = {BsL

, BsH
}, τ) with 0 < sL < τ < sH and 0 < b1 < b2 < . . . < bn. For the fair

mechanism design problem which maximizes the fairness measure set equal to the principal’s
utility function, the optimal mechanism and characterization of optimal mechanisms are
determined identically to Theorem 13.

Recall, the principal is naturally aligned with fairness. Then if we assign the fairness measure
to be equal to the utility function of the principal, the analysis of the optimal mechanism for
fairness gives the identical result as Theorem 13.
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1 Introduction

A common approach for deterring cheating in online examinations is to assign students
random questions from a large question bank. This random assignment of questions with
heterogeneous difficulties leads to different overall difficulties of the exam that each student
faces. Unfortunately, the predominant grading rule – simple averaging – averages all question
scores equally and results in an unfair grading of the students. This paper develops a grading
algorithm that utilizes structural information of the exam results to infer student abilities
and question difficulties. From these abilities and difficulties, fairer and more accurate grades
can be estimated. This grading algorithm can also be used in the design of short exams that
maintain a desired level of accuracy.

During the COVID-19 pandemic, learning management systems (LMS) like Blackboard,
Moodle, Canvas by Instructure, and D2L have benefited worldwide students and teachers
in remote learning [20]. The current exam module in these systems includes four steps. In
the first step, the instructor provides a large question bank. In the second step, the system
assigns each student an independent random subset of the questions. (Assigning each student
an independent random subset of the questions helps mitigate cheating.) In the third step,
students answer the questions. In the last step, the system grades each student proportionally
to her accuracy on assigned questions, i.e., by simple averaging.
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While randomizing questions and grading with simple averaging is ex-ante fair, it is not
generally ex-post fair. When questions in the question bank have varying difficulties, then
by random chance a student could be assigned more easy questions than average or more
hard questions than average. Ex-post in the random assignment of questions to students,
the simple averaging of scores on each question allows variation in question difficulties to
manifest as ex-post unfairness in the final grades.

The aim of this paper is to understand grading algorithms that are fair and accurate.
Given a bank of possible questions, a benchmark for both fairness and accuracy is the
counterfactual grade that a student would get if the student was asked all of the questions in
the question bank. Exams that ask fewer questions to the students may be inaccurate with
respect to this benchmark and the inaccuracy may vary across students and this variation
is unfair. This benchmark allows for both the comparison of grading algorithms and the
design of randomized exams, i.e., the method for deciding which questions are asked to which
students.

The grading algorithms developed in this paper are based on the Bradley-Terry-Luce
model [6] on bipartite student-question graphs. This model is also studied in the psychology
literature where it is known as the Rasch model [19]. This model views the student answering
process as a noisy comparison between a parameter of the student and a parameter of the
question. Specifically, there is a merit value vector u which describes the student abilities
and question difficulties and is unknown to the instructor. The probability that student i

answers question j correctly is defined to be

f(ui − uj) = exp(ui)
exp(ui) + exp(uj) ,

where f(x) = 1
1+exp(−x) , and ui, uj represents the merit value of student i and question j

respectively.
The paper develops a grading algorithm that is based on the maximum likelihood estimator

u∗ of the merit vector. Compared to simple averaging which only focuses on student in-
degrees and out-degrees, our grading algorithm incorporates more structural information
about the exam result and, as we show, reduces ex-post unfairness.

Results

Our theoretical analysis considers a sequence of distributions over random question assignment
graphs indexed by n and m by setting the number of students to n and number of questions in
the question bank to m ≥ n and assigning dn,m random questions uniformly and independently
to each student. The exam result can be represented by a directed graph, where an edge from
a student to a question represents a correct answer and the opposite direction represents
an incorrect answer. We prove that the maximum likelihood estimator exists and is unique
within a strongly connected component (Theorem 10). Let αn,m = max1≤i,j≤n+m ui − uj be
the largest difference between any pair of merits. We prove that if

exp(αn,m)(n + m) log(n + m)
ndn,m

→ 0 (n, m → ∞),

then the probability that the exam result graph is strongly connected goes to 1 (Theorem 11).
Thus, the existence and uniqueness of the MLE are guaranteed under the model. We also
prove that if exp (2(αn,m + 1)) ∆n,m → 0 (n, m → ∞), where ∆n,m =

√
m log3(n+m)

ndn,m log2( n
m dn,m) ,

then the MLEs are uniformly consistent, i.e., ∥u∗ − u∥∞
P−→ 0 (Theorem 13). These
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theoretical results complement the empirical and simulation results from the literature on
the Rasch model with random missing data. Our analysis is similar to Han et al.’s [15] which
studies Erdös-Rényi random graphs.

Our empirical analysis considers a study of grading algorithms on both anonymous exam
data and numerical simulations. The exam data set consists of 22 questions and 35 students
with all students answering all questions. From this data set, randomized exams with fewer
than 22 questions can be empirically studied and grading algorithms can be compared. Our
algorithm outperforms simple averaging when students are asked at least seven questions. We
fit the model parameters to this real-world dataset and run numerical simulations with the
resulting generative model. With these simulations, we compare our algorithm and simple
averaging on ex-post bias and ex-post error, two notion of ex-post unfairness. For example,
when each of the 35 students answers a random 10 of the 22 questions, we find that the
expected maximum ex-post bias of simple averaging is about 100 times higher than that of
our algorithm. The expected output of simple averaging has about 13% expected deviation
from the benchmark for the most unlucky student, which would probably lead to a different
letter grade for the students, while the deviation is only about 1.6% for our algorithm. In the
same setting, we found that our algorithm achieves a factor of 8 percent smaller ex-post error,
which is a noisier concept of ex-post unfairness. After the decomposition of ex-post error
into ex-post bias and variance, we found that our algorithm achieves a significantly smaller
ex-post bias with the cost of a slightly larger variance of the output, and in combination it
reduces the ex-post error.

Related Work

The literature on peer grading also compares estimation from structural models and simple
averaging. When peers are assigned to grade submissions, the quality of peer reviews can
vary. Structural models can be used to estimate peer quality and calculate grades on the
submissions that put higher weight on peers who give higher-quality reviews. Alternatively,
submission grades can be calculated by simply averaging the reviews of each peer. The
literature has mixed results. De Alfaro and Shavlovsky [7] propose an algorithm based on
the reputation that largely outperforms simple averaging on synthetic data, and is better
on real-world data when student grading error is not random. Reily et al. [21] and Hamer
et al. [14] also point out that sophisticated aggregation improves the accuracy compared to
simple averaging and also helps to avoid rogue strategies including laziness and aggressive
grading. On the other hand, Sajjadi et al. [23] show that statistical and machine learning
methods do not perform better than simple averaging on their dataset. In contrast, our
result that structural models outperform simple averaging is replicated on several data sets.
We believe this difference with the peer grading literature is due to differences in the degrees
of the bipartite graphs considered. The exam grading graphs are of a higher degree than the
peer-grading graphs.

In psychometrics, item response theory (IRT) considers mathematical models that build
relationships between unobserved characteristics of respondents and items and observed
outcomes of the responses. The Rasch model is a commonly used model of IRT that can be
applied to psychometrics, educational research [19], health sciences [5], agriculture [18], and
market research [4]. Previous simulation studies showed that among different item parameter
estimation methods for the Rasch model, the joint maximum likelihood (JML) method,
and its variants provides one of the most efficient estimates [22], especially with missing
data [25, 8]. In our setting, randomly assignment of questions to students can be seen as a
special case of missing data. With complete data, the condition for the consistency of the
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7:4 Fair Grading Algorithms for Randomized Exams

maximum likelihood estimators is analyzed [12, 13]. With missing data, though plenty of
work on simulation exists, there is a lack of theoretical work that proves mathematically the
consistency of the maximum likelihood estimators.

The Rasch model can be regarded as a special case of the Bradley-Terry-Luce (BTL)
model [6] for the pairwise comparison of respondents with items by restricting the comparison
graph to a bipartite graph. For the BTL model with Erdös-Rényi graph G(n, pn), the
maximum likelihood estimator (MLE) can be solved by an efficient algorithm [27, 9, 16],
and is proved to be a consistent method in l∞ norm when lim infn→∞ pn > 0 [24, 26], and
recently when pn ≥ log n3

n [15] which is close to the theoretical lower bound of log n
n , below

which the comparison graph would be disconnected with positive probability and there is no
unique MLE.

In this paper, we follow the method of Han et al.’s [15] to prove the consistency of the
Rasch model with missing data, or BTL model with a sparse bipartite graph, when each
vertex in the left part is assigned small number of random edges to the vertices in the right
part. We also propose an extension of the algorithm that reasonably deals with the cases
where the MLE does not exists.

Fowler et al. [10] recently studied unfairness detection of the simple averaging under the
same randomized exam setting and argue that “the exams are reasonably fair”. They use
certain IRT model to fit exams based on their real-world data, and find that the simple
averaging gives grades that are strongly correlated with the students’ inferred abilities. They
also simulate under the IRT model, over random assignment and the student answering
process. The simulation shows that, if given any fixed assignment we consider the absolute
error of the students’ expected performance over their answering process, the average absolute
error over different assignments reaches a 5-percentage bias. We find similar results in our
simulation, and design a method to reduce the corresponding error by a factor of ten. Our
method solves one of their future directions by adjusting grades of the students based on
their exam variant.

All large-scale standardized tests including the Scholastic Aptitude Test (SAT) and
Graduate Record Examination (GRE) are using item response theory (IRT) to generate score
scales for alternative forms [1]. This test equating process can be divided into two steps,
linking and equating. Linking refers to how to estimate the IRT parameters of students
and questions under the model; and equating refers to how to adjust the raw grade of
the students to adapt to different overall difficulty levels in different version of the exam
(e.g. [17]). One of the most popular test equating processes is IRT true-score equating with
nonequivalent-groups anchor test (NEAT) design. In the NEAT design, there are two test
forms given to two population of students, where a set of common questions is contained in
both forms. Linking performs by putting the estimated parameter of the common items onto
the same scale through a linear transformation, since any linear transformation gives the
same probability under the IRT model. Equating performs by taking the estimated ability of
the student from the second form and compute the expected number of accurate answers
in the first form as the adjusted grade. Since these large-scale standardized tests have a
large population of students for each variant of the exam, the above test equating process
works well. Our methods can be viewed as adapting the statistical framework of linking
and equating to the administration of a single exam for a small population of students. In
our randomized exam setting with small scale, however, every student receives a different
form of the exam, thus it is almost impossible to estimate the parameters for every form
separately or to decide an anchor set of question and do the same linking. Our algorithm
uses the concurrent linking that estimates all parameters at the same time based on the
information in all forms. As for equating, we use a similar method of true-score equating,
but compute on the whole question bank instead of one specific form.
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In the problem of fair allocation of indivisible items, Best-of-Both-Worlds (BoBW) fairness
mechanisms (e.g., [2, 11, 3]) try to provide both ex-ante fairness and ex-post fairness to
agents. An ex-ante fair mechanism is easy to be found. For example, giving all items to
one random agent guarantees that every agent receives a 1

n fraction of the total value in
expectation (ex-ante proportionality). However, such a mechanism is clearly not ex-post fair.
Likewise, simple averaging gives every student an unbiased grade ex-ante, but neglects the
different overall difficulty among students ex-post. We propose another grading rule that
evaluates the difficulties of the questions and adjusts the grades according to them, which
achieves better ex-post fairness of the students.

2 Model

Consider a set of students S and a bank of questions Q. A merit vector u is used to describe
the key property of the students and questions. Specifically, for any student i ∈ S, ui

represents the ability of the student; for any question j ∈ Q, uj represents the difficulty of
the question. We put them in the same vector for convenience. The merit vector is unknown
when the exam is designed. Denote wij as the outcome of the answering process. Then
wijs are independent Bernoulli random variables, where wij = 1 represents a correct answer,
wij = 0 represents an incorrect answer, and

Pr[wij = 1] = 1 − Pr[wij = 0] = exp(ui)
exp(ui) + exp(uj) = f(ui − uj),

where f(x) = 1
1+exp(−x) . The goal of the exam design is to assign a small number of questions

to each student (task assignment graph), and based on the exam result (exam result graph),
give each student a grade (grading rule) that accurately estimates her performance over
the whole question bank (benchmark). We give a formal description of the task assignment
graph, exam result graph, benchmark, and grading rule below.

▶ Definition 1 (Task Assignment Graph). The task assignment graph G = (S ∪ Q, E) is an
undirected bipartite graph, where the left part of the vertices represents the students and the
right part represents the questions, and an edge between i ∈ S and j ∈ Q exists if and only if
the instructor decides to assign question j to student i.

▶ Definition 2 (Exam Result Graph). The exam result graph G′ = (S ∪ Q, E′) is a directed
bipartite graph constructed from the task assignment graph G. All directed edges are between
students and questions. For any edge (i, j) ∈ G in the task assignment graph, where i ∈ S

and j ∈ Q, if student i answers question j correctly in the exam, i.e., we observe that wij = 1,
there is an edge i → j in G′; if the answer is incorrect, i.e., we observe that wij = 0, there is
an edge j → i in G′. For other student-question pairs that do not occur in the task assignment
graph G, there is also no edge between them in the exam result graph G′.

To evaluate different exam designs and grading rules, we propose the following benchmark.

▶ Definition 3 (Benchmark). In an ideal case where we know the distribution over the outcome
of the answering processes wijs, the instructor would measure the students’ performance by
their expected accuracy on a uniformly random question in the bank. Formally, the benchmark
for any student i’s grade is

opti = Ej∼U(Q)[wij ] = 1
|Q|

∑
j∈Q

f(ui − uj). (1)
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The benchmark is an ideal way to grade the student if the instructor has complete
information on all answering processes. On the other hand, when the instructor only observes
one sample of each wij involved in the exam, we will use a grading rule to grade the students.

▶ Definition 4 (Grading Rule). In an exam, the instructor gives a grade for each student
based on the exam result graph. A grading rule is a mapping g : G′ → RS from the exam
result graph to the grades for each student.

One interpretation of the grade is as an estimation of the benchmark, i.e., students’
expected accuracy on a uniformly random question in the bank, which combines the two
important criteria of fairness and accuracy. To evaluate the exam design, we compare the
performance of the grading rule to the benchmark and aggregate the error among all students.
Specifically, there are three stages of the exam design, before the randomization of the task
assignment graph, after the randomization of the task assignment graph and before the
student answering process, and after the student answering process. In each stage, we might
care about the maximum or average unfairness among students.

▶ Definition 5 (Ex-ante Bias). For a given algorithm alg, the ex-ante bias for student i is
defined as the mean square error of the algorithm’s expected performance compared to the
benchmark, over a random family G of task assignment graphs, i.e., (EG∼GEw[algi] − opti)

2.

▶ Definition 6 (Ex-post Bias). For a given algorithm alg and a fixed task assignment graph G,
the ex-post bias for student i is defined as the mean square error of the algorithm’s expected
performance compared to the benchmark on G, i.e., (Ew[algi] − opti)

2.

▶ Definition 7 (Ex-post Error). For a given algorithm alg, a fixed task assignment graph G,
and a fixed realization of the student answering process w, the ex-post error for student i is
defined as the mean square error of the algorithm’s performance compared to the benchmark
on G and w, i.e., (algi − opti)

2.

By definition, ex-ante bias takes expectation over both random graphs and the noisy
answering process, ex-post bias takes expectation over the noisy answering process, while
ex-post error directly measures the error. Thus ex-post error is harder than ex-post bias
which is harder than ex-ante bias to achieve.

▶ Example 8 (Simple Averaging). Simple averaging is a commonly used grading rule in
exams. It calculates the average accuracy on the questions the student receives. Formally,
given a exam result graph G′, the simple averaging grades student i by

avgi = deg+
i

deg−
i + deg+

i

=
∑

j 1(i,j)∈E′∑
j 1(i,j)∈E

, (2)

where deg+ and deg− represents the outdegree and indegree of the vertex in G′, respectively.

▶ Theorem 9. The simple averaging is ex-ante fair over any family of bipartite graphs G
that is symmetric with respect to the questions, i.e., its ex-ante bias is 0.

Proof.

∀i, EG∼GEw [avgi] = EG∼GEw

[∑
j 1(i,j)∈E′∑
j 1(i,j)∈E

]
= EG∼GEw

[∑
j wij1(i,j)∈E∑

j 1(i,j)∈E

]

=EG∼G

[∑
j E[wij ]1(i,j)∈E∑

j 1(i,j)∈E

]
=
∑

j

E[wij ]EG∼G

[
1(i,j)∈E∑
j 1(i,j)∈E

]
= opti. ◀
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In other words, simple averaging can be seen as an ex-ante unbiased estimator of the
benchmark. However, ex-post, i.e., on one specific task assignment graph, simple averaging
is unfair. Intuitively, some unlucky students might be assigned harder questions and receive
a significantly lower average grade than the benchmark, and the opposite happens to some
lucky students. We will visualize this phenomenon in Figure 2 in Section 5.3.1.

Based on the above definitions, we now formalize the procedure and goal of the exam
grading problem.

i. The instructor chooses a task assignment graph G.
ii. The students receive questions according to G and give their answer sheet back, thus

the instructor receives the exam result graph G′.
iii. The instructor uses a grading rule g to grade the students based on G′.
iv. The grade g(G′) should have a small maximum (average) ex-post bias or ex-post error.

3 Method

In this section, we propose our method for the exam grading problem. According to our
formalization of the problem, any method contains two parts: generating the task assignment
graph G, and choosing the grading rule g. We describe each of them respectively.

3.1 Task Assignment Graph
To generate the task assignment graph, we independently assign each student d different
questions u.a.r. from the question bank.

3.2 Grading Rule
Recall that a grading rule maps from an exam result graph G′ to a vector of probabilities.
In contrast with simple averaging which only considers the local information (the in-degrees
and out-degrees of the students), we use structural information of the exam result graph
for analysis. Our grading rule is an aggregation of a prediction matrix h ∈ [0, 1]S×Q,
where hij represents the algorithm’s prediction on the probability that student i answers
correctly question j. The grade for student i will be the average of hijs over all j ∈ Q,
i.e. algi = 1

|Q|
∑

j∈Q hij . We use u⇝ v to represent the existence of a directed path in G′

that starts with u and ends with v, and u ⇝̸ v for nonexistence. The algorithm classifies
the elements hijs into four cases: existing edge (i, j) ∈ E, same component i⇝ j ∧ j ⇝ i,
comparable components i⇝ j ⊕ j ⇝ i, and incomparable components i ⇝̸ j ∧ j ⇝̸ i.

Existing Edge

For (i, j) ∈ E, we observe wij from the exam result graph G′, hence hij = wij .

Same Component

For student i ∈ S and question j ∈ Q satisfy i⇝ j ∧ j ⇝ i, they are in the same strongly
connected component in G′. We make all predictions in the component simultaneously, by
inferring the student abilities and question difficulties from the structure of the component.
Formally, denote V ′ as the vertex set of the component. From Theorem 10, the strong
connectivity guarantees the existence of the maximum likelihood estimators (MLEs) u∗ ∈ RV ′ .
We can use a minorization–maximization algorithm from [16] to calculate the MLEs and
set hij = f(u∗

i − u∗
j ) for any missing edge (i, j) between students and questions inside this

component.
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Comparable Components

W.l.o.g., we assume i⇝ j and j ⇝̸ i, thus every directed path between those two vertices
starts with the student and ends with the question, showing strong evidence of a correct
answer. In other words, considering the strongly connected components they belong to, the
component that contains the student has a “higher level” in the condensation graph of G′

and can reach the component that contains the question, i.e., they belong to comparable
components in the condensation graph. In this case, we set hij = 1. Similarly, if j ⇝ i and
i ⇝̸ j, we set hij = 0

Incomparable Components

For a student i and question j that satisfy i ⇝̸ j ∧ j ⇝̸ i, i.e., in incomparable components,
we use the average of the predictions in the above three cases as the prediction for hij .

4 Theory

In this section, we show several properties of our algorithm. Due to the limited space, we
will defer most detailed proofs to Appendix A. Recall that the Bradley-Terry-Luce model
describes the outcome of pairwise comparisons as follows. In a comparison between subject i

and subject j, subject i beats subject j with probability

pij = exp(ui)
exp(ui) + exp(uj) = f(ui − uj),

where u = (u1 . . . , un+m) represents the merit parameters of n + m subjects and f(x) =
1

1+exp(−x) . We consider the Bradley-Terry-Luce model under a family of random bipartite
task assignment graphs B(n, m, dn,m). Specifically, a task assignment graph G(L∪R, E) with
n vertices in L and m vertices in R, where n ≤ m, is constructed by linking dn,m different
random vertices in R to each left vertex in L, i.e., L is regular but R is not.

Given a task assignment graph G, denote A as its adjacency matrix. For any two subjects
i and j, the number of comparisons between them follows Aij ∈ {0, 1}. We define A′

ij as the
number of times that subject i beats subject j, thus A′

ij + A′
ji = Aij = Aji. In other words,

A′ is the adjacency matrix of the exam result graph G′. Based on the observation of G′, the
log-likelihood function is

L(u) =
∑

1≤i̸=j≤n+m

A′
ij log pij =

∑
1≤i̸=j≤n+m

A′
ij log f(ui − uj). (3)

Denote u∗ = (u∗
1, u∗

1, . . . , u∗
n+m) as the maximum likelihood estimators (MLEs) of u. Since

L is additive invariant, w.l.o.g. we assume u1 = 0 and set u∗
1 = 0. Since (log f(x))′ = 1 − f(x)

the likelihood equation can be simplified to

n+m∑
j=1

A′
ij =

n+m∑
j=1

Aijf(u∗
i − u∗

j ), ∀ i. (4)

4.1 Existence and Uniqueness of the MLEs
Zermelo [27] and Ford [9] gave a necessary and sufficient condition for the existence and
uniqueness of the MLEs in (4).
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Condition A

For every two nonempty sets that form a partition of the subjects, a subject in one set has
beaten a subject in the other set at least once.

To provide an intuitive understanding of Condition A, we show its equivalence to the
strong connectivity of the exam result graph G′. Then we state our theorem on when
Condition A holds.

▶ Theorem 10. Condition A holds if and only if the exam result graph G′ is strongly
connected.

Proof. Condition A says that for any partition (V1, V2) of the vertices L ∪ R, there exists an
edge from V1 to V2 and also an edge from V2 to V1. If G′ is strongly connected, Condition
A directly holds by the definition of strong connectivity. Otherwise, if G′ is not strongly
connected, the condensation of G′ contains at least two SCCs. We pick one strongly connected
component with no indegree as V1 and the remaining vertices as V2, then there is no edge
from V2 to V1, i.e., Condition A fails. ◀

▶ Theorem 11 (Existence and Uniqueness of MLEs). If

exp(αn,m)(n + m) log(n + m)
ndn,m

→ 0 (n, m → ∞), (5)

where αn,m = max1≤i,j≤n+m ui − uj is the largest difference between all possible pairs of
merits, then Pr [Condition A is satisfied] → 1 (n, m → ∞).

To prove Theorem 11, we analyze the edge expansion property (Lemma 12) of the task
assignment graph G and take a union bound on all valid subsets to bound the probability
that G′ fails Condition A.

▶ Lemma 12 (Edge Expansion). Under condition (5),

Pr
[
∀S ⊂ V, s.t. |S| ≤ n + m

2 ,
|∂S|
|S|

>
ndn,m

2(n + m)

]
→ 1 (n, m → ∞),

where ∂S = {(u, v) ∈ E : u ∈ S, v ∈ V \ S} for the task assignment graph G(V, E).

4.2 Uniform Consistency of the MLEs
Based on condition (5), Theorem 11 shows the existence and uniqueness of the MLEs. In this
part, we give an outline of the proof for the uniform consistency of the MLEs (Theorem 13).

▶ Theorem 13 (Uniform Consistency of MLEs). If

exp (2(αn,m + 1)) ∆n,m → 0 (n, m → ∞), (6)

where ∆n,m =
√

m log3(n+m)
ndn,m log2( n

m dn,m) , then the MLEs are uniformly consistent, i.e., ∥u∗ −

u∥∞
P−→ 0.

▶ Corollary 14 (Rates). In the case where αn,m = O(1), and dn,m = Ω
(

m log3(n+m)
n

)
, with

probability 1 − 2(n + m)−2, we have

∥u∗ − u∥∞ = O

(
log n

log( n
m dn,m)

√
m log(n + m)

ndn,m

)
.
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Denote εi = u∗
i − ui as the estimation error of the maximum likelihood estimators.

Since we assume u1 = 0 and set u∗
1 = 0, we have ε1 = u∗

1 − u1 = 0. Consider the two
subjects with the most negative estimation error and the most positive estimation error
i = arg min

i
εi ≤ ε1 = 0, i = arg max

i
εi ≥ ε1 = 0, and their corresponding error ε = min

i
εi,

ε = max
i

εi, then we have ∥u∗ − u∥∞ = max{−ε, ε} ≤ ε − ε. The goal is to identify a specific
number D, such that more than half εis are at most ε + D, and more than half εis are at
least ε − D. Then at least one subject is on both sides, thus ε − ε is bounded by 2D.

To identify D, we check a sequence of increasing numbers {Dk}Kn,m

k=0 , and the two corres-
ponding growing sets {Bk}Kn,m

k=0 and {Bk}Kn,m

k=0 that contains the subjects with estimation
errors Dk-close to ε and ε respectively. Under careful choice of Kn,m and {Dk}Kn,m

k=0 , we will
show that BKn,m

and BKn,m
both contain more than half subjects.

The main difficulty is showing the growth of {Bk}Kn,m

k=0 and {Bk}Kn,m

k=0 . We prove this
by considering the local growth of the sets, i.e., N(Bk) ∩ Bk+1 and N(Bk) ∩ Bk+1. By
symmetry, we only consider Bk. Lemma 15 analyzes the generation of the random task
assignment graphs and shows a vertex expansion property that describes the growth of the
neighborhoods N(Bk). Lemma 16 starts with any vertex i in Bk, analyzes the first order
equations of the MLE to exclude the vertices that are in the neighborhoods N({i}) and but
are not in Bk+1, and gives a lower bound on the size of N({i}) ∩ Bk+1. Finally, we jointly
consider all vertices in Bk and provide a lower bound on the size of N(Bk) ∩ Bk+1, which
shows the growth rate of Bk and finishes the proof.

Definition of Notations

Kn,m = 2
⌈

log n
log( n

m dn,m) − 1
⌉

is the number of steps of the growth.

cn,m = exp(−(αn,m+1))
4 is a lower bound on f ′(x) for |x| ≤ αn,m + 1.

qn,m = cn,m log( n
m dn,m)

5 log n is a lower bound on the local growth rate |N({i})∩B
k+1|

|N({i})| of vertex
i ∈ Bk.
zn,m =

√
32m log(n+m)

ndn,m
is the deviation used in the Chernoff bound.

The sequence of numbers {Dk}Kn,m

k=0 is set to be

Dk = 4k

cn,m

√
2m log(n + m)

(1 − zn,m)ndn,m
for k = 0, 1, . . . , Kn,m − 1,

DKn,m
= 80Kn,m

c2
n,m

√
2m log(n + m)

(1 − zn,m)ndn,m
.

The two growing sets {Bk}Kn,m

k=0 and {Bk}Kn,m

k=0 which contains the subjects with estimation
error Dk-close to ε and ε respectively are defined as

Bk = {j : εj − ε ≤ Dk},

Bk = {j : ε − εj ≤ Dk}.

▶ Lemma 15 (Vertex Expansion). Regarding the task assignment graph G(L ∪ R, E) ∼
B(n, m, dn,m), for a fixed subset of left vertices X ⊂ L with |X| ≤ n

2 , w.p. 1 − (n + m)−4|X|

it holds that
If 1 ≤ |X| < m/dn,m, |N(X)|

|X| > (1 − zn,m)
(

1 − dn,m|X|
m

)
dn,m;

If |X| ≥ m/dn,m, |N(X)|
m > 1 − zn,m − e−1.
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For a fixed subset of right vertices Y ⊂ R with |Y | ≤ m
2 , w.p. 1 − (n + m)−4|Y | it holds that

If 1 ≤ |Y | < m/dn,m, |N(Y )|
|Y | > (1 − zn,m)

(
1 − dn,m|Y |

m

)
ndn,m

m ;

If |Y | ≥ m/dn,m, |N(Y )|
n > 1 − zn,m − e−1.

In above inequalities, zn,m =
√

32m log(n+m)
ndn,m

as previously defined.

▶ Lemma 16 (Local Growth of Bk). For n and m large enough, k < Kn,m and a fixed subject
i ∈ Bk, it holds w.p. 1 − 2(n + m)−4 that

if k < Kn,m − 1, |N({i}) ∩ Bk+1| ≥ qn,m|N({i})|,
where qn,m = cn,m log( n

m dn,m)
5 log n and cn,m = exp(−(αn,m+1))

4 as previously defined;
if k = Kn,m − 1, |N({i}) ∩ Bk+1| ≥ 75

81 |N({i})|.

4.3 Analysis of Our Algorithm
Our algorithm uses the MLEs to predict the student’s performance within the component.
Based on the consistency of the MLEs, we show the ex-post error of our algorithm.

▶ Theorem 17. When Condition A is satisfied, the exam result graph is strongly connected.
In this case, the MLE is unique and we have (algi − opti)

2 ≤ 1
4 ∥u − u∗∥2

∞.

Next we discuss the performance of our algorithm on several extreme cases of the task
assignment graph. For example, the extremely sparse cases when N({i}) is mutually disjoint
for each student i or each student receives only d = 1 question. Another example is that the
task assignment graph is a complete bipartite graph. In all of the above cases, our algorithm
gives the same grade as simple averaging.

▶ Theorem 18. When the task assignment graph satisfies that N(i) is mutually disjoint for
each student i or each student receives only d = 1 question, our algorithm gives the same
grade as simple averaging.

Proof. In both cases, the exam result graph satisfies that every SCC is a single point, thus
the algorithm’s output totally relies on cross-component predictions. For each student, the
comparable components for each student are exactly the questions that student receives.
Thus the algorithm gives the same prediction as the student’s correctness on those questions.
The prediction for remaining questions is the average accuracy on the assigned questions by
the algorithm’s rule for incomparable components. Therefore, the algorithm’s grade for the
student is exactly the same as simple averaging. ◀

▶ Theorem 19. When the task assignment graph is a complete bipartite graph, our algorithm
gives the same grade as simple averaging.

Proof. In this case, the output of the algorithm only relies on existing edges. It directly
follows that the algorithm gives the same grade as simple averaging. ◀

5 Experiments

5.1 Real-World Data
We use the anonymous answer sheets from a previously administered exam with |S| = 35
students and |Q| = 22 questions. The task assignment graph of the exam is a complete
bipartite graph, i.e., each student is assigned with all questions. The corresponding exam
result graph happens to be strongly connected, thus we are able to infer student abilities
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and question difficulties (Figure 1). Below we study results from counterfactual subgraphs
with real exam answers and from data generated according to the model with the inferred
abilities and difficulties.
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Figure 1 Empirical Cumulative Distribution of Merit Value. We analyze all students and
questions under the Bradley-Terry-Luce model and show the empirical cumulative density function
of inferred student abilities and question difficulties. The abilities ranges from -1.486 to 1.149 while
the difficulties ranges from -3.090 to 2.099.

5.2 Algorithms
Simple Averaging

The grade for student i is its average correctness on assigned questions. See the formal
definition in Example 8.

Our Algorithm

The grade for student i is an aggregation of the algorithm’s prediction on her performance
on each question. All predictions can be classified into four cases, including existing edges
(keep the fact as prediction), same component (maximum likelihood estimators), comparable
components (answer in line with the path direction) and incomparable components (heuristic
as simple averaging). See the formal definition in Section 3.2.

5.3 Ex-post Bias
5.3.1 Simulation 1: A Visualization of Simple Averaging’s Ex-post

Unfairness
We compare the ex-post bias (Definition 6) between our algorithm and simple averaging
given a fixed random task assignment graph. We use inferred parameters of all 35 students
and 22 questions according to Figure 1. The task assignment graph is generated with degree
d = 10, i.e. each student is assigned 10 random questions from the whole question bank. The
exam result graph is repeatedly generated according to the model.

Figure 2 shows the performance of two algorithms. The left plot corresponds to our
algorithm and the right plot corresponds to simple averaging. In each plot, there are 35
confidence intervals, each corresponding to the difference between the student’s expected
grade and her benchmark, i.e. Ew[algi] − opti. The confidence intervals in the left plot
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are significantly closer to 0, compared to the right plot, which visualizes the intuition that
students are facing different overall question difficulties under the random assignment and
simple averaging fails to adjust their grades. Instead, our algorithm infers the question
difficulties and the student abilities and adjusts their grades accordingly, largely reducing
the ex-post bias.
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(a) Ex-post Grade Deviation of Our Algorithm.
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(b) Ex-post Grade Deviation of Simple Averaging.

Figure 2 A Visualization of the Ex-post Grade Deviation with Degree Constraint d = 10.

5.3.2 Simulation 2: The Effect of the Degree Constraint

We compare the expected maximum ex-post bias, i.e., EG

[
maxi∈S (Ew[algi] − opti)

2
]

and the

expected average ex-post bias, i.e., EGEi∼U(S)

[
(Ew[algi] − opti)

2
]

between our algorithm
and simple averaging. We use inferred parameters of all 35 students and 22 questions
according to Figure 1. For each degree constraint d from 1 to 22, we repeatedly generate
task assignment graphs, i.e. each student is assigned d independent questions from the whole
question bank. For each task assignment graph, the exam result graph is repeatedly generated
according to the model.

Figure 3 shows two algorithms’ expected maximum ex-post bias (Figure 3a) and expected
average ex-post bias (Figure 3b) under different degree constraints, where our algorithm (blue
curve) outperforms simple averaging (red curve) on every degree constraint d. Our algorithm’s
expected ex-post bias with the degree constraint d = 5 is close to simple averaging’s with
the degree constraint d = 20, which means our algorithm can ask 15 fewer questions to each
student to achieve the same grading accuracy as simple averaging.

5.4 Ex-post Error and Bias-Variance Decomposition
In this part, we are investigating the expected average ex-post error (Definition 7), i.e.,
EGEiEw[(algi − opti)

2]. Through bias-variance decomposition (the proof is deferred to
Appendix A), we relate the ex-post error to the ex-post bias and the variance in the algorithm
performance.

▶ Theorem 20 (Bias-Variance Decomposition).

EGEiEw[(algi − opti)
2] = EGEi[(Ew[algi] − opti)

2] + EGEiEw[(algi − Ew[algi])
2].

With the same setting in Section 5.3.1, we show the expected average ex-post error of our
algorithm and simple averaging in Table 1. Our algorithm achieves a factor of 8 percent
smaller ex-post error in total. But after the decomposition, we can see that our algorithm
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(a) Expected Maximum Ex-post Bias.
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(b) Expected Average Ex-post Bias.

Figure 3 Expected Aggregated Ex-post Bias v.s. Degree Constraint. The scale of expected
average ex-post bias is about 4 times smaller than the scale of expected maximum ex-post bias.

achieves a factor of 99 percent smaller ex-post bias with the cost of a factor of 10 percent
larger variance. In practice, students will only take the exam once, so inevitably the variance
of the algorithm would contribute to the total error. Our algorithm does not focus on how
to reduce variance over the noisy answering process, instead, it focuses on the expected
performance of the algorithm, i.e., it makes the ex-post bias much closer to zero. To verify
that our algorithm does not increase the variance too much, we also run the simulation under
“the worst case” of our algorithm, i.e., all students have the same abilities and all questions
have the same difficulties. In this setting, our algorithm faces the risk of over-fitting, while
simple averaging works perfectly. In Table 2, we can see that both algorithms achieve ex-post
biases close to 0, and our algorithm has a factor of 1.6 percent larger variance than simple
averaging which is the main contribution to the difference in ex-post errors.

Table 1 Bias-Variance Decomposition in the
setting of real-world parameters.

Ex-post
Bias

Variance Ex-post
Error

Ours 0.00004 0.0188 0.0188
Avg 0.00331 0.0170 0.0203
Ours-Avg -0.00327 0.0018 -0.0015

Table 2 Bias-Variance Decomposition in the
setting of all-the-same parameters.

Ex-post
Bias

Variance Ex-post
Error

Ours 0.0000500 0.0254 0.0255
Avg 0.0000493 0.0250 0.0250
Ours-Avg 0.0000007 0.0004 0.0005

5.5 Real-World Data Experiment: Cross Validation
We cannot repeat an exam in real world and check the ex-post bias of the algorithms. Thus,
we sample part of the data we have as a new exam result graph, and use them to predict the
students’ actual average on the data. We randomly split the real-world data into training
data and test data. Specifically, for a fixed student sample size d1 and a degree constraint d2,
in each repetition, we randomly sample d1 students and randomly choose d2 questions and
corresponding answers for each student independently as the training data, use our algorithm
(Ours) and simple averaging (Avg) to predict every student’s average accuracy on the whole
question bank, and calculate the mean squared error. Formally, the mean squared error MSE

is defined as MSE = EX,S̃

[
1

|S̃|
∑

i∈S̃

(
algi − 1

|Q|
∑

j∈Q wij

)2
]

, where X is the training set,

S̃ is the sampled student set, algi is student i’s grade given by the algorithm and wij is the
correctness of student i’s answer to question j.



J. Chen, J. Hartline, and O. Zoeter 7:15

In Figure 4a, we fix the student sample size d1 = 35, i.e., S̃ = S and change the degree
constraint d2 from 1 to 22 and show the curve of the logarithm of MSE. Our algorithm
performs better than simple averaging when the degree constraint d2 is larger than 5 and
has a factor of 16% to 20% smaller MSE compared to simple averaging when the degree
constraint d2 is larger than 10. In Figure 4b, we consider for every possible student sample
size d1, what the smallest degree constraints d2 is for our algorithm to perform better than
simple averaging. It provides a reference for choosing the grading rule in different situations.
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(a) Logarithm of MSE v.s. Degree Constraint.
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(b) Threshold v.s. Student Sample Size.

Figure 4 Cross Validation.

6 Conclusions

We formulate and study the fair exam grading problem under the Bradley-Terry-Luce model.
We propose an algorithm that is a generalization of the maximum likelihood estimation
method. To theoretically validate our algorithm, we prove the existence, uniqueness, and the
uniform consistency of the maximum likelihood estimators under the Bradley-Terry-Luce
model on sparse bipartite graphs. Our algorithm significantly outperforms simple averaging
in numerical simulation. On real-world data, our algorithm is better when the students
are assigned a sufficient number of questions (i.e., on sufficiently long exams). We provide
guidelines for how to choose the grading rule given certain number of students and a fixed
exam length.

Our model in this paper mainly considers true-or-false questions, which can be extended to
multiple-choice questions and to the case where it can be assumed that students would guess
if they cannot solve a question. Our model treats student abilities and question difficulties
as one-dimensional, which can be extended to a multi-dimensional model that takes different
topics into account. Another potential extension of the model is to introduce different groups
of students, so each question might have different difficulties for each group and we could ask
for fairness across groups. Our method to treat missing edges across comparable components
– which predicts 0 or 1 – needs to be improved, especially in the low-degree environment (i.e.,
short exam lengths where the exam result graph is unlikely to be strongly connected). Also,
it would be important to provide a simple and clear explanation to students for practical
use.
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A Omitted Proofs

A.1 Proof of Lemma 12
Proof. Consider any subset of vertices S with size r ≤ n+m

2 . Denote X = S ∩ L, Y =
S ∩ R, |X| = x, thus |Y | = r − x, |L \ X| = n − x, |R \ Y | = m + x − r. ∂S is a random
variable that can be expressed as |∂S| =

∑
u∈X

∑
v∈R\Y Auv +

∑
u∈L\X

∑
v∈Y Auv, where

A is the adjacency matrix of the task assignment graph G. Recall that the task assignment
graph G is generated by linking dn,m random different vertices in R to each vertex in
L. Thus for different u1 ̸= u2 ∈ L, Au1· is independent with Au2·, while for a fixed
u ∈ L, Au· is chosen randomly without replacement. Chernoff bound applies under such
conditions, i.e., Pr

[
|∂S| ≤ 1

2E [|∂S|]
]

≤ exp
(

−E[|∂S|]
8

)
. Then we lower bound E[|∂S|] by

E[|∂S|] = dn,m

m (|X||R \ Y | + |L \ X||Y |) = dn,m

m

(
2x2 + (m − n − 2r)x + nr

)
. For the case

where m − n − 2r ≤ 0, i.e., r ≥ m−n
2 , we have

E[|∂S|] = dn,m

m

(
2x2 + (m − n − 2r)x + nr

)
≥dn,m

m

(
− (m − n − 2r)2

8 + nr

)
= dn,mr

m

(
−1

2r − 1
8

(m − n)2

r
+ 1

2(n + m)
)

≥dn,mr

m

(
−n + m

4 − 1
4

(m − n)2

n + m
+ 1

2(n + m)
)

= ndn,mr

n + m

For the case where m − n − 2r > 0, i.e., r < m−n
2 , we have

E[|∂S|] = dn,m

m

(
2x2 + (m − n − 2r)x + nr

)
≥ ndn,mr

m
≥ ndn,mr

n + m
.
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Thus for any fixed set S with size r ≤ n+m
2 ,

Pr
[
|∂S| ≤ dn,mnr

2(n + m)

]
≤ Pr

[
|∂S| ≤ 1

2E [|∂S|]
]

≤ exp
(

−E[|∂S|]
8

)
≤ exp

(
− ndn,mr

8(n + m)

)
.

Finally, by union bound,

Pr
[

∀S ⊂ V, s.t. |S| ≤ n,
|∂S|
|S| >

ndn,m

2(n + m)

]
= 1 − Pr

[
∃S ⊂ V, s.t. |S| ≤ n,

|∂S|
|S| ≥ ndn,m

2(n + m)

]
≥1 −

(n+m)/2∑
r=1

(
n + m

r

)
exp
(

− ndn,mr

8(n + m)

)
≥ 1 −

(n+m)/2∑
r=1

exp
(

− ndn,mr

8(n + m) + r log(n + m)
)

≥1 −
(n+m)/2∑

r=1

exp
(
− ndn,mr

16(n + m)

)
≥ 1 − exp

(
− ndn,m

16(n + m) + log(n + m)
)

≥ 1 − exp
(
− ndn,m

32(n + m)

)

The third-to-last inequality and the last inequality hold when dn,m > 32(n+m) log(n+m)
n . Note

that condition (5) implies (n+m) log(n+m)
ndn,m

→ 0 (n, m → ∞) since αn,m ≥ 0. Thus for large
enough n and m,

Pr
[

∀S ⊂ V, s.t. |S| ≤ n,
|∂S|
|S| >

ndn,m

2(n + m)

]
≥ 1 − exp

(
− ndn,m

32(n + m)

)
→ 1 (n, m → ∞).

◀

A.2 Proof of Theorem 11
Proof. For an edge between vertex i and j in the task assignment graph G, i.e. Aij = 1, the
corresponding directed edge in the exam result graph G′ goes from i to j with probability
Pr[A′

ij = 1] = f(ui − uj) ≤ max1≤i,j≤n+m f(ui − uj) ≤ 1
1+exp(−αn,m) ≤ 2− exp(−αn,m). By

Lemma 12, under condition (5), Pr
[
∀S ⊂ V, s.t. |S| ≤ n, |∂S|

|S| >
ndn,m

2(n+m)

]
→ 1 (n, m →

∞). Now consider any subset of vertices S ⊂ V s.t. |S| = r ≤ n+m
2 . The probabil-

ity that all edges between S and V \ S go in the same direction in G′ is no more than

2
(
2− exp(−αn,m)) ndn,m

2(n+m) . Thus by union bound, the probability that Condition A holds is at

least 1 − 2
∑

1≤r≤(n+m)/2

(
n+m

r

)
2− exp(−αn,m)ndn,m

2(n+m) ≥ 1 − 2
((

1 + 2− exp(−αn,m)ndn,m
2(n+m)

)n+m

− 1
)

,

which converges to 1 when n, m → ∞ under condition (5). ◀

A.3 Proof of Lemma 15
Proof. Before proving the vertex expansion property of the task assignment graph
B(n, m, dn,m), we first bound the vertex degree by Chernoff bound and union bound,

∀ i ∈ R, Pr
[
(1 − zn,m)ndn,m

m
≤ |N({i})| ≤ (1 + zn,m)ndn,m

m

]
≥ 1 − (n + m)−4, (7)

where zn,m is defined above as zn,m =
√

32m log(n+m)
ndn,m

→ 0 (n, m → ∞) under condition (5).
We define another family of random bipartite graph B̃. Each graph in B̃(n, m, dn,m)

contains n vertices in the left part, m vertices in the right part, and assigns dn,m random
neighbors to each vertex in the left part (multi-edges are allowed). For any X ⊂ L, it’s easy to
see that |N(X)| in G ∼ B(n, m, dn,m) stochastically dominates |N(X)| in G ∼ B̃(n, m, dn,m).
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Thus it’s sufficient to prove the theorem under B̃(n, m, dn,m). On the other hand, counting
|N(X)| under B̃(n, m, dn,m) is the same random process as counting the number of non-empty
bins after independently throwing dn,m|X| balls u.a.r. into m bins. By linearity of expectation
over every bin, we know E[|N(X)|] = m

(
1 −

(
1 − 1

m

)dn,m|X|
)

.

We need several lower bounds of E[|N(X)|] here. With the fact of x
2 ≤ 1 −

exp(−x) ≤ x, ∀ 0 ≤ x < 1, we have E[|N(X)|] = m
(

1 −
(
1 − 1

m

)dn,m|X|
)

≥

m
(

1 − exp
(

− dn,m|X|
m

))
≥ dn,m|X|

2 . Therefore, using Azuma’s inequality, we can lower
bound |N(X)|, i.e.,
Pr [|N(X)| ≤ (1 − zn,m)E[|N(X)|]] ≤ exp

(
− z2

n,m(E[|N(X)|])2

2dn,m|X|

)
≤ (n + m)−4|X|. Also, when

|X| < m/dn,m, we have
(

1 −
(
1 − 1

m

)dn,m|X|
)

≥ dn,m|X|
m

(
1 − dn,m|X|

m

)
, thus with probab-

ility 1 − (n + m)−4|X|, |N(X)| ≥ (1 − zn,m)E[|N(X)|] ≥ (1 − zn,m)dn,m|X|
(

1 − dn,m|X|
m

)
;

Similarly when |X| ≥ m/dn,m , we have
(

1 −
(
1 − 1

m

)dn,m|X|
)

≥ 1 − e−1, and |N(X)| ≥
(1 − zn,m)E[|N(X)|] ≥ (1 − zn,m)

(
1 − e−1)m ≥

(
1 − zn,m − e−1)m.

The proof for Y ⊂ R is almost the same except that it’s sufficient to use Chernoff
bound rather than Azuma’s inequality since the independence among the subjects in N(Y ),

to have E[|N(Y )|] = n

(
1 −

(
1 − |Y |

m

)dn,m
)

≥ n
(

1 − exp
(

− dn,m|Y |
m

))
≥ ndn,m|Y |

2m . Using

Chernoff bound, we can lower bound |N(Y )|, i.e., Pr [|N(Y )| ≤ (1 − zn,m)E[|N(Y )|]] ≤
exp

(
− z2

n,mE[|N(Y )|]
2

)
≤ (n + m)−4|Y |. Thus when |Y | < m/dn,m, with probability 1 −

(n + m)−4|Y |, |N(Y )| ≥ (1 − zn,m)E[|N(Y )|] ≥ (1 − zn,m) ndn,m|Y |
m

(
1 − dn,m|Y |

m

)
; when

|Y | ≥ m/dn,m, with probability 1 − (n + m)−4|Y |, |N(Y )| ≥ (1 − zn,m)E[|N(Y )|] ≥ (1 −
zn,m)

(
1 − e−1)n ≥

(
1 − zn,m − e−1)n. ◀

A.4 Proof of Lemma 16

Proof. Pick a subject i ∈ Bk. For any task assignment graph G and its adjacency matrix
A, the corresponding adjacency matrix A′ of the exam result graph is a random variable
of A. Specifically, for any Aij = 1, A′

ijs are independent Bernoulli random variables with
probability f(ui − uj) to be 1. In other words, E[A′

ij ] = Aijf(ui − uj). By Chernoff bound,
Pr
[∣∣∣∑j A′

ij −
∑

j Aijf(ui − uj)
∣∣∣ ≥

√
2|N({i})| log(n + m)

]
≤ 2(n + m)−4.

Below we use the above inequality and some analysis of function f to count the number of
subjects in N({i}) ∩ Bk+1. The fact we use about function f is f ′(x) = exp(−x)

(1+exp(−x))2 ≤ 1
4

and f ′(x) ≥ exp(−(αn,m+1))
(1+exp(−(αn,m+1)))2 ≥ exp(−(αn,m+1))

4 = cn,m, ∀|x| ≤ αn,m + 1. Thus for another
subject j such that εj ≤ εi, by mean value theorem, we have f

(
u∗

i − u∗
j

)
− f (ui − uj) =

f ′(ξij) (εi − εj) ≤ 1
4 (εi − ε) ≤ Dk

4 , where ξij ∈
[
ui − uj , u∗

i − u∗
j

]
.

Similarly, for a subject j with εj > εi + Dk+1 − Dk, we have f (ui − uj) − f
(
u∗

i − u∗
j

)
=

f ′(ξ′
ij) (εj − εi) ≥ cn,m(Dk+1 − Dk), where ξ′

ij ∈
[
u∗

i − u∗
j , ui − uj

]
.

Since ui − uj − DKn,m
≤ ui − uj − (εj − εi) = u∗

i − u∗
j ≤ ξ′

ij ≤ ui − uj , and DKn,m
→ 0 as

n, m → ∞ under condition (6), |ξ′
ij | is bounded by αn,m + 1 when n and m is large enough,

thus f ′(ξ′
ij) ≥ cn,m. Therefore, on the one hand,
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∑
εj>εi

Aij

(
f(ui − uj) − f(u∗

i − u∗
j )
)

=
∑

j

Aij

(
f(ui − uj) − f(u∗

i − u∗
j )
)

−
∑

εj≤εi

Aij

(
f(ui − uj) − f(u∗

i − u∗
j )
)

≤
√

2N({i}) log(n + m) + 1
4Dk

∑
εj≤εi

Aij .

(8)

On the other hand,∑
εj>εi

Aij

(
f(ui − uj) − f(u∗

i − u∗
j )
)

≥
∑

εj>εi+Dk+1−Dk

Aij

(
f(ui − uj) − f(u∗

i − u∗
j )
)

≥cn,m(Dk+1 − Dk)
∑

εj>εi+Dk+1−Dk

Aij .
(9)

Combining (8) and (9), we have

|N({i}) ∩ Bk+1| ≥
∑

u∗
j

−uj≤u∗
i

−ui+Dk+1−Dk

Aij ≥
cn,m(Dk+1−Dk)−

√
2m log(n+m)

(1−zn,m)ndn,m

cn,m(Dk+1−Dk)+ 1
4 Dk

|N({i})|.

For k < Kn,m − 1,
cn,m(Dk+1−Dk)−

√
2m log(n+m)

(1−zn,m)ndn,m

cn,m(Dk+1−Dk)+ 1
4 Dk

|N({i})| ≥ qn,m|N({i})|.

For k = Kn,m − 1,
cn,m(Dk+1−Dk)−

√
2m log(n+m)

(1−zn,m)ndn,m

cn,m(Dk+1−Dk)+ 1
4 Dk

|N({i})| ≥ 75
81 |N({i})|. ◀

A.5 Proof of Theorem 13
Proof of Theorem 13. Denote Xk = Bk ∩ L and Yk = Bk ∩ R. We inductively prove the
following fact, for n and m large enough, with probability 1 − (n + m)−2,

for 1 ≤ k ≤ Kn,m − 2, and k is odd, |Xk|, |Yk| ≥
(

n
m dn,m

)(k−1)/2;
for 1 ≤ k ≤ Kn,m−2, and k is even, |Xk| ≥

(
n
m

)k/2
d

(k−1)/2
n,m and |Yk| ≥

(
n
m

)k/2−1
d

(k−1)/2
n,m ;

for k = Kn,m − 1, |Xk|, |Yk| ≥ m
dn,m

;
for k = Kn,m, |Xk| > n

2 , |Yk| > m
2 .

We will use the following fact,

|Yk+1| ≥ |N(Xk) ∩ Bk+1| = |N(Xk)| − |N(Xk) ∩ Bk+1|

≥|N(Xk)| −
∑

i∈Xk

|N({i}) ∩ Bk+1| = |N(Xk)| −
∑

i∈Xk

(
|N({i})| − |N({i}) ∩ Bk+1|

)
, (10)

and similarly |Xk+1| ≥ |N(Yk) ∩ Bk+1| ≥ |N(Yk)| −
∑

i∈Yk

(
|N({i})| − |N({i}) ∩ Bk+1|

)
, to

show the growth of Xk and Yk respectively.
We only consider n and m large enough. Since i ∈ B0, w.l.o.g. we assume |X0| = 1. if X0

contains other subjects, we take a subset with size 1. Then by fact (10), (7) and Lemma 16,
we know with probability 1 − 4(n + m)−4 that |Y1| ≥ |N(X0) ∩ Bk+1| ≥ qn,m|N(X0)| > 0.
For 1 < k ≤ Kn,m − 2, and odd k, we prove inductively. We assume |Xk| =

(
n
m dn,m

)(k−1)/2.
If Xk is larger, we pick any subset with size

(
n
m dn,m

)(k−1)/2. Fact (10) show that
|Yk+1| ≥ |N(Xk)| −

∑
i∈Xk

(
|N({i})| − |N({i}) ∩ Bk+1|

)
.

By Lemma 15 and union bound over all subset of L with size
(

n
m dn,m

)(k−1)/2, it holds
with probability 1 − (n + m)−3|Xk| that, |N(Xk)| > (1 − zn,m)

(
1 − dn,m|Xk|

m

)
dn,m|Xk|.
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By Lemma16 and union bound over all possible subject i ∈ Xk, it holds with probability
1 − 2(n + m)−3 that, ∀i ∈ Xk, |N({i}) ∩ Bk+1| ≥ qn,m|N({i})|.
Therefore, with probability 1 − 3(n + m)−3 we have

|Yk+1| ≥ |N(Xk)| −
∑

i∈Xk

(
|N({i})| − |N({i}) ∩ Bk+1|

)
≥ |N(Xk)| − (1 − qn,m)

∑
i∈Xk

|N({i})|

≥(1 − zn,m)
(

1 − dn,m|Xk|
m

)
dn,m|Xk| − (1 − qn,m)dn,m|Xk|

≥|Xk|
(

m

n
dn,m

)1/2
((

n

m

)1/2
(qn,m − zn,m)d1/2

n,m − (1 − zn,m)
(

n
m

dn,m

)3/2 |Xk|
n

)

≥|Xk|
(

m

n
dn,m

)1/2
((

n

m

)1/2
(qn,m − zn,m)d1/2

n,m − 1
)

where the last inequality holds because we assume |Xk| =
(

n
m dn,m

)(k−1)/2. Finally, under
condition (6), we have for large enough n and m,

(
n
m

)1/2 (qn,m − zn,m)d1/2
n,m − 1 ≥

(
n
m

) 1
2 ,

thus |Yk+1| ≥ d
1/2
n,m|Xk|. The same calculation applies to the case of 1 < k ≤ Kn,m − 2 and

even k. Similarly, we can prove for 1 < k ≤ Kn,m − 2, |Xk+1| ≥ n
m (dn,m)1/2 |Yk|. Therefore,

we finish the proof for all k < Kn,m.
Similarly for k = Kn,m and large enough n and m, with probability 1 − 4(n + m)−3,

|YKn,m | ≥ |N(XKn,m−1)| −
∑

i∈XKn,m−1

(
|N({i})| − |N({i}) ∩ BKn,m

|
)

≥ |N(XKn,m−1)| −
(

1 − 75
81

) ∑
i∈XKn,m−1

|N({i})| ≥ (1 − zn,m − e−1)m − 6
81m >

m

2 .

The same proof applies for |XKn,m
|. To summarize, with probability 1−(n+m)−2, |XKn,m

| >

n/2 and |YKn,m
| > m/2, thus |BKn,m

| > (n + m)/2. By symmetry, |BKn,m
| > (n + m)/2

with probability 1 − (n + m)−2. Then with probability 1 − 2(n + m)−2, at least one
subject i ∈ BKn,m

∩ BKn,m
lies in both BKn,m

and BKn,m
. By definition, subject i satisfies

εi − ε ≤ DKn,m and ε − εi ≤ DKn,m , thus ∥u∗ − u∥∞ ≤ ε − ε ≤ 2DKn,m , which tends to 0
under condition (6). ◀

A.6 Proof of Theorem 17

Proof. When the exam result graph is strongly connected, the algorithm calculates the
MLEs u∗ and gives student i a grade of algi = 1

|Q|
∑

j∈Q f(u∗
i − u∗

j ), while the ground truth
probability of answering a random question correctly is opti = 1

|Q|
∑

j∈Q f(ui − uj). Thus
we have

|algi − opti| =

∣∣∣∣∣ 1
|Q|
∑

j

f(u∗
i − u∗

j ) − 1
|Q|
∑

j

f(ui − uj)

∣∣∣∣∣ ≤ 1
|Q|
∑

j

∣∣f(u∗
i − u∗

j ) − f(ui − uj)
∣∣

= 1
|Q|
∑

j

∣∣f ′(ξij)
∣∣ |εi − εj | ≤ 2

n
∥u − u∗∥∞

∑
j

∣∣f ′(ξij)
∣∣ ≤ 1

2∥u − u∗∥∞,

where the third-to-last equality is because of the mean value theorem, the next-to-last
inequality is because |εi − εj | ≤ 2∥u − u∗∥∞, and the last inequality is because |f ′(x)| ≤ 1

4 .
Thus (algi − opti)

2 ≤ 1
4 ∥u − u∗∥2

∞. ◀
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A.7 Proof of Theorem 20
Proof. We prove a stronger argument of the decomposition for any fixed student i and any
fixed task assignment graph G,

∀i, G, Ew[(algi − opti)
2] = Ew[(algi − Ew[algi] + Ew[algi] − opti)

2]

= (Ew[algi] − opti)
2 + Ew[(algi − Ew[algi])

2] + 2Ew[(algi − Ew[algi]) (Ew[algi] − opti)]

= (Ew[algi] − opti)
2 + Ew[(algi − Ew[algi])

2] + 2 (Ew[algi] − opti)Ew[(algi − Ew[algi])]

= (Ew[algi] − opti)
2 + Ew[(algi − Ew[algi])

2]. ◀
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Abstract
Massive surges of enrollments in courses have led to a crisis in several computer science departments
- not only is the demand for certain courses extremely high from majors, but the demand from
non-majors is also very high. Much of the time, this leads to significant frustration on the part
of the students, and getting seats in desired courses is a rather ad-hoc process. One approach is
to first collect information from students about which courses they want to take and to develop
optimization models for assigning students to available seats in a fair manner. What makes this
problem complex is that the courses themselves have time conflicts, and the students have credit
caps (an upper bound on the number of courses they would like to enroll in). We model this problem
as follows. We have n agents (students), and there are “resources” (these correspond to courses).
Each agent is only interested in a subset of the resources (courses of interest), and each resource
can only be assigned to a bounded number of agents (available seats). In addition, each resource
corresponds to an interval of time, and the objective is to assign non-overlapping resources to agents
so as to produce “fair and high utility” schedules.

In this model, we provide a number of results under various settings and objective functions.
Specifically, in this paper, we consider the following objective functions: total utility, max-min (Santa
Claus objective), and envy-freeness. The total utility objective function maximizes the sum of the
utilities of all courses assigned to students. The max-min objective maximizes the minimum utility
obtained by any student. Finally, envy-freeness ensures that no student envies another student’s
allocation. Under these settings and objective functions, we show a number of theoretical results.
Specifically, we show that the course allocation under the time conflicts problem is NP-complete but
becomes polynomial-time solvable when given only a constant number of students or all credits,
course lengths, and utilities are uniform. Furthermore, we give a near-linear time algorithm for
obtaining a constant 1/2-factor approximation for the general maximizing total utility problem when
utility functions are binary. In addition, we show that there exists a near-linear time algorithm that
obtains a 1/2-factor approximation on total utility and a 1/4-factor approximation on max-min
utility when given uniform credit caps and uniform utilities. For the setting of binary valuations, we
show three polynomial time algorithms for 1/2-factor approximation of total utility, envy-freeness
up to one item, and a constant factor approximation of the max-min utility value when course
lengths are within a constant factor of each other. Finally, we conclude with experimental results
that demonstrate that our algorithms yield high-quality results in real-world settings.
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1 Introduction

This work addresses a central problem in fair resource allocation in the course allocation
setting. In the algorithms community, one of the fairness objectives is to allocate resources
among agents to maximize the minimum allocation to any single agent, also known as “Santa
Claus” problem. In the course allocation setting, there are additional constraints to the Santa
Claus problem, such as a “conflict” graph between the resources, in other words, if there is a
conflict edge between two resources, then we cannot allocate that pair of resources to the
same agent. Our study was motivated by the course allocation scenario since massive surges
in enrollments in CS courses have led to a crisis in several computer science departments
- not only is the demand for certain courses extremely high from majors, but the demand
from non-majors is also very high. Much of the time, this leads to significant frustration
on the part of the students who are unable to get into courses of interest, and this lead to
non-uniformity in student happiness as a few students were able to successfully petition
faculty to add them to their course, and other students failed to get into any course of interest
(leading to further annoyance when finding out that you did not get in, but your friend did).
As registration opens up, there is always a mad scramble to enroll in courses. Given the
amount of money spent by students on fees, and due to the scale of the problem, we set
out to collect the information from students about which courses they want to take, and
then developed optimization models for assigning students to available seats. What makes
this problem complex is that courses themselves have time conflicts, so a student might be
interested in two courses, but if they meet at overlapping times, they can only take one of
those courses. Moreover, students have credit caps, that limit how many courses a student
can enroll in, and naturally, courses have limited capacity. Students specify a set of courses
that they are interested in, and we care about total utility (assigned seats), as well as fairness
measured by both the lowest allocation to any student in an assignment and envy-freeness.

While our motivating example was assigning seats to students in a fair manner, this
is a pretty general resource allocation problem with some additional constraints capturing
conflicts among courses and capacity constraints of students. We represent the conflict using
a conflict graph where resources are the nodes and an edge between two resources implies
that those two resources cannot be assigned to the same student.

The problem when the conflict graph is unrestricted is NP-hard (Appendix A). Thus, we
focus on the case of assigning resources that can be represented as intervals. Each interval
has a start and end time. We assume that time occurs in discrete integer time steps in
increments of 1 beginning with step 0. Overlapping intervals are those that strictly overlap
(an interval ending at time 3 does not overlap with another interval that starts at 3). The
conflict graph is now determined by the overlapping structure: if two resources (intervals)
overlap in time, then there is an edge between them in the corresponding conflict graph.

1.1 Related Work
The problem of allocating resources among a set of n agents with an egalitarian objective
(maximizing the total value of items allocated to the worst-off agent) has been well-studied
in the literature and is known as the Santa Claus problem. This problem was introduced
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by Bansal and Sviridenko [3] and they developed a O(log log n/ log log log n) approximation
algorithm. Later, Davies et al. [16] improved it to a (4 + ϵ)-approximation. More recently,
Chiarelli et al. [15] considered the Santa Claus problem assuming conflicting items represented
by a conflict graph. They analyzed the NP-hardness of the problem for specific subclasses of
conflict graphs and provided pseudo-polynomial solutions for others. Our work complements
their results by providing constant approximate (polynomial time) solutions for interval
graphs with uniform and binary valuations for course allocation.

Another well-studied fairness criterion in the fair division literature is envy-freeness [17],
where every agent values her allocation at least as much as she values any other agent’s
allocation. However, envy-freeness does not translate well when the items to be allocated are
indivisible (for example, if there is one indivisible item and two students, the item can be
allocated to only one student, and the other student would envy). Thus, for indivisible items
(such as course seats), an appropriate fairness criterion is envy-freeness up to one item (EF1),
defined by Budish [12]. Prior works have shown that an EF1 allocation always exists while
allocating non-conflicting budgeted courses [12], under submodular valuations [31], under
cardinality constraints [7], conflicting courses with monotone submodular valuations and
binary marginal gains over the courses [4, 34], and many more. However, these results do not
consider interval graphs to model conflicting courses and thus, the existing EF1 solutions
cannot solve the fair course allocation problem that we consider. Recent work by Hummel et
al. [24] explored the allocation of conflicting items with EF1 fairness criteria. They showed
the existence of EF1 for conflict graphs with small components and refuted the existence of
EF1 when the maximum degree of the conflict graph is at least as much as the number of
agents. Moreover, they provided a polynomial time EF1 solution when the conflict graph
consists of disjoint paths and the valuations are binary. Our work extends their results by
providing a polynomial time EF1 solution for interval graphs with binary valuations, which
are more general than disjoint-path graphs and capture conflicts between courses.

Fair allocation of intervals has been studied in job scheduling problems, where each job
is represented as an interval (with a starting time, deadline, and processing time) and is
required to be allocated to machines such that the same machine is not scheduled to run
another job at the same time. Fairness notions considered are in terms of load balancing [2],
waiting time envy freeness [6], completion time balancing [25], and EF1 among machines [30].
However, these papers allow flexible time intervals, which cannot capture conflicts as graph
edges and represent a different problem from our work.

Other related techniques to our fair course allocation problem include equitable coloring [8,
27, 20], bounded max coloring [10, 23], mutual exclusion scheduling [18, 26, 33], although
most of these works are only tangentially related to our problem at hand. There have
also been many works on approximation algorithms for various different types of conflict
models [9, 13, 29, 32] and resource constrained scheduling [5] but none of these works operate
in the specific conflict graph and allocation model studied in our paper.

1.2 Summary of Contributions

In this paper, we tackle the problem of fair allocation of conflicting resources. We prove
that a general version of the problem is NP-hard via a reduction from the independent set
problem in Appendix A. This motivates the study of a specific class of conflict graphs, namely
interval graphs, which capture the course allocation problem. For interval graphs, we provide
polynomial time algorithms to obtain a fair allocation. We establish that, oftentimes, simple
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algorithms are enough to provide multiple guarantees in terms of efficiency and fairness,
specifically, a round robin approach is often sufficient. Figure 1 summarizes our results. Our
main results are:

We first consider uniform utilities in Section 3 and show that the course allocation under
the time conflicts problem with the objective of maximizing social welfare is NP-complete
in general. However, we develop polynomial-time solutions when there are a constant
number of students or when the credit caps and course lengths are uniform. We further
provide solutions that have fairness guarantees, one of which satisfies envy-freeness up to
any good (EFX) and the other achieves approximate maxi-min fairness.
We then investigate binary utilities and uniform credits for all courses in Section 4 and
develop a (1/2)-approximate solution for the course allocation problem under the time
conflicts problem with the objective of maximizing social welfare. We further provide
solutions that have fairness guarantees, one of which satisfies envy-freeness up to one
good (EF1) and the other achieves approximate max-min fairness.
Our experimental evaluation demonstrates that our algorithms yield near-optimal solutions
on synthetic as well as real-world university datasets.

utility

NP-hard for max-
imizing total

utility [Theorem 7]

credit cap

NP-hard for
maximizing
total utility

under uniform
course credits
[Theorem 7]

social welfare
[Theorem 15],

EF1-CC
[Theorem 18],

max-min
[Theorem 19]

[arbitrary] [infinite]

credit cap

social welfare
Theorem 11
from [14]

social welfare
[Theorem 9],
EFX [The-
orem 12],
max-min

[Theorem 14],
NP-hard

[Theorem 6]

NP-hard
for decision

version of total
utility with

arbitrary course
credit counts
[Theorem 6]

[arbitrary] [uniform] [infinite]

[uniform] [binary] [arbitrary]

Figure 1 Overview of results.

2 Preliminaries

In this section, we define our problem as well as the necessary concepts for our results. We
first define our main problem which we call the Course Allocation Under Time Conflicts
problem (CAUTC). This problem describes an issue almost all universities face: given a
set of courses that have meeting times during the week and student preferences over these
courses, what is the best way to assign these courses to students? Each course has a seating
capacity, after all. From a university’s perspective, filling seats has value (maximizing utility),
but we have to balance that with a fairness aspect as well.



A. Biswas, Y. Ke, S. Khuller, and Q. C. Liu 8:5

2.1 Course Allocation under Time Conflicts Model
We consider the problem of allocating a set of m courses among a set of n students. Let N
be the set of students and M be the set of courses. Courses in M have indices in M. Each
student i ∈ N has a non-negative utility for each course j ∈ M; this utility is denoted by
ui(j) ≥ 0. Ci represents the maximum number of credits, a student i can take. Each course j

has a certain number of credits indicated by cj , a seat capacity of sj for each j ∈M, a start
and end time, represented by the tuple (startj , endj) and a duration dj (in units consisting
of discrete time steps). Finally, each course j is associated with a seat count sj . Therefore,
the restrictions are:

A student i ∈ N can be matched to courses with the total credits at most Ci (credit cap).
A course j ∈M can be allocated to at most sj students.
No student can be allocated a pair of courses that overlap in time.

Although we define the problem in the most general form, for the rest of this paper, we
set cj = 1 for all courses. Furthermore, we reduce to the equivalent problem where we make
a copy of the course for each seat and create an interval with the same start and end time
for each seat of the course. Via this reduction, we also set sj = 1 for all courses.

The course schedule can be represented as an interval graph. We illustrate such a
configuration in Figure 2.
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Figure 2 An CAUTC instance with 3 students and 5 courses, with one seat per course. All
courses conflict with each other except for Course1 and Course5. The red numbers students indicate
the credit caps for students. The allocation represents a solution for CAUTC-SW (Definition 1).

2.2 Fairness Measures
We first consider the problem of finding an allocation that maximizes the social welfare (total
sum of utilities of all the students based on the courses allocated) subject to all the feasibility
and non-conflicting constraints. We call this maximization problem CAUTC-SW.

▶ Definition 1 (CAUTC-SW). Given a set of students N , a set of courses M, and the set
of utility functions U , CAUTC-SW is the assignment of courses to students such that the
social welfare is maximized and the constraints of CAUTC are satisfied.

In addition to maximizing social welfare, we also consider a number of common fairness
measures as constraints. We first define them here but will slightly modify some of these
definitions in their respective sections later on in this paper.
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We first define the concept of envy-free up to any good (EFX). Informally, EFX means
that if any agent A were to be envious of any agent B, then A would no longer be envious if
any one item were to be removed from agent B’s allocation.

▶ Definition 2 (Envy-Free Up to Any Good (EFX)). For all students i ∈ N , if there exists an
i′ ∈ N such that ui(Ai′) > ui(Ai), then for all items x ∈ Ai′ , it follows that ui(Ai′ \ x) ≤
ui(Ai) or Ci =

∑
j∈Ai

cj (student i has reached their credit cap), where Ak denotes the
allocation of courses to student k.

A slightly weaker version of EFX is envy-free up to one good (EF1), defined below.
Informally, EF1 means that if any agent A were to be envious of any agent B, then A would
no longer be envious if a particular item were to be removed from agent B’s allocation.

▶ Definition 3 (Envy-Free Up to One Good (EF1)). For all students i ∈ N , if there exists
an i′ ∈ N such that ui(Ai′) > ui(Ai), then there exists an item a ∈ Ai′ satisfying ui(a) > 0,
such that ui(Ai′ \ a) ≤ ui(Ai) or Ci =

∑
j∈Ai

cj (student i has reached their credit cap),
where Ak denotes the allocation of courses to student k.

The problem with only ensuring EF1 is that there is a trivial allocation of courses
consisting of giving everyone one course only or no courses. Such an allocation is EF1 since
no one envies anyone else by more than one course. However, such an allocation is not a very
useful allocation most students would not receive as many courses as they want and there
will be many remaining courses. Thus, we need a better measure of envy. A definition from
[30] resolves this problem. Suppose all unassigned courses in each iteration were donated
to a dummy student, the charity, who is unable to envy anyone, but students are able to
envy the charity. Then, having the charity resolves the issue of trivial solutions. Specifically,
any student i can envy the charity by considering the maximum independent set among the
courses in the charity that are desired by i. If such a maximum independent set is larger
than the number of courses allocated to i, then i envies the charity. We formally define EF1
Considering Charity (EF1-CC) to be our new notion of envy below.

▶ Definition 4 (Envy-Free Up to One Good Considering Charity (EF1-CC)). Any student i

who has reached their credit cap (i.e. Ci =
∑

j∈Ai
cj) does not envy anyone else. For all

other students i, i′ ∈ N (who have not reached their credit caps) and given an allocation
A = (A1, . . . , Ai, . . . An) of courses, it holds that |{j | ui(j) > 0, j ∈ Ai}| ≥ |{j | ui(j) >

0, j ∈ Ai′}| − 1. Let D be the set of courses that are unassigned and held by a dummy
student defined as the charity. Let MISi = MIS({j | ui(j) > 0, j ∈ D}) be the maximum
independent set of courses in D that are desired by student i. Then, for all students i ∈ N ,
it holds that |{j | ui(j) > 0, j ∈ Ai}| ≥ |MISi| − 1.

Finally, we consider a Santa Claus fairness objective which is to maximize the minimum
allocation of courses to any student. For simplicity, we denote this problem as CAUTC-SC.

▶ Definition 5 (CAUTC-SC). Determine an allocation of courses to students A = (A1, . . . , An)
that maximizes the minimum utility of any student subject to the constraints of CAUTC.
Namely, we seek to satisfy the following objective maxA

(
mini∈N

(∑
j∈Ai

ui(j)
))

.

3 Uniform Utilities for Courses

In this section, we discuss the setting where all students have equal, uniform preferences for
all courses. In other words, in this section, all students have preference 1 for every course. In
this setting, we show a number of hardness, social welfare, and fairness results described in
the following sections.
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3.1 Hardness of CAUTC-SW under Uniform Utilities
We show that CAUTC-SW is NP-hard (Theorem 6). Subsequently, we consider some
variants of the problem that are polynomial-time solvable in the following sections.

▶ Theorem 6. The CAUTC-SW problem where the utilities are uniform, credit caps are
uniform, course are non-overlapping, and number of credits for each course is non-uniform
and arbitrary is NP-hard.

We prove this via a reduction from the 3-partition problem ( Appendix B.1).

▶ Theorem 7. The CAUTC-SW problem where utilities are binary, credit caps are infinite,
and number of credits for each course is uniform is NP-hard.

We prove this via a reduction from the k-coloring problem for circular-arc graphs. The
complete proof is in Appendix B.2.

3.2 Maximizing Social Welfare
In this section, we show that, for some more restricted settings, the CAUTC-SW problems
are polynomial-time solvable. We first show that when given a constant number of students,
we can efficiently solve the most general form of the problem with no restrictions on either
the credit caps or the number of credits for each course, and with arbitrary preferences for
each student.

Algorithm 1 Round Robin Algorithm for CAUTC-SW.

Require: Set of students N , set of courses M, uniform (unit) utilities
Ensure: Assignment of courses to students.

1: function RoundRobin(N , M)
2: Sort M chronologically by earliest finish time.
3: Initialize student assignments A to empty sets. ▷ each student starts out with no

courses
4: for course j ∈M in sorted order do
5: Let T = {s | |As| < Cs, no course in As conflicts with j}.
6: if |T | > 0 then
7: Let s = mins′∈T (|As′ |) (breaking ties by student index).
8: Update As = As ∪ {j} ▷ Assign course j to student s

9: return A

▶ Theorem 8. CAUTC-SW is polynomial-time solvable when there are only a constant
number of students and credit counts for courses can be distinct but are each O(1).

The proof of Theorem 8 can be found in Appendix B.3.

▶ Theorem 9. Algorithm 1 solves CAUTC-SW in O((n + m) log n) time when there are
(1) uniform credits for all courses, i.e. cj = cj′ for all j, j′ ∈M, (2) uniform course lengths,
i.e., dj = dj′ for all j, j′ ∈M, and (3) uniform utilities i.e., ui(j) = ui′(j) for all i, i′ ∈ N .

We prove Theorem 9 via a variation of the greedy-comes-first strategy; we present our full
proof in Appendix B.4. When the durations of the courses are not uniform, we can obtain a
(1/2)-approximate allocation for CAUTC-SW.
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▶ Lemma 10. There is a O((n + m) log n) time round-robin algorithm for CAUTC-SW
that obtains a 1/2-approximation when there are (1) n students, (2) uniform credit caps i.e.
for any pair of students i, i′ ∈ N , we have Ci = Ci′ , and (3) uniform utilities i.e. for any
pair of students i, i′ ∈ N and jobs j, j′ ∈M, we have ui(j) = ui′(j′).

Proof. We use the same algorithm as before, given in Algorithm 1. However, we use a slightly
different analysis which is somewhat more complicated than our utility proof before but
with the same essential flavor of proof using Di, Ji, Bi. Namely, the one additional property
we prove is that when |Bi|+ |Di| ≥ |Ji|, our new greedy algorithm will pick |Ji| instead of
Bi ∪Di. Suppose for contradiction that i picked Bi ∪Di instead of Ji, then i must have
picked a course with earlier or the same end time as each of the courses in Ji. We now show
that |Bi ∪Di| ≥ |Ji|. We prove this through the classic greedy stays ahead proof technique.
If one were to chronologically order Bi ∪Di by finish time and also chronologically order
Ji by finish time, and call the two ordered sets as P and Q, respectively, and let Pi denote
the i-th course in set P ; we will prove that it is always true that for all indices i ≤ |J |,
f(Pi) ≤ f(Qi), where f(x) means the finish time of course x. Also define the start time
function of course x as s(x). The base case of i = 1 is obviously true due to the nature
of the algorithm. Now for the inductive case, assume inductive hypothesis f(Pi) ≤ f(Qi)
and we want to prove f(Pi+1) ≤ f(Qi+1). We know that f(Qi) ≤ s(Qi+1). Combining this
with the inductive hypothesis, we get f(Pi) ≤ s(Qi+1), so Qi+1 is available for our algorithm
to choose, and since our algorithm chooses an available course with the earliest end time,
f(Pi+1) ≤ f(Qi+1).

Let’s assume for the sake of contradiction that |J | > |Bi| ∪ |Di|. Through the same
argument as in the inductive case above, say |Bi| ∪ |Di| = p, then the start time of Qp+1
must have a start time later than the finish time of the last course in |Bi| ∪ |Di|, i.e.
s(Qp+1) ≥ f(Pp), but that means our algorithm would have selected Qp+1 (some time) after
selecting Pp, a contradiction. ◀

For completeness, we state the following form formulation of CAUTC-SW that is solved
via an interval coloring algorithm of Carlisle and Lloyd [14].

▶ Theorem 11 ([14]). CAUTC-SW can be solved in polynomial time when there are (1) n

students, (2) no credit caps i.e., Ci = m, and (3) uniform utilities i.e. for any pair of
students i, i′ ∈ N , we have ui(j) = ui′(j).

3.3 Guaranteeing Envy-Freeness Up to Any Good
Maximizing seat occupancy is a reasonable objective only from a financial perspective for the
university, but oftentimes, maximizing seat occupancy could result in highly unfair schedules
for the students. For example, student A might get all of his favorite courses while student
B gets none of his desired courses. We, therefore, consider CAUTC-SW under several
fairness notions, such as envy-free up to any good (Definition 2) and envy-free up to one
good (Definition 3).

▶ Theorem 12. There is an O((n + m) log n)-time algorithm for CAUTC-SW that is EFX
when there are (1) n students, (2) uniform credit caps i.e. for any pair of students i, i′ ∈ N ,
we have Ci = Ci′ , and (3) uniform utilities i.e. for any pair of students i, i′ ∈ N and any
pair of jobs j, j′ ∈M, we have ui(j) = ui′(j′).

Proof. Our algorithm is the same round robin algorithm given in Algorithm 1. We first
prove the following lemma.
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▶ Theorem 13. When student i is no longer able to choose a feasible course, there will be at
most n− 1 courses that can be assigned after i’s turn and each of these courses is assigned
to a different student.

Proof. Because utilities are uniform, if student i is no longer able to choose a course, this
means that all remaining courses conflict with the courses they are assigned. Suppose
the last course that is assigned to student i is course j. Because we are assigning courses
in Algorithm 1 in a round robin manner in an order determined by non-decreasing end time,
all remaining courses (yet to be considered by the algorithm) that can be assigned have end
time no earlier than the end time of j. Let this set of courses be A. Since i is no longer able
to receive a course, either there remains only n− 1 courses or A has at least n− 1 courses
and at least |A| − n + 1 courses in A all conflict with j. Since all courses in A have end time
no earlier than the end time of j, these |A| − n + 1 courses all conflict with each other. In
either of these two cases, at most n− 1 courses can be assigned after i’s turn. Furthermore,
these courses are assigned to different students. If there are at most n − 1 courses in A,
then by nature of the algorithm, these courses all have end times later than the end times
of courses assigned to students; furthermore, the ending time of the last course assigned to
each student can be no later than the end time of j by the nature of our algorithm. Hence,
two such courses can be assigned to one student, then one of these courses can be assigned
to j. Thus, since we are assigning courses to a student with the fewest number of courses,
each of these courses is assigned to a different student. Finally, all additional |A| − n + 1
courses all conflict with each other and hence no two of these courses can be assigned to the
same student. ◀

Hence, by the time the algorithm completes and by Theorem 13, the cardinalities of all
students’ allocations are within one of each other, therefore achieving EFX. ◀

3.4 Maximizing Max-Min Objective
In this section, we consider the max-min objective, Santa Claus (SC) problem (Definition 5).
We first show that our algorithm in Algorithm 1 gives a (1/4)-approximate CAUTC-SC
allocation. Specifically, we prove the following.

▶ Lemma 14. There is a O((n + m) log n) time round robin algorithm (Algorithm 1) for
CAUTC-SC that obtains a (1/4)-approximation when there are (1) n students, (2) uniform
credit caps i.e. for any pair of students i, i′ ∈ N , we have Ci = Ci′ , and (3) uniform utilities
i.e. for any pair of students i, i′ ∈ N and jobs j, j′ ∈M, we have ui(j) = ui′(j′).

Proof. Given a set of courses with total utility U , the max-min value of any allocation is
at most ⌊U

n ⌋. We now consider two possible cases with respect to the values of ⌊U
n ⌋. First,

we consider the case when ⌊U
n ⌋ ≥ 2. In this case, by Theorem 13, the max-min value of

our allocation is at least U
2n − 1 ≥ U

4n . Now, we consider the case when ⌊U
n ⌋ < 2. In this

case, either the max-min value is 0 or the max-min value is 1. If the max-min value is 0,
then we trivially obtain our approximation since any allocation will result in the correct
approximation. Otherwise, if the max-min value is 1, then there is one student who gets
only one course. We show that if the max-min value is 1, then our algorithm also allocates
at least one course to every student. The criteria for our algorithm giving one course to each
student is that there exists at least n courses. Since our algorithm assigns the courses in a
round robin manner, if there are at least n courses, then our algorithm will assign at least
one course to each student. In order for the max-min value to be 1, there must exist at least
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n courses; hence, the max-min value of allocations given by our algorithm matches that of
the value given in OPT. Thus, by the two cases we just showed, the approximation factor is
at least

U
4n
U
n

= 1
4 . ◀

4 Binary Preferences for Classes with Uniform Credits

In this section, we discuss the setting where students have binary preferences for courses. This
is a very realistic setting since it is often the case that students want to take certain courses
and not others. We denote the binary preferences of the students as U : N ×M 7→ {0, 1},
where ui(c) = 1 denotes that the student i ∈ N wants to take the course c, and ui(c) = 0
denotes that course c is not desired by student i. If a student has ui(c) = 1, then we say that
student i desires course c; otherwise, we say that student i does not desire course c. Each
student i has a credit cap denoted by Ci. In this section, all courses have uniform number of
credits; i.e. all courses have the same number of credits. Because of this assumption, we
can assume all courses are 1 credit each and we scale the credit caps of each student to the
maximum number of courses that can fit in the student’s schedule.

4.1 Maximizing Social Welfare
We first present an algorithm that gives an approximation for CAUTC-SW given binary
preferences. Our algorithm proceeds as follows. Sort the students by credit cap from largest
credit cap to smallest (Line 2). Then, we iterate the following procedure. Let the current
student be the first student in the sorted order of the students by credit cap with no assigned
courses (Line 4). We find an independent set of maximum size among all courses with non-
zero utility for the current student (Line 5). For each independent set I and the associated
student i ∈ N , we sort the courses in I and give the first max(|I|, ci) courses in I in the
sorted order to student i (Lines 7, 8, 9). Finally, we remove the allocated courses from the
set of available courses (Line 10).

Algorithm 2 Binary Utilities Algorithm for CAUTC-SW.

Require: Set of students N , set of courses M, binary utilities U

Ensure: Assignment of courses to students.
1: function MaxIndependentSetRoundRobin(N , M, U)
2: Sort N in non-increasing order by credit cap.
3: Initialize student assignments A to empty sets. ▷ student starts out with no courses
4: for student i ∈ N in sorted order do
5: Let I = MIS({j | j ∈M, ui(j) > 0}). ▷ Find MIS in remaining courses.
6: if |I| > Ci then
7: Sort I by end time.
8: Set I ← I[Ci]. ▷ Resize the MIS to be the first Ci courses in the MIS.
9: Set As ← I.

10: Update M =M\ I. ▷ Remove assigned courses.
11: return A

▶ Theorem 15. Algorithm 2 solves CAUTC-SW in O(n2) time with an (1/2)-approximation
when there are n students, arbitrary credit caps Ci for all i ∈ N , unit credits per course
cj = 1 for all j ∈M, and binary utilities for all students, i.e. ui(j) ∈ {0, 1} for all i ∈ N .



A. Biswas, Y. Ke, S. Khuller, and Q. C. Liu 8:11

Proof. In the sorted order of courses by end time in I, if course j ∈M is assigned in OPT
and by our algorithm, then we skip this course in our analysis. However, if the course is
assigned in OPT but not assigned by our algorithm, then we need to argue that either
another course is assigned in its place or that we can charge it to another assigned course.
For all of the below cases, suppose that course j ∈M is assigned to student i ∈ N in OPT
but not assigned in our assignment. For simplicity, we denote the assignment produced by
our algorithm as A. Let Di be the set of courses assigned to student i in A which were not
assigned to any student in OPT; let Bi be the set of courses assigned to i in A but assigned
to q ̸= i ∈ N in OPT. Finally, let Ji be the set of courses assigned to i in OPT but assigned
to no student in A. We consider all possible cases below.

If |Di| ≥ |Ji|, then for each course in Ji, we can replace it with a course in Di and achieve
the same maximum total utility.
If |Di| < |Ji|, then we consider two additional cases:

It is impossible to have |Bi| + |Di| < |Ji| since |Ji| is a larger independent set and
would have been assigned to i instead of Bi ∪Di.
Then, the remaining case is that |Bi|+ |Di| ≥ |Ji|. This case is the core of our proof.
In this case, we know that |Bi| ≥ |Ji| − |Di|. We pick an arbitrary set of |Di| jobs in
Ji and replace them each with a unique job in Di. This does not change the optimum
total utility value. Now, we charge each of the remaining |Ji| − |Di| jobs in Ji to a job
in |Bi|. We now count the number of “charges” that each course in |Bi| gets. Since
|Bi| ≥ |Ji| − |Di| and we do not charge a course in Bi with any other course not in Ji,
each course in Bi is charged with at most one charge resulting from a course in Ji.

We now count the number of courses assigned in both OPT and A as well as the number
of charges each course gets. By the cases above, each of these courses gets at most 1 charge.
Hence, if each charge is added to the set of allocated courses, the utility increases by at most
a factor of two. Hence, our algorithm produces a (1/2)-approximation. ◀

4.2 Guaranteeing Envy-Freeness Up to One Good
Given an allocation of courses to students A = (A1, . . . , Ai, . . . , An) (where Ai is the set of
courses assigned to student i), a student i is said to envy student i′ if the number of student
i’s desirable courses in Ai is less than that in Ai′ , that is, |{j | ui(j) > 0, j ∈ Ai}| < |{j |
ui(j) > 0, j ∈ Ai′}|. Similarly, an allocation A is called EF1 when for every pair of students
i, i′ ∈ N , the following holds: |{j | ui(j) > 0, j ∈ Ai}| ≥ |{j | ui(j) > 0, j ∈ Ai′}| − 1. Note
that in the binary valuation setting, EF1 implies that, removing any course that i desires
from Ai′ results in i no longer envying i′. We provide an algorithm (Algorithm 3) and prove
that this algorithm satisfies the stronger fairness criterion called EF1-CC (Definition 4).

Our algorithm is a simple modification of the round-robin algorithm given in Algorithm 1.
The only change we make to the algorithm is that when we perform the round-robin
assignment, each course is iteratively assigned to only one of those students who have non-
zero utility for the course, in addition to ensuring that the selected student has the minimum
number of current courses, has not reached credit cap and has no conflict with the course.
Our modified pseudocode is given in Algorithm 3.

Specifically, Algorithm 3 first sorts the courses chronologically by finish time (Line 2).
Then, we iterate over the courses one by one in the sorted order of finish time (Line 4).
Among the students who have non-zero preference for the course, have not reached their
credit caps, and have no conflicts with the course (Line 5), we select a student (breaking
ties arbitrarily) with the least number of assigned courses among these students (Line 7).
Finally, we assign the course to the student (Line 8).
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Algorithm 3 Round Robin Algorithm for EF1-CC Allocation with Binary Utilities.

Require: Set of students N , set of courses M, binary utilities U

Ensure: EF1-CC Allocation for Binary Utilities
1: function EF1CCRoundRobin(N , M, U)
2: Sort M chronologically by earliest finish time.
3: Initialize student assignments A to emptysets. ▷ students start out with no courses
4: for course j ∈M in sorted order do
5: Let T = {s | us(j) = 1, |As| < Cs, no course in As conflicts with j}.
6: if |T | > 0 then
7: Let s = mins′∈T (|As′ |) (breaking ties arbitrarily).
8: Update As = As ∪ {j} ▷ Assign course j to student s

9: return A

▶ Theorem 16. Under binary preferences, uniform credits for all courses, and arbitrary
credit caps, the round-robin algorithm given in Algorithm 3 produces an EF1 allocation.

Proof. We prove by induction that for any two students s and s′, student s never envies s′ by
more than one course throughout the entirety of Algorithm 3. The induction is on the finish
time of each course in the schedule of s′ among the set of courses for which s has non-zero
utility, i.e. we induce on the finish times of the set of courses L = [j ∈ As′ | us(j) > 0] sorted
from earlier to later times. Notice that L is the set of courses assigned to s′ that are desired
by s, as courses assigned to s′ not desired by s cannot make s envy s′ and therefore irrelevant
to this proof. Now, for each i ∈ [|L|], we consider the set of courses assigned to both s and
s′ which has end time no later than the end time of L[i]. For simplicity, we use the phrase
by the time course L[i] ends to mean that we consider the set of courses held by s and s′

with end time no later than L[i].

▶ Lemma 17. For each course L[i] for all i ∈ [|L|], at the time L[i] ends, student s envies
s′ by at most one course.

Proof. We prove via induction on the i-th course of L which ends at time ei. The base case
is when i = 1. Student s trivially envies s′ by at most 1 because if s has no courses by the
time course L[i] ends then s will only envy s′ by 1; otherwise, s will not envy s′.

We assume for the purposes of induction that s envies s′ by at most one course by the
time L[i] ends. We now prove that s envies s′ by at most one course by the time L[i + 1]
ends. By our induction hypothesis, there are two cases, when s envies s′ by one course when
L[i] ends, and when s does not envy s′ when L[i] ends. In the latter case, it is only possible
for s to envy s′ by at most one course by the time L[i + 1] ends since s′ has gained at most
one additional course which s desires by the time L[i + 1] ends. Now we prove the former
case. Let j be the next course (after the course L[i]) that the algorithm considers that is
assigned to either student s or s′, is desired by s. Then, course j would fit into the current
schedule of both s and s′, since j starts after the end time of L[i]. Suppose for the sake
of contradiction that j is assigned to s′. Since we compare the set of courses that end no
later than the end time of L[i], if j is assigned to s′ then j has start time later than L[i].
Student s envies s′ by 1 course among the set of courses she received that end no later than
L[i]. Then, course j is not assigned to s only if s has a conflicting course (since s has fewer
courses than s′); however, this contradicts with j being the next course assigned after L[i] to
either s or s′. ◀
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Now to prove Theorem 16, we use Lemma 17. Specifically, by the time the last course in
L ends, student s envies s′ by at most one course. Any course in the schedule of s that ends
at a time later than this does not increase the envy s feels towards s′. And due to symmetry,
s′ similarly does not envy s by more than one course. Similarly, any course assigned to s in
between the ending times of L[i] and L[i + 1] does not increase the envy of s. ◀

▶ Theorem 18. Under binary preferences and uniform credits for all courses, Algorithm 3
produces an EF1-CC allocation.

Proof. Theorem 16 stated that no student envies another student by more than one course.
We are left to show that no student envies charity by more than 1 course. Assume for the
sake of contradiction that there is a student s that envies the charity, this means that (1)
|As| < Cs where cs is the credit cap for student s, and (2) there is a bigger independent set
of courses (name this set I) among the courses assigned to the charity than the number of
allocated courses to s, i.e. |As| < |I|.

First, all courses in I overlap with As because if some course j ∈ I does not conflict with
any course in As, then our algorithm would have assigned j to s. If we were to sort I and
As by earliest finish time first and index them by i, observe that for all i, course As[i] ends
earlier than I[i] due to our algorithm (this can be proven with a very elementary greedy
stays ahead induction proof [28]). This means that |As| ≥ |I| because if there were to be a
course j = E[|As|+ 1], that means j begins after the last course in As ends, which means
our algorithm would have assigned j to s. ◀

4.3 Maximizing Max-Min Objective
Now, we look at a more general version of CAUTC-SC considering binary utilities and provide
the following algorithm that gives a constant factor approximation when the maximum and
minimum durations of any course are within a constant factor c of each other. We first
describe our algorithm with the pseudocode provided in Algorithm 4. The algorithm proceeds
as follows. The courses are sorted by end time (Line 2). Then, in the sorted order of courses,
each course is given to a student who has non-zero preference for the course, has not filled
up all of their credits (up to their credit cap), has no conflicting courses, and who has the
least number of assigned courses among all students who have non-zero preference for the
course (Line 6). Suppose we assign course j to a student i. Let di be a dummy course that
we create for each student i. Then, we repeatedly perform the following procedure until no
more augmenting paths exist (Line 9):

For each course assigned to student i, draw a directed edge from course j′ assigned to
student i′ ̸= i if j conflicts with j′ and removing j′ means that j does not conflict with
any other course assigned to i′ and i′ has less assigned courses than i (Line 13).
For each course assigned to student i, draw a directed edge from dummy course di′ to j

if j does not conflict with any course assigned to i′ and i′ has less than or equal to the
number of courses assigned to i (Line 14).
Repeat with the courses assigned to i′ and omit all courses assigned to student i from
this part of the graph construction.

Once a full directed acyclic graph is drawn using the above procedure, we define an
augmenting path to be a directed path with the source at a dummy course and sink at
a course of i (Line 16). We repeatedly produce a new directed acyclic graph using the
above procedure and switch courses between students via an augmenting path until no such
augmenting paths remain (Line 18). Then, we proceed with assigning the next item in the
sorted order of courses. We prove that our algorithm returns a constant factor approximation
of the max-min objective value.

FORC 2023



8:14 An Algorithmic Approach to Address Course Enrollment Challenges

Algorithm 4 Max-Min Assignment of Courses.

Require: Courses M, students N , binary utilities U

Ensure: Approximate max-min allocation J

1: function Find-Max-Min-Allocation(M, N , U)
2: Sort courses in M by end time from earliest to latest.
3: D ← ∅.
4: Let Q← ∅ be a queue of students.
5: for each course j in sorted order do
6: Assign j to student i with minimum number of assigned courses, has not reached

credit cap, where ui(j) > 0, and does not have any conflicting courses.
7: Add i to the end of Q.
8: Set AugPath← True.
9: while AugPath do

10: while Q ̸= ∅ do
11: Remove the first student i′ from Q.
12: for each course j assigned to i′ do
13: Draw directed edge from j′ assigned to student b to j if j′ conflicts with j,

removing j′ results in j conflicting with no course assigned to b conflicting with j and b

now has less assigned courses than i′, and b ̸∈ D. Add b to the end of Q.
14: Draw a directed edge from db to j if student b does not have any courses that

conflict with j and b has at most as many courses as i′. Add b to the end of Q.
15: D ← D ∪ i′.
16: Find an augmenting path with source at a dummy course and sink at course

assigned to i and reassign courses along augmenting path from sink to source.
17: if there is no augmenting path then
18: AugPath← False.
19: return Allocation of courses to students.

▶ Theorem 19. Algorithm 4 achieves a c-factor approximate solution for CAUTC-SC, where
c is the maximum ratio between the durations of any two courses.

Proof. Let S denote the set of students with the minimum number of assigned courses by
our algorithm. We compare the allocations of courses assigned to each of the students in S

by our algorithm with the allocation of courses assigned to the students by OPT. Let i ∈ S

be one such student. Let Ai be the set of courses allocated to student i by our algorithm
and OPTi be the set of courses allocated to i by OPT. There are four different types of
courses assigned to these students that we are concerned with. Courses assigned to i in Ai

and not in OPTi can only make max-min greater; thus, we do not consider such courses.
The same holds for courses assigned in Ai and by OPT to another student. Then, courses
assigned by OPT but not assigned to Ai must conflict with at least one other course assigned
to i. Hence, such courses can be charged to the course that it conflicts. The conflicting
course(s) cannot be assigned in OPTi; thus, the course in OPTi can be charged to one of
the conflicting courses. The remaining type are courses that are in OPTi, not in Ai, but are
instead assigned to another student by our algorithm. Let j be one such course; then, either

Course j is assigned to a student i′ with less assigned courses than i. This scenario is
impossible by definition of i as a student with the smallest number of assigned courses.
Course j is assigned to a student i′ with the same or more assigned courses than i.
Student i must be assigned a conflicting course to j, as otherwise, when the last course
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assigned to i′ is assigned to i′, course j would have been transferred to i. Suppose first
that i′ has a greater number of courses than i and i has no conflicting course with j, then
this is a contradiction since j would have been eventually transferred to i. Now suppose i

has a course that conflicts j. If this conflicting course has an earlier end time than j, then
j can be charged to the conflicting course. Furthermore, any course can conflict with at
most c different courses assigned to i in OPT by our assumption of the ratio between
the longest class and shortest class. Thus, we charge the course to the conflicting course
assigned to Ai; at most c such courses can be charged to any course in Ai. ◀

5 Experimental Results

In this section, we present a case study with data derived from MS students at Northwestern.
We compare the performance of our algorithms Algorithm 3 and Algorithm 4 to those of
optimal integer programs (IP) implemented using Gurobi [21] in Python. There are two
integer programs of note: one to get the max-min value, and one to get the assignment
maximizing the total social welfare given the max-min value T such that every student must
receive at least T courses. We will henceforth refer to both of these integer programs that
produce the optima as OPT. We implement Algorithm 3 and Algorithm 4 in Python [1]. In
Algorithm 4, after looping through each course, exchange path operations are initiated. The
graphs of exchange paths were implemented in NetworkX[22] in Python. The experiments
are conducted on a Dell PowerEdge R740 with 2 x Intel Xeon Gold 6140 2.3GHz 18 core 36
threads processors, 192GB RAM, dual 10Gbps and 1Gbps NICs.

The dataset was obtained through a Google Form sent out to Master’s students who
wished to take computer science courses. They could select and rank up to five courses.
Since ordinal preferences are beyond the scope of this paper, we only considered the courses
they desire (binary valuations).

Table 1 Comparison of utilities.

Datasets max-min total utility
OPT Algorithm 3 Algorithm 4 OPT Algorithm 3 Algorithm 4

real-world data dataset 1 1 1 744 624 744
alteration 1 2 1 2 725 623 725
alteration 2 3 2 3 686 686 686
alteration 3 2 2 2 760 760 760

synthetic data example 1 2 2 2 7 7 6
example 2 3 1 2 6 3 6
example 3 4 3 3 8 6 6
example 4 1 1 1 5 4 5
example 5 1 1 1 6 5 6
example 6 4 4 4 12 12 12
example 7 4 4 4 12 12 12
example 8 4 4 4 12 12 12

In terms of utility and max-min value, both algorithms incurred similar values as that of
OPT. Table 1 compares the max-min value between OPT, Algorithm 3, and Algorithm 4.
For almost all instances listed in Table 2, Algorithm 3 was much faster than OPT. Since
our input data is not too large, we could compute an optimal assignment by solving the
corresponding IP using Gurobi, which is not scalable in general.
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Table 2 Comparison of runtimes in milliseconds. All runtimes correspond to instances in the
corresponding cells in Table 1. There is only one column under total utility because Algorithm 3
and Algorithm 4 are executed only once, as opposed to the two different linear programs of OPT.

Datasets max-min total utility
OPT Algorithm 3 Algorithm 4 OPT

real-world data dataset 64.3614 44.893709 789.936638 1.883833
alteration 1 59.0851 44.675743 751.317634 1.818061
alteration 2 47.1846 38.609633 490.054614 1.447398
alteration 3 59.0924 44.469586 1214.057334 1.625204

synthetic data example 1 3.672 0.405452 1.505546 1.518124
example 2 0.6444 0.177736 0.831938 0.186128
example 3 2.3873 0.263971 1.145906 0.552925
example 4 2.5193 0.200845 1.052790 0.524367
example 5 3.3109 0.247982 1.344810 0.588912
example 6 1.1906 0.242676 0.667803 0.232696
example 7 11609.3298 594.707318 34986.057784 877.306024
example 8 634809.8065 31554.700315 2278023.952813 9592.727642

The results of our experiments demonstrate the effectiveness of our algorithms. Al-
gorithm 3 was able to give near-optimal solutions with a significantly reduced computational
cost compared to integer programming, a traditional method. The reduced runtime is a test-
ament to the effectiveness of the algorithms and their potential for practical implementation.
The findings of this study highlight the potential for further improvement and optimization of
these algorithms (especially Algorithm 4 since its runtime has much room for improvement)
making them an attractive option for real-world applications. Although Algorithm 4 is slower
than OPT for some of the tested instances, we believe it will be much faster and more
scalable on instances larger than what we tested in our experiments.

6 Conclusions and Future Work

We investigated the problem of allocating conflicting resources across n agents, while taking
into account both fairness as well as overall utility of the assignment. While resource
allocation is extremely well studied, cases when the resources have conflicts have not been
well studied from an algorithmic perspective.

Several generalizations of the course allocation problem open up interesting new direc-
tions for the fair allocation literature, such as generalizing utilities beyond additive binary
and considering non-uniform credits for different courses. Further, each course may be a
corresponding collection of time intervals (instead of a single interval). While we assume
that our courses meet once a week, this may not be true for the general case where courses
might meet on Tues-Thurs or Mon-Wed or Mon-Wed-Fri. If two courses overlap in any of
the time windows then there is an edge in the conflict graph between them. However, such
considerations would make the problem more challenging since the corresponding conflict
graphs would be more complicated than interval graphs.

Going ahead, there are several directions for future research that can extend and improve
upon our approach to course allocation. By addressing these challenges, we can develop
more effective and fair algorithms for allocating courses to students, and better meet the
diverse and evolving needs of students.
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where each agent is assigned a set of non-conflicting resources, is to realize that any agent’s
allocation is an independent set in the conflict graph. Assigning resources to n agents then
becomes a maximum graph coloring problem, where the resources have to be colored with
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Figure 3 Example b-matching with allocations of resources indicated by the different colors.

A b-matching of any graph is a degree constrained subgraph, where the degree of any
node in the subgraph cannot exceed b(v), a specified value. Note that any allocation of goods
to agents can be thought of as a b-matching where the edges encode the value of the good
to that agent, and the degree constraints model the number of seats in a course (available
copies of the good to be assigned to agents) and the degree constraint on the agent nodes
corresponds to an upper bound as to how many resources they desire.

▶ Definition 20 (b-Matching with Conflicts (MbMwC)). Given a bipartite graph G =
(L ∪R, E), a length |L ∪R| vector b⃗ of non-negative integers, and a set of pairs (a, a′) ∈ F

denoting conflicts between nodes on the same side (i.e. either a ∈ L and a′ ∈ L, or a ∈ R

and to a′ ∈ R) such that no node v can be matched to a and a′ at the same time, a feasible
b-matching with conflicts is one where the conflicts are respected and no node p gets matched
to more than b(p) nodes on the other side. A maximum b-matching for MbMwC is a feasible
matching of maximum weight.

Even if we simply want to maximize the overall weight of the b-matching (i.e. the sum of
everyone’s allocation), the problem is NP -hard. This can be shown by a simple reduction
from independent set.

▶ Definition 21 (Maximum Independent Set (MIS)). Given a graph G = (V, E), set of
vertices V ′ ⊆ V is independent if and only if ∀p, q ∈ V ′, (p, q) /∈ E, i.e. no pair of vertices
in V ′ shares an edge. A maximum independent set of a graph is an independent set with
maximum cardinality.

Given a graph G and an integer k, asking for the existence of an independent set of size
at least k is an NP -complete problem. We prove the difficulty of our problem by a reduction
from the Independent Set problem.

▶ Theorem 22. Given a bipartite graph G = (L ∪ R, E), a vector b⃗, and a set of pairs F

denoting conflicts, finding a b-matching satisfying MbMwC is NP -hard.

Proof. Given an instance of maximum independent set problem, G = (V, E), and an integer
k, we construct an instance of MbMwC, H = (L ∪ R, E′) where L consists of one node
(agent) v and R = G. We then create edges from v to all vertices in R. Let b(v) = k and let
bu = 1 for all u ∈ R.

If we have a solution to MbMwC in H of weight k, then the matched vertices in R give
a maximum independent set in G of cardinality k. In addition, if the graph G does contain
an independent set of size at least k then any subset of k nodes can be safely matched with
v (and they form a conflict free set). ◀
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B Proofs

B.1 Proof of Theorem 6
Proof. This proof is a reduction from 3-partition [19].

▶ Definition 23 (CAUTC-Decision). Consider our problem CAUTC-SW in Section 2.1,
instead of the objective of maximizing it, the decision version of it is that given the extra
parameter k, is there an allocation such that total student utility is k?

▶ Definition 24 (3-partition). Given a multiset of numbers, can one partition the numbers
into triplets such that the sum of each triplet is equal? More precisely, and with an additional
restriction on each number. Given a multiset S of 3m positive integers where

∑
i∈S xi = mT ,

and each integer xi ∈ S satisfies T/4 < xi < T/2, does there exist a partition of S into m

disjoint subsets S1, S2,...,Sm such that the sum of the xi values in each set Sj add exactly
to T?

Given an instance of 3-partition, one can reduce it to an instance of CAUTC-Decision
where utilities are uniform and credit caps are uniform and course credit counts are arbitrary.
Let there be m students s1, s2,...,sm, each with credit cap T , and let each number xi ∈ S

from 3-partition represent a course of credit count xi. No two courses overlap. Every
student is interested in every course with uniform utilities. Let k = mT . If the solution to
CAUTC-Decision is yes, then the solution to 3-partition is also yes. But first, we have to
prove that if there is a solution to CAUTC-Decision, then each student is allocated exactly
three courses. Since the total student utility is k = mT and each student has a credit cap
of T , each student is allocated courses whose credits sum to exactly T . Each student must
have at least three courses, because each course j has credit cj < T/2. On the other hand,
each student must have at most three courses, because each course j has credit cj > T/4.
CAUTC-Decision is therefore NP-hard.

◀

B.2 Proof of Theorem 7
Proof. This proof is based on the reduction from Arc Coloring to the k-track assignment
problem by Brucker and Nordmann [11] showing NP-hardness of the k-track assignment
problem.

▶ Definition 25 (k-coloring problem for circular arc graphs (Arc Coloring)). Given a
positive integer k and a set F of n circular arcs A1, A2, ...An, where each Ai is an ordered
pair (ai, bi) of positive integers where either ai < bi or bi < ai, can F be partitioned into k

disjoint subsets so that no two arcs in the same subset intersect?

The following simple reduction from Arc Coloring shows that CAUTC is NP-hard:
we cut the circle from the k-coloring problem for circular arc graphs at some arbitrary but
fixed point t. Without loss of generality we calibrate that as t = 0, and the courses Ii have
the form Ii = [si, ti], where each si and ti is modulo L, the length of the circle.

Now assume that only the courses I1, ..., Ir contain the point t = 0 and that r ≤ k, for
if r > k, then the k-coloring problem has no solution. We define k students by making
them have a utility of 1 only for the courses that overlap with the time interval [tj , sj ] for
j = 1, ..., r and [0, L] for j = r + 1, ...k. Now the problem of assigning the remaining courses
Ir+1, ..., In to these k students is equivalent to the k-coloring problem. ◀
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Figure 4 A circular arc model.

B.3 Proof of Theorem 8
Proof. We give a dynamic programming solution for two students, which is easily extendable
to any constant k number of students. We sort the courses by non-decreasing start time and
use this order to consider the courses in our DP. We define N(j) to be the set of courses that
overlap with course j. Given an instance of CAUTC with a constant number of students, for
each course j ∈ [m], course j is either assigned to student 1, to student 2, or to no one. The
states of our DP are as follows. For each of the two students, we maintain a counter, p1 and
p2, respectively, for the remaining number of credits available to student 1 and 2; we also
maintain the set of courses available to students 1 and 2 where t1 and t2 denote the earliest
time that a course which starts at that time can be assigned to students 1 and 2, respectively.
Finally, we maintain a counter j indicating the current course being iterated on.

Each time a course j is assigned to wlog student 1, we subtract the credit count of the
course, cj , from p1 (the total credit count of the student course j is assigned to), increment
t1 by the duration of course j, that is we update t1 to t1 + dj . We define our base case to be

OPT [p1, p2, t1, t2, m + 1] = 0 (1)

for any valid p1, p2, t1, t2 and our initial state is

OPT [p1, p2, 0, 0, 0]. (2)

We therefore have our recurrence scheme as follows:

OPT [p1, p2, t1, t2, j] = max(OPT [p1, p2, t1, t2, j + 1],
1(startj ≥ t1 ∩ cj ≤ p1)× (u1(j) + OPT [p1 − cj , p2, endj , t2, j + 1]),
1(startj ≥ t2 ∩ cj ≤ p2)× (u2(j) + OPT [p1, p2 − cj , t1, endj , j + 1]))

(3)

We now prove the optimality of our solution via induction. In the base case, course m + 1
does not exist, hence, no utility is given for the base case. We now assume for our induction
hypothesis that the state for the j-th job is an optimum assignment of courses to students
for all valid values of p1, p2, t1, t2. Now, we show that the optimum solution is computed
for the (j + 1)-st job. For the (j + 1)-st course, it can either be given to student 1 or 2 or
given to no one. Wlog suppose the (j + 1)-st course is given to student 1. In this case, if
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startj+1 < t1 or cj > p1, then the returned value is 0 since course j + 1 cannot be assigned
to student 1 in this case. Otherwise, we show that the states are correctly updated. When
j + 1 is assigned to student 1, the amount of available credits is decreased for student 1 by
cj+1 and t1 is increased to endj+1. Since the courses are sorted in non-decreasing order by
start time, when course j + 1 is being considered, no course with start time earlier than
startj+1 is being considered. Thus, all courses j′ > j + 1 have start time ≥ startj+1 and so
will conflict with course j + 1 if and only if startj+1 ≤ startj′ < endj+1. Hence, setting t1 to
endj+1 precisely eliminates the courses j′ > j + 1 that conflict with course j + 1. Since course
j + 1 has been assigned to student 1, the utility u1(j + 1) is added. Finally, the counter is
incremented to j + 2. The case for assigning j + 1 to student 2 is symmetric. When j + 1 is
not given to either student, then no utility is added to the previous values and the counter
is incremented to j + 2 with no other changes in the state. There are only three different
cases for course j + 1: it is assigned to either student 1 or 2 or assigned to no one. Using the
induction hypothesis and taking the maximum of the three options results in the maximum
value for assigning course j + 1.

Now we prove the runtime of our DP algorithm. Since cj = O(1) for all j ∈ [m], we can
upper bound p1 and p2 by O(m). We can bound t1 and t2 as follows. We only increment
each of these counters to an end time of a course. There are at most m distinct end times
and thus the total number of values t1 and t2 can take is m. Finally, the last counter is upper
bounded by m. Hence, there are at most O(m5) different unique states for our DP and our
algorithm takes O(m5) time. For s = O(1) students, our algorithm would take O(m2s+1)
time. ◀

B.4 Proof of Theorem 9
Proof. We first prove the optimality of Algorithm 1. In this proof, we use the classical
greedy-comes-first strategy. In the sorted order of courses by end time, let J be an optimum
assignment of courses to students. We show that our greedy algorithm does not produce a
worse assignment than J , thus proving its optimality. We prove this via induction on the
k-th course in the order sorted by end time. We aim to show that for all k ≤ m, the number
of courses assigned by the greedy algorithm to each student up to course k is at least the
number of courses with index ≤ k (in the sorted order) assigned in J to each student.

In the base case, when k = 1, no courses have been assigned yet, so either the first
course is assigned to some student with a sufficiently large credit cap or no student has a
sufficiently large credit cap in which case it also cannot be assigned in J . We assume for
our induction hypothesis that our greedy algorithm has assigned at least as many courses
up to and including the k-th course to each student as the number of courses in J with
index ≤ k (in the sorted order by end time) assigned to each student. We now prove this for
the (k + 1)-st course. The trivial cases are when the (k + 1)-st course is not in J or if the
(k + 1)-st course is assigned by the greedy algorithm. Let the (k + 1)-st course be course j.
If the course is in J and it is not assigned by the greedy algorithm to any student, then each
student must satisfy at least one of the two following scenarios:
1. Student i ∈ [n] has not enough remaining credits.
2. Student i ∈ [n] is assigned a conflicting course.

If Item 1 is true, then student i is assigned as many courses by the greedy algorithm
as they were assigned in J ; in other words, student i is assigned the maximum number of
courses they can take; this means that the greedy algorithm returned a solution no worse
than J , since every student has reached their credit cap (since all courses have the same
number of credits), and there is no way to improve upon that.
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Otherwise, if Item 1 is not true and Item 2 is true then we consider the course with the
latest end time that is ≥ endj . Such a course must exist by our greedy algorithm since if
no such conflicting course exists, then j would be assigned to i. Let this conflicting course
be j′. Then, courses j and j′ cannot both be assigned to student i in J . By our induction
hypothesis, the greedy algorithm assigned at least as many courses to student i with index
≤ k as the number of courses assigned to i in J with index ≤ k. Suppose wlog that j′ is
the only course assigned to i that conflicts with j and we remove course j′ from student i’s
assignment and instead assign j. Then, the number of courses assigned to i cannot increase.
Now we argue that removing j′ cannot allow another course to be assigned to i. Suppose
there exists another course ℓ that is assigned in J and conflicts with j′ and does not conflict
with j (so that both ℓ and j can be assigned to i if j′ is removed). Since all courses have the
same duration, it must be the case that if ℓ exists then ℓ has start time earlier than j′ and
has end time earlier than the start time of j. In that case, j′ could not have prevented ℓ from
being assigned to i and there exists another course assigned by greedy to i that conflicts
with ℓ. Hence, no such ℓ can exist and removing j′ and adding j cannot lead to another
course ℓ with start time earlier than startj to be assigned to i. In other words, if ℓ had been
assigned to i by greedy, then j would also have been chosen, which contradicts our initial
assumption that j and ℓ conflict; and if ℓ hadn’t been assigned to i by greedy, it’s because a
course that starts earlier than ℓ overlaps with it, in which case removing j′ does not enable ℓ

to be assigned to i.
Finally, courses j′ and j cannot both be assigned to the same student in J . Thus, if j′ is

assigned to a student in J , then j is not assigned to that student. Hence, we only need to
consider the case when j′ is not assigned in J . By our argument above, at most one course
in J is charged to a course assigned by our algorithm; hence, in this case, by what we proved
above and by the induction hypothesis the number of courses assigned to i by the greedy
algorithm with index ≤ k + 1 is at least the number of courses assigned to i with index
≤ k + 1 by the optimum solution J . ◀
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Abstract

The study of algorithmic fairness received growing attention recently. This stems from the awareness
that bias in the input data for machine learning systems may result in discriminatory outputs. For
clustering tasks, one of the most central notions of fairness is the formalization by Chierichetti,
Kumar, Lattanzi, and Vassilvitskii [NeurIPS 2017]. A clustering is said to be fair, if each cluster
has the same distribution of manifestations of a sensitive attribute as the whole input set. This is
motivated by various applications where the objects to be clustered have sensitive attributes that
should not be over- or underrepresented. Most research on this version of fair clustering has focused
on centriod-based objectives.

In contrast, we discuss the applicability of this fairness notion to Correlation Clustering.
The existing literature on the resulting Fair Correlation Clustering problem either presents
approximation algorithms with poor approximation guarantees or severely limits the possible
distributions of the sensitive attribute (often only two manifestations with a 1:1 ratio are considered).
Our goal is to understand if there is hope for better results in between these two extremes. To this
end, we consider restricted graph classes which allow us to characterize the distributions of sensitive
attributes for which this form of fairness is tractable from a complexity point of view.

While existing work on Fair Correlation Clustering gives approximation algorithms, we
focus on exact solutions and investigate whether there are efficiently solvable instances. The unfair
version of Correlation Clustering is trivial on forests, but adding fairness creates a surprisingly
rich picture of complexities. We give an overview of the distributions and types of forests where
Fair Correlation Clustering turns from tractable to intractable.

As the most surprising insight, we consider the fact that the cause of the hardness of Fair
Correlation Clustering is not the strictness of the fairness condition. We lift most of our results
to also hold for the relaxed version of the fairness condition. Instead, the source of hardness seems
to be the distribution of the sensitive attribute. On the positive side, we identify some reasonable
distributions that are indeed tractable. While this tractability is only shown for forests, it may open
an avenue to design reasonable approximations for larger graph classes.
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9:2 Fair Correlation Clustering

1 Introduction

In the last decade, the notion of fairness in machine learning has increasingly attracted
interest, see for example the review by Pessach and Schmueli [26]. Feldman, Friedler, Moeller,
Scheidegger, and Venkatasubramanian [21] formalize fairness based on a US Supreme Court
decision on disparate impact from 1971. It requires that sensitive attributes like gender
or skin color should neither be explicitly considered in decision processes like hiring but
also should the manifestations of sensitive attributes be proportionally distributed in all
outcomes of the decision process. Feldman et al. formalize this notion for classification tasks.
Chierichetti, Kumar, Lattanzi, and Vassilvitskii [15] adapt this concept for clustering tasks.

In this paper we employ the same disparate impact based understanding of fairness.
Formally, the objects to be clustered have a color assigned to them that represents some
sensitive attribute. Then, a clustering of these colored objects is called fair if for each cluster
and each color the ratio of objects of that color in the cluster corresponds to the total ratio
of vertices of that color. More precisely, a clustering is fair, if it partitions the set of objects
into fair subsets.

▶ Definition 1 (Fair Subset). Let U be a finite set of objects colored by a function c : U → [k]
for some k ∈ N>0. Let Ui = {u ∈ U | c(u) = i} be the set of objects of color i for all i ∈ [k].
Then, a set S ⊆ U is fair if and only if for all colors i ∈ [k] we have |S∩Ui|

|S| = |Ui|
|U | .

To understand how this notion of fairness affects clustering decisions, consider the following
example. Imagine that an airport security wants to find clusters among the travelers to assign
to each group a level of potential risk with corresponding anticipating measures. There are
attributes like skin color that should not influence the assignment to a risk level. A bias in
the data, however, may lead to some colors being over- or underrepresented in some clusters.
Simply removing the skin color attribute from the data may not suffice as it may correlate
with other attributes. Such problems are especially likely if one of the skin colors is far less
represented in the data than others. A fair clustering finds the optimum clustering such that
for each risk level the distribution of skin colors is fair, by requiring the distribution of each
cluster to roughly match the distribution of skin colors among all travelers.

The seminal fair clustering paper by Chierichetti et al. [15] introduced this notion of
fairness for clustering and studied it for the objectives k-center and k-median. Their work was
extended by Bera, Chakrabarty, Flores, and Negahbani [9], who relax the fairness constraint
in the sense of requiring upper and lower bounds on the representation of a color in each
cluster. More precisely, they define the following generalization of fair sets.

▶ Definition 2 (Relaxed Fair Set). For a finite set U and coloring c : U → [k] for some k ∈ N>0
let pi, qi ∈ Q with 0 < pi ⩽

|Ui|
|U | ⩽ qi < 1 for all i ∈ [k], where Ui = {u ∈ U | c(u) = i}. A set

S ⊆ U is relaxed fair with respect to qi and pi if and only if pi ⩽
|S∩Ui|

|S| ⩽ qi for all i ∈ [k].

Following these results, this notion of (relaxed) fairness was extensively studied for centroid-
based clustering objectives with many positive results.

For example, Bercea et al. [10] give bicreteira constant-factor approximations for facility
location type problems like k-center and k-median. Bandyapadhyay, Fomin and Simonov [6]
use the technique of fair coresets introduced by Schmidt, Schwiegelshohn, and Sohler [28] to
give constant factor approximations for many centroid-based clustering objectives; among
many other results, they give a polynomial-time approximation scheme (PTAS) for fair
k-means and k-median in Euclidean space. Fairness for centroid-based objectives seems to
be so well understood, that most research already considers more generalized settings, like
streaming [28], or imperfect knowledge of group membership [20].
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In comparison, there are few (positive) results for this fairness notion applied to graph
clustering objectives. The most studied with respect to fairness among those is Correlation
Clustering, arguably the most studied graph clustering objective. For Correlation
Clustering we are given a pairwise similarity measure for a set of objects and the aim is to
find a clustering that minimizes the number of similar objects placed in separate clusters
and the number of dissimilar objects placed in the same cluster. Formally, the input to
Correlation Clustering is a graph G = (V, E), and the goal is to find a partition P
of V that minimizes the Correlation Clustering cost defined as

cost(G, P) = |{{u, v} ∈
(

V
2
)

\ E | P [u] = P[v]}| + |{{u, v} ∈ E | P [u] ̸= P[v]}|. (1)

Fair Correlation Clustering then is the task to find a partition into fair sets that
minimizes the Correlation Clustering cost. We emphasize that this is the complete,
unweighted, min-disagree form of Correlation Clustering. (It is often called complete
because every pair of objects is either similar or dissimilar but none is indifferent regarding
the clustering. It is unweighted as the (dis)similarity between two vertices is binary. A pair
of similar objects that are placed in separate clusters as well as a pair of dissimilar objects in
the same cluster is called a disagreement, hence the naming of the min-disagree form.)

There are two papers that appear to have started studying Fair Correlation Clus-
tering independently1. Ahmadian, Epasto, Kumar, and Mahdian [2] analyze settings where
the fairness constraint is given by some α and require that the ratio of each color in each
cluster is at most α. For α = 1

2 , which corresponds to our fairness definition if there are
two colors in a ratio of 1 : 1, they obtain a 256-approximation. For α = 1

k , where k is the
number of colors in the graph, they give a 16.48k2-approximation. We note that all their
variants are only equivalent to our fairness notion if there are α−1 colors that all occur equally
often. Ahmadi, Galhotra, Saha, and Schwartz [1] give an O(c2)-approximation algorithm
for instances with two colors in a ratio of 1 : c. In the special case of a color ratio of 1 : 1,
they obtain a 3β + 4-approximation, given any β-approximation to unfair Correlation
Clustering. With a more general color distribution, their approach also worsens drastically.
For instances with k colors in a ratio of 1 : c2 : c3 : . . . : ck for positive integers ci, they give an
O(k2 · max2⩽i⩽k ci)-approximation for the strict, and an O(k2 · max2⩽i⩽k qi)-approximation
for the relaxed setting2.

Following these two papers, Friggstad and Mousavi [23] provide an approximation to the
1 : 1 color ratio case with a factor of 6.18. To the best of our knowledge, the most recent
publication on Fair Correlation Clustering is by Ahmadian and Negahbani [3] who give
approximations for Fair Correlation Clustering with a slightly different way of relaxing
fairness. They give an approximation with ratio O(ε−1k max2⩽i⩽k ci) for color distribution
1 : c2 : c3 : . . . : ck, where ε relates to the amount of relaxation (roughly qi = (1 + ϵ)ci for our
definition of relaxed fairness).

All these results for Fair Correlation Clustering seem to converge towards consid-
ering the very restricted setting of two colors in a ratio of 1 : 1 in order to give some decent
approximation ratio. In this paper, we want to understand if this is unavoidable, or if there
is hope to find better results for other (possibly more realistic) color distributions. In order
to isolate the role of fairness, we consider “easy” instances for Correlation Clustering,
and study the increase in complexity when adding fairness constraints. Correlation

1 Confusingly, they both carry the title Fair Correlation Clustering.
2 Their theorem states they achieve an O(max2⩽i⩽k qi)-approximation but when looking at the proof it

seems they have accidentally forgotten the k2 factor.
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Clustering without the fairness constraint is easily solved on forests. We find that Fair
Correlation Clustering restricted to forests turns NP-hard very quickly, even when ad-
ditionally assuming constant degree or diameter. Most surprisingly, this hardness essentially
also holds for relaxed fairness, showing that the hardness of the problem is not due to the
strictness of the fairness definition.

On the positive side, we identify color distributions that allow for efficient algorithms.
Not surprisingly, this includes ratio 1 : 1, and extends to a constant number of k colors
with distribution c1 : c2 : c3 : . . . : ck for constants c1, . . . , ck. Such distributions can be
used to model sensitive attributes with a limited number of manifestation that are almost
evenly distributed. Less expected, we also find tractability for, in a sense, the other extreme.
We show that Fair Correlation Clustering on forests can be solved in polynomial
time for two colors with ratio 1 : c with c being very large (linear in the number of overall
vertices). Such a distribution can be used to model a scenario where a minority is drastically
underrepresented and thus in dire need of fairness constraints. Although our results only
hold for forests, we believe that they can offer a starting point for more general graph classes.
We especially hope that our work sparks interest in the so far neglected distribution of ratio
1 : c with c being very large.

Related Work

The study of clustering objectives similar or identical to Correlation Clustering dates
back to the 1960s [8, 27, 31]. Bansal, Blum, and Chawla [7] were the first to coin the term
Correlation Clustering as a clustering objective. We note that it is also studied under
the name Cluster Editing. The most general formulation of Correlation Clustering
regarding weights considers two positive real values for each pair of vertices, the first to be
added to the cost if the objects are placed in the same cluster and the second to be added if
the objects are placed in separate clusters [4]. The recent book by Bonchi, García-Soriano,
and Gullo [11] gives a broad overview of the current research on Correlation Clustering.

We focus on the particular variant that considers a complete graph with {−1, 1} edge-
weights, and the min disagreement objective function. This version is APX-hard [13], implying
in particular that there is no algorithm giving an arbitrarily good approximation unless
P = NP. The best known approximation for Correlation Clustering is the very recent
breakthrough by Cohen-Addad, Lee and Newman [16] who give a ratio of (1.994 + ϵ).

We show that in forests, all clusters of an optimal Correlation Clustering solution
have a fixed size. In such a case, Correlation Clustering is related to k-Balanced
Partitioning. There, the task is to partition the graph into k clusters of equal size while
minimizing the number of edges that are cut by the partition. Feldmann and Foschini [22]
study this problem on trees and their results have interesting parallels with ours.

Aside from the results on Fair Correlation Clustering already discussed above, we
are only aware of three papers that consider a fairness notion close to the one of Chierichetti
et al. [15] for a graph clustering objective. Schwartz and Zats [29] consider incomplete
Fair Correlation Clustering with the max-agree objective function. Dinitz, Srinivasan,
Tsepenekas, and Vullikanti [18] study Fair Disaster Containment, a graph cut problem
involving fairness. Their problem is not directly a fair clustering problem since they only
require one part of their partition (the saved part) to be fair. Ziko, Yuan, Granger, and Ayed
[32] give a heuristic approach for fair clustering in general that however does not allow for
theoretical guarantees on the quality of the solution.
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Figure 1 Example forest where a cluster of size 4 and two clusters of size 2 incur the same cost.
With one cluster of size 4 (left), the inter-cluster cost is 0 and the intra-cluster cost is 4. With two
clusters of size 2 (right), both the inter-cluster and intra-cluster cost are 2.

2 Contribution

We now outline our findings on Fair Correlation Clustering. We start by giving
several structural results that underpin our further investigations. Afterwards, we present
our algorithms and hardness results for certain graph classes and color ratios. We further
show that the hardness of fair clustering does not stem from the requirement of the clusters
exactly reproducing the color distribution of the whole graph. This section is concluded by a
discussion of possible directions for further research.

2.1 Structural Insights
We outline here the structural insights that form the foundation of all our results. We first
give a close connection between the cost of a clustering, the number of edges “cut” by a
clustering, and the total number of edges in the graph. We refer to this number of “cut”
edges as the inter-cluster cost as opposed to the number of non-edges inside clusters, which
we call the intra-cluster cost. Formally, the intra- and inter-cluster cost are the first and
second summand of the Correlation Clustering cost in Equation (1), respectively. The
following lemma shows that minimizing the inter-cluster cost suffices to minimize the total
cost if all clusters are of the same size. This significantly simplifies the algorithm development
for Correlation Clustering.

▶ Lemma 3. Let P be a partition of the vertices of an m-edge graph G. Let χ denote
the inter-cluster cost incurred by P on G. If all sets in the partition are of size d, then
cost(P) = (d−1)

2 n − m + 2χ. In particular, if G is a tree, cost(P) = (d−3)
2 n + 2χ + 1.

The condition that all clusters need to be of the same size seems rather restrictive at first.
However, we prove in the following that in bipartite graphs and, in particular, in forests
and trees there is always a minimum-cost fair clustering such that indeed all clusters are
equally large. This property stems from how the fairness constraint acts on the distribution
of colors and is therefore specific to Fair Correlation Clustering. It allows us to fully
utilize Lemma 3 both for building reductions in NP-hardness proofs as well as for algorithmic
approaches as we can restrict our attention to partitions with equal cluster sizes.

Consider two colors of ratio 1 : 2, then any fair cluster must contain at least 1 vertex
of the first color and 2 vertices of the second color to fulfil the fairness requirement. We
show that a minimum-cost clustering of a forest, due to the small number of edges, consists
entirely of such minimal clusters. Every clustering with larger clusters incurs a higher cost.

▶ Lemma 4. Let F be a forest with k ⩾ 2 colors in a ratio of c1 : c2 : . . . : ck with ci ∈ N>0 for
all i ∈ [k], gcd(c1, c2, . . . , ck) = 1, and

∑k
i=1 ci ⩾ 3. Then, all clusters of every minimum-cost

fair clustering are of size d =
∑k

i=1 ci.
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Table 1 Running times of our algorithms for Fair Correlation Clustering on forests depending
on the color ratio. Value p is any rational such that n/p − 1 is integral; c1, c2, . . . , ck are coprime
positive integers, possibly depending on n. Functions f and g are given in the full version.

Color Ratio 1 : 1 1 : 2 1 : (n/p − 1) c1 : c2 : . . . : ck

Running Time O(n) O(n6) O
(
nf(p)) O

(
ng(c1,...,ck))

Lemma 4 does not extend to two colors in a ratio of 1 : 1 as illustrated in Figure 1. This
color distribution is the only case for forests where a partition with larger clusters can have
the same (but no smaller) cost. We prove a slightly weaker statement than Lemma 4, namely,
that there is always a minimum-cost fair clustering with minimal clusters. This property, in
turn, holds not only for forests but for every bipartite graph. Note that in general bipartite
graphs there are more color ratios than only 1 : 1 that allow for these ambiguities.

▶ Lemma 5. Let G = (A ∪ B, E) be a bipartite graph with k ⩾ 2 colors in a ratio of
c1 : c2 : . . . : ck with ci ∈ N>0 for all i ∈ [k] and gcd(c1, c2, . . . , ck) = 1. Then, there is a
minimum-cost fair clustering such that all its clusters are of size d =

∑k
i=1 ci. Further, each

minimum-cost fair clustering with larger clusters can be transformed into a minimum-cost
fair clustering such that all clusters contain no more than d vertices in linear time.

In summary, the results above show that the ratio of the color classes is the key parameter
determining the cluster size. If the input is a bipartite graph whose vertices are colored
with k colors in a ratio of c1 : c2 : · · · : ck, our results imply that without loosing optimality,
solutions can be restricted to contain only clusters of size d =

∑k
i=1 ci, each with exactly ci

vertices of color i. Starting from these observations, we show in this work that the color ratio
is also the key parameter determining the complexity of Fair Correlation Clustering.
On the one hand, the simple structure of optimal solutions restricts the search space and
enables polynomial-time algorithms, at least for some instances. Additionally, due to the
fixed cluster size d, returning any fair clustering in a forest can only cause so many mistakes.
In fact, this procedure yields an approximation factor decreasing in d and converging to 1 as
d → ∞. Combining this with the fact that Fair Correlation Clustering can be solved
in time increasing in d, see Table 1, allows for a PTAS in forests. On the other hand, these
insights allow us to show hardness already for very restricted input classes. The technical
part of most of the proofs consists of exploiting the connection between the clustering cost,
total number of edges, and the number of edges cut by a clustering.

2.2 Tractable Instances
We start by discussing the algorithmic results. The simplest case is that of two colors, each
one occurring equally often. We prove that for bipartite graphs with a color ratio 1 : 1
Fair Correlation Clustering is equivalent to the maximum bipartite matching problem,
namely, between the vertices of different color. Via the standard reduction to computing
maximum flows, this allows us to benefit from the recent breakthrough by Chen, Kyng, Liu,
Peng, Probst Gutenberg, and Sachdeva [14]. It gives an algorithm running in time m1+o(1).

The remaining results focus on forests as the input, see Table 1. It should not come as a
surprise that our main algorithmic paradigm is dynamic programming. A textbook version
finds a maximum matching in linear time in a forests, solving the 1 : 1 case. For general
color ratios, we devise much more intricate dynamic programs. We use the color ratio 1 : 2
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Table 2 Complexity of Fair Correlation Clustering on trees and general graphs depending
on the diameter. The value c is a positive integer, possibly depending on n.

Diameter Color Ratio Trees General Graphs

2, 3 any O(n) NP-hard
⩾ 4 1 : c NP-hard NP-hard

as an introductory example. The algorithm has two phases. In the first, we compute a list
of candidate splittings that partition the forest into connected parts containing at most 1
blue and 2 red vertices each. In the second phase, we assemble the parts of each of the
splittings to fair clusters and return the cheapest resulting clustering. The difficulty lies in
the two phases not being independent from each other. It is not enough to minimize the
“cut” edges in the two phases separately. We prove that the costs incurred by the merging
additionally depends on the number of parts of a certain type generated in the splittings.
Tracking this along with the number of cuts results in a O(n6)-time algorithm. Note that we
did not optimize the running time as long as it is polynomial.

We generalize this to k colors in a ratio c1 : c2 : · · · : ck.3 We now have to consider
all possible colorings of a partition of the vertices such that in each part the i-th color
occurs at most ci times. While assembling the parts, we have to take care that the merged
colorings remain compatible. The resulting running time is O(ng(c1,...,ck)) for some (explicit)
polynomial g. Recall that, by Lemma 4, the minimum cluster size is d =

∑k
i=1 ci. If this is a

constant, then the dynamic program runs in polynomial time. If, however, the number of
colors k or some color’s proportion grows with n, it becomes intractable. Equivalently, the
running time gets worse if there are very large but sublinearly many clusters.

To mitigate this effect, we give a complementary algorithm at least for forests with two
colors. Namely, consider the color ratio 1 : n

p − 1. Then, an optimal solution has p clusters
each of size d = n/p. The key observation is that the forest contains p vertices of the color
with fewer occurrences, say, blue, and any fair clustering isolates the blue vertices. This
can be done by cutting at most p − 1 edges and results in a collection of (sub-)trees where
each one has at most one blue vertex. To obtain the clustering, we split the trees with red
excess vertices and distribute those among the remaining parts. We track the costs of all the
O(npoly(p)) many cut-sets and rearrangements to compute the one of minimum cost. In total,
the algorithm runs in time O(nf(p)) for some polynomial in p. In summary, we find that if
the number of clusters p is constant, then the running time is polynomial. Considering in
particular an integral color ratio 1 : c,4, we find tractability for forests if c = O(1) or c = Ω(n).
We will show next that Fair Correlation Clustering with this kind of a color ratio is
NP-hard already on trees, hence the hardness must emerge somewhere for intermediate c.

2.3 A Dichotomy for Bounded Diameter
Table 2 shows the complexity of Fair Correlation Clustering on graphs with bounded
diameter. We obtain a dichotomy for trees with two colors with ratio 1 : c. If the diameter is
at most 3, an optimal clustering is computable in O(n) time, but for diameter at least 4,
the problem becomes NP-hard. In fact, the linear-time algorithm extends to trees with an
arbitrary number of colors in any ratio.

3 The ci are coprime, but they are not necessarily constants with respect to n.
4 In a color ratio 1 : c, c is not necessarily a constant, but ratios like 2 : 5 are not covered.
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. . .
ℓ
3

. . .

. . .a1

. . .

a2

. . .

aℓ

Figure 2 The tree with diameter 4 in the reduction from 3-Partition to Fair Correlation
Clustering.

The main result in that direction is the hardness of Fair Correlation Clustering
already on trees with diameter at least 4 and two colors of ratio 1 : c. This is proven by a
reduction from the strongly NP-hard 3-Partition problem. There, we are given positive
integers a1, . . . , aℓ where ℓ is a multiple of 3 and there exists some B with

∑ℓ
i=1 ai = B · ℓ

3 .
The task is to partition the numbers ai into triples such that each one of those sums to B.
The problem remains NP-hard if all the ai are strictly between B/4 and B/2, ensuring that, if
some subset of the numbers sums to B, it contains exactly three elements.

We model this problem as an instance of Fair Correlation Clustering as illustrated
in Figure 2. We build ℓ stars, where the i-th one consists of ai red vertices, and a single star
of ℓ/3 blue vertices. The centers of the blue star and all the red stars are connected. The color
ratio in the resulting instance is 1 : B. Lemma 4 then implies that there is a minimum-costs
clustering with ℓ/3 clusters, each with a single blue vertex and B red ones. We then apply
Lemma 3 to show that this cost is below a certain threshold if and only if each cluster consist
of exactly three red stars (and an arbitrary blue vertex), solving 3-Partition.

2.4 Maximum Degree
The reduction above results in a tree with a low diameter but arbitrarily high maximum
degree. We have to adapt our reductions to show hardness also for bounded degrees. The
results are summarized in Table 3. If the Fair Correlation Clustering instance is not
required to be connected, we can represent 3-Partition with a forest of trees with maximum
degree 2, that is, a forest of paths. The input numbers are modeled by paths with ai vertices.
The forest also contains ℓ/3 isolated blue vertices, which again implies that an optimal fair
clustering must have ℓ/3 clusters each with B red vertices. By defining a sufficiently small
cost threshold, we ensure that the fair clustering has cost below it if and only if none of the
path-edges are “cut” by the clustering, corresponding to a partition of the ai.

There is nothing special about paths, we can arbitrarily restrict the shape of the trees,
as long it is possible to form such a tree with any given number of vertices. However, the
argument crucially relies on the absence of edges between the ai-trees and does not transfer
to connected graphs. This is due to the close relation between inter-cluster costs and the
number of edges, see Lemma 3. The complexity of Fair Correlation Clustering on a
single path with a color ratio 1 : c remains open. Notwithstanding, we show hardness for
trees in two closely related settings: keeping the ratio 1 : c but raising the maximum degree
to 5, or having a single path with n/2 colors where each color is shared by exactly 2 vertices.

For the case of maximum degree 5 and two colors with ratio 1 : c, we can again build on
the 3-Partition machinery. The construction is inspired by how Feldmann and Foschini [22]
used the problem to show hardness of computing so-called k-balanced partitions. We adapt
it to our setting in which the vertices are colored and the clusters need to be fair.
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Table 3 Hardness of Fair Correlation Clustering on trees and forests depending on the
maximum degree. The value c is a positive integer, possibly depending on n. The complexity for
paths (trees with maximum degree 2) with color ratio 1 : c is open.

Max. Degree Color Ratio Trees Forests

2 1 : c NP-hard

⩾ 2 n/2 colors,
2 vertices each NP-hard NP-hard

⩾ 5 1 : c NP-hard NP-hard

For the single path with n/2 colors, we reduce from (the 1-regular 2-colored variant of)
the Paint Shop Problem for Words [19]. There, a word is given in which every symbol
appears exactly twice. The task is to assign the values 0 and 1 to the letters5 such that, for
each symbol, exactly one occurrence receives a 1, and the number of blocks of consecutive 0s
or 1s is minimized. In the translation to Fair Correlation Clustering, we represent
the word as a path and the symbols as colors. To remain fair, there must be two clusters
containing exactly one vertex of each color, translating back to a 0/1-assignment to the word.

2.5 Relaxed Fairness
One could think that the hardness of Fair Correlation Clustering already for classes
of trees and forests has its origin in the strict fairness condition. After all, the color ratio
in each cluster must precisely mirror that of the whole graph. This impression is deceptive.
Instead, we lift most of our hardness results to Relaxed Fair Correlation Clustering
considering the relaxed fairness of Bera et al. [9]. Recall Definition 2. It prescribes two
rationals pi and qi for each color i and allows, the proportion of i-colored elements in any
cluster to be in the interval [pi, qi], instead of being precisely ci/d, where d =

∑k
j=1 cj .

The main conceptual idea is that, in some settings, the minimum-cost solution under a
relaxed fairness constraint is exactly fair. We show this for the cases in which we reduce from
3-Partition. In particular, Relaxed Fair Correlation Clustering with a color ratio
of 1 : c is NP-hard on trees with diameter 4 and forests of paths, respectively. Furthermore,
the transferal of hardness is immediate for the case of a single path with n/2 colors and
exactly 2 vertices of each color. Any relaxation of fairness still requires one vertex of each
color in every cluster, keeping the equivalence to the Paint Shop Problem for Words.

In contrast, algorithmic results are more difficult to extend if there are relaxedly fair
solutions that have lower cost than any exactly fair one. We then no longer know the
cardinality of the clusters in an optimal solution. As a proof of concept, we show that a
slight adaption of our dynamic program for two colors in a ratio of 1 : 1 still works for what
we call α-relaxed fairness.6 There, the lower fairness ratio is pi = α · ci

d and the upper one is
qi = 1

α · ci

d for some parameter α ∈ (0, 1). We give an upper bound on the necessary cluster
size depending on α, which is enough to find a good splitting of the forest. Naturally, the
running time now also depends on α, but is of the form O(nh(1/α)) for some polynomial h.
In particular, we get an polynomial-time algorithm for constant α. The proof of correctness
consists of an exhaustive case distinction already for the simple case of 1 : 1. We are confident
that this can be extended to more general color ratios, but did not attempt it in this work.

5 The original formulation [19] assigns colors, aligning better with the paint shop analogy. We change the
exposition here in order to avoid confusion with the colors in the fairness sense.

6 This should not be confused with the notion of α-fairness in resource allocation [24, 25].
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2.6 Summary and Outlook

We show that Fair Correlation Clustering on trees, and thereby forests, is NP-hard.
It remains so on trees of constant degree or diameter, and–for certain color distributions–it
is also NP-hard on paths. On the other hand, we give a polynomial-time algorithm if the
minimum size d of a fair cluster is constant. We also provide an efficient algorithm for the
color ratio 1 : c if the total number of clusters is constant, corresponding to c ∈ Θ(n). For
our main algorithms and hardness results, we prove that they still hold when the fairness
constraint is relaxed, so the hardness is not due to the strict fairness definition. Ultimately,
we hope that the insights gained from these proofs as well as our proposed algorithms prove
helpful to the future development of algorithms to solve Fair Correlation Clustering
on more general graphs. In particular, fairness with color ratio 1 : c with c being very large
seems to be an interesting and potentially tractable type of distribution for future study.

As first steps to generalize our results, we give a polynomial-time approximation scheme
(PTAS) for Fair Correlation Clustering on forests. This further motivates to study
approximation algorithms on more general classes of graphs. Another avenue for future
research could be that Lemma 5, bounding the cluster size of optimal solutions, extends
also to bipartite graphs. This may prove helpful in developing exact algorithms for bipartite
graphs with other color ratios than 1 : 1. Regarding further graph classes, we suspect
that tractability will first have to be examined for the standard (unfair) Correlation
Clustering before considering additional fairness constraints.

Parameterized algorithms are yet another approach to solving more general instances.
When looking at the decision version of Fair Correlation Clustering, our results can
be cast as an XP-algorithm when the problem is parameterized by the cluster size d, for it
can be solved in time O(ng(d)) for some function g. Similarly, we get an XP-algorithm for
the number of clusters as parameter. We wonder whether Fair Correlation Clustering
can be placed in the class FPT of fixed-parameter tractable problems for any interesting
structural parameters. This would require a running time of, e.g., g(d) · poly(n). There are
FPT-algorithms for Cluster Editing parameterized by the cost of the solution [12]. Possibly,
future research might provide similar results for the fair variant as well. A natural extension
of our dynamic programming approach could potentially lead to an algorithm parameterizing
by the treewidth of the input graph. Such a solution would be surprising, however, since to
the best of our knowledge even for normal, unfair Correlation Clustering7 and for the
related Max Dense Graph Partition [17] no treewidth approaches are known.

Finally, it is interesting how Fair Correlation Clustering behaves on paths. While
we obtain NP-hardness for a particular color distribution from the Paint Shop Problem
For Words, the question of whether Fair Correlation Clustering on paths with for
example two colors in a ratio of 1 : c is efficiently solvable or not is left open. However, we
believe that this question is rather answered by the study of the related (discrete) Necklace
Splitting problem, see the work of Alon and West [5]. There, the desired cardinality of every
color class is explicitly given, and it is non-constructively shown that there always exists a
split of the necklace with the number of cuts meeting the obvious lower bound. A constructive
splitting procedure may yield some insights for Fair Correlation Clustering on paths.

7 In more detail, no algorithm for complete Correlation Clustering has been proposed. Xin [30] gives
a treewidth algorithm for incomplete Correlation Clustering for the treewidth of the graph of all
positively and negatively labeled edges.



K. Casel, T. Friedrich, M. Schirneck, and S. Wietheger 9:11

References
1 Saba Ahmadi, Sainyam Galhotra, Barna Saha, and Roy Schwartz. Fair correlation clustering.

CoRR, arXiv:2002.03508, 2020. ArXiv preprint. doi:10.48550/arXiv.2002.03508.
2 Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Fair correlation

clustering. In Proceedings of the 23rd Conference on Artificial Intelligence and Statistics (AIS-
TATS), pages 4195–4205, 2020. URL: https://proceedings.mlr.press/v108/ahmadian20a.
html.

3 Sara Ahmadian and Maryam Negahbani. Improved approximation for fair correlation clustering.
CoRR, abs/2206.05050, 2022. doi:10.48550/arXiv.2206.05050.

4 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. Journal of the ACM, 55(5):23:1–23:27, 2008. doi:10.1145/1411509.
1411513.

5 Noga Alon and Douglas B. West. The Borsuk-Ulam theorem and bisection of necklaces.
Proceedings of the American Mathematical Society, 98(4):623–628, 1986. doi:10.2307/2045739.

6 Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On coresets for fair clustering in
metric and euclidean spaces and their applications. In Proceedings of the 48th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 23:1–23:15, 2021.
doi:10.4230/LIPIcs.ICALP.2021.23.

7 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56(1–3):89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

8 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6(3–4):281–297, 1999. doi:10.1089/106652799318274.

9 Suman K. Bera, Deeparnab Chakrabarty, Nicolas J. Flores, and Maryam Negahbani. Fair
algorithms for clustering. In Proceedings of the 33rd Conference on Neural Information
Processing Systems (NeurIPS), pages 4954–4965, 2019.

10 Ioana Oriana Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R.
Schmidt, and Melanie Schmidt. On the cost of essentially fair clusterings. In Proceedings of
the 2019 Conference on Approximation for Combinatorial Optimization Problems and the 2019
Conference on Randomization in Computation (APPROX/RANDOM), volume 145 of LIPIcs,
pages 18:1–18:22, 2019.

11 Francesco Bonchi, David García-Soriano, and Francesco Gullo. Correlation Clustering. Morgan
& Claypool Publishers, 2022. doi:10.2200/S01163ED1V01Y202201DMK019.

12 Sebastian Böcker and Jan Baumbach. Cluster editing. In Proceedings of the 9th Conference
on Computability in Europe (CiE), pages 33–44, 2013. doi:10.1007/978-3-642-39053-1_5.

13 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383, 2005. doi:10.1016/j.
jcss.2004.10.012.

14 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum Flow and Minimum-Cost Flow in Almost-Linear Time. In
Proceedings of the 63rd Symposium on Foundations of Computer Science (FOCS), pages
612–623, 2022. doi:10.1109/FOCS54457.2022.00064.

15 Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering
through fairlets. In Proceedings of the 31st Conference on Neural Information Processing
Systems (NeurIPS), pages 5036–5044, 2017.

16 Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation Clustering with
Sherali-Adams. In Proceedings of the 63rd Symposium on Foundations of Computer Science
(FOCS), pages 651–661. IEEE, 2022. doi:10.1109/FOCS54457.2022.00068.

17 Julien Darlay, Nadia Brauner, and Julien Moncel. Dense and sparse graph partition. Discrete
Applied Mathematics, 160(16):2389–2396, 2012. doi:10.1016/j.dam.2012.06.004.

18 Michael Dinitz, Aravind Srinivasan, Leonidas Tsepenekas, and Anil Vullikanti. Fair disaster
containment via graph-cut problems. In Proceedings of the 25th Conference on Artificial
Intelligence and Statistics (AISTATS), pages 6321–6333, 2022. URL: https://proceedings.
mlr.press/v151/dinitz22a.html.

FORC 2023

https://doi.org/10.48550/arXiv.2002.03508
https://proceedings.mlr.press/v108/ahmadian20a.html
https://proceedings.mlr.press/v108/ahmadian20a.html
https://doi.org/10.48550/arXiv.2206.05050
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.2307/2045739
https://doi.org/10.4230/LIPIcs.ICALP.2021.23
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1089/106652799318274
https://doi.org/10.2200/S01163ED1V01Y202201DMK019
https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/FOCS54457.2022.00068
https://doi.org/10.1016/j.dam.2012.06.004
https://proceedings.mlr.press/v151/dinitz22a.html
https://proceedings.mlr.press/v151/dinitz22a.html


9:12 Fair Correlation Clustering

19 Thomas Epping, Winfried Hochstättler, and Peter Oertel. Complexity results on a paint shop
problem. Discrete Applied Mathematics, 136:2-3:217–226, 2004. doi:10.1016/S0166-218X(03)
00442-6.

20 Seyed A. Esmaeili, Brian Brubach, Leonidas Tsepenekas, and John P. Dickerson. Probabilistic
fair clustering. In Proceedings of the 34th Conference on Neural Information Processing
Systems (NeurIPS), pages 12743–12755, 2020.

21 Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-
subramanian. Certifying and removing disparate impact. In Proceedings of the 21th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 259–268, 2015.
doi:10.1145/2783258.2783311.

22 Andreas E. Feldmann and Luca Foschini. Balanced partitions of trees and applications.
Algorithmica, 71(2):354–376, 2015. doi:10.1007/s00453-013-9802-3.

23 Zachary Friggstad and Ramin Mousavi. Fair correlation clustering with global and local
guarantees. In Proceedings of the 2021 Workshop on Algorithms and Data Structures (WADS),
pages 414–427, 2021. doi:10.1007/978-3-030-83508-8_30.

24 Jonggyu Jang and Hyun Jong Yang. α-Fairness-maximizing user association in energy-
constrained small cell networks. IEEE Transactions on Wireless Communications, 21(9):7443–
7459, 2022. doi:10.1109/TWC.2022.3158694.

25 Suchi Kumari and Anurag Singh. Fair end-to-end window-based congestion control in time-
varying data communication networks. International Journal of Communication Systems,
32(11), 2019. doi:10.1002/dac.3986.

26 Dana Pessach and Erez Shmueli. A review on fairness in machine learning. ACM Computing
Surveys, 55(3):51:1–51:44, 2022. doi:10.1145/3494672.

27 Simon Régnier. Sur quelques aspects mathématiques des problèmes de classification automa-
tique. Mathématiques et Sciences Humaines, 82:31–44, 1983.

28 Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair coresets and streaming
algorithms for fair k-means. In Proceedings of the 17th Workshop on Approximation and
Online Algorithms (WAOA), pages 232–251, 2020. doi:10.1007/978-3-030-39479-0_16.

29 Roy Schwartz and Roded Zats. Fair correlation clustering in general graphs. In Proceedings
of the 2022 Conference on Approximation for Combinatorial Optimization Problems and the
2022 Conference on Randomization in Computation (APPROX/RANDOM), pages 37:1–37:19,
2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.37.

30 Xiao Xin. An FPT algorithm for the correlation clustering problem. Key Engineering Materials,
474–476:924–927, 2011. doi:10.4028/www.scientific.net/KEM.474-476.924.

31 Charles T. Zahn, Jr. Approximating symmetric relations by equivalence relations. Journal of the
Society for Industrial and Applied Mathematics, 12(4):840–847, 1964. doi:10.1137/0112071.

32 Imtiaz Masud Ziko, Jing Yuan, Eric Granger, and Ismail Ben Ayed. Variational fair clustering.
In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), pages 11202–
11209, 2021. doi:10.1609/aaai.v35i12.17336.

https://doi.org/10.1016/S0166-218X(03)00442-6
https://doi.org/10.1016/S0166-218X(03)00442-6
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1007/s00453-013-9802-3
https://doi.org/10.1007/978-3-030-83508-8_30
https://doi.org/10.1109/TWC.2022.3158694
https://doi.org/10.1002/dac.3986
https://doi.org/10.1145/3494672
https://doi.org/10.1007/978-3-030-39479-0_16
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.37
https://doi.org/10.4028/www.scientific.net/KEM.474-476.924
https://doi.org/10.1137/0112071
https://doi.org/10.1609/aaai.v35i12.17336


Distributionally Robust Data Join
Pranjal Awasthi #

Google Research, NY, USA

Christopher Jung #

Stanford University, CA, USA

Jamie Morgenstern #

University of Washington, Seattle, WA, USA

Abstract
Suppose we are given two datasets: a labeled dataset and unlabeled dataset which also has additional
auxiliary features not present in the first dataset. What is the most principled way to use these
datasets together to construct a predictor?

The answer should depend upon whether these datasets are generated by the same or different
distributions over their mutual feature sets, and how similar the test distribution will be to either of
those distributions. In many applications, the two datasets will likely follow different distributions,
but both may be close to the test distribution. We introduce the problem of building a predictor
which minimizes the maximum loss over all probability distributions over the original features,
auxiliary features, and binary labels, whose Wasserstein distance is r1 away from the empirical
distribution over the labeled dataset and r2 away from that of the unlabeled dataset. This can be
thought of as a generalization of distributionally robust optimization (DRO), which allows for two
data sources, one of which is unlabeled and may contain auxiliary features.
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1 Introduction

For a variety of prediction tasks, a number of sources of data may be available on which to
train, each possibly following a distinct distribution. For example, health records might be
available from at a number of geographically and demographically distinct hospitals. How
should one combine these data sources to build the best possible predictor?

If the datasets S1, S2 follow different distributions D1, D2, the test distribution D will
necessarily differ from at least one. A refinement of our prior question is to ask for which
test distributions, then, can training with S1, S2 give a good predictor?

More generally, very common issues of mismatch between training and test distributions
(and uncertainty over which test distribution one might face) has led to a great deal of
interest in applying tools from distributionally robust optimization (DRO) to machine
learning [12, 28, 24, 26]. In contrast to classical statistical learning theory, DRO picks a
function f whose maximum loss (over a set of distributions near S) is minimized. This set of
potential test distributions, often referred to as the ambiguity or uncertainty set, captures
the uncertainty over the test distribution, along with knowledge that the test distribution
will be close to the training distribution.

The ambiguity set is usually defined as a set of distributions with distance at most
r from the empirical distribution over the training data: B(P̃S , r) =

{
Q : D(P̃S , Q) ≤ r

}
where P̃S is the empirical distribution over training dataset S and D is some distance
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measure between two probability distributions. Then, DRO aims to find a model θ such
that for some loss ℓ, θ = arg minθ supQ∈B(P̃S ,r) E(x,y)∼Q[ℓ(θ, (x, y))] – that is, minimize the
loss over the worst case distribution in the ball of distributions B(P̃S , r). The larger r, the
more distributions over which DRO hedges its performance, leading to a tension between
performance (minimizing worst-case error) and robustness (over the set of distributions on
which performance is measured).

In this work, we introduce a natural extension of distributionally robust learning, two
anchor distributionally robust learning, which we also refer to as the distributionally robust
data join problem. Two anchor distributionally robust learning has access to two sources of
training data, the first source containing labels, and the second source without labels but
with auxiliary features not present in the first source. The optimization is then over the set
of distributions close to both the labeled and auxiliary data distributions.

Formally, suppose one has two training datasets. The first dataset S1 consists of feature
vectors X = Rm1 and binary prediction labels for some task Y = {±1}. The other dataset
S2 contains feature vectors X and auxiliary features A = Rm2 but not the labels. The goal
is to find a model θ that hedges its performance against any distribution Q over (X , A, Y)
whose Wasserstein distance is r1 away from the empirical distribution over S1 and r2 away
from that of S2. Note that our setting is a strict generalization of semi-supervised setting:
for m2 = 0, there are no additional features in the second dataset, and S2 is simply some
additional unlabeled dataset. In contrast to pure semi-supervised settings, our method and
setting both allow the learner to take advantage of the additional auxiliary features and
to learn a model robust to additional distribution shift. We also emphasize that having
the common features x between S1 and S2 help learn about the relationship between the
auxiliary features a and the label y indirectly. Consider the following example where we
actually have one dataset that contains the feature vector, auxiliary features, and the label
altogether Scombined = {(xi, ai, yi)}n

i=1. From this dataset, we may form S1 = {(xi, ai)}n
i=1

and S2 = {(xi, yi)}n
i=1 where for every point (xi, ai) in S1 and there’s a corresponding (xi, yi)

such that they share the same feature. In fact, instantiating our framework with r1 = 0
and r2 = 0 corresponds exactly to performing empirical risk minimization over Scombined. In
other words, the quality of how well feature vectors x’s match between S1 and S2 determine
how well we may be able to learn the relationship between the auxiliary features a and the
label y.

In practice, it is quite common to have the datasets fragmented as our setting captures.
For instance, suppose some dataset has been collected at a hospital in order to build a
predictive model that is to be used at a nearby hospital. After collecting this data, some
other research may find other features that could have been useful for the prediction task
but unfortunately were not collected during the contruction of this dataset. Fortunately,
another nearby hospital may have data that contains both the original features and the
useful auxiliary features but does not have labels for this prediction task. Our data join
approach allows to find a model that utilizes such auxiliary features and explicitly considers
the distribution mismatch between the hospital where the model is deployed and the hospitals
from which these two datasets have been collected.

Auxiliary features may be useful not only for improving accuracy of the model but for
guaranteeing additional properties including notions of fairness. In the appendix of the full
version of the paper, we show that our distributionally robust data join problem encompasses
a two-anchor distributionally robust learning instance where one can try to minimize not just
the model’s overall loss but also penalize the model for its difference in performance across
demographic groups, even in situations where demographic information is present only in
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one dataset and the label is only present in the other dataset. This extension is motivated
by designing equitable predictors (e.g., which equalize false positive rate over a collection
of demographic groups) where one training set contains labels for the relevant task but no
demographic information, and another training set contains demographic information but
may not contain task labels. Such settings are quite common in practice, where demographic
data is not collected for every dataset – indeed, collection of demographic data is difficult to
do well or sometimes even illegal [1, 15, 32, 34].

The contribution of our work can be summarized as follows:
1. New Problem Formulation of Distributionally Robust Data Join: we introduce and

precisely formulate the distributionally robust data join problem in Section 2 and exactly
characterize its feasibility in Section 3.1.

2. Application to Fairness: we further show how our original problem can be slightly modified
to capture the problem of enforcing fairness when demographic group information is not
available in the original labeled dataset (In the appendix of the full version of the paper).

3. Tractable Reformulation with an Approximation Guarantee (Theorem 7 in Section 3): we
show how to approximate the distributionally robust data join problem with two convex
optimization problems with an approximation guarantee.

4. Experiments (Section 4): we design and perform a synthetic experiment that shows how
our distributionally robust data join method performs much better than the baselines.
Additionally, we show some preliminary results on the experiments on a few real world
datasets.

1.1 Related Work
Distributionally Robust Optimization: Prior work has looked at many different ways to
define the ambiguity set: characterizing the set with moment and support information
[8, 16, 33], or using various distance measures on probability space and defined the ambiguity
set to be all the probability measures that are within certain distance ϵ of the empirical
distribution: [12] use f-divergence, [18] the Kullback-Leibler divergence, [13] the Prohorov
metric, and [28, 3, 2, 14] the Wasserstein distance, [17] chi-square divergence, and so forth.
Defining ambiguity sets with divergence measures suffers from the fact that they do not
incorporate the underlying geometry between the points – i.e. almost all divergence measures
require the distribution in the ambiguity set to be absolutely continuous with respect to
the anchor distribution. Therefore, because the distributions in the ambiguity set are
simple re-weighting of the anchor distribution, divergence based ambiguity sets don’t include
distributions where the empirical distributions are perturbed a little bit and hence aren’t
robust to “black swan” outliers [23]. By contrast, the Wasserstein distance allows one to
take advantage of the natural geometry of the points (e.g. Lp space). Furthermore, when
we consider ambiguity sets defined by two anchor distributions as we do in this work, the
two empirical distributions that are the anchors of the ambiguity set are almost surely
not continuous with respect to each other. For these reasons, we focus on the Wasserstein
distance in this work.

Most relevant to our work from the distributionally robust optimization literature is [28].
They show that regularizing the model parameter of the logistic regression has the effect of
robustly hedging the model’s performance against distributions whose distribution over just
the covariates is slightly different than that of the empirical distribution over the training
data. Distributionally robust logistic regression is a generalization of p-norm regularized
logistic regression because it allows for not only distribution shift in the convariates but also
the distribution shift over the labels. In a couple of real world datasets, they show that
distributionally robust logistic regression seems to outperform regularized logistic regression
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by the same amount that regularized logistic regression outperforms vanilla logistic regression.
Our work is a natural extension of this work in that we take additional unlabeled dataset
with auxiliary features into account. However, we remark that our contributions go beyond
the contributions of [28]. In particular, reasoning about couplings between 3 distributions
(labeled dataset, unlabeled dataset, and unknown target dataset) as shown later in Section 2.2
is a priori not obvious and rather novel. Existing 2 distribution coupling approach used in
[28] (e.g., creating one coupling between labeled and unlabeled, and another between one
of these and the test distribution) will not give empirically or theoretically good matchings
between all three distributions and will generally also not be computationally tractable in
our case. We further discuss new technical difficulties that have to be overcome in order to
solve our problem later in Section 3 and the appendix of the full version of the paper. [30]
extend [28] by adding a fairness regularization term, but the demographic information is
available in the original labeled dataset in their setting unlike our setting.

Semi-supervised Learning: There have been significant advances in semi-supervised learning
where the learner has access not only labeled data but also unlabeled data [36, 35, 7]. While
our setting is similar to semi-supervised settings, we capture a broader class of possible
problems in two ways. First, our approach allows the unlabeled dataset to have additional
auxiliary features, and second, we explicitly take distribution shift into account.

Imputation: Numerous imputation methods for missing values in data exist, many of which
have few or no theoretical guarantees [11, 27]. Many of these methods work best (or only
have guarantees) when data values are missing at random. Our work, on the other hand,
assumes all prediction labels are missing from the second dataset and all auxiliary features
are missing from the first dataset. Another related problem is the matrix factorization
problem which is also referred to as matrix completion problem [25, 22, 4]: here the goal
is to find a low rank matrix that can well approximate the given data matrix with missing
values. Our problem is different in that we don’t make such structural assumption about the
data matrix effectively being of low rank, but instead we assume all the auxiliary features
are only available from a separate unlabeled dataset.

Fairness: Many practical prediction tasks have disparate performance across demographic
groups, and explicit demographic information may not be available in the original training
data. Several lines of work aim to reduce the gap in performance of a predictor between
groups even without group information for training.

[17] show that the chi-square divergence between the overall distribution and the distri-
bution of any subgroup can be bounded by the size of the subgroup: e.g. for any sufficiently
large subgroup, its divergence to the overall distribution cannot be too big. Therefore,
by performing distributionally robust learning with ambiguity set defined by chi-square
divergence, they are able to optimize for the worst-case risk over all possible sufficiently large
subgroups even when the demographic information is not available. [9] provide provably
convergence oracle-efficient learning algorithms with the same kind of minimax fairness
guarantees when the demographic group information is available.

One may naively think that given auxiliary demographic group information data, the
most accurate imputation for the demographic group may be enough to not only estimate the
unfairness of given predictor but also build a predictor with fairness guarantees. However, [1]
show that due to different underlying base rates across groups, the Bayes optimal predictor
for the demographic group information can result in maximally biased estimate of unfairness.
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[10] demonstrate that one can rely on a multi-accurate regressor, which was first introduced
by [21], as opposed to a 0-1 classifier in order to estimate the unfairness without any bias
and also build a fair classifier for downstream tasks. When only some data points are
missing demographic information, [19] show how to bypass the need to explicitly impute the
missing values and instead rely on some decision tree based approach in order to optimize a
fairness-regularized objective function. [20], given two separate datasets like in our setting,
show how to construct confidence intervals for unfairness that is consistent with the given
datasets via Fréchet and Hoeffding inequalities; our work is different in that we allow a little
bit of slack by forming a Wasserstein ball around both datasets and can actually construct a
fair model as opposed to only measuring unfairness.

[5] and [6] have shown when the demographic group information is available but possibly
noisy, stochastically and adversarially respectively, how to build a fair classifier.

2 Preliminaries

2.1 Notations
We have two kinds of datasets, the auxiliary feature dataset and the prediction label
dataset denoted in the following way: SA = {(xA

i , aA
i )}nA

i=1, SP = {(xP
i , yP

i )}nP
i=1 where

the domain for feature vector x is X = Rm1 , domain for auxiliary features a is A = Rm2 ,
and the label space is y ∈ Y = {±1}. For any vector v ∈ Rm and d1, d2 ∈ [m], we write
v[d1 : d2] to denote the coordinates from d1 to d2 of vector v and v[d] to denote the dth
coordinate. We assume both X and A are compact and convex. For convenience, we write
SX

A = {x : (x, a) ∈ SA}, SX
P = {x : (x, y) ∈ SP } to denote just the feature vectors of the

dataset.
Given any dataset S = {zi}n

i=1, we will write P̃S = 1
n

∑n
i=1 δ(zi) to denote the empirical

distribution over the dataset S where δ is the Dirac delta funcion. We’ll write PZ to denote
the set of all probability distributions over Z. Similarly, we write P(Z,Z′) to denote a set of
all possible joint distributions over Z and Z ′. Also, given a joint distribution P ∈ P(Z,Z′), we
write PZ and PZ′ to denote the marginal distribution over Z and Z ′ respectfully, meaning
PZ(z) =

∫
P(z, dz′) and PZ′(z′) =

∫
P(dz, z′). We extend the notation when the joint

distribution is over more than two sets: e.g. Pz,z′((z, z′)) =
∫

P(z, z′, dz′′) where we have
marginalized over Z ′′ for P which is a joint distribution over Z, Z ′, Z ′′.

We write the set of all possibly couplings between two distributions P ∈ PZ and P ′ ∈ PZ′

as Π(P, P ′) =
{

π ∈ P(Z,Z′) : πZ = P, πZ′ = P ′}. For a coupling between more than two
distributions, we use the same convention and write Π(P , P ′, P ′′) for instance.

Given any metric d : Z × Z → R and two probability distributions P, P ′ ∈ PZ , we write
the Wasserstein distance between them as Dd(P , P ′) = infπ∈Π(P,P′) E(z,z′)∼π[d(z, z′)].

Given some distribution P ∈ P over some set Z, metric d : Z × Z → R, a radius r > 0,
we will write Bd(P, r) = {Q ∈ P : Dd(P , Q) ≤ r} to denote the Wasserstein ball of radius
r around the given distribution P. When the metric is obvious from the context, we may
simply write B(P , r).

In our case, the relevant metrics that are used to measure distance between points are

dX (x, x′) = ||x − x′||p, dA((x, a), (x′, a′)) = ||x − x′||p + κA||a − a′||p′

dP ((x, y), (x′, y′)) = ||x − x′||p + κP |y − y′|

where ||v||p = (
∑

d |v[d]|p)
1
p is some p-norm and κA, κP ≥ 0 are the coefficients that control

how much we care about the ||a − a′||p′ and |y − y′|. We’ll write ||v||p,∗ = sup||v′||p≤1⟨v, v′⟩
to denote dual norm for p-norm. Also, for convenience, given any vector v, we’ll write
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vp = v
||v||p

and vp,∗ = v
||v||p,∗

to denote the normalized vectors. When it’s clear from the
context which norm is being used, we write || · ||, || · ||∗, v, and v∗. Now, we are ready to
describe distributionally robust data join problem.

2.2 Distributionally Robust Data Join
We are given an auxiliary dataset SA and a prediction label dataset SP . We are interested
in a joint distribution Q over (x, a, y) such that
1. its marginal distribution over (x, a) is at most rA away from P̃SA

in Wasserstein distance:
DdA

(QX ,A, P̃SA
) ≤ rA

2. its marginal distribution over (x, y) is at most rP away from P̃SP
in Wasserstein distance:

DdP
(QX ,Y , P̃Sp) ≤ rP

Combining them together, the set of distributions we are interested in is

W (SA, SP , rA, rP ) = {Q ∈ P(X ,A,Y) : DdA
(QX ,A, P̃SA

) ≤ rA, DdP
(QX ,Y , P̃Sp

) ≤ rP }
= {Q ∈ P(X ,A,Y) : QX ,A ∈ BdA

(P̃SA
, rA), QX ,Y ∈ BdP

(P̃SP
, rP )}.

Now, we consider some learning task where the performance is measured according to the
worst case distribution in the above set of distributions. We want to find some model
parameter θ such that its loss against the worst-case distribution among W (SA, SP , rA, rP )
is minimized:

min
θ∈Θ

sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

[ℓ(θ, (x, a, y))]. (1)

where ℓ : Θ × (X × A × Y) → R is a convex loss function evaluated at θ. For the sake of
concreteness, we focus on logistic loss1 ℓ(θ, (x, a, y)) = log(1 + exp(−y⟨θ, (x, a)⟩)).

Also, we sometimes make use of the following functions f(t) = log(1 + exp(t)) and
h(θ, (x, a)) = f(−⟨θ, (x, a)⟩) instead of ℓ, as it is more convenient due to not having to worry
about y in certain cases: ℓ(θ, (x, a, +1)) = h(θ, (x, a)) and ℓ(θ, (x, a, −1)) = h(−θ, (x, a)). We
write the convex conjugate of f as f∗(b) = supx⟨x∗, x⟩ − f(x), which in our case evaluates to
b log b + (1 − b) log(1 − b) when b ∈ (0, 1), 0 if b = 0 or 1, and ∞ otherwise.

3 Tractable Reformulation

Let us give an overview of this section. Note that the optimization problem in (1) is a
saddle point problem. In Section 3.1, we first make the coupling in the optimal transport
more explicit in the inner sup term. Then, by leveraging Kantorovich duality, we replace
the sup term with its dual problem which is a minimization problem, thereby making the
original saddle problem into minimization problem. However, the resulting dual problem
has constraints that involve some supremum term, meaning it’s an semi-infinite program
(i.e. supz∈Z constraint(z) ≤ 0 is equivalent to constraint(z) ≤ 0, ∀z ∈ Z). Finally, in Section
3.3, we show how each supremum term can be approximated by some other closed-form
constraint. And we finally show that the resulting problem can be decomposed into two convex
optimization problems and its optimal solution has additional approximation guarantee to
the original optimal solution (Theorem 7).

1 All our results still hold for any other convex loss with minimal modifications
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3.1 Formulation through Coupling
We show how to rewrite the problem (1) using the underlying coupling between the
“anchor” distributions (SA, SP ) and Q ∈ W (SA, SP , rA, rP ). For simplicity, instead of
π
(
(xA

i , aA
i ), (xP

j , yP
j ), (x, a, y)

)
which is a coupling between P̃SA

, P̃SP
, and some joint dis-

tribution Q ∈ PX ,A,Y , we write πy
i,j(x, a) = π

(
(xA

i , aA
i ), (xP

i , yP
i ), (x, a, y)

)
. Then, since the

“anchor” distributions P̃SA
and P̃SP

are discrete distributions, we can rewrite the problem
(1) as choosing θ ∈ Θ that minimizes the following value:

sup
π

a,y
i,j

nA∑
i=1

nP∑
j=1

∑
y∈Y

∫
X ,A

ℓ(θ, (x, a, y))πy
i,j(dx, da) (2)

s.t.
nA∑
i=1

nP∑
j=1

∑
y∈Y

∫
X ,A

di
A(x, a)πy

i,j(dx, da) ≤ rA,

nA∑
i=1

nP∑
j=1

∑
y∈Y

∫
X ,A

dj
P (x, y)πy

i,j(dx, da) ≤ rP

nP∑
j=1

∑
y∈Y

∫
X ,A

πy
i,j(dx, da) = 1

nA
∀i ∈ [nA],

nA∑
i=1

∑
y∈Y

∫
X ,A

πy
i,j(dx, da) = 1

nP
∀j ∈ [nP ]

where di
A(x, a) = dA((xA

i , aA
i ), (x, a)) and dj

P (x, y) = dP ((xP
j , yP

j ), (x, y)). We defer intuitive
explanations and derivation of this problem to the appendix of the full version of the paper.
For any fixed parameter θ, we’ll denote the optimal value of the above problem (2) as
p∗(θ, rA, rP ) and p∗(rA, rP ) = infθ p∗(θ, rA, rP ).

It can be shown that minimizing over the above supremum value in (1) and the optimiza-
tion problem (2) are equivalent as shown in the following theorem. We also provide a tight
characterization of the feasibility of (2). The proof of Theorem 1 and 2 can be found in the
appendix of the full version of the paper.

▶ Theorem 1. For any fixed θ ∈ Θ,

p∗(θ, rA, rP ) = sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

[ℓ(θ, (x, a, y))].

▶ Theorem 2. DdX (P̃SX
A

, P̃SX
P

) ≤ rA + rP , if and only if there exists a feasible solution
for (2).

3.2 Strong Duality
We claim that the following problem is the dual to problem (2) and show that strong duality
holds between them:

inf
αA,αP ,

{βi},{β′
j}

αArA + αP rP + 1
nA

∑
i∈[na]

βi + 1
nP

∑
j∈[nP ]

β′ (3)

s.t. sup
(x,a)

(
ℓ(θ, (x, a, y)) − αAdi

A(x, a) − αP dj
P (x, y)

)
≤ βi + β′

j ∀i ∈ [nA], j ∈ [nP ], y ∈ Y

For fixed θ, we’ll write d∗(θ, rA, rP ) to denote the optimal value for the above dual
problem (3). As in [28], strong duality directly follows from [29], but to be self-contained, we
include the proof in the appendix of the full version of the paper, which follows the same
proof structure presented in [31].

▶ Theorem 3. If there exists a feasible solution for the primal problem (2), then we have that
strong duality holds between the primal problem (2) and its dual problem (3): p∗(θ, rA, rP ) =
d∗(θ, rA, rP ) for fixed θ.
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In other words, we have successfully transformed the saddle point problem (1) into a
minimization problem over θ and the dual variables αA, αP , {βi} and {β′

j}j :

min
θ∈Θ,αA,αP ,

{βi},{β′
j }

αArA + αP rP + 1
nA

∑
i∈[na]

βi + 1
nP

∑
j∈[nP ]

β′
j (4)

s.t. max
y∈{±1}

sup
(x,a)

(
ℓ(θ, (x, a, y)) − αAdi

A(x, a) − αP dj
P (x, y)

)
≤ βi + β′

j ∀i ∈ [nA], j ∈ [nP ]

3.3 Replacing the sup Term
Note that sup(x,a) in the constraint makes it hard to actually compute the expression: it’s
neither concave or convex in terms of (x, a) as it’s the difference between convex functions
ℓ(θ, (x, a, y)) and αAdi

A(x, a) + αP dj
P (x, y). In that regard, we show how to approximate

the sup term in the constraint of dual problem (3) with some closed form expression by
extending the techniques used in [28] who study when there’s only one “anchor” point – i.e.
supx ℓ(θ, x) − αdX (xi, x) as opposed to in our case with two anchor points.

First, let’s focus only on the terms that actually depend on (x, a) and ignore our depend-
ence on y briefly:

sup
(x,a)

ℓ(θ, (x, a, y)) − αAdi
A(x, a) − αP dj

P (x, y)

= κP αP |yP
j − y| +

(
sup
(x,a)

h(yθ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p + αAκA||aA
i − a||p′

)
.

We obtain an upper bound for the supremum term in the lemma below whose full proof
can be found in the appendix of the full version of the paper.

▶ Theorem 4. Fix any y ∈ Y and θ. Write θ1 = θ[1 : m1] and θ2 = [m1 + 1 : m1 + m2].
Suppose p ̸= 1 and p ̸= ∞. If ||θ1||p,∗ ≤ αA + αP and ||θ2||p′,∗ ≤ κAαA, then

sup
(x,a)

h(yθ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p − αAκA||aA
i − a||p′

≤ f

((
min(αA, αP )||θ1||∗||xA

i − xP
j ||

αA + αP
+

⟨yθ1, αAxA
i + αP xP

j ⟩
αA + αP

)
+ ⟨yθ2, aA

i ⟩

)
− min(αA, αP )||xA

i − xP
j ||p.

Otherwise, sup(x,a) h(yθ, (x, a)) − αA||x − xA
i ||p − αP ||x − xP

j ||p − αAκA||aA
i − a||p′ evaluates

to ∞.

Proof Sketch. Similar to [28], we leverage convex conjugacy in order to re-express the sup
term. However, because we have multiple anchor points, the re-expression results in an
infimal convolution of two linear functions with bounded norm constraints as opposed to the
case of [28] where they only have to handle a convex conjugate of a single linear function
with bounded norm constraint and hence find an exact closed form expression. Therefore,
in the appendix of the full version of the paper, we develop new techniques where we show
(1) infimal convolution of linear functions with norm constraints is convex, (2) obtain a
closed form solution of the infimal convolution at two extreme points, and (3) use linear
interpolation of these extreme points to obtain an upper-bound, as a line segment of the two
extreme points sits above the graph for convex functions. ◀

Equipped with the above upper bound on the supremum term, we can imagine trying
to replace the supremum term with the above upper bound in order to get a feasible dual
solution to the dual problem (4). However, one may worry that there is a big gap between
the original supremum term and our upperbound in Theorem 4.
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To this end, we further show that we can in fact approximate the supremum term
with one more trick and hence obtain an approximate dual solution. Suppose we write

x̂i,j =
{

xP
j if αA < αP

xA
i

and α̂ = min(αA, αP ). Note that by definition, the value

measured at (x̂i,j , aA
i ) is a lower bound on the supremum. In other words, we have

h(yθ, (x̂i,j , aA
i )) − αA||xA

i − x̂i,j ||p − αP ||xP
j − x̂i,j ||p = f(⟨yθ, (x̂i,j , aA

i )⟩) − α̂||xA
i − xP

j ||p
≤ sup

(x,a)
h(yθ, (x, a)) − αA||xA

i − x||p − αP ||xP
j − x||p − αAκA||aA

i − a||p′

≤ f

((
min(αA, αP )||θ1||∗||xA

i − xP
j ||

αA + αP
+

⟨yθ1, αAxA
i + αP xP

j ⟩
αA + αP

)
+ ⟨yθ2, aA

i ⟩

)
− α̂||xA

i − xP
j ||p.

Now, via Hölder’s inequality, we can show the lower bound and the upper bound above
on the supremum term are in fact very close, meaning by using either the upper bound or
the lower bound, we can approximate the supremum very well. Here’s a lemma that shows
that the value evaluated at (x̂i,j , aA

i ) is pretty close to the upper bound in Theorem 4:
▶ Lemma 5.

f

((
min(αA, αP )||θ1||∗||xA

i − xP
j ||

αA + αP
+

⟨yθ1, αAxA
i + αP xP

j ⟩
αA + αP

)
+ ⟨yθ2, aA

i ⟩

)
− f(⟨yθ, (x̂i,j , aA

i )⟩)

≤ 2α̂||xA
i − xP

j ||.

In other words, replacing the original supremum constraint with a constraint evaluated at
(x̂i,j , aA

i ) will not incur too much additional error. Finally, using the fact that f(−t) = f(t)+t

for logistic function f , we can bring back the terms that depend on y and approximate the
original supremum constraint in the following manner:

▶ Corollary 6.(
max

y∈{±1}
sup
(x,a)

(
ℓ(θ, (x, a, y)) − αAdi

A(x, a) − αP dj
P (x, y)

))
−
(
f(⟨yP

j θ, (x̂i,j , aA
i )⟩) + max(yP

j ⟨θ, (x̂i,j , aA
i )⟩ − αP κP , 0) − α̂||xA

i − xP
j ||
)

≤ 2α̂||xA
i − xP

j ||

In other words, replacing the supremum constraint with the constraint evaluated at
(x̂i,j , aA

i ) and using the above trick to remove the max over y will arrive at the following
problem, for which we provide an approximation guarantee in Theorem 7.

min
αA,αP ,θ1,θ2,{βi},{β′

j
}
(αArA + αP rP ) + 1

nA

∑
i∈[na]

βi + 1
nP

∑
j∈[nP ]

β′
j (5)

s.t. f(yP
j ⟨θ, (x̂i,j , aA

i )⟩) + max(yP
j ⟨θ, (x̂i,j , aA

i )⟩ − αP κP , 0) − α̂||xA
i − xP

j ||
≤ βi + β′

j ∀i ∈ [nA], j ∈ [nP ]
||θ1||∗ ≤ αA + αP , ||θ2||∗ ≤ κAαA.

▶ Theorem 7. We can solve problem (5) by solving two convex optimization problems. And
the optimal θ∗ for the above problem (5) is such that its objective value for the original
problem (1) is at most 2α̂ maxi∈[nA],j∈[nP ] ||xA

i − xP
j || greater than the optimal solution:

sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

[ℓ(θ∗, (x, a, y))] − 2α̂ max
i∈[nA],j∈[nP ]

||xA
i − xP

j ||

≤ min
θ∈Θ

sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

[ℓ(θ, (x, a, y))].
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Table 1 Average accuracy of each method over 10 experiment runs and standard deviations for
synthetic dataset with a distribution shift.

LR RLR DRLR DJ
Accuracy 0.4126 ± 0.1049 0.5786 ± 0.3992 0.9068 ± 0.0076 0.9923 ± 0.0057

Just as in [28], two convex optimization problems that problem (5) decomposes into can
be solved by IOPT and YALMIP. In addition, we remark that 2α̂ maxi∈[nA],j∈[nP ] ||xA

i − xP
j ||

is a reasonable approximation guarantee because this value should be in the same order as
αArA + αP rP : recall that we have argued in Theorem 2, a feasible solution exists if and only
if DdX (P̃SX

A
, P̃SX

P
) ≤ rA + rP . Additionally, the worst case pairwise distance can actually be

improved with an additional assumption: since any underlying coupling for the Wasserstein
distance most likely transports non-zero probability mass between only close points, we can
imagine considering only the k-nearest-neighbors of each point as opposed to all possible pairs
between two datasets, hence decreasing the approximation error to the maximal pairwise
distance between some point and its k-nearest-neighbor. We make this point more formal in
the appendix of the full verison of the paper.

4 Experiments

We now describe an experimental evaluation of our method on a synethetic dataset and real
world datasets. In all our epxeriments, we use the approach discussed in the appendix of
the full version in which we make practically simplifying assumptions in order to solve the
problem (5) via projected gradient descent. We use 2-norm throughout the experiments: i.e.
p, p′ = 2.

4.1 Synthetic Data
We briefly discuss how we create the snythetic dataset. We want our synthetic data generation
process to encompass the components that are unique to our robust data join setting – namely,
distribution shift and auxiliary unlabeled dataset that contains additional features that should
help with the prediction task.

To that end, we discuss the data generation process at a high level here and more fully
in Appendix B. We have two groups such that the ideal hyperplane that distinguishes the
positive and negative points is different for each group. We introduce distribution shift into
the setting by having the original labeled training dataset consist mostly of points from the
first group and the test dataset consist mostly from the second group. As for specific details
of the data generation process that are important for our setting, we have one of the features
to carry information regarding which group the point belongs to.

As for the unlabeled dataset with auxiliary features, the points will mostly come from the
second group, hence being closer to the test distribution. Furthermore, we include additional
features that are present in the unlabeled dataset to be highly correlated with the true label,
although this unlabeled dataset doesn’t contain the true label of each point.

Because we want our baselines that compare our distributionally robust data join approach
(DJ) against to be in the same model class (i.e. logistic regression) as our method for fair
comparison, we consider the following baselines:
1. LR: Vanilla logistic regression trained on labeled dataset SP

2. RLR: Regularized logistic regression trainined on labeled dataset SP

3. DRLR: Distributionally robust logistic regression trainied on SP
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Table 2 Average accuracy of each method over 10 experiment runs and standard deviations for
three UCI datasets.

BC (m1 = 5) BC (m1 = 25) IO (m1 = 4) IO (m1 = 25) HD 1vs8
DJ 0.9140 ± 0.0368 0.9281 ± 0.0155 0.8208 ± 0.0816 0.7896 ± 0.04885 0.7495 ± 0.0374 0.90841 ± 0.0270
LR 0.9012 ± 0.0294 0.9140 ± 0.0393 0.7764 ± 0.1560 0.7868 ± 0.0653 0.7286 ± 0.0504 0.8729 ± 0.0337

RLR 0.9053 ± 0.0228 0.9287 ± 0.0199 0.7915 ± 0.1417 0.7868 ± 0.0690 0.7363 ± 0.0565 0.8953 ± 0.0250
LRO 0.8789 ± 0.0318 0.8789 ± 0.0318 0.7330 ± 0.0788 0.7330 ± 0.0788 0.6626 ± 0.0569 0.7766 ± 0.0599

RLRO 0.8953 ± 0.0212 0.8953 ± 0.0212 0.7377 ± 0.0800 0.7377 ± 0.0800 0.6714 ± 0.0568 0.8710 ± 0.0450

FULL 0.9684 ± 0.0143 0.9684 ± 0.0143 0.8754 ± 0.0764 0.8754 ± 0.0764 0.8319 ± 0.0311 0.9495 ± 0.0222

The result of this experiment can be found in Table 1. There are few plausible reasons as to
why our approach (DJ) does extremely well in this synthetic experiment. Our distributionally
robust data join is definitely taking advantage of the proximity of unlabeled dataset to the
test distribution in that the majority of points are both from the second group. Although
regularized and distributionally robust logistic regression is trying to be robust against some
form of distribution shift, the set of distributions they are hedging against may be too big as
they are hedging against all distributions that are close to the empirical distribution over
the labeled dataset. By contrast, the set of distributions that distributionally robust data
join may be smaller because it’s hedging against the set of distributions that are close to
the labeled dataset and the unlabeled dataset. Finally, auxiliary features in the unlabeled
dataset are providing information very relevant for the prediction task.

4.2 UCI Datasets
Here we discuss some experiments we have run and show that as a proof of concept, our
distributionally robust data join framework has the potential to be practical empirically.
However, we remark unlike in the synthetic data experiment, we do not introduce any
distribution shift (i.e. training and test are iid samples from the same distribution) and also
choose the additional features for the unlabeled dataset in an arbitrary way because of our
lack of contextual expertise of the features in each dataset. Therefore, the gaps between our
method and the baselines we consider are not as impressive as the performance gap we see
in the synthetic experiments.

We use four UCI datasets for our real world dataset experiment: Breast Cancer dataset
(BC), Ionosphere dataset (IO), Heart disease dataset (HD), and Handwritten Digits dataset
with 1’s and 8’s (1vs8). We provide more details about these datasets in Appendix B. For
all these datasets, each experiment run consists of the following: (1) randomly divide the
dataset into Strain = {(xi, ai, yi)}ntrain

i=1 and Stest, (2) create the prediction label dataset and
auxiliary dataset where v data points belong to both datasets: SP = {(xi, yi)}nP +v

i=1 and
SA = {(xi, ai)}ntrain

nP +1.
We compare our method of joining SA and SP , which we denote as DJ, to the following

baselines:
1. LR: Logistic regression trained on SP

2. RLR: Regularized logistic regression on SP

3. LRO: Logistic regression on overlapped data {(xi, ai, yi)}nP +v
i=nP +1

4. RLRO: Regularized logistic regression on overlapped data {(xi, ai, yi)}nP +v
i=nP +1.

5. FULL: full training on {(xi, ai, yi)}ntrain
i=1

where FULL is simply to show the highest accuracy we could have achieved if the labeled
dataset actually had the auxiliary features and the unlabeled dataset had the labels. The
results of the experiment can be found in Table 2, and we include further details of the
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experiment in Appendix B. Without any distribution shift, the distributionally robust data
join method is solving a somewhat harder problem than the other baselines because of its
hedging against other nearby distributions. Yet it can be seen that the use of the additional
auxiliary features through our data join method helps achieve better accuracy than the
baselines.

References
1 Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, and Xuezhi Wang.

Evaluating fairness of machine learning models under uncertain and incomplete information.
In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency,
pages 206–214, 2021.

2 Jose Blanchet, Yang Kang, and Karthyek Murthy. Robust wasserstein profile inference and
applications to machine learning. Journal of Applied Probability, 56(3):830–857, 2019.

3 Jose Blanchet and Karthyek Murthy. Quantifying distributional model risk via optimal
transport. Mathematics of Operations Research, 44(2):565–600, 2019.

4 Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717–772, 2009.

5 L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. Fair classification
with noisy protected attributes: A framework with provable guarantees. In International
Conference on Machine Learning, pages 1349–1361. PMLR, 2021.

6 L Elisa Celis, Anay Mehrotra, and Nisheeth K Vishnoi. Fair classification with adversarial
perturbations. arXiv preprint, 2021. arXiv:2106.05964.

7 Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning (chapelle,
o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542,
2009.

8 Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncertainty
with application to data-driven problems. Operations research, 58(3):595–612, 2010.

9 Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, and Aaron Roth. Minimax
group fairness: Algorithms and experiments. In Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society, pages 66–76, 2021.

10 Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth, and Saeed
Sharifi-Malvajerdi. Multiaccurate proxies for downstream fairness. arXiv preprint, 2021.
arXiv:2107.04423.

11 A Rogier T Donders, Geert JMG Van Der Heijden, Theo Stijnen, and Karel GM Moons.
A gentle introduction to imputation of missing values. Journal of clinical epidemiology,
59(10):1087–1091, 2006.

12 John C Duchi and Hongseok Namkoong. Learning models with uniform performance via
distributionally robust optimization. The Annals of Statistics, 49(3):1378–1406, 2021.

13 Emre Erdoğan and Garud Iyengar. Ambiguous chance constrained problems and robust
optimization. Mathematical Programming, 107(1):37–61, 2006.

14 Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optim-
ization using the wasserstein metric: Performance guarantees and tractable reformulations.
Mathematical Programming, 171(1):115–166, 2018.

15 Allen Fremont, Joel S Weissman, Emily Hoch, and Marc N Elliott. When race/ethnicity data
are lacking. RAND Health Q, 6:1–6, 2016.

16 Joel Goh and Melvyn Sim. Distributionally robust optimization and its tractable approxima-
tions. Operations research, 58(4-part-1):902–917, 2010.

17 Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness
without demographics in repeated loss minimization. In International Conference on Machine
Learning, pages 1929–1938. PMLR, 2018.

https://arxiv.org/abs/2106.05964
https://arxiv.org/abs/2107.04423


P. Awasthi, C. Jung, and J. Morgenstern 10:13

18 Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust
optimization. Available at Optimization Online, 2013.

19 Haewon Jeong, Hao Wang, and Flavio P Calmon. Fairness without imputation: A decision
tree approach for fair prediction with missing values. arXiv preprint, 2021. arXiv:2109.10431.

20 Nathan Kallus, Xiaojie Mao, and Angela Zhou. Assessing algorithmic fairness with unobserved
protected class using data combination. Management Science, 2021.

21 Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing
for fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, pages 247–254, 2019.

22 Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

23 Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh Shafieezadeh-
Abadeh. Wasserstein distributionally robust optimization: Theory and applications in machine
learning. In Operations research & management science in the age of analytics, pages 130–166.
Informs, 2019.

24 Jaeho Lee and Maxim Raginsky. Minimax statistical learning with wasserstein distances. In
Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 2692–2701, 2018. URL: https://proceedings.neurips.cc/
paper/2018/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html.

25 Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. In Advances in
neural information processing systems, pages 1257–1264, 2008.

26 Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv
preprint, 2019. arXiv:1908.05659.

27 Patrick Royston. Multiple imputation of missing values. The Stata Journal, 4(3):227–241,
2004.

28 Soroosh Shafieezadeh-Abadeh, Peyman Mohajerin Esfahani, and Daniel Kuhn. Distributionally
robust logistic regression. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett, editors, Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 1576–1584, 2015. URL: https://proceedings.neurips.cc/
paper/2015/hash/cc1aa436277138f61cda703991069eaf-Abstract.html.

29 Alexander Shapiro. On duality theory of conic linear problems. In Semi-infinite programming,
pages 135–165. Springer, 2001.

30 Bahar Taskesen, Viet Anh Nguyen, Daniel Kuhn, and Jose Blanchet. A distributionally robust
approach to fair classification. arXiv preprint, 2020. arXiv:2007.09530.

31 Cédric Villani. Topics in optimal transportation. American Mathematical Soc., 2003.
32 Joel S Weissman and Romana Hasnain-Wynia. Advancing health care equity through improved

data collection. The New England journal of medicine, 364(24):2276–2277, 2011.
33 Wolfram Wiesemann, Daniel Kuhn, and Melvyn Sim. Distributionally robust convex optimiz-

ation. Operations Research, 62(6):1358–1376, 2014.
34 Yan Zhang. Assessing fair lending risks using race/ethnicity proxies. Management Science,

64(1):178–197, 2018.
35 Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis

lectures on artificial intelligence and machine learning, 3(1):1–130, 2009.
36 Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report, University of

Wisconsin-Madison Department of Computer Sciences, 2005.

FORC 2023

https://arxiv.org/abs/2109.10431
https://proceedings.neurips.cc/paper/2018/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://arxiv.org/abs/1908.05659
https://proceedings.neurips.cc/paper/2015/hash/cc1aa436277138f61cda703991069eaf-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/cc1aa436277138f61cda703991069eaf-Abstract.html
https://arxiv.org/abs/2007.09530


10:14 Distributionally Robust Data Join

A Possible Negative Societal Impact and Limitations

We do not foresee any direct negative societal impact of our work. However, just as other
distributionally robust optimization methods, our robust guarantees may come at the price
of achieving slightly worse accuracy. However, we note that this trade-off between more
robustness and higher utility can be controlled by setting rA and rP appropriately. On a
related note, another limitation of our approach is that it requires specifying rA and rP ;
one needs to have some knowledge about how “far” the distributions (i.e. labeled dataset,
unlabeled dataset with auxiliary features, and test distribution) may be, which is a limitation
as in other methods that require setting some hyperparameters appropriately.

B Missing Details from Section 4

All the experiments were performed on one of the authors’ personal computer, MacBook Pro
2017, and every experiment took less than an hour.

We note that as it’s standard in practice to output the last iterate instead of the averaged
iterate, we use the last iterate of the projected gradient descent instead of the averaged one
for all our experiments. Now, the total number of points and the features for each dataset is
here along with where the dataset can be found:
1. BC (https://archive.ics.uci.edu/ml/datasets/breast+cancer): 569 points with

30 features
2. IO (https://archive.ics.uci.edu/ml/datasets/ionosphere): 351 points with 34

features
3. HD (https://archive.ics.uci.edu/ml/datasets/Heart+Disease): 300 points with

13 features
4. 1vs8 (https://scikit-learn.org/stable/modules/generated/sklearn.datasets.

load_digits.html#sklearn.datasets.load_digits): This is a copy of the test
dataset from https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+
of+Handwritten+Digits). It originally contains 1797 points with 64 points. But after
filtering out all the digits except for 1’s and 8’s, there are 356 points.

For every dataset, we preprocess the data by standardizing each feature – that is, removing
the mean and scaling to unit variance.

We take the common feature to be the first 5 features for (BC, HD) and 4 for IO –
i.e. m1 = 5 and 4 respectively. For 1vs8, we have m1 = 32, the first half bits of the 8x8
image. And the remaining features are the auxiliary features A: m2 = 25, 30, 8, and 32 for
BC, IO, HD, and 1vs8 respectively. For all datasets, we set the test size to be 30% of the
entire dataset. Then, we set (nP , v) = (20, 5), (20, 10), (30, 5), (30, 10) for BC, IO, HD, 1vs8
respectively. In other words, we imagine the total number of points in our labeled sets SP

and the number of features to be very small. For BC and IO, we also try a case when the
number of common features is a lot more (i.e. m1 = 25).

Now we report the best regularization penalties that maximize the accuracy of RLR
and RLRO respectively over all experiment runs at the granularity level of 10−2. The best
regularization penalty for RLR and RLRO were λ = (0.07, 0.04) for BC (m1 = 5), (0.04, 0.04)
for BC (m1 = 25), (0.02, 0.02) for IO (m1 = 4), (0.01, 0.02) for IO (m1 = 25), (0.08, 0.03) for
HD, and (0.08, 0.08) for 1vs8. The parameters for data join used for each of the datasets can
be found in the table below:

For all of the methods (logistic regression, regularized logistic regression, distributionally
robust logistic regression, and our distributionally robust data join), the learning rate used
was 7 ∗ 10−2 and the total number of iterations was 1500.

https://archive.ics.uci.edu/ml/datasets/breast+cancer
https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Table 3 Parameters used for distributionally data join (DJ) for UCI datasets.

BC (m1 = 5) BC (m1 = 25) IO (m1 = 4) IO (m1 = 25) HD 1vs8
rA 0.65 1.65 0.3 1.5 0.65 1.85
rP 0.65 1.65 0.3 1.5 0.65 1.85
κA 5 5 10 5 10 5
κP 2.5 2.5 5 2.5 5 15
k 1 1 1 1 1 1

Finally, we describe how we generated the data that was used to test how well DJ handles
distribution shift. First, define

β1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] and β2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

For the first group g = 1, the positive points and negative points were drawn from a
multivariate normal distribution with mean β1 and −β1 respectively both with the standard
deviation of 0.2:

x|y = +1, g = 1 ∼ N(β1, 0.2) and x|y = −1, g = 1 ∼ N(−β1, 0.2).

For the second group g = 2, the positive points and negative points were drawn from a
multivariate normal distribution with mean β2 and −β2 respectively both with the standard
deviation of 0.3:

x|y = +1, g = 2 ∼ N(β2, 0.2) and x|y = −1, g = 2 ∼ N(−β2, 0.2).

Now, for the first dataset S1 = {(x1
j , y1

j )}n1
j=1, we had the number of points from group 1

and from group 2 was 400 and 20 respectively. And we had it so that the number of positive
and negative points in each group was exactly the same: i.e. 200 positive and negative points
for group 1, and 10 positive and 10 negative points for group 2.

For the second dataset, S2 = {(x2
i , y2

i )}n2
i=1, the number of points from group 1 and from

group 2 was 200 and 2000 respectively. The number of positive and negative points in each
group was exactly the same once again here.

Our labeled dataset will be the first two coordinates of the fist dataset, meaning m1 = 2:

SP = {(x1
j [0 : 2], y1

j )}n1
j=1.

Then, we will randomly divide the second dataset so that the 70% of it will be used as
unlabeled dataset SA and the other 30% is to be used as the test dataset Stest.

SA = {x2
i }0.7n2

i=1 and Stest = {(x2
i , y2

i )}n2
i=0.7n2+1.

Note that m2 = 10.
The baselines that we consider for this synthetic data experiment are

1. Logistic regression trained (LR) on SP

2. Regularized regression trained (RLR) on SP with λ = 10
3. Distributionally logistic regression (DLR) trained on SP with r = 100, κ = 10.
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Abstract
Side channel attacks, and in particular timing attacks, are a fundamental obstacle for secure
implementation of algorithms and cryptographic protocols. These attacks and countermeasures have
been widely researched for decades. We offer a new perspective on resistance to timing attacks.

We focus on sampling algorithms and their application to differential privacy. We define sampling
algorithms that do not reveal information about the sampled output through their running time.
More specifically: (1) We characterize the distributions that can be sampled from in a “time oblivious”
way, meaning that the running time does not leak any information about the output. We provide
an optimal algorithm in terms of randomness used to sample for these distributions. We give an
example of an efficient randomized algorithm A such that there is no subexponential algorithm with
the same output as A that does not reveal information on the output or the input, therefore we
show leaking information on either the input or the output is unavoidable. (2) We consider the
impact of timing attacks on (pure) differential privacy mechanisms. It turns out that if the range of
the mechanism is unbounded, such as counting, then any time oblivious pure DP mechanism must
give a useless output with constant probability (the constant is mechanism dependent) and must
have infinite expected running time. We show that up to this limitations it is possible to transform
any pure DP mechanism into a time oblivious one.
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1 Introduction

There is always a gap between the way an algorithm is specified and described mathematically
and how it is implemented in a physical device and environment. Physical systems often
leak information to the environment, for example the power usage, heat radiation, running
time and much more. This leakage, in turn, can make systems which are secure in the
theoretical model, susceptible to attacks in practice which make them completely insecure.
These attacks are called “side channel attacks.” In this work we focus on timing attacks, i.e.
attacks that exploit the running time leakage.
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11:2 Resistance to Timing Attacks for Sampling and Privacy Preserving Schemes

One important field which is sensitive to timing attacks is Differential Privacy (DP) [9, 10].
DP deals with analyzing data sets in a way which protects the privacy of an individual
contributor to the collection. Informally, for an algorithm to be differentially private it needs
to have “close” output distributions on two data sets which differ by a single entity1. In this
work we consider the question of defining security against timing attacks. To this end, we
define new notions of resistance to timing attacks in the realm of sampling and differential
privacy, provide resistant constructions, and prove their security.

We formally define time oblivious DP mechanisms. We show that time oblivious pure DP
mechanisms have some undesirable properties and therefore the recommendation is to use
approximate DP in practice. Nevertheless, we show that if one can tolerate those properties
in applications, then any pure DP mechanism can be transformed to a time oblivious pure
DP mechanism with similar privacy guarantee.

1.1 A Very Brief History of Timing Attacks
Side channel attacks and in particular timing attacks have long history and we would not
attempt to survey it (see the companion paper [6] for more details). For instance, an
early work by Lipton and Naughton [21] showed a way to exploit timing information to
compromise the performance of dictionaries that employ universal hash functions. The work
of Kocher [20], showing how the running time of certain implementations of RSA and Diffie
Hellman schemes leaks information which can be used to break the systems and put the
issue in the forefront of research in the area.

One of the most efficient lattice based digital signature schemes is BLISS, suggested by
Ducas, Durmus, Lepoint and Lyubashevsky [7]. This scheme uses a bimodal Gaussian sampler
and was shown to be vulnerable to timing attacks, and in particular the sampling component
is not independent of the secret-key [11, 3], as well as other attacks. These vulnerabilities
might be the reason the scheme did not emerge as an option in the Post-Quantum NIST
standardization process.

The differential privacy (DP) setting has had its own share of issues with respect to
leaky implementations. Starting with Mironov [22] who showed that the problems of finite
precision arithmetic imply that pioneering implementations of differentially private databases
actually do not satisfy the desired properties. To address this Balcer and Vadahn [2]
considered designing DP-algorithms that can be implemented in strict polynomial time.
More recently, Andrysco et al. [1] showed that various concrete implementations differentially
private mechanisms are vulnerable to timing channels. Ilvennto [13] suggested implementing
the Exponential Mechanism with “Base-2 Differential Privacy,” which meant it could be
implemented with finite precision, but left open the issue of timing attack resilience.

1.2 Prevention Techniques
The main approach to prevent timing attacks is to use fixed time algorithms, often called in
the literature “constant time algorithms,” meaning algorithms that run the same amount of
time on all inputs.

There are two main drawbacks to this solution. First, in order for the algorithm to run
in fixed time on all the inputs, we need to know the worst case running time, a task that is
often challenging on its own. The second one is that even if we do know the running time,

1 There are two variants to differential privacy, pure and approximate. In the case of pure DP, the results
should be close pointwise.
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in many cases there is a very large gap between best case and worst case running time, or
even average case and worst case running time, and by making the algorithm run in the
worst case time on all inputs, we create huge overheads. It is also worth mentioning that the
second caveat can make many protocols and algorithms impractical and not usable when
efficiency is critical.

In addition, the survey in Section 1.1 demonstrates that the task of making an algorithm
run in fixed time is more subtle and challenging than meets the eye. Timing information can
leak from response times of the server, from I/O calls, from reading RAM memory or cache
memory and many more possibilities. In order for the algorithm to be truly and fully fixed
time, one must make sure to make everything fixed time, which is often very challenging,
and goes against hardware and software optimizations.

A common technique to thwart timing attacks in the public-key context is “blinding,”
first suggested by Chaum [4] in the context of signatures, where a value v is mapped into a
random looking one u prior to the encryption or signature, in a manner that allows to retrieve
the desired signature or encryption from the encryption or signature on u. Kocher [20]
suggested using blinding to make RSA implementations secure against timing attacks. The
blinding works by multiplying the input x by a fresh random element r of the group Z∗

N ,
i.e. a random element which is co-prime to N . To decode, a multiplication by the group
inverse r−1 is done at the end of the computation. Note that simply using the same r for
many inputs will not work, as the attack suggested by Kocher can recover r over time, and
even recover the exponent without knowing r. Hence, fresh r needs to be chosen in each
round. This example goes to show that using blinding as a technique to protect against
timing attack is often a subtle task, and that if implemented naively or incorrectly can lead
to a false sense of security.

A general approach to preventing leakage is to employ techniques from secure multi-party
computation, and split the input into various parts where leaking almost all of them does not
leak the actual values. It was first suggested in Ishai, Sahai and Waters [14] for thwarting
probing attacks (see [16] for a survey). This can be thought of as the “moral equivalent” of
blinding for a general functions. However, in case of timing, given that what is leaked is a
function of all parties (at the very least, the sum of their running times), it is not clear that
that it solves the problem. Nevertheless, it does point to the issue of the number of random
bits used to generate a sample.

1.3 Our Contributions and Technical Overview
Our goal in this work is to investigate the landscape of algorithms and systems that can be
implemented in a manner resistant to timing attacks, but we wish to expand the ‘Procrustean
bed’ of fixed time algorithms. We provide foundational treatment to the subject as well as
many algorithms and separation results.

In Section 2 We focus on the security against timing attacks in an information theoretic
manner and focuses on randomized algorithms and in particular on sampling algorithms.
We define sampling algorithms secure against timing attacks, “time oblivious” sampling
algorithms. Our main result of this section is a charterization of the the distributions that
can be sampled without leaking any information on the output.

▶ Theorem 2.3. Let D be a discrete probability distribution. Then D has a time oblivious
generating algorithm if and only if the following holds:
1. D has finite support.
2. D is rational, i.e. all the probabilities of possible outputs are rational.
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We also give an optimal time oblivious algorithm to sample from a rational distribution
of finite support, where optimal means that any other time oblivious algorithm has slower
running time.

In Section 3 we concentrate on the implication of these results to Differential Privacy, i.e.
what happens to such mechanisms when their running time (or the number of random bits
used) is leaked (recall from Section 1.1 that there is a history of leakage problems in DP
implementations). Since many differential privacy mechanisms work by taking the input and
adding to it noise generated by some distribution with an infinite support, it is clear from
the discussion above that this approach is futile when trying to resist timing leakage.

We formally define time oblivious DP mechanisms:

▶ Definition 3.1. Let M : C → R be a randomized algorithm. We say M is (ε, δ)-
differentially private time oblivious mechanism if for every pair of neighboring datasets D

and D′, every subset S ⊆ R× N

P[(M(D), T (M(D))) ∈ S] ≤ eε · P[(M(D′), T (M(D′))) ∈ S] + δ.

We show that the situation is more complex. Some techniques, such as randomized
response, work here provided the biased coin flipped is rational. In case the range is
unbounded, as in counting in a database whose size is not known, then it is impossible to
guarantee useful results with very high probability. That is, for any (time oblivious pure DP
mechanism with an unbounded range there is a ρ > 0 s.t. for most databases the mechanism
outputs useless results with probability at least ρ (See Claim 3.4). But on the other hand, we
can take any DP mechanism and find a pointwise close (for each database) DP mechanism
that is time oblivious as we prove in Theorem 3.6:

▶ Theorem 3.6. Let M be any ε-pure DP mechanism with a discrete range R. For any
γ > 0, ε′ > ε there is a time oblivious ε′ pure DP mechanism Mobl such that ∥Mobl(D)−
M(D)∥T V < γ.

Finally, we supplement Section 2 with Appendix A which deals with the problem of
sampling a satisfying assignment of a DNF formula in a time oblivious way. We show how to
convert the well known non time oblivious algorithm into a time oblivious algorithm while
preserving the run-time. In addition, we show that leaking information on the formula is
unavoidable. Specifically, we show that any time oblivious algorithm for sampling a satisfying
assignment from a DNF formula that “hides the formula” must run in exponential time,
and therefore we show an inherent exponential gap for hiding the input of a randomized
algorithm.

▶ Theorem A.4. Sampling a uniform satisfying assignment of a DNF formula in an input
hiding time oblivious way cannot be done efficiently and requires Ω(2n) bits in expectation.

2 Time Oblivious Sampling: Definitions and Characterization

The challenge of designing an algorithm that generates a distribution D using a sequence of
unbiased coins C1, C2, . . . ∼ Bernoulli

( 1
2
)

was studied in the seminal work of Knuth and
Yao [19] in the mid 1970s. They described a greedy algorithm to generate D and showed that
it is optimal in terms of the expected number of coin flips. In addition they discuss properties
of the algorithm, such as expected number of coins used, optimality, computational efficiency
and more. A detailed discussion about their work can be found in Chapter 15 (“The random
bit model”) of Devroye [5]
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Their work appeared many years before the public discussion on side channel attacks
and they did not address this issue. One possible timing attack is to measure the number of
coin flips used by the algorithm. To see how this information may be useful, consider the
example of sampling from Geo

( 1
2
)

by tossing coins until we get for the first time “heads”,
and the number of tosses is the output generated. Clearly in this example, an adversary who
knows the number of coin flips knows exactly what element was sampled. Such leakage can
compromise cryptographic systems which rely on private randomness.

Another scenario where such leakage may be problematic occurs in the context of
Differential Privacy (DP) [10]. Informally, the requirement of DP is for neighbouring data-
sets, to have “close” output distribution. By close we mean up to some multiplicative and
additive factor. Removing the additive factor gives a stronger notion of DP, called pure
DP. One main motivation for DP is to be able to get meaningful statistics from data, while
preserving the privacy of the individual. A very common technique to achieve DP algorithms
is to sample from some noise distribution, for example the Laplace distribution, and add it
to the actual result.

As pointed by Balcer and Vadhan [2], the runtime of the noise generation can leak
information about the noise that was generated, which in turn can make the noisy output
not as hiding as well as in the idealized world. This may compromise the DP guarantee of
the algorithm, especially if it is a pure DP algorithm.

Therefore, in order for the algorithm to satisfy the DP definition, it is essential that the
running time of the noise generator will not give information to an adversary regarding the
value sampled. This is discussed more thoroughly in Section 3.

Distributed sampling

A case where the number of bits used clearly leaks is when the generation is done distributively,
using some sort of multi-party computation (e.g. when creating a root key or in the context
of differential privacy [8]). In this case, the amount of communication (in bits) between the
parties is directly related to the number of bits needed for the generation, so to keep the
value generated hidden we need to make sure that the number of random bits consumed
does not leak information.

2.1 Preliminaries, Notation and Definition

Let D be a discrete distribution on N, with di = P[D = i]. We say D is rational if each di is
a rational number, and D has finite support if: supp(D) := {j | dj > 0} is a finite set.

For a randomized algorithm A let R denote its random tape and R[i] ∼ Bernoulli
( 1

2
)

is the ith bit in the tape. Then Rn is the n-bit random string: R[0]R[1] . . .R[n − 1]. We
assume a randomized algorithm A reads the tape sequentially, and after reading Rn decides
deterministically, after a finite amount of steps, whether to return an output or read R[n]
from the tape. The output distribution of A over random tape R will be denoted by O(A),
and the number of bits read from the random tape by A is the random variable (R.V.) T (A).

A useful way to view the generation of O(A) by Knuth and Yao is to consider R as
defining a random walk on an infinite binary tree in which going left corresponds to reading
a 0 and going right corresponds to reading a 1, for this reason we consider a binary sequence
a0 . . . an as a node. Since A is deterministic given Rn+1 = a0 . . . an, then for the node
a0 . . . an in the tree A either halt and outputs, or A “walks” to either a0 . . . an0 or a0 . . . an1
with equal probability, 1

2 .
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In light of the view above we define the ith level of the tree to be the set of all binary
sequences of length i. We will abuse the notation and use a0 . . . ai−1 to denote the correspond-
ing integer associated with the binary sequence. We say that a0 . . . ai−1 precedes b0 . . . bi−1
if it is smaller as an integer. We say that A outputs on a binary sequence a0 . . . ai−1 if
conditioned on Ri = a0 . . . ai−1 the algorithm reads the first i bits of R and outputs before
reading R[i]. The ith level is called an output level of A if A outputs on some sequence
a0 . . . ai−1 in that level. The set of all output levels of A is denote by L(A). Finally T (A)
will denote the distribution of the number of bits A read from the random tape R.

When considering the runtime of a randomized algorithms an important resource is
the number of random bits that are read from the random tape. Having this number be
independent of the instance generated is a prerequisite to time obliviousness. Furthermore,
once the required number of random bits has been read, the problem is a deterministic
computation of a mapping and this can be performed in some worst case time for the given
size. So at least in principle there is an independent implementation.

Motivated by the discussion above, we make the following definition:

▶ Definition 2.1. We say A is a time oblivious generating algorithm if its output
distribution and running time distribution are independent, meaning O(A) and T (A) are
independent random variables.

2.2 Characterization of Time Oblivious Distributions
A natural question to ask is what distributions can be generated in a time oblivious way?
For example, can we generate the distribution Geo( 1

2 ) that was discussed at the beginning
of the section? What about sampling a biased coin where the probability of ’1’ is p and ’0’
otherwise? Can we do it for all values of p? We focus on the exact model, meaning we want
to sample from the exact distribution and not some approximation.2 Consider the following
“separating bit” algorithm for sampling a biased coin with bias p: Let p = 0.p1p2 . . . be the
binary expansion of p, we toss fair coins x1, x2, . . . to generate a number x between 0 and 1,
x = 0.x1x2 . . .. We stop in the first index i where pi ≠ xi we return xi. We call the algorithm
“separating bit” because we toss coins until we find the first index the separates the binary
representation of p from the binary representation of the number x we generate.

Notice that:

▷ Claim 2.2. Let p be the bias of the generated coin then:
1. The “separating bit” algorithm is not time oblivious.
2. The expected number of random bits read by the algorithm is 2.

Proof.
1. If the algorithm produced an output after a single coin flip, we know that the result of

the coin flip was 1− p1 and therefore the output is 1p1=1.
2. Each coin has probability 1

2 to be the separating bit, therefore the number of bits read is
Geo( 1

2 ) and the expected amount of bits read is 2. ◁

While Claim 2.2 shows that the separating bit algorithm is not time oblivious for all p, it
does not mean there is no time oblivious algorithm to toss a p-biased coin to some values of
p ̸= 1/2. We show that we can toss a p biased coin iff p is rational. More generally, we will
show:

2 For an example of previous work on exact sampling, consider Feldman et al. [12] who addressed the
issue of how many different types of coins one needs in order to generate a die roll in an exact manner.



Y. Ben Dov, L. David, M. Naor, and E. Tzalik 11:7

▶ Theorem 2.3. Let D be a discrete probability distribution. Then D has a time oblivious
generating algorithm if and only if the following holds:
1. D has finite support.
2. D is rational, i.e. all the probabilities of possible outputs are rational.

This characterization answers the questions above, we cannot sample from Geo( 1
2 ) in a

time oblivious way, and we can generate a biased coin if and only if p is rational. We will
prove the theorem by showing each direction separately, and begin by showing:

▶ Lemma 2.4. If a distribution D has a time oblivious algorithm, then it is rational with
finite support.

Proof. Let A be a time oblivious generating algorithm for D. Since A has output distribution
D, it means in particular that it outputs at some level, i.e. L(A), is not empty. Let k be the
first output level of A. Denote by mk the number of output nodes of length k, and by ej the
number of nodes which output j in that level. The number of sequences of length k is 2k and
so we get that: 0 < mk ≤ 2k <∞. Observe that the probability to get an output j in level
k is exactly ej

mk
. Since A is time oblivious, conditioning on T (A) = k yields the same output

distribution D and so for all j we have dj = ej

mk
and therefore dj ∈ Q and D is rational.

Notice that dj = ej

mk
means that dj > 0 implies that dj ≥ 1

mk
and therefore |supp(D)| ≤ mk.

We get that D is rational with finite support. ◀

We will later prove the other direction of Theorem 2.3 by describing a time oblivious
algorithm to output D. In the binary tree view described in Section 2.1 being time oblivious
means that in each output level the conditional distribution given that the level was reached
is D (i.e. the output nodes of the level are distributed exactly according to D). From now
on, in light of Lemma 2.4, if D is generated by a time oblivious algorithm we may assume
supp(D) = {1, . . . , n} and use the notation dj = pj

qj
for the output distribution and let

q := LCM(q1, .., qn).3 We now prove some properties of general time oblivious algorithms.
We will need the following definition:

▶ Definition 2.5. A node a0 . . . an is called reachable if no prefix a0 . . . am with m < n is an
output node.

The following lemma applies for any time oblivious algorithm A:

▶ Lemma 2.6. Let A be a time oblivious algorithm with a finite and rational output distribu-
tion D where the LCM of the probabilities is q. Let tk be the number of nodes in level k that
are either unreachable or output nodes, and mk the number of output nodes at level k, then:
1. The number mi of output nodes in level i is a multiple of q.
2. tk satisfies: tk =

∑k
i=0 2k−imi. In particular tk is a multiple of q.

Proof. Proof in Appendix B. ◀

A corollary of Lemma 2.6 is:

▶ Corollary 2.7. Let D be a discrete distribution. D can be generated in finite worst case
complexity if and only if D is rational with finite support and q = 2k.

Proof. Proof in Appendix B. ◀

3 The LCM is the Least Common Multiple of a set of natural numbers, that is the smallest natural
number that is divisible by the given set of numbers.
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We now describe a time oblivious algorithm that generates D. Following Lemma 2.4, we
assume that the support of D is [n], and D is given by a list of length n of the probabilities
di = pi

qi
for co-prime pi and qi. Since the distribution has finite support, q = LCM(q1, . . . , qn)

can be computed efficiently (and we assume is part of the input). By Lemma 2.6 we know
that any time oblivious algorithm should output a multiple of q elements in each level.
Observe that if a level has q reachable nodes then we can partition these nodes into sets
{Si}n

i=1, where |Si| = di · q = pi

qi
· q ∈ N and output i at Si.

With this in mind, the algorithm works as follows: the algorithm iterates level by level
and if there are q reachable nodes then it assign them q outputs similarly to the Si’s above.
Picking arbitrary reachable nodes may be inefficient (even though it will be optimal in terms
of randomness, the formal definition may be found in Definition 2.12). To make the algorithm
efficient the algorithm picks consistently the q left most reachable nodes in each level. This
is now formally described in Algorithm 1:

Algorithm 1 Gen(D,R).

1: q ← LCM(q1, . . . , qk)
2: n← 0
3: while True do
4: n← n + 1
5: if (2n mod 2q) ≥ q then ▷ If there are q reachable nodes in level n

6: if (Rn mod 2q) ≤ q − 1 then ▷ Is Rn one of the q leftmost reachable nodes
7: Return GetValue(D, (Rn mod 2q))

Algorithm 2 GetValue(D, j).

1: q ← LCM(q1, . . . , qk)
2: s0 ← 0
3: for i = 1 to k do
4: si ← si−1 + q · pi

qi

5: Return i such that si−1 ≤ j < si ▷ Binary Search the value of i

The following lemma justifies the comments in Algorithm 1 and specifies properties of its
output nodes:

▶ Lemma 2.8.
1. The number of reachable nodes in level n is exactly 2n mod 2q.
2. Let a0 . . . an−1 be the node in the tree that represents reading the bits a0, . . . , an−1 from the

randomness tape. The number of reachable nodes preceding a reachable node a0 . . . an−1
of Algorithm 1 is a0 . . . an−1 mod 2q.

3. Let tn be the number of nodes in level n which are either unreachable or output nodes.
For all n we have: 2n − tn < q.

Proof. Proof in Appendix B. ◀

We now finish the proof of Theorem 2.3 and show that Algorithm 1 is time oblivious:

▷ Claim 2.9. Algorithm 1 is time-oblivious algorithm and generates D.
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Figure 1 Distribution Generating Tree of D0 using Algorithm 1.

Proof. By Parts 1,3 of Lemma 2.8 at each level n of Algorithm 1 there are q output nodes that
correspond to the binary expansion of {⌊ 2n

2q ⌋·2q, ⌊ 2n

2q ⌋·2q+1, .., ⌊ 2n

2q ⌋·2q+q−1} and Algorithm 2
outputs i on the nodes that correspond to the numbers {⌊ 2n

2q ⌋ · 2q + si−1, .., ⌊ 2n

2q ⌋ · 2q + si− 1}.
Therefore we get that P[O(A) = i | T (A) = n] = 1

q · q
pi

qi
= di which implies that O(A) is

D when conditioning on T (A) = n. Thus O(A) and T (A) are independent random variables.
◁

To demonstrate how the algorithm works, we show an example of the generating tree for
the distribution: D0 =

{ 1
2 , 1

3 , 1
6
}

.

▶ Example 2.10. The LCM q of the denominators of D0 is 6 and so:

D0 =
{

3
6 ,

2
6 ,

1
6

}
This gives the following distribution generating tree:

2.3 Randomness Efficiency
We now show the sampling algorithm is the most efficient one in terms of randomness. To

formalize what it means to be most efficient in terms of randomness, for an algorithm A let
ℓi(A) be the probability that A produces an output on level i and denote by Sk =

∑k
i=1 ℓi(A),

the probability that the algorithm will produce an output up until, and including, level k.
▶ Definition 2.11. Let A and A′ be two algorithms with the same output distribution D.
We say A (weakly) dominates A′ in efficiency if for all k: Sk(A′) ≤ Sk(A). Furthermore,
we say A strictly dominates A′ if A weakly dominates A′ and there exists some k for which
Sk(A′) < Sk(A).

With this definition we can now define what it means for an algorithm to be “optimal”:

▶ Definition 2.12. An algorithm A that generates D is optimal, if for all algorithms A′

that generate D, A (weakly) dominates A′.

▶ Remark 2.13. For non-negative integer valued random variable X: E[X] =
∑∞

k=1 P[X ≥ k]
and therefore if A weakly dominates A′ then E[T (A)] ≤ E[T (A′)] which means that if A is
optimal then the expected number of random bits used by A is the minimum possible.
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We will show that Algorithm 1 is optimal. First we need:

▶ Observation 2.14. Let tk be the number of unreachable or output nodes level k, then
Sk = tk

2k .

Proof. Proof in Appendix B. ◀

▶ Theorem 2.15. Let D be a finite and rational distribution where the LCM of the denomi-
nators of the probabilities is q, then Algorithm 1 is an optimal time oblivious algorithm for
generating D.

Proof. Proof in Appendix B. ◀

In addition to its optimality Algorithm 1 is essentially unique in the following sense:

▷ Claim 2.16. All optimal algorithms have the same number of output nodes in each level
as Algorithm 1.

Proof. Let A be Algorithm 1 and let A′ be another optimal time oblivious algorithm for D.
Since A and A′ are both optimal we have: ∀k : Sk(A) = Sk(A′). By definition of Sk this
implies ∀k : ℓk(A) = ℓk(A′). Therefore A and A′ have the same output levels with q output
nodes at each output level. ◁

We can now estimate the number of random bits Algorithm 1 reads from the tape:

▶ Lemma 2.17. The expected number of bits read from the tape, E[T (A)], by Algorithm 1 is
log2 q + Θ(1).

Proof. Proof in Appendix B. ◀

We now analyze the complexity of Algorithm 1. Recall that n = |supp(D)|. We assume
the input is a list of numbers (pi, qi), the LCM q and the size of the support n = |supp(D)|:

Preparation time worst case O(n). The array of si described in Algorithm 2 can be
computed ahead of time in O(n) running time by iteratively applying si = si−1 + q · pi

qi
.

Sampling time expected O(log q). Remember that from Lemma 2.17 we know that the
expected number of bits the algorithm reads is log2 q + Θ(1) bits. The algorithm takes
extra O(log q) time to binary search what to output in Algorithm 2 so the sampling time is
O(log q). One should keep in mind that the first level that is an output level is ⌈log2 q⌉, and
therefore the loop in Algorithm 1 may start at that level. Similar analysis to Lemma 2.17
implies that the expected number of iterations executed by the loop is Θ(1).

Space complexity worst case O(log q). We can deduce O(log q) space complexity in
expectation since T (A), the expected number of bits read from the tape, is log2 q + O(1) and
the memory needed for Rn, 2n is proportional to T (A). To get O(log q) worst case, notice
that the algorithm doesn’t actually need to know Rn, 2n but only (Rn mod 2q), (2n mod 2q)
and this can be maintained using O(log q) bits.

Algorithm 1 is also oblivious in the much stronger sense: all reachable nodes have the
same control-flow i.e. they execute each line in the algorithm exactly the same number of
times, and in the same order. Therefore, given a fixed time implementation of mod 2q, and
a fixed time implementation that compares two numbers of size up to 2q the running time of
this implementation of A will not leak information on the output4.

4 Fixed time mod operations are required since in some circumstance even having the same control flow
does not guarantee fixed time, as was shown by the Hertzbleed attack [24]
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Notice that the parameters above cannot be improved. Preparation time is essential
for general D, since any sampling algorithm must read the probabilities of the outputs.
The sampling time cannot be improved by Lemma 2.17, it also cannot be worst case by
Corollary 2.7. Space complexity Ω(log q) is needed to represent output range of size Ω(q).

From the discussion in this section, we conclude that defending against time attacks may
cost unbounded slowdown, i.e.:

▶ Observation 2.18. For every n there exist a distribution D for which E[T (A)]/E[T (A′)] ≥ n

where A′ is the optimal generation algorithm for D (not necessarily time oblivious) and A is
any time oblivious algorithm for D.

Proof. Consider the distribution D of a biased coin with p = 1
22n . Since the separating bit

algorithm takes 2 random bits in expectation we know that E[T (A′)] ≤ 2 since A′ is optimal.
Let A′′ be Algorithm 1. Since it is optimal, we deduce from Remark 2.13 that E[T (A)] ≥

E[T (A′′)]. A′′ has one output level which is 2n and therefore E[T (A)] ≥ 2n. By dividing
these two inequalities we conclude that E[T (A)]/E[T (A′)] ≥ n. ◀

We refer the intrested reader to Appendix A where we consider time oblivious randomized
algorithms that does not leak information on their input, as well as their input from the
running time. We show that the algorithm of Karp and Luby [17, 18] to sample a satisfying
assignment from a DNF formula, can be transformed to be time oblivious and efficient, but
there is no efficient time oblivious algorithm that does not leak x from the running time.

2.4 Approximate Time Oblivious Sampling a Distribution
The “time oblivious” condition may sometimes be too strict, since many distributions used in
real life applications do not have a finite support or rational probabilities. Moreover, even if the
distribution does have finite support and rational probabilities, in some situations Algorithm 1
can be considerably slower than the Knuth-Yao sampler (that is optimal among all samplers
in the random coin flips model). In other situations the time oblivious sampler has similar
number of coin flips used to the Knuth-Yao sampler, e.g. when sampling a uniform integer
in [n]. Therefore it is desired to have a definition of “approximate obliviousness.”

We stress that whether using an approximation is an appropriate solution depends on the
specific application of the sample in a randomized algorithm as well as on the approximation’s
guarantee. For example, if M is a pure DP mechanism, and the sampling time used by
M leaks a small amount of information on the database, then M may not be pure DP
given the running time. On the other hand this sort of approximation can be applied to
an approximate DP mechanism with a small cost to δ. We will consider time oblivious DP
mechanism in more detail in Section 3.

We suggest the following definition for “approximate time oblivious sampling” that
preserves the privacy of the sample even when the running time has leaked. Note that for
sampling algorithm A we let O(A) be its output. The definition essentially says that given
the running time the conditional distribution is close to the original in a point-wise sense.

▶ Definition 2.19. Let D be a distribution and X ∼ D. An algorithm A is (ε, δ)-approximate
time oblivious sampler of D if for any T ⊆ N and for any S ⊆ supp(D):

e−εP[X ∈ S]− δ ≤ P[O(A) ∈ S | T (A) ∈ T ] ≤ eεP[X ∈ S] + δ.

The main benefit of considering the approximation above is that, as we shall see, the
sampling complexity will not depend on the LCM of the distribution. If δ = 0 then we say A
is a pure time oblivious sampler of D and if δ > 0 then it is an approximate time oblivious
sampler. Allowing (pure) type of approximation yield that all distributions of finite support
can be sampled approximately:
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▷ Claim 2.20. Let D be a discrete distribution with support size n and let

H := H(D) = max
x∈supp(D)

log
(

1
P[x]

)
.

Then there exist an ε-pure time oblivious sampler of D that uses H + log 1
ε + O(1) random

bits in the worst case.

Proof. Proof in Appendix B ◁

We note that in the pure variant of Definition 2.19, only distributions of finite support
can be sampled, as supp(D) must contain all the outputs in the first output level of A. We
will use this observation again in Section 3. We also note that the number of coin flips used is
essentially tight, since a pure sampler that outputs after k coin tosses must satisfy Heε ≥ 2k,
otherwise the maximizer of H would not satisfy the pure sampling condition.

We can replace of the dependence on H(D), by a dependence on δ > 0 if we allow the
use of an (ε, δ)-approximate time oblivious sampler:

▷ Claim 2.21. Let D be a discrete distribution with supp(D) = [n], then there exist a
(0, δ)-approximate time oblivious sampler that uses log n + log 1

δ + O(1) bits worst case.

Proof. Proof in Appendix B. ◁

Many distributions used in applications are of infinite support, e.g. the geometric distribu-
tion, discrete Laplace, etc. With respect to Definition 2.19 one must consider an approximate
time oblivious sampler (that is not pure). Notice that a consequence of Definition 2.19 is
that every subset S ⊆ supp(D) of measure > δ must satisfy that supp(O(A)) ∩ S ̸= ∅. This
suggests that the the support of the distribution generated by the sampler should be of
measure at least 1− δ.

In general consider a distribution D and let Sδ ⊆ supp(D) denote a subset of minimal
size that satisfies for X ∼ D: P[X ∈ Sδ] ≥ 1− δ.

▷ Claim 2.22. For any distribution D there exist an (0, δ) approximate time oblivious
sampler that uses log(|Sδ/2|) + log 1

δ + O(1) random bits in the worst case.

Proof. To ease the notation we assume that supp(D) = N, X is a random variable with
distribution D, and pi = P[X = i]. Also assume Sδ/2 = [n] for n = |Sδ/2|. Let D′ be the
distribution supported on [n] in which the probability to get i is qi where:

qi =
{

pi + P [X ̸∈ [n]] , if i = 1
pi, otherwise

}
By applying the sampler of Claim 2.21 to D′ we obtain a sampler that uses log n + log 1

δ +
O(1) random coins. Notice that since the time is fixed and ε = 0 then Definition 2.19
coincides with total variation (TV) distance of distributions. Therefore since by construction
D and D′ are of TV distance δ

2 and D′ and the distribution produced by Claim 2.21 is of
distance δ

2 the sampler distribution is of TV distance δ and it outputs on a single time,
therefore satisfies Definition 2.19. ◁

We remark that for distributions of infinite support tail bounds imply bounds on Sδ

and therefore imply bounds on the efficiency of an approximate time oblivious sampler. For
example, let D be a discrete distribution on Z satisfying P[|X| > t] ≤ c1exp(c2t) for some
positive constants c1, c2 and t large enough (i.e. D is discrete, sub-exponential distribution).
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The tail bound implies that |Sδ| = O
(
log 1

δ

)
and thus the approximate sampler is efficient

and needs O
(
log 1

δ

)
random bits by Claim 2.22.

This in particular applies to the sub-exponential distributions such as geometric and
Laplace which are commonly used in differential privacy.

3 Differential Privacy Mechanisms and Timing Attacks

We gave a full characterization on the distributions that can be sampled in a time oblivious
way. This can be interpreted as a negative result for time oblivious sampling, since many
algorithms use distributions that are not of finite support and also assume that elements may
have irrational probabilities of being an outcome. A prominent example in the context of
differential privacy (DP) is the application of a Laplace(ε) R.V. that has an infinite support.
It is often sampled inside a differentially private mechanism, but by Theorem 2.3 it cannot
be sampled by a time oblivious algorithm. Therefore the execution of the mechanism will
actually leak information that will make it non-DP (at least in the pure sense).

This may be considered as the conceptual starting point of the work of Balcer and
Vadhan [2]. In their work, they addressed the problem of DP mechanisms implemented on
“finite computers” to address the issues of timing attacks and infinite output range. They
constructed DP algorithms on finite range, with worst case running time to handle those
issues and emphasized that each sampling must be of a distribution D which is finite an
rational.

One issue that motivates the formal discussion of the sampler as part of the timing of a
mechanism is that by Corollary 2.7 we get that rounding to rationals, as done in [2], isn’t
enough and the rounding must be to dyadic rationals; this was first observed in the work
of [8] in relation to DP. This issue is clearly dependent on the model of computation, but
shows the delicacy needed in the rounding procedure to ensure worst case running time.

Another issue is that the sampling running time of an algorithm is affected by the running
time of the sampler it uses. By Observation 2.18 it may be that a proposed algorithm
originally uses samples that take expected O(1) time to generate, but using the time oblivious
samples must run in running time ω(1). This may affect total performance of an algorithm.

The main aim of this section is to define time oblivious DP mechanisms and specifically,
time oblivious pure DP mechanisms and investigate their properties. Even though time
oblivious sampling is restrictive, we show that time oblivious pure DP mechanism are far
more flexible. In particular, we prove that any pureDP mechanism can be transformed to
a time oblivious with almost the same guarantees. We begin with the definition of time
oblivious DP mechanism.

▶ Definition 3.1. Let M : C → R be a randomized algorithm. We say M is (ε, δ)-
differentially private time oblivious mechanism if for every pair of neighboring datasets D

and D′, every subset S ⊆ R× N

P[(M(D), T (M(D))) ∈ S] ≤ eε · P[(M(D′), T (M(D′))) ∈ S] + δ.

In the definition above, if δ = 0 the mechanism is said to be pure time oblivious DP,
otherwise it is approximate time oblivious DP. C denotes the set of possible database (rather
then a distribution), and we assume that C is connected as a graph with respect to the
neighbouring relation. The time oblivious DP condition does not impose any condition on
M(D) in terms of finiteness or rationality. The time oblivious DP condition means that levels
in the distribution generating trees from Section 2.2 satisfy that the conditional distribution
on neighbouring datasets are almost the same up to the prescribed parameters.

FORC 2023



11:14 Resistance to Timing Attacks for Sampling and Privacy Preserving Schemes

The following lemma says that the time oblivious condition implies that all databases
have the same outputs at each level.

▶ Lemma 3.2. Let M be a time oblivious ε-pure DP mechanism on a connected set of
databases, then for any two databases D and D′′:

supp(M(D)|T (M(D)) = t) = supp(M(D′′)|T (M(D′′)) = t).

Proof. By the connectivity of C it’s enough to show this for neighbouring databases D, D′.
If r ∈ R is in the support of the conditional distribution on level n of M on D then by the
pure DP condition:

0 < P[M(D) = r | T (M(D)) = t] ≤ eε · P[M(D′) = r | T (M(D′)) = t]

Therefore P[M(D′) = r | T (M(D′)) = t] > 0 and r is in the support of the conditional
distribution on level t of M(D′). ◀

Pure DP mechanism for approximate counting

One fundamental problem considered in the DP literature is counting. That is, given a
database D output an approximation to the number of elements satisfying some property.
We now devise a time oblivious pure DP mechanism for approximate counting up to a factor
2. This example captures critical properties of time oblivious DP algorithms.

Let c(D) be the true count of D. For each database we need to construct a tree and by
Lemma 3.2 at each level we must have the same outputs for all possible databases D. The
mechanism will have at level i + 2 only one possible output which is 2i. If 2k ≤ c(D) < 2k+1

the mechanism will have one output node in each of the levels 2, .., k + 1, k + 4, k + 5 . . . . , at
level k + 2 the algorithm outputs on 2k+1 − c(D) + 1 of the nodes the value 2k, while at level
k + 3 the algorithm outputs 2k+1 on 2c(D)− 2k+1 + 1 nodes. Notice that

k+1∑
i=2

2−i + (2k+1 − c(D) + 1)2−(k+2) + (2c(D)− 2k+1 + 1)2−(k+3) +
∞∑

i=k+4
2−i = 3

4 .

Therefore by adding another output at the 2nd level which will always be 1 we get a
probability distribution on output nodes and with probability at least 1

4 the output is either
2k or 2k+1 so this algorithm approximates c(D) up to factor 2 with constant probability.
Moreover, notice that neighboring databases have identical trees up to 1 node in one level
k + 2 and 2 nodes in level k + 3. This algorithm is ln 3 pure DP since at each output level
the number of output nodes changes by at most 2 and since there is at least one output node
of value 2i at level i + 2 we get that if there are s output nodes at the level then it’s enough
to have ε satisfy s + 2 ≤ eεs which holds for ε = ln 3 since s ≥ 1.

The mechanism above has several drawbacks, which we will soon show must exist in all
time oblivious pure DP mechanisms. One drawback is that with constant probability the
mechanism outputs an irrelevant output since with probability 1

4 the output is 1 for any
database. Another drawback is that the amount of randomness used scales with c(D) in
contrast to the not time oblivious algorithm of adding a discrete Laplace noise to c(D).

We turn to specifying and proving the claims stated above. We begin with showing
that a time oblivious pure DP mechanism on infinitely many databases gives an irrelevant
output with some constant probability. To define what this means we assume we have a
utility function U : C × R → {0, 1} for which U(D, r) = 1 if r is useful information of D.
We say that U is sofic if for any r ∈ R there are only finitely many databases D such that
U(D, r) = 1.
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▶ Definition 3.3. For a mechanism M the utility of the mechanism on a database D is
defined by UM(D) = E [U(M(D))], we omitM when it is clear from context. The guaranteed
utility of a mechanism M is GU(M) := infD∈C U(D).

We show that with some constant probability the algorithm gives an irrelevant answer
for most databases using the definition of guaranteed utility.

▷ Claim 3.4. Let U be a sofic utility function. Then any time oblivious pure DP mechanism
M with infinitely many possible databases has GU(M) ≤ 1− 1

2s where s is the first output
level of M.

Proof. Proof in Appendix B. ◁

Similarly to guaranteed utility, we define the guaranteed expected runtime of the algorithm
to be GT (M) = supD∈C E[T (M(D))]. Even though it seems natural to require for a time
oblivious ε-pure DP to have a GT (M) finite (with some parameter that may depend on ε) it
cannot be done without serious consequences on the utility of the mechanism.

▶ Proposition 3.5. Let U be a sofic utility function and M is a pure DP mechanism on
infinitely many possible databases. Then GT (M) is finite implies that GU(M) = 0

Proof. Proof in Appendix B. ◀

We remark that all proofs above can be easily modified to handle a utility function with
range [0, 1] such that for every r ∈ R and x > 0 there are finitely many D with U(r, D) > x.

It is natural to wonder how does the expressive power of pure DP mechanisms compare to
the expressive power of time oblivious pure DP mechanisms, i.e. does a ε pure DP algorithm
has a time oblivious counterpart?

We now get to the main result of this section. We prove that any ε-pure DP mechanism
M has a time oblivious pure DP mechanism with almost the same security guarantee and
utility. Therefore this shows that pure DP mechanisms can be defended against timing attacks
with a small cost to their utility and and security guarantees.

▶ Theorem 3.6. Let M be any ε-pure DP mechanism with a discrete range R. For any
γ > 0, ε′ > ε there is a time oblivious ε′ pure DP mechanism Mobl such that ∥Mobl(D)−
M(D)∥T V < γ.

Proof. The idea is to use a similar construction to the approximate counting mechanism
described above by providing that each level in the tree will correspond to a different element
in R. Intuitively we will view the levels of the tree as an “abacus”, and the change of the
probability distributions of neighbouring datasets will correspond to change in the number
of beads that outputs in each layer.

We assume R = {ri}∞
i=1, and we start by picking s, the depth of the first input level

which we will decide later, and an integer t which corresponds to the number of output nodes
that must be in every level.

The element ri will be output at level s+i. For the mechanismMobl to have outputs close
to M(D) for any D we need that the probability to output at the level that corresponds to
ri is roughly pi = P[M(D) = ri]; let qi denote the probability to output ri in Mobl(D). We
pick qi ≈ t

2s+i + 2s−t
2s pi. Define N+

i = ⌈(2s+i − t2i)pi⌉+ t and N−
i = ⌈(2s+i − t2i)pi⌉+ t− 1

to be the number of output nodes in level s + i with the two options for estimating qi from
below and from above. Notice that by the choice of N+ and N− we know that

1 + 1
2s
≥

∑
2−(s+i)N+

i ≥ 1 ≥
∑

2−(s+i)N−
i ≥ 1− 1

2s
.
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Therefore, there exists a signing of the Ni (this is done by looking at the binary expansion
of the sum above) that gives a probability distribution. Notice that the following inequalities
hold

N+
i

2s+i
≥ P[Mobl(D) = ri] ≥

N−
i

2s+i
.

To bound the privacy guarantee ofMobl we need to bound N+
i (D)/N−

i (D′) for neighboring
database D, D′, where we abuse the notation to describe which Ni belongs to which database.
But since M is ε-pure DP we get that N+

i (D)/N−
i (D′) ≤ teε+1

t−1 . Therefore by picking t

large enough such that teε+1
t−1 ≤ eε′ we can ensure the DP guarantee and by picking s large

enough that implies t+1
2s < γ (The extra masking of t nodes at each output level + 1 for

rounding) the proof follows. ◀

▶ Remark 3.7. Notice that since ∥Mobl(D)−M(D)∥T V < γ it follows that for any utility
function (not necessarily sofic) U : C ×R → [0, 1], the utility of UMobl

(D) ≥ UM(D)− γ.
The proof above produces a tree for Mobl(D) each D ∈ C by picking the signing for

the Ni. We leave it as an open question to provide mechanisms M(D) for which the time
oblivious pure DP mechanism M(D) is efficiently computable from the input D.

By Theorem 3.6 we get that any pure DP mechanism with a discrete range has a time
oblivious pure DP with mechanisms with similar privacy guarantee. We saw in Proposition 3.5
that infinite guaranteed expected running time cannot be avoided for pure DP mechanism.
Approximate DP mechanisms do not suffer from this issues.

▷ Claim 3.8. There is a (0, δ) mechanism for approximate counting up to an additive factor
1
δ with expected number of used bits O

(
log 1

δ

)
.

Proof. Return the true count + a uniform number in [1, . . . , 1
δ ], with the uniform number

sampled by Algorithm 1. ◁

4 Future Work and Open Problems

Our investigation focused on the question of time oblivious sampling, and we used a combi-
natorial lens to give a full characterization of the distributions that can be sampled from in
a time oblivious way. These distributions have a finite support and rational weights. The
combinatorial perspective also helped us define an algorithm to sample from such distribu-
tions and show it is optimal in a strong sense of the randomness used. In certain situations
distributions are not given explicitly but are given in a rather succinct form. A notable
example is sampling via a Markov Chain process which have found numerous applications in
TCS. This lead us to ask:

▶ Question 1. Is it possible to efficiently convert a Markov Chain algorithm, which samples
from a finite and rational distribution, into a time oblivious algorithm with exactly the same
output distribution?

A natural consumer of our results is the area of differential privacy. Here we had both
bad news and good news: the bad news are for mechanisms that we require to produce useful
results (where the utility is some arbitrary but non trivial function of a points in the domain
and range). It is impossible to guarantee usefulness with high probability ((1− g(n) where
g is a function whose limit is 0). On the other hand we argued that it is possible to take
any mechanisms and make it time oblivious without changing the distribution by much (and
hence it utility) while preserving its differential privacy.
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▶ Question 2. One important question is whether the process of turning a DP mechanism
into a timing oblivious one can preserve the computational efficiency of the scheme.

In this paper we revisited the issues arising from timing attacks and specifically investigated
Time oblivious sampling, where the emphasis was an exactly producing a distribution. In a
companion paper we explore notions and methods for protecting keyed functions from timing
attacks [6].
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Karp and Luby [17, 18] tackle the other direction. They describe an efficient algorithm for
sampling a uniformly satisfying assignment to a DNF formula and use it for approximate
counting.

Let ϕ = C1 ∨ . . . ∨ Cm be a DNF formula with n variables, and let Si be the set of
satisfying assignments to term Ci. Let ℓi be the number of literals in Ci and note that
|Si| = 2n−ℓi . Further denote by S =

∑
i |Si| and by pi = |Si|

S , which is the relative weight of
Ci. The algorithm works as follows:
1. Sample a clause with probability proportional to its weight, meaning clause Ci is chosen

with probability pi.
2. Sample a random assignment π ∼ Si.
3. Let k be the number of clauses that are satisfied by π. With probability 1

k return π, else
restart the algorithm from the beginning.

In order to convert the algorithm to be time oblivious, for Step 1, notice that the running
time may leak information about the chosen clause. The LCM q of the distribution in step 1
is

∑
j |Sj |. We can therefore use Algorithm 1 with q =

∑
j |Sj | and conclude that Step 1 is

done in a time oblivious way. Note that ∀i : |Si| ≤ 2n and there are m clauses, therefore the
expected running time of this step is O(n + log m).

Next, the running time of Step 2 may leak information about the chosen assignment. If
the clause has ℓ literals, one can simply choose a uniform assignment to the n− ℓ remaining
literals. However, this does reveal what ℓ is, which yields information about what clause was
chosen in the case where the clauses are of different sizes. To hide ℓ, we toss n coins and
ignore the first ℓ, thus making Step 2 of the algorithm run in time independent of ℓ and the
chosen assignment, making it time oblivious. This gives us a running time of n always.

Finally, for Step 3, we need to toss a 1
k -biased coin. To make this step time oblivious

we need to hide the value of k, which is the number of satisfied clauses by the assignment
π chosen in Step 2. Since there are m clauses, we know that 1 ≤ k ≤ m. In order to hide
what k is, we need to take a value q which is divisible by all numbers from 1 to m, i.e.
q = LCM(1, . . . , m). With this q we can run Algorithm 1 and output heads on the first q

ℓ

output nodes, and tails on the rest. This makes the distribution of the running time of Step
3 independent of k, and overall Step 3 is time oblivious. The following is a standard number
theoretic estimate (which may be found in [23] p.37):

▶ Fact A.1. ln(LCM(1, 2, . . . , n)) = Θ(n).

By Lemma 2.17, we need O(log q) = log (LCM(1, . . . , m)) bits in expectation, instead
of O(log m). By Fact A.1 we conclude that the expected running time of Step 3 is O(m).
Notice that this is an exponential increase relative to the O(log m) bits that is needed to
generate a uniform element of {1, . . . , m}.

Finally the expected number of iterations of the algorithm before it produces an output
is at most m, since k is bounded above by m. Putting it all together we get:

▶ Proposition A.1. There exists an efficient time oblivious algorithm for uniform DNF
sampling running in expected time O(mn + m2)

While we showed that the running time of the algorithm above does not leak information
about what assignment was chosen, it does reveal information about the structure of the
formula. For example, the running time leaks information about the number of literals and
number of clauses in the formula. When the formula is public information this leakage does
not give any new information, but there might be cases where we wish to hide the structure
of the formula in addition to what assignment was chosen.

It is therefore natural to ask: is there an efficient time oblivious algorithm for DNF
sampling that hides the formula as well as the chosen assignment?
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A.1 An Exponential Lower Bound for Hiding the Formula

We formalise what it means to “hide the structure of the formula”:

▶ Definition A.2. Let x ∈ {0, 1}n be an input to a randomized algorithm A. We say A(x) is
an input hiding time oblivious generating algorithm if its running time distribution is
independent of both the output distribution and the input x.

The motivation for the definition above is to defend against timing attacks in situations
where a randomized algorithm runs on an input which we would like to be kept secret, as
well as the output. We show that DNF sampling cannot be done efficiently in an input
hiding time oblivious way, we will show a different problem which cannot be done efficiently,
and then get the result on DNF via a reduction.

Consider the problem: given x ∈ {1, . . . , 2n} sample a random element in {1, . . . , x}. This
task can be done efficiently using O(log x) random bits. However, in the input hiding setting
we wish to hide x in addition to the sample. This problem cannot be solved efficiently and
in a time oblivious way.

▶ Lemma A.3. The task of sampling a random element k ∈ {1, . . . , x} given x ∈ {1, . . . , 2n}
in an input hiding time oblivious way takes at least Ω(2n) random bits.

Proof. Let ℓm(x = i) be the probability that the algorithm outputs on level m given x = i.
In order for the sample to be time oblivious, we need the running time to be independent
both of the choice of x and k. This means that the running time distribution of the algorithm
should be the same for all values of x. In particular: for all m and i, ℓm(x = i) = ℓm(x = 1)

From the observation above we know that the algorithm must have the same output
levels, and same number of output nodes for all values of x. Let q be the number of nodes
in the first output level. We get that q must be divisible by all values from 1 to 2n, and
therefore q ≥ LCM(1, . . . , 2n). By Fact A.1 we need Θ(2n) to represent LCM(1, 2, . . . , 2n),
and the result follows. ◀

Applying the lemma, we get the following theorem on DNF sampling:

▶ Theorem A.4. Sampling a uniform satisfying assignment of a DNF formula in an input
hiding time oblivious way cannot be done efficiently and requires Ω(2n) bits in expectation.

Proof. Given x ∈ {1, . . . , 2n} notice that we can write a formula with the literals a0, . . . , an−1
consisting of at most n clauses and x satisfying assignments. We denote the formula
corresponding to x by ϕx. If x = 2k we set ϕx = a0 ∧ . . . ∧ a(n−1)−k−1 ∧ an−1−k. It is easy
to check that for x =

∑
i∈S 2i for some S ⊆ {0, 1, . . . , n− 1} one can set ϕx = ∨i∈Sϕ2i and

obtain in such a way for each x ∈ {1, ..., 2n} a formula with x satisfying assignments and at
most n clauses.

We know by Lemma A.3 that to sample a uniform element from {1, . . . , x} given x any
algorithm must use Ω(2n) bits in expectation in case we want to algorithm to be input hiding
time oblivious case and by Proposition A.1 there is a time oblivious algorithm that samples
from the formulas above using O(n2) random bits. Therefore we conclude that hiding the
formula cannot be done efficiently. ◀
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B Missing Proofs

B.1 Missing Proofs in Section 2

Proof of Lemma 2.6. If A is time oblivious then the output distribution O(A) is D when
conditioning on T (A) = k, therefore: pj

qj
= dj = ej

mk
where mk is the number of output

nodes in the kth level and ej is the sequences of length k on which A outputs j. We get that
ej = mk · pj

qj
and as each ej is a natural number we get that for all j: qj | mk and therefore

q | mk. This concludes Part 1.
For Part 2, notice that in the binary tree each output node in level l has 2k−l descendants

in level k that it makes unreachable, and also that an output node can not have another
output node as a descendent, therefore tk =

∑k
i=0 2k−imi. By the first part each mi is

divisible by q and therefore tk is a multiple of q. ◀

Proof of Corollary 2.7. If q = 2k then we can clearly output all elements in level k since D
is rational with finite support. For the other direction, we may assume that the algorithm
reads exactly t bits from R. This also implies that D is rational with finite support. By
Lemma 2.6 q |2t and therefore q = 2k for some k. ◀

Proof of Lemma 2.8. For Part 1, observe that the statement is true if q = 2m for some m.
The test 2n ≥ q and the test (2n mod 2q) ≥ q are exactly the same until the first output
level. Since q is a power of 2 then all the nodes in level m will be output nodes and there
will not be any more output nodes.

For q that is not a power of 2 we prove the claim by induction on the level. The base
case is level 1. Indeed q is not a power of 2 which implies that q > 2 and as level 1 has 2
nodes, both nodes are reachable.

Assume the statement is true for all levels up to k. We now show the statement is true
for k + 1. By the induction hypothesis let r = 2k mod 2q be the number of reachable nodes
in level k. if r < q we know that k is not an output level. In this case each reachable node
a0 . . . ak−1 becomes two reachable nodes in level k + 1, since each node has two children:
a0 . . . ak−10 and a0 . . . ak−11. From this we get that the number of reachable nodes in level
k + 1 is 2r, and the statement holds since:

2k+1 ≡ 2 · 2k ≡ 2r (mod 2q).

If q < r < 2q then k is an output level. Write r = q + s for some 1 ≤ s < q, and observe
that q nodes will be output nodes in that level. This means that the number of reachable
nodes in level k + 1 will be 2s and indeed:

2k+1 ≡ 2 · 2k ≡ 2r ≡ 2(q + s) ≡ 2q + 2s ≡ 2s (mod 2q).

This concludes part 1 of Lemma.
For Part 2 notice that at each output level the output nodes are the q leftmost reachable

nodes, and we know there are exactly 2n mod 2q reachable nodes from Part 1 the binary
sequences of {⌊ 2n

2q ⌋ · 2q, ⌊ 2n

2q ⌋ · 2q + 1, .., 2n − 1} correspond to the reachable nodes. Part 2
now follows by taking mod2q on the sequence above.

Finally, by Part 1 the number of reachable nodes in each level is between 0 and 2q − 1,
and in addition, if there are at least q reachable nodes, then q nodes produce an output and
therefore 2n − tn < q. ◀
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Proof of Observation 2.14. Recall that Sk =
∑k

i=1 ℓi(A) is the probability that the algo-
rithm produced an output up until level and including k. By Part 2 of Lemma 2.6 we
get:

Sk =
k∑

i=0
ℓi(A) =

k∑
i=0

2−imi = 1
2k

k∑
i=0

2k−imi = tk

2k
. ◀

Proof of Lemma 2.17. For the lower bound: the first output level k satisfies 2k ≥ q and
T (A) ≥ k since it is the first output level. Taking expectation it follows that E[T (A)] ≥
⌈log2 q⌉.

For the upper bound: Recall that by construction of Algorithm 1 the algorithm outputs
on nodes from left to right, and at each level there are less than q nodes which are reachable
but not output nodes. From this we get that after the first time the algorithm reads a 0, it
will produce an output after at most log q more steps. Observe that the probability to read
the first 0 in the ith level is a Geo

( 1
2
)

R.V. and therefore we get:

E[T (A)] ≤
∞∑

i=1

1
2i

(i + log q) = log q
∞∑

i=1

1
2i

+
∞∑

i=1

i

2i
= log q + 2. ◀

Proof of Theorem 2.15. Let D be a distribution and A be Algorithm 1 for D. Assume
towards a contradiction that A is not optimal. This means that there exists a time oblivious
algorithm A′ which generates D and a k such that Sk(A′) > Sk(A). By Observation 2.14
Sk(A′) = t′

k

2k and Sk(A) = tk

2k . From the assumption about A′ we get that t′
k > tk. From

Lemma 2.6 we know that t′
k and tk are both multiples of q which means t′

k ≥ tk + q. From
Lemma 2.8 we know that 2k− tk < q which means that tk > 2k− q. Taking both inequalities
into account we get that t′

k > 2k. Recall that t′
k is the number of unreachable or output

nodes of algorithm A′ at level k, and therefore cannot be bigger than 2k. Thus we get a
contradiction and conclude A is optimal. ◀

Proof of Claim 2.20. We assume that supp(D) is [n] and define pi = P[X = i]. Let k be a
parameter of the number of coins that the sampler uses before returning an answer, and
assume k > H + c for large enough c that will be picked later. Define p+

i = ⌈pi2k⌉
2k and

p−
i = ⌊pi2k⌋

2k .
The sampler A will have P[O(A) = i] is either p+

i or p−
i and will always output after

reading all k bits. Therefore it will satisfy that P[T (A) ∈ {k}] = 1 which will make the
conditioning on the time in Definition 2.19 redundant. It is possible to always “sign” p±

i (i.e.
pick between p+

i or p−
i ) to obtain a distribution (the sum of the probabilities is 1). We will

show that for any such signing algorithm A is an approximate time oblivious sampler of
D. Notice that since k > H + c we have that 2k · pi = ri + ti for some integer ri > 2 and
0 ≤ ti < 1:

p+
i

p−
i

= ⌈pi2k⌉
⌊pi2k⌋

≤ ri + 1
ri − 1 ≤ 1 + 2

ri − 1 .

If 2
ri−1 < ε, then we could conclude with the inequality 1 + x ≤ ex that p+

i

p−
i

≤ eε, and

therefore p+
i

pi
< eε as well as pi

p−
i

≤ eε since we know p+
i ≥ pi ≥ p−

i .
Therefore it is enough to find k for which 2

ri−1 < ε. Notice that by the definition of H

we have for k = H + c that 2k · pi ≥ 2c Therefore c = log 1
ε + 4 suffices. ◁
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Proof of Claim 2.21. We use the notation pi := P[X = i] for X ∼ D. We also continue with
the notation defined in Claim 2.20, p+

i , p−
i with k = log n+log

( 1
δ

)
. Clearly p+

i −p−
i = 1

2k ≤ δ
n .

Let D′ be a distribution that correspond to some signing p±
i and we will again take A that

outputs according to D after k = log n + log 1
δ coin tosses. For S ⊆ [n] :

P[X ∈ S]− δ · |S|
n

=
∑
i∈S

(
pi −

δ

n

)
≤

∑
i∈S

p−
i

≤ Pr[O(A) ∈ S]

≤
∑
i∈S

p+
i ≤

∑
i∈S

(
pi + δ

n

)
= P[X ∈ S] + δ · |S|

n
.

Therefore since |S| ≤ n

Pr[O(A) ∈ S]− δ ≤ P[X ∈ S] ≤ Pr[O(A) ∈ S] + δ. ◀

B.2 Missing Proofs in Section 3
Proof of Claim 3.4. Let D be some database and let k be the index of the first output level of
M(D). By Lemma 3.2 we know that there are r1, . . . , rℓ ∈ R that appear in the output level
of all possible databases. Since U is sofic and there are infinitely many possible databases
we can find a database D′ such that U(D′, r1) = 0 and therefor GU(D) < 1 and thus the
guaranteed utility of M satisfies U(M) < 1. ◁

Proof of Proposition 3.5. Assume that GT (M) < m. Let D be any database and τ > 0 and
let r1, . . . ., rℓ be the elements of R that D outputs in levels 1, . . . , τm. We know that there is a
database D′ that satisfies U(D′, ri) = 0 but by Markov’s inequality P[T (M(D′)) > τm] < 1

τ

and therefore we get that GU(M) ≤ U(D′) ≤ 1
τ . Since τ > 0 is arbitrary we conclude that

GU(M) = 0. ◀
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