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Abstract
There have been many advances in molecular computation that offer benefits such as targeted drug
delivery, nanoscale mapping, and improved classification of nanoscale organisms. This power led to
recent work exploring privacy in the computation, specifically, covert computation in self-assembling
circuits. Here, we prove several important results related to the concept of a hidden computation in
the most well-known model of self-assembly, the Abstract Tile-Assembly Model (aTAM). We show
that in 2D, surprisingly, the model is capable of covert computation, but only with an exponential-
sized assembly. We also show that the model is capable of covert computation with polynomial-sized
assemblies with only one step in the third dimension (just-barely 3D). Finally, we investigate types
of functions that can be covertly computed as members of P/Poly.
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1 Introduction

With the ability to manufacture nanoscale structures and to use DNA as building blocks for
structures [28] or for data storage [10], there has been a great increase in the need to process
and compute information at the same level. Thus, the study of self-assembling computation
has been an important and active area of research over the last two decades.

Designing self-assembling systems that compute functions is an active and well-studied
area of computational geometry and biology [4,19]. This ability to craft monomers capable of
placing themselves – especially when doing precision construction and computation at scales
where conventional tools are incapable of operating, e.g., the nanoscale – has tremendous
power. One of the few downsides to self-assembly computation is that the entire history of
the computation is visible. In certain cases, this may be undesirable for privacy or security
reasons, which we motivate below. Thus, we build on recent work [6,7,9] to explore covert
computation, where we build Tile Assembly Computers (TACs) designed with the goal of
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12:2 Covert Computation in the Abstract Tile-Assembly Model

obtaining the output of computation while obscuring the inputs and computational history.
We do this by proving that covert computation is possible even in one of the simplest standard
models of self-assembly: the Abstract Tile-Assembly Model (aTAM) [29].

Motivation. The development of covert computation as a model and method of designing
self-assembling systems was driven by several areas of concern in cryptography, biomedical
engineering, privacy, and might even help protect intellectual property in systems that use
“products of nature,” such as DNA, as they cannot be patented in the United States as of
2013 [14]. Covert computation has also emerged as a powerful complexity tool, being used to
show the coNP-completeness of the Unique Assembly Verification problem in the negative
glue aTAM [9], and the PSPACE-completeness of the Unique Assembly Verification problem
in the Staged Assembly Model [6]. As this paper focuses on systems without detachment,
there might also be important applications in implantable systems where even the possibility
of displacement from free-floating DNA could cause unknown side effects or destabilization
of the assembly [23].

1.1 Previous Work

The Abstract Tile-Assembly Model (aTAM) was first introduced in [29] and inherited the
ability to perform Turing computation from Wang tiles. Since then, investigation into the
model has led in many directions, such as Intrinsic Universality [18, 22], efficient assembly of
shapes [25], and parallel computation [5, 24]. Many generalizations have also appeared, such
as allowing for RNA tiles that can be deleted [1,15], multiple stages of growth [6,12,16], and
even negative glues [9, 17]. The aTAM is powerful because not only can the tile set store
information, but work has also gone into using the seed [3], or even the temperature [11, 26],
for making systems more complex.

Tile Assembly Computers were defined in [5, 24], and Covert Computation, as defined in
the field of self-assembly, was first introduced in 2019 [9] for negative growth-only aTAM. In
negative variations of tile self-assembly models, tiles are capable of not only attachment to
but also detachment from an assembly if the remaining assembly is still stable. In negative
growth-only aTAM, tiles are never allowed to detach even though there may be glues providing
a repellent force, and the system must be designed so that detachment does not occur. This
paper introduced the covert construction framework to answer an open complexity problem
for Unique Assembly Verification (UAV) with negative growth-only glues in the aTAM model,
showing it to be coNP-complete. Notably, without negative glues, the UAV problem is
solvable in polynomial time [2].

Covert computation has been explored in two other models of self-assembly as well:
Staged Self-Assembly [6] and Tile Automata [7]. The staged self-assembly model, one of the
most powerful passive tile self-assembly models, abstracts the process of scientists mixing test
tubes together by allowing multiple self-assembly processes occurring in separate “bins” that
may be combined in subsequent “stages”. The authors show that 3-stages suffice for covert
computation and used the techniques to show that the UAV problem directly relates the
number of stages to a specific level of the polynomial hierarchy. Thus, with no restrictions on
the number of stages, UAV in the staged model is PSPACE-complete. Covert Computation
in the active self-assembly model of Tile Automata was shown to be rather simple as tiles
in the model are capable of changing states (instead of having static glues), easily erasing
computational history.
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Table 1 Known Covert Circuits for n-bit function f(x). Let MCS be the minimum circuit size
that computes f(x). Input Size is the size of the input assembly. Output Size is the size of the
output template, where we use k to describe the number of output bits. ∗ currently only works for
binary functions.

Class Model Size Of Ref
Input Tile Set Output Assembly

Bool. Circuits NegGO O(n) O(MCS) O(k) O(MCS) [9]
Bool. Circuits 3D O(n) O(MCS) O(k) O(MCS) Thm. 1
Rev. Circuits∗ 2D O(n + MSC) O(MCS) O(1) O(2n) Thm. 2

1.2 Our Contributions
In this work, we further explore the problem of designing covert tile assembly computers
(TACs) in the aTAM, focusing on TACs that have a polynomial size description. We provide
two new covert computers in the aTAM with only positive glue strengths of {1, 2} in Sections
3 and 4. The 3D construction uses a similar technique to the circuits in [9] by implementing
a NAND gate using dual rail logic and backfilling. We refer to this covert TAC as having
a strict polynomial size since the systems defined by the TAC all produce assemblies of
polynomial size. This only uses a single-step into the third dimension, which is occasionally
referred to as just-barely 3D [20,21].

The covert TAC in Section 4 is in the standard 2D aTAM. The TAC is of polynomial size,
but produces an exponential-size terminal assembly. This works by computing the function
non-covertly using Toffoli gates, getting the output, reversing the computation to recover
the input, then building the next and previous circuit assemblies until all possible circuits
are built. We utilize the Toffoli gates’ reversibility property to have a symmetrical circuit
assembly that displays its input on both sides that we can increment or decrement (the input
used) to start the next computation.

In Section 5 we explore the classes of decision problems solvable by polynomial size covert
TACs. Table 1 gives an overview of known covert circuits for functions based on the input
size. Since covert has been defined as a non-uniform model, meaning different input sizes
have different tile sets, we look at non-uniform complexity classes as well. Namely, the class
P/poly, the class of problems solvable by polynomial size circuits. We prove that if a problem
is solvable by a 3D covert TAC, then it is in P/poly. This, taken with the result in Section 3,
shows an equivalence between these two models of computation.

2 Definitions

We begin with an overview of the Abstract Tile-Assembly Model, then follow with a definition
of Tile Assembly Computers and covert computation.

2.1 Abstract Tile Assembly Model
At a high level, the Abstract Tile-Assembly Model (aTAM) uses a set of tiles capable of
sticking together to construct shapes. These tiles are typically squares (2D) or cubes (3D)
with glues on each side where they may attach to one another. A glue is labeled to indicate
its type, governing what other tiles it may bond with and the strength of the bond. A tile
with all of its labels is a tile type. A tile set contains all the tile types of the system. A single
tile may attach at a location if the combined strength of the matching glues is greater than

SAND 2023
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or equal to the temperature τ . An assembly is a shape made up of one or more combined
tiles. Construction is started around a designated seed assembly S. Any assembly capable
of being made from the seed is called a producible assembly. An assembly is terminal if no
more tiles can attach. A terminal assembly is said to be uniquely produced if it is the only
terminal assembly that can be made by a tile system. A tile system is formally represented
as an ordered triplet Γ = (T, s, τ) of the tile set, seed assembly, and temperature parameter,
respectively.

2.1.1 aTAM Formal Definitions
Tiles. Let Π be an alphabet of symbols called the glue types. A tile is a finite edge polygon
with some finite subset of border points, each assigned a glue type from Π. Each glue type
g ∈ Π also has some integer strength str(g). Here, we consider unit square tiles of the same
orientation with at most one glue type per face, and the location to be the center of the tile
located at integer coordinates.

Assemblies. An assembly A is a finite set of tiles whose interiors do not overlap. If each
tile in A is a translation of some tile in a set of tiles T , we say that A is an assembly over tile
set T . For a given assembly A, define the bond graph GA to be the weighted graph in which
each element of A is a vertex, and the weight of an edge between two tiles is the strength of
the overlapping matching glue points between the two tiles. Only overlapping glues of the
same type contribute a non-zero weight, whereas overlapping, non-equal glues contribute
zero weight to the bond graph. The property that only equal glue types interact with each
other is referred to as the diagonal glue function property, and is perhaps more feasible than
more general glue functions for experimental implementation (see [13] for the theoretical
impact of relaxing this constraint). An assembly A is said to be τ -stable for an integer τ if
the min-cut of GA has weight at least τ .

Tile Attachment. Given a tile t, an integer τ , and an assembly A, we say that t may attach
to A at temperature τ to form A′ if there exists a translation t′ of t such that A′ = A ∪ {t′},
and the sum of newly bonded glues between t′ and A meets or exceeds τ . For a tile set T , we
use notation A →T,τ A′ to denote there exists some t ∈ T that may attach to A to form A′

at temperature τ . When T and τ are implied, we simply say A → A′. Further, we say that
A →∗ A′ if either A = A′, or there exists a finite sequence of assemblies ⟨A1 . . . Ak⟩ such
that A → A1 → . . . → Ak → A′.

Tile Systems. A tile system Γ = (T, S, τ) is an ordered triplet consisting of a set of tiles T

called the system’s tile set, a τ -stable assembly S called the system’s seed assembly, and a
positive integer τ referred to as the system’s temperature. A tile system Γ = (T, S, τ) has
an associated set of producible assemblies, PRODΓ, which define what assemblies can grow
from the initial seed S by any sequence of temperature τ tile attachments from T . Formally,
S ∈ PRODΓ is a base case producible assembly. Further, for every A ∈ PRODΓ, if A →T,τ A′,
then A′ ∈ PRODΓ. That is, assembly S is producible, and for every producible assembly A, if
A can grow into A′, then A′ is also producible.

We further denote a producible assembly A to be terminal if A has no attachable tile
from T at temperature τ . We say a system Γ = (T, S, τ) uniquely produces an assembly A if
all producible assemblies can grow into A through some sequence of tile attachments. More
formally, Γ uniquely produces an assembly A ∈ PRODΓ if for every A′ ∈ PRODΓ it is the case
that A′ →∗ A. Systems that uniquely produce one assembly are said to be deterministic.
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2.2 Covert Computation
Here, we provide formal definitions for computing a function with a tile system and the
further requirements for the covert computation of a function. Our formulation of computing
functions is that used in [9], which is a modified version of the definition provided in [24] to
allow for each bit to be represented by a subassembly potentially larger than a single tile.

Tile Assembly Computers (TAC). Informally, a Tile Assembly Computer (TAC) for a
function f consists of a set of tiles, along with a format for both input and output. The
input format is a specification for how to build an input seed to the system that encodes the
desired input bit-string for function f . We require that each bit of the input be mapped to
one of two assemblies for the respective bit position: a sub-assembly representing “0” or a
sub-assembly representing “1”. The input seed for the entire string is the union of all these
sub-assemblies. This seed, along with the tile set of the TAC, forms a tile system. The
output of the computation is the final terminal assembly this system builds. To interpret
what bit-string is represented by the output, a second output format specifies a pair of
sub-assemblies for each bit. The bit-string represented by the union of these subassemblies
within the constructed assembly is the output of the system.

For a TAC to covertly compute f , the TAC must compute f and produce a unique
assembly for each possible output of f . We note that our formulation for providing input and
interpreting output is quite rigid and may prohibit more exotic forms of computation. Further,
we caution that any formulation must take care to prevent “cheating” that could allow the
output of a function to be partially or completely encoded within the input. To prevent
this, a type of uniformity constraint, akin to what is considered in circuit complexity [27],
should be enforced. We now provide the formal definitions of function computing and covert
computation.

Input/Output Templates. An n-bit input/output template over tile set T is a sequence
of ordered pairs of assemblies over T : A = (A0,0, A0,1), . . . , (An−1,0, An−1,1). For a given
n-bit string b = b0, . . . , bn−1 and n-bit input/output template A, the representation of b with
respect to A is the assembly A(b) =

⋃
i Ai,bi

. A template is valid for a temperature τ if
this union never contains overlaps for any choice of b and is always τ -stable. An assembly
B ⊇ A(b), which contains A(b) as a subassembly, is said to represent b as long as A(d) ⊈ B

for any d ̸= b. We refer to the size of a template as the size of the largest assembly defined
by the template.

Function Computing Problem. A tile assembly computer (TAC) is an ordered quadruple
ℑ = (T, I, O, τ) where T is a tile set, I is an n-bit input template, and O is a k-bit output
template. A TAC is said to compute function f : Zn

2 → Zk
2 if for any b ∈ Zn

2 and c ∈ Zk
2 such

that f(b) = c, then the tile system Γℑ,b = (T, I(b), τ) uniquely assembles a set of assemblies
which all represent c with respect to template O.

Covert Computation. A TAC covertly computes a function f(b) = c if 1) it computes f ,
and 2) for each c, there exists a unique assembly Ac such that for all b, where f(b) = c, the
system Γℑ,b = (T, I(b), τ) uniquely produces Ac. In other words, Ac is determined by c, and
every b where f(b) = c has the exact same final assembly.

Polynomial-Sized Tile Assembly Computers. We say a TAC is polynomial size if the input
template, tile set, and output template are all polynomial in n. However, this requirement
still allows the producible assemblies to be exponentially larger. We say a TAC is strictly
polynomial size if the produced assemblies are also polynomial in size.

SAND 2023
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0

(a) Bit Assembly
Template 0.

1

(b) Bit Assembly
Template 1.

1

0

(c) Bit Assembly
Output Template.

1
0

(d) Bit Assembly Output
Template (isometric view).

Figure 1 Input assemblies and their respective input templates. The blue squares represent the
bit set to zero, and the orange squares represent a bit set to one. Grey glues are strength-1, black
glues are strength-2.

3 3-Dimensional Covert Circuits

In this section, we show how to perform covert computation in the aTAM using 3 dimensions.
The computation behaves similarly to the covert circuit construction in [9] by building NAND
gates and FANOUTs using dual rail logic. We start with showing a NOT that switches which
wire is “on”, then extending to a NAND by utilizing cooperative binding.

The main difference between the two constructions is when backfilling occurs, which is
the process of filling in the unused dual rail line once that line is no longer needed. Here, we
do not backfill as we go, rather, we fill in the assembly once the computation is complete.

3.1 Input Assemblies

Our input assembly consists of n 1 × 6 columns with two of four tiles attached on the right
(Figures 1a and 1b). The top two tiles will be included when the input is 1, and the bottom
two tiles if the input is 0. These tiles have enough attachment strength to be stable when
both are present, however, since the tiles only have strength 1 bonds, they may not attach
alone. This initially prevents the growth of the other bit, which is not placed until the
computation is complete, further elaboration of this process is described in section 3.5.

3.2 Wires and NOT Gates

Bit information is represented and transferred using a wire. A wire is constructed using two
rows of tiles (Figure 2a), each representing a binary value of 0 or 1. This dual rail system
initially grows only one of the rows from the input assembly based off the input and then
builds into the gates. Before the circuit finishes growing, only one row of each wire will be
constructed, and at the end, the other wire row will be built.

Gates such as the NOT grow off the wires. An example of a NOT gate can be seen in
Figure 2b, notice how we utilize the third dimension to cross the wires over each other. This
gate swaps the position of the rows of tiles; a row that represents a 0 will now be in the upper
row and represent a 1. At the end of each gate is a diode gadget that was used in previous
work [9]. The gadget is a 2 × 2 subassembly that grows only in one direction. If the first tile
is placed, the whole thing will be first. If the last tile is placed, nothing else grows since it
connects using two strength 1 glues. This prevents errors caused by “backward” growth.
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0

1

(a) Dual Rail Logic.

0

1

(b) NOT Gate.

Figure 2 (a) We use dual rail gates. The input glue of 1 grows the orange tiles and 0 grows the
blue. (b) A NOT gate is implemented by crossing the wires over each other.

0

1

0

1

0

1

Figure 3 Full NAND Gate construction in the full circuit. The tiles in orange represent tiles that
will be built from an input of 1 input, while the blue tiles come from an input of 0.

3.3 NAND Gates
We construct a NAND gate using the NOT gate and cooperative binding. The full NAND
gate can be seen in Figure 3. If either input to a NAND gate is 0, the output is always 1.
This can be seen in Figures 4a, 4b, and 4c. If any blue tile is placed, the 1 output of the
gate will be built. If both inputs are 1, the 0 output can be constructed using cooperative
binding.

One thing to note in the case of one output being 0 and the other being 1 is that the
blue tiles will be placed along the other wire. However, this will not cause any issues since it
can only build back up to the output of the previous gate due to the diode gadget.

3.4 Fan Out and Crossover
Two other gadgets that assist in creating circuits are the fan out and crossover gadgets. The
fan out (Figure 5a) splits a wire in order to copy the value to two gates. It does this by
having each tile path split, and then use the third dimension to swap the positions.

The crossover gadget (Figure 5c) allows for the creation of non-planar circuits. Using the
third dimension, a wire can go over another wire in order to reach its input. While such 3D
crossovers simplify constructions greatly, we note that such crossovers are not necessarily
needed, as planar circuits can simulate such crossovers using XOR gates [9].

3.5 Backfilling and Target Assemblies
In order to perform covert computation, there must exist a unique assembly for each output.
The gray tile at the end of the circuit in Figure 6a is one of two flag tiles that denotes the
output of the circuit. Once this tile is placed, a row of tiles is built back towards the input

SAND 2023
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0

0

1

(a) Input 00.

0

1

1

(b) Input 01.

1

0

1

(c) Input 10.

1

1

0

(d) Input 11.

Figure 4 Growth of possible inputs to a NAND gate. The gate will stay like this after computing,
before the history is hidden.

0

1

0

1

0

1

(a) Fan Out Gadget.

1
0

1
0

1
0

(b) Fan Out Gadget (Isometric).

0

1

0

1

0

1

0

1

(c) Crossover Gadget.

1
0

1
0

1

1
0

0

(d) Crossover Gadget (Isometric).

Figure 5 (a) A fan out gadget. (b) Isometric view of the fan out gadget. (c) While a crossover is
not required for universal computation, we can easily implement one by using the 3rd dimension.
(d) Isometric view of the crossover gadget.

(Figure 6b). Once the input assembly is reached, the tiles above the input are placed, thus
allowing for the input assemblies to be filled in. This causes the entire circuit to be filled out,
which hides the original input and computation history.

▶ Theorem 1. For any n-bit function f that is computable by a Boolean circuit, there exists
a Tile Assembly Computer ℑ which covertly computes f in the 3D aTAM with only positive
glues. Further, ℑ is strictly polynomial in n.

Proof. We can construct the tile set Tc from the circuit c that computes f . Arrange the
gates and wires on the square grid using O(n2) space, and scale up each gate and wire by a
constant factor. Wires are scaled up by a factor of 2 to account for the dual rail logic wires.
The gates are scaled up by a factor depending on which gate it is, however, all the gates we
present are only a constant size. This creates assembly Ac,F ull.

We now show that ℑ computes f . Consider an n-bit input x to f , using the input
template create seed assembly Ax. Each gate will grow from Ax, computing the circuit on
each input. Since backfilling does not occur until the circuit finishes computing, we guarantee
only the correct outputs grow from the final gate. The circuit is computed covertly since the
output then grows back to the start of the circuit and places the unused inputs. ◀
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(a) Computed Circuit. (b) Output Assembly.

Figure 6 Example structures of the computation circuit of an XOR using NOTs and NANDs.
The circuit before backfilling is on the left, and the final output is shown on the right side. (a) A
circuit once the output is computed. (b) Once the output grows backward, the other input bits are
placed.

The 3rd dimension is vital in this construction to allow signals to cross over for the NOT
gate. Notice the part of the NAND gadget that is computing the AND gate and how the
diode uses cooperative binding. Additionally, it would not be possible to build the full input
gadget to allow the circuit to backfill. The positions that must be filled will be blocked
on one side by the input assembly and on the other by wire. The backfilling here is used
differently than in [8] since there each gate would backfill its input wires. There the negative
glues were used to allow the tiles to cross over signals to build a NOT gate.

4 Exponential Assembly Covert Computer in 2D

In this section, we show that covert computation is possible in 2D in the standard aTAM,
where the input can be described in polynomial size, yet the final terminal assembly is
exponential in size. Thus, while we are able to achieve strictly polynomial-sized covert
computation in 3D, we achieve (non-strict) polynomial-sized covert computation in 2D.

This construction is possible by first computing the function using reversible Toffoli gates,
and then replicating and computing the circuit for all possible inputs. Once the output
of the original input is placed, the Toffoli gate reverses its computation to build a mirror
of the circuit with the input replicated on both the right and left. The output builds an
assembly arm used to place tiles on either side of the assembly to increment and decrement
the mirrored inputs based on the binary value of the original input, thus seeding a new input
for exponential growth in each direction. Thus, for a 4-bit input, it builds the circuit for all
24 possible inputs after it builds the output template.

4.1 Toffoli Gate

The Toffoli gate is a 3-bit reversible universal logic gate (Figure 7a), we denote the inputs
A, B, C, and the outputs A′, B′, C ′. The first two input and output bits map to each other:
A = A′ and B = B′. The third output flips the C bit if both A and B are 1. Logically
expressed, this is C ⊗ (A ∧ B) = C ′.

We can express an n-bit d-depth reversible circuit as a n×d grid where each row represents
a wire, and each column is a layer of gates and wires. Each gate can be represented by tiles
computing the elementary 2-bit AND and XOR and implementing a fan out, as shown in
Figure 7b.

SAND 2023
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(a)

1

1

1

1

1

0

A

B

C

AND

A'

B'

C'

XOR

(b)

Figure 7 (a) Logical representation of Toffoli gate. (b) A Toffoli gate on a grid can be represented
by the three vertical “cells” of elementary logic gates.

0

0

0

0

0

0

1

1

1

1

1

0

Figure 8 All possible computations of a single Toffoli gate. 1 (orange), 0 (blue). 111 → 110, 110 →
111, 101 → 101, 100 → 100, Row 2: 000 → 000, 001 → 001, 010 → 010, and 011 → 011.

4.2 Covert Circuit
The input template is a specific tile for each bit. Given an n-bit string, we create a n × 1 bit
assembly with stability-granting left and bottom circuit construction scaffolds, as shown in
Figure 9c.

The circuit assembly is a n × (d + 2) rectangle. Each Toffoli gate is a 3 × 1 subassembly.
Three possible computations of a single Toffoli gate are shown in Figure 8. Typically, these
gates must be reversible, meaning the circuit may grow from the east or west but produce
the same assembly We note that the gate itself is not covert, and the “covertness” comes
from the full construction.

An example Toffoli circuit is shown in Figure 9a along with the logical representation in
Figure 9b. A constructed circuit assembly in one direction can be seen in Figure 9d.

4.3 Increment/Decrement Input to Next Circuit Logic
After completion of a circuit, three columns of tiles are built: mark for increment (left),
copy or flip (center), and mark for decrement (right). The order of growth of these columns
depends on the starting direction. Growing from the left to increment input to the next
circuit or from the right to decrement it. Cooperatively with those columns, below the output
arm begins its extension to transmit the outcome, accept or reject, of the original circuit.
This arm extension continues to the center circuit output outcome tile location. From here,
the circuit construction scaffold, previously provided in the input template, may loop back to
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(a) Toffoli Circuit.

(b) AND/XOR Diagram.
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(c) Toffoli Input Assembly.
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Figure 9 (a) Example 5-bit Toffoli Circuit. (b) The Toffoli circuit represented with AND and
XOR gates. (c) Example Input Assembly. For each bit (1 or 0), we place the scaffold (grey or
white) and input bit tile (orange or blue). The bottom is a row of circuit construction scaffold
tiles (maroon). (d) The Toffoli Circuit Assembly built in one direction. The (green) tile below the
output/junk column represents the (positive) output and will allow the output control row to place.

the edge of the circuit so the new input scaffold and bits may place as illustrated in Figure 11.
The circuit growth continues normally from that point forward, with the exception of the
output tile placement.

4.4 Output Assembly
Once the output is built, the rows below have d tiles attached in the east and west directions
that encode the output. Through cooperative attachment, tiles are placed to allow the strings
to increment/decrement, as described above. The final terminal assembly contains every
possible computation.

▶ Theorem 2. For all functions f(x) that are computable by a n-bit reversible circuit R,
there exists a polynomial tile assembly computer ℑ = (T, I, O, 2) that covertly computes f(x)
and has an output assembly of size O(2n).

Proof. If there exists a n-bit reversible circuit R that computes f(x), we construct tile
assembly computer ℑ = (T, I, O, 2) as follows. From the circuit R that computes f , we
design a circuit R′ to compute f with Toffoli gates as described in section 4.2. Using R′ and
the developed input increment/decrement logic for circuit replication, we construct a tile
set Tc.
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Figure 10 An example of a symmetrical circuit that has built both sides and is placing begin
decrement and increment logic tiles.
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Figure 11 An example of a new circuit created by incrementing the output from a previously
built assembly.

We create the input assembly I by converting the n-bit input string x to tiles Li in
scaffold left (figure 9c) and associated input, and a bottom row of tiles called the left circuit
construction scaffold.

From here, the left assembly will grow into figure 9d, once the output is determined to be
“accept” or “reject”, the output indicator tile is placed, and the original output indicator arms
grow to allow the Right Assembly the ability to grow as well as place begin decrement and
increment logic tiles on the bottom left and right sides of the completed assembly respectively,
as seen in figure 10.

All n-bit computations of f(y) for y less than original input x will be computed to the left
of the original assembly, and all xn > x after being decremented and incremented using the
reversible and symmetric logic in yellow from figure 11. Growth is halted by the INC/DEC
logic at overflow in either direction.

The ability to grow further left/right circuit construction scaffolds is dependent on the
output arms from the original output indicator arms growing to the center of the circuit about
to begin construction where the output accept/reject indicator tile would place, preserving
the output status for every circuit built in the TAC.
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PCT2D

P/poly = SPCT3D

SPCT2D

Figure 12 Diagram showing important classes defined in this section and their relation to P/poly.
Note that none of these containments are known to be proper.

As there are only two possible assemblies that can be built, accept all or reject all, the
Tile Assembly Computer is polynomial size in description and exponential in output size. ◀

We have shown that if the output assembly is allowed to be exponential in size, that
covert computation is possible in the aTAM, even in two dimensions. However, in practice,
this is not usually a plausible solution. Given that Unique Assembly Verification is in P [2],
it is unlikely that covert computation is possible with a strictly polynomial-size TAC.

▶ Conjecture 3. There does not exist a strictly polynomial-size Tile Assembly Computer in
the 2D Abstract Tile-Assembly Model.

5 Polynomial-Sized Covert Circuits

In this section, we define and investigate complexity classes based on decision problems
computable by polynomial-sized covert computers. We start by introducing the class P/poly
and defining three classes of covertly computable problems: the class of problems covertly
computable by a strictly polynomial 3D system (SPCT3D), the class of problems computable
by a strictly polynomial 2D system (SPCT2D), and the class of problems computable by
a (non-strict) polynomial 2D system (PCT2D). We show how these classes relate to each
other, including the result that P/poly is equal to SPCT3D. Our results in this section are
summarized in Figure 12.

5.1 Complexity Classes
The class P/poly is a well-studied complexity class defined as the class of problems solvable
by a polynomial-sized circuit. One note about this class is it puts no requirement on the
circuit other than that it exists. This has an equivalent definition as the problems solvable
by a polynomial-time Turing machine with a polynomial advice string. We can think of this
as the Turing machine being given a description of the circuit and evaluating it. Here, the
advice string or circuit must be identical for all inputs of length n. 1

▶ Definition 4 (P/poly). The class of problems solvable by a polynomial-sized Boolean
circuit. Alternatively, defined as the problems solvable by a polynomial-time Turing machine
M < x, a|x| >, where x is the input and a|x| is an advice string that is based only on the
length of x. That is, if two inputs x, y have the same size |x| = |y|, then they must use the
same advice string.

1 Under this definition, every unary language is in this class, including UHALT.
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We define the following three complexity classes to categorize the functions that are
computable by polynomial-size covert TACs.

▶ Definition 5 (SPCT3D). The class of problems solvable by a strict polynomial sized covert
tile assembly computer in the 3D Abstract Tile-Assembly Model.

Formally, a language L is in SPCT3D if there exists a sequence of covert TACs C =
{C1, C2, ...} such that the ith TAC, Ci, is strictly polynomial in i and if it correctly computes
all x ∈ L where |x| = i.

▶ Definition 6 (SPCT2D). The class of problems solvable by a strict polynomial sized covert
tile assembly computer in the 2D Abstract Tile-Assembly Model.

▶ Definition 7 (PCT2D). The class of problems solvable by a polynomial sized covert tile
assembly computer in the 2D Abstract Tile-Assembly Model.

5.2 Strict Polynomial Size Equivalence
To show equivalence between P/poly and SPCT3D, we first define the 2-Promise Unique
Assembly Verification problem, a modified version of Unique Assembly Verification where we
are given two assemblies, a and b, rather than a single target. The problem asks to separate
two cases: accept if an assembly containing a as a subassembly is produced, and reject if an
assembly containing b is produced. We assume it is promised that one of these cases is true.
This problem is solvable in polynomial time since you only need to attach tiles until one of
the two assemblies is produced (Lemma 9).

▶ Definition 8 (2-Promise Unique Assembly Verification problem). Input: Assemblies a, b and
an aTAM system (T, s, τ) which is promised to uniquely produce one of two assemblies, A or
B, such that a ⊆ A and b ⊂ B. Output: “Yes”, if Γ uniquely assembles A, and “No”, if Γ
uniquely assembles B.

▶ Lemma 9. The 2-Promise Unique Assembly Verification problem is solvable in polynomial
time in the 3D aTAM.

Proof. Call greedy grow (from [2]) to get maximal producible assembly C. If Γ uniquely
assembles C and a ⊆ C, return “yes”. Otherwise, return “no”. ◀

Equipped with the algorithm for the 2-promise problem, and taking the description of a
covert computer as an advice string, it follows that we can compute the seed assembly from
the input template, and the two possible output assemblies from the output template, and
then run the algorithm for the 2-Promise UAV problem (Lemma 10). This puts any problem
solvable by a polynomial-sized covert circuit in the class P/poly. The other direction of
equivalence is given by the 3D covert computer constructions.

▶ Lemma 10. If a language L is computable by a strict polynomial-sized covert tile assembly
computer in the 3D aTAM, then L is in P/poly.

Proof. Let ℑn(T, I, O, τ) be the covert computer for the strings in language L of size n.
Since ℑn is of strict polynomial size, we can encode the tile set, input/output templates,
and temperature in poly(n) bits. Thus, ℑn will be our advice string for membership in
P/poly. Further, we are only considering decision problems. Thus, there are only two output
templates which we denote as aa and br for accept and reject, respectively.

Consider a Turing machine given the string x and covert circuit ℑ|x| = (T, I, (aa, br), τ)
that does the following:
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Convert x to an assembly I(x) using the input template.
Call the algorithm for 2-Promise UAV on input ((T, I(x), τ), aa, br).
If the algorithm accepts then x ∈ L, else x /∈ L

This Turing machine essentially runs the covert computer on x and then checks the
output by seeing which template is included in the final assembly. ◀

▶ Theorem 11. The classes SPCT3D and P/poly are equivalent.

Proof. By Lemma 10, if a language is in P/poly there is a Boolean circuit of polynomial size
which computes it, giving us P/poly ⊆ PCT3D. In Theorem 1 we show that if there exists a
Boolean circuit, there exists a strictly polynomial sized covert computer that computes the
circuit. ◀

5.3 Polynomial Sized 2D Covert Circuits
Here, we use previous constructions to show that the class of polynomial sized 2D covert
circuits is at least as strong as strict polynomial covert circuits. That is every language in
SPCT3D is in PCT2D.

▶ Theorem 12. If a language L is in P/poly then L is in PCT2D

Proof. In Lemma 10 we show that if a language is in P/poly there is a Boolean circuit of
polynomial size which computes it. Any Boolean circuit can be turned into a reversible
circuit, thus by Theorem 2, if there exists a reversible circuit, there exists a polynomial tile
assembly computer that computes it in 2D. ◀

6 Conclusion and Future Work

Previous work in the aTAM required negative glues in order to build covert Tile Assembly
Computers. We have provided two new covert computers in the aTAM with only positive glue
strengths, one in (just-barely) 3D and one in 2D with an exponential-sized output assembly.
These covert TACs add new tools to the field that may find use in future complexity results,
or in future applications related to privacy, cryptography, or biological computation. We
have further initiated the study of covert computers in the context of known complexity
classes, showing connections to the well-studied class P/poly. These results motivate future
work to find functions that can be covertly computed in the 2D aTAM with strict polynomial
size, such as (perhaps) Branching Programs.

Some additional specific directions for future work are as follows. We show the containment
of the class of strict polynomial computers to be in P/poly. Can this be improved? Could
we possibly use the P/poly log space analogue L/poly? What about in smaller classes, such
as covert computers with non-cooperative binding or at temperature-1?
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