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Abstract
A temporal graph is a sequence of graphs, indexed by discrete time steps, with a fixed vertex set
but with an edge set that is able to change over time. In the temporal graph exploration problem,
an agent wants to visit all the vertices of a given temporal graph. In the classical model, at each
time step the agent can either stay where they are, or move along one edge. In this work we add a
constraint called restlessness that forces the agent to move along one edge at each time step. We
mainly focus on (infinite) periodical temporal graphs. We show that if the period is 2 one can decide
in polynomial time whether exploring the whole graph is possible or not, while this problem turns
out to be NP-hard for any period p ≥ 3. We also show some time bounds on the explorations of
such graphs when the exploration is possible.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Temporal graphs, Graph exploration, NP-completeness

Digital Object Identifier 10.4230/LIPIcs.SAND.2023.13

1 Introduction

A temporal graph is a sequence of graphs G = (G1, G2, . . . , Gk, . . . ), where Gt = (V, Et) is
called the snapshot at time step t. Vertices remain but edges are susceptible to be removed
or added at each time step. When the sequence is finite, the number of steps is called the
lifetime of the temporal graph. The study of algorithmic aspects of temporal graphs was
promoted lately due to the emergence of dynamic networks with change of links over time
(e.g., social-, wireless mobile-, transportation networks). Among the several problems that
have been studied, the temporal exploration problem (TEXP) has received a lot of attention
in the last decade. In this problem, an agent aims at visiting all vertices of V , in minimal
time if visiting all vertices is possible. In the classical model, called the strict variant, the
agent can travel on at most one edge at each time step, while in the non-strict variant the
agent can use as many edges as they want at each time step [7].

In the strict model, while determining whether it is possible or not to explore the graph
(i.e., visit all vertices) is NP-hard [10], it is not hard to see that this is always possible when
(1) the graph is connected at each time step and (2) the lifetime is at least n2, where n = |V |.
A substantial amount of works have been devoted to study the problem on some specific
graph classes, both on the computational complexity and on possible improvements of this
O(n2) bound on the lifetime of the graph (which is in fact tight - lifetime Ω(n2) might be
necessary - for general graphs), see for instance [3, 5, 6, 7, 9]. As a notable example, if each
snapshot is connected and of bounded degree, then O(n1.75) steps are sufficient to explore
the graph [6]. Interestingly, the same upper bound holds in general (connected) graphs in
a slightly different model, where the agent is allowed to make at most two moves per step,
instead of at most one.
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13:2 Restless Exploration of Periodic Temporal Graphs

However, the results obtained in previous works do not apply anymore under the constraint
called restlessness. A ∆-restless temporal path is a path where the agent walking in the
graph is not allowed to wait for ∆ steps of time at a vertex before making their next move.
For example, this can be used to model non delay tolerant network where a packet can
only be stored for a limited amount of time in the nodes, because of memory limitation [4].
Another recent application is the study of paths in virus infection, where a virus can only
spread if it infects somebody new before the infected person recovers [8].

We also would like to point out that restless walks in temporal graphs also offer a powerful
generalization of properly-colored walks in edge-colored graphs. If the edges of a graph
are colored, a walk is said to be properly-colored iff it does not use two edges of the same
color consecutively. These graphs themselves offer an interesting generalization of directed
graphs (even undirected edge-colored graphs) and there is a rich literature around problems
of properly-colored spanning paths or trails (see Chapter 11 of [1]). Given a k-edge colored
graph, one can build a periodic temporal graph, with infinite lifetime, where the edges
available at timeframe i mod k are exactly the edges colored i. If walks have to be k-restless,
an agent at a vertex v can use edges of any color for their next move, except the one they
used to get to v, which will take too long to appear again.

In this article, we consider the 1-restless variant of TEXP, i.e. the variant where waiting
at a vertex is not possible and the agent therefore has to make exactly one move per step.
We denote it by 1-RTEXP. As it is the most restless case, we believe that it is a strong
starting point to study the impact of restlessness on the explorability of a graph.

It is easy to see that exploring a temporal graph restlessly can be much more difficult
than when we may wait. As a matter of fact, this may not be possible even in a temporal
graph with connected snapshots and infinite lifetime, as shown in the simple Example 1.

▶ Example 1. For i > 0, Gi is the graph on the left of Figure 1 if i is odd, it is the graph on
the right of Figure 1 if i is even. Hence, the graph has infinite lifetime, and it is 2-periodical.
If the starting vertex (at t = 1) is one vertex among {D, E, F}, then the agent, being forced
to move, will be in {A, B, C} at time 2, back in {D, E, F} at time 3, and so on. It will never
be able to visit node H.

C D

B E

A F

H

i odd

C D

B E

A F

H

i even

Figure 1 Snapshots at odd and even timesteps. We use colors to highlight the difference.

Note that the same example works with replacing the subgraph induced by {A, B, C, D,

E, F} with any (connected) bipartite graph. Following this, a natural question is to find
either sufficient conditions for a temporal graph to be explorable restlessly, or tractable cases
where 1-RTEXP can be determined in polynomial time. As exploration is not guaranteed
even if the lifetime is infinite (and the snapshots are connected), we focus in this work on
periodic graphs of infinite lifetime, which are one of the most natural classes of graph of
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infinite lifetime that we can encode in finite space (an essential condition for complexity to
even make sense). Our main result is to provide a sharp separation between tractability
and NP-hardness of 1-RTEXP, based on the period of the graph, summarized in the two
following theorems.

▶ Theorem 2. In 2-periodical temporal graphs, 1-RTEXP is polynomially solvable.

▶ Theorem 3. For any p ≥ 3, 1-RTEXP is NP-hard in p-periodical temporal graphs, even if
each snapshot is connected.

We complement these results by showing some sharp bounds in the number of iterations
needed to explore such graphs (whenever exploration is possible).

The article is organized as follows. We give a formal definition of the problem in Section 2.
Theorems 2 and 3 are shown respectively in Sections 3 and 4. Exploration time bounds are
given in Section 5.

2 Preliminaries

▶ Definition 4. A temporal graph is a sequence G = (G1, G2, . . . ) of graphs Gt = (V, Et). If
the sequence is finite, the length of the sequence is called the lifetime of the graph (otherwise
the lifetime is infinite). Gt is called the snapshot of G at time t. A (infinite) temporal graph
is p-periodical if Gi+p = Gi for every i ≥ 1.

Note that a p-periodical temporal graph is fully described by giving the first p snapshots
G1, . . . , Gp, thus with a description of (finite) size O(pn2).

▶ Definition 5. In a temporal graph, a temporal walk or journey is a sequence of vertices
(vi, vi+1, . . . , vj) such that for all k, vk = vk+1 or (vk, vk+1) ∈ Ek. The vertices vi and vj

are called respectively the start vertex and the end vertex and i and j respectively the starting
time and ending time. A 1-restless journey, which we simply call a restless journey in this
paper, is a journey where vk ̸= vk+1, for all k = i, . . . , j − 1.

▶ Definition 6 (1-RTEXP). Given a temporal graph G and a start vertex s ∈ V , 1-RTEXP
asks whether there is a restless journey starting at s at time 1 that contains all vertices of
the graph.

If so, we say that the (temporal) graph is fully explorable, when starting at s.
Dealing with periodical temporal graphs, the case of period 1 is trivial, as when p = 1 we

have Gi+1 = Gi, so the graph is somehow static. Hence, it is fully explorable if and only if it
is connected.

Before starting our results, let us mention a result on reachability in p-periodical temporal
graphs, which easily follows from classical BFS in graphs.

▶ Lemma 7 (Reachability). Given a p-periodical temporal graph, two vertices u and w, and
two indices i, j ∈ {1, . . . , p}, we can determine in linear time if there exists a restless journey
starting at u at some time t ≡ i mod p and ending at w at some time t′ ≡ j mod p. Moreover,
if such a journey exists, there exists one with length (number of edges) at most np − 1.

Proof. We build a graph G′ on np vertices (v, k) for v ∈ V and k ∈ {1, . . . , p}. In G′ we put
an arc from (v, k) to (v′, k + 1) (or to (v′, 1) if k = p) if there is an edge (v, v′) in snapshot
Gk. Then, a restless journey in G, starting at u at some time t ≡ i mod p and ending at
w at some time t′ ≡ j mod p, corresponds to a walk in G′ starting at (u, i) and ending at
(w, j). The existence of such a walk can be determined using a BFS on G′.

SAND 2023



13:4 Restless Exploration of Periodic Temporal Graphs

As G′ has linear size (with respect to the input), this can be checked in linear time.
Moreover, if such a path exists, there exists a simple one, thus with length at most np−1. ◀

If this is the case, we will say that (v, j) is accessible, or reachable, from (u, i).

3 2-periodical temporal graphs

This section is dedicated to the proof of Theorem 2 which states that 1-RTEXP is polynomially
solvable in 2-periodical temporal graphs.

To prove this, we reduce the problem to 2-Sat (restriction of Sat on clauses of size at
most 2), which is well known to be polynomial time solvable. The rough idea is to consider
two variables per vertex, one saying that we will visit the vertex at an odd time step, the
other one saying that we will visit the vertex at an even time step (so at least one of them
should be true). We also introduce some variables that represent the order in which we will
visit the vertices - more precisely the order of the first visit of vertex v at odd and/or even
time steps. Corresponding constraints are built thanks to the reachability lemma (Lemma 7).
Additional constraints ensure the global feasibility and the fact that the journey starts at s.

Let us now formally define the 2-Sat formula. We are given a 2-periodical temporal graph
G (i.e., its 2 snapshots G1 and G2), and one start vertex s ∈ V . We construct the following
2-Sat formula F (G, s) :

Variables:
For each vertex u in V we create two variables u1 and u2. As explained above, the
variable ui, i ∈ {1, 2}, will be true if we visit u at time parity i in our exploration. Let
I be the set of variables.
For each pair ui, vj (for u, v ∈ V , i, j ∈ {1, 2}, possibly u = v and/or i = j) we create
a variable ui ⇝ vj . In our construction this variable is true if (1) we visit u at time
parity i, and (2) either we do not visit v at time parity j, or the first visit of u at time
parity i is before the first visit of v at time parity j.

Clauses:
(VISIT) For each vertex v in G we construct a clause (v1 ∨ v2), meaning that we have
to visit v at time parity 1 or 2 in order to visit the whole graph.
(REACH) For each pair (ui, vj), if there is no restless journey from u at time parity i

to v at time parity j, we create a clause ((vj ⇝ ui) ∨ (vj)) meaning that we either visit
v at time parity j before u at time parity i or do not visit v at time parity j at all.
(ORDER) For each pair ui, vj in I we create the clause (ui ⇝ vj ∨ vj ⇝ ui) ensuring
that we do not claim to visit v at time parity j before we visit u at time parity i and
at the same time to visit u at time parity i before v at time parity j.
(START) We create a clause (s1) for the start vertex s at time parity 1 meaning that
we have to go through this state.
(FIRST) For other uj in I we create the clause (s1 ⇝ uj) meaning that we visit s at
time 1 before any other vertex, i.e. that we start our exploration on s at time odd.

Note that the formula has 2n + 4n2 variables and O(n2) clauses.
We now show in Lemmas 8 and 11 that the temporal graph is fully explorable from s (at

time 1) if and only if F (G, s) is satisfiable. This shows Theorem 2. We note that when the
graph is fully explorable from s, a corresponding restless journey can easily be built from a
truth assignment satisfying F (G, s).

▶ Lemma 8. If the graph G can be fully explored starting from s at time 1 then F (G, s) is
satisfiable.
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Proof. We set the value of each variable according to a restless journey exploring the whole
graph starting from s at time 1, as explained in the description of the variables in the formula.

Clauses (VISIT) are satisfied as the journey visits all vertices, either at time odd or even.
If we cannot visit v at time parity j after u at time parity i in G, either we do not visit
v at time parity j (vj is true), or we visit v at time parity j but not u at time parity i

(vj ⇝ ui is true), or we visit both and then necessarily v at time parity j before u at
time parity i (vj ⇝ ui is true). Then, clauses (REACH) are satisfied.
Clauses (ORDER) are verified since following the journey gives a strict order of first
visits (note that if u is not visited at time parity i then ui ⇝ vj is false).
Clauses (START) and (VISIT) are verified since we start our journey from s at time 1. ◀

Assume now that the formula F (G, s) is satisfiable and consider a satisfying truth
assignment S of it. Let us define a graph G0 as follows:

Vertices: For each variable ui set to true in S the graph contains vertex ui

Edges: For any two vertices ui, vj in the graph, we put the arc (ui, vj) if the variable
ui ⇝ vj is true in S.

▶ Lemma 9. If there is an arc (ui, vj) in G0 then (v, j) is accessible from (u, i).

Proof. Assume by contradiction that it is impossible. Then there is by definition in F (G, s)
a clause ((vj ⇝ ui) ∨ (vj)). From vj ∈ G0 we deduce vj is true. Thus, to verify the clause,
(vj ⇝ ui) must be true. Since we have the above mentioned edge in G0, we also have that
(ui ⇝ vj) is true. Consequently, the clause (ui ⇝ vj ∨ vj ⇝ ui) of F (G, s) is not satisfied, a
contradiction. ◀

Note that by an easy recurrence Lemma 9 shows that when there is a path from ui to vj in
G0 then (v, j) is accessible from (u, i) in the temporal graph.

▶ Lemma 10. If there is no arc between two vertices ui and vj of G0 (neither (ui, vj) nor
(vj , ui)), then (v, j) is accessible from (u, i) and vice-versa.

Proof. Assume by contradiction and without loss of generality that (v, j) is not accessible
from (u, i). Then there is by definition a clause ((vj ⇝ ui) ∨ vj) in F (G, s). Since vj ∈ G0,
vj is true, thus to verify the clause we have that (vj ⇝ ui) is true. By construction, we do
have an arc from ui to vj , a contradiction. ◀

▶ Lemma 11. If F (G, s) is satisfiable then the temporal graph G can be fully explored starting
from vertex s at time 1.

Proof. Consider some satisfying assignment S of F (G, s), and the associated graph G0.
Take a topological order of the strongly connected components (SCC) of G0.
This gives us a suitable exploration order of the graph. Indeed, Lemma 9 ensures that

if (ui, vj) are in the same SCC, then (v, j) is accessible from (u, i) in G. If ui and vj are in
two consecutive SCC in the topological order, then again (v, j) is accessible from (u, i) in G:
indeed, this follows from Lemma 9 when there is an arc from the SCC of ui to the one of vj ,
and from Lemma 10 when there is no arc between the two SCC.

Thus, if we consider an order of vertices of G0 that follow the topological order of SCC,
then we can build a journey in the temporal graph that visit all the corresponding vertices.
As G0 contains either u1 or u2 for any vertex u of the temporal graph, the journey does
explore all the vertices of the temporal graph.

SAND 2023



13:6 Restless Exploration of Periodic Temporal Graphs

To finish the proof, we shall argue that we can choose a journey that starts at (s, 1). First
note that as s1 is true (thanks to the clause (START)) there is a vertex s1 in G0. Moreover,
from the clauses (FIRST) we know that there is an arc (s, ui) for any vertex ui in G0. Hence,
s1 is necessarily in the first SCC in the topological order, and the journey can be chosen to
start at s at time 1. ◀

4 p-periodical temporal graph with p ≥ 3

We show in this section Theorem 3, i.e., that 1-RTEXP is NP-hard for p-periodical graphs,
even with connected snapshots, for any p ≥ 3. We first deal with the case p = 3, and then
show how the proof can be adapted to the cases p ≥ 4.

4.1 Case p = 3
Given a 3-periodical temporal graph G and a start vertex s, we study whether the agent can
visit all the vertices V .

In order to show that the problem is NP-hard, we build a reduction from 3-Sat-(2,2),
a restriction of 3-Sat where each variable appears exactly 2 times positively and 2 times
negatively. This problem is known to be NP-complete [2].

Given a 3-Sat-(2,2) formula, we build a graph that contains a clause-gadget (described in
Section 4.1.1) for every clause, a variable-gadget for every variable (described in Section 4.1.2)
and a trap-gadget (described in Section 4.1.3) which makes the snapshots connected, while
forcing the agent to explore the graph in some specific order.

4.1.1 The clause-gadget
For every clause Ci with literals ℓ1

i , ℓ2
i , ℓ3

i , we construct the gadget depicted in Figure 2. We
create 8 vertices, ℓ1

i , ℓ2
i , ℓ3

i , v1
i , v2

i , v3
i , v4

i , v5
i , and 12 edges as follows:

3 edges (v1
i , ℓj

i ), j ∈ {1, 2, 3}, present on times k ≡ 1 mod 3;
3 edges (ℓ1

i , ℓ2
i ), (ℓ2

i , ℓ3
i ), (ℓ3

i , ℓ1
i ) present on times k ≡ 2 mod 3;

3 edges (ℓj
i , v2

i ), j ∈ {1, 2, 3}, present on times k ≡ 3 mod 3;
1 edge (v2

i , v3
i ) present on times k ≡ 1 mod 3;

1 edge (v3
i , v4

i ) present on times k ≡ 2 mod 3;
1 edge (v4

i , v5
i ) present on times k ≡ 3 mod 3.

This construction is illustrated in Figure 2.
Suppose that an agent is at v1

i at time k ≡ 1 mod 3 and then moves inside this gadget.
The agent will be at one vertex from {ℓ1

i , ℓ2
i , ℓ3

i } at time k + 1, then on a second vertex from
{ℓ1

i , ℓ2
i , ℓ3

i } at time k + 2 and then joining v2
i at time k + 3. The agent will eventually go

through v3
i , v4

i and v5
i in this order as it is the only possible journey. To sum up, the agent

will have visited every vertex of the gadget besides one from {ℓ1
i , ℓ2

i , ℓ3
i }, and will be in v5

i at
k′ ≡ 1 mod 3.
▶ Remark 12. The vertices ℓ1

i , ℓ2
i , ℓ3

i corresponding to literals will be linked to the variable-
gadgets. The unvisited vertex will correspond to the literal that will be set to true in the
clause in order to verify the formula.

The graph contains one gadget for each clause. More precisely, the gadgets are chained
together, where the vertex v5

i from the gadget of clause Ci is merged with the first vertex
v1

i+1 of clause Ci+1. This way, if an agent starts at v1
1 at time k ≡ 1 mod 3 and moves inside

the clause-gadgets, it can traverse all the gadgets and will arrive at v5
m (where m is the

number of clauses) at time k′ ≡ 1 mod 3 and will have visited every vertex except exactly
one among {ℓ1

i , ℓ2
i , ℓ3

i } for each i = 1, . . . , m.
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Figure 2 The gadget associated to the clause i. Red edges are present on times k ≡ 1 mod 3,
blue edges on times k ≡ 2 mod 3 and green edges on times k ≡ 3 mod 3. For black-and-white
readability, the edges present on times 1, 2 and 3 mod 3 are also respectively denoted by simple,
double and triple edges.

4.1.2 The variable gadget
Every variable yi appears in 4 clauses, 2 times positively and 2 times negatively. Hence,
there are in the clause-gadgets 2 vertices corresponding to yi, and 2 vertices corresponding
to yi. Then, for every variable yi we build the gadget depicted in Figure 3: it contains 10
(new) vertices wj

i , j = 1, . . . , 10, and is linked to the clause-gadgets through the 4 vertices
corresponding to yi and yi (called y1

i , y2
i , −y1

i and −y2
i in the figure). Besides the 10 vertices,

the gadget contains the following 18 edges:

Edges (w3
i , y1

i ), (w5
i , −y1

i ), (w4
i , w8

i ), (w6
i , w8

i ), (w10
i , y2

i ), (w10
i , −y2

i ) and (w7
i , w10

i ) present
on times k ≡ 1 mod 3;
Edges (w1

i , w2
i ), (w3

i , w4
i ), (w5

i , w6
i ) and (w9

i , w10
i ) present on times k ≡ 2 mod 3;

Edges (w2
i , y1

i ), (w2
i , −y1

i ), (w4
i , y2

i ), (w6
i , −y2

i ), (w3
i , w7

i ), (w5
i , w7

i ) and (w8
i , w9

i ) present
on times k ≡ 3 mod 3;

This construction is illustrated in Figure 3.
Suppose that an agent is in w1 at some time k ≡ 2 mod 3 and move inside the variable-

gadget (on vertices wj
i , y1

i , y2
i , −y1

i , −y2
i ). Then they must go to w2

i , and then can go either
to y1

i or to −y1
i . If they go to y1

i , then they have to go to w3
i as we consider here the case

where they stay inside the gadget (we will show later that they cannot respect the restlessness
condition if they leave the gadget). At this point they must go to w4

i , then y2
i and w10

i . They
may then visit w9

i , w8
i , w6

i , w5
i , w7

i and then go back to w10
i . Then, either they do the same

(now useless) cycle on these vertices, or leave the gadget.
In other words, they can either take P1 = (w1

i , w2
i , y1

i , w3
i , w4

i , y2
i , w10

i , w9
i , w8

i , w6
i , w5

i , w7
i ,

w10
i ) (thus visiting the 10 vertices wj

i , and y1
i and y2

i ), or the symmetrical path P2 =
(w1

i , w2
i , −y1

i , w5
i , w6

i , −y2
i , w10

i , w9
i , w8

i , w4
i , w3

i , w7
i , w10

i ) .
Note that in both cases, they are in a vertex in {y1

i , y2
i , −y1

i , −y2
i } only at some time

k′ ≡ 1 mod 3.
The variable-gadgets are chained, by merging the vertex w10

i of the gadget of variable yi

to the vertex w1
i+1 of the gadget of the variable yi+1.

Also, the last vertex v5
m of the clause-gadgets is linked to the vertex w1

1 of the first
variable-gadget by an edge present at time 1 mod 3.

SAND 2023
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Figure 3 Unitary variable-gadget (framed). The four adjacent clause-gadgets are depicted too.
The meaning of the color is the same as in Figure 2.

4.1.3 The trap
With the variable- and clause-gadgets, the snapshots are not connected. We make them
connected by adding a gadget, called trap, from which it is impossible to go out. Hence, the
trap must be explored last.

The trap, depicted in Figure 4, has 3 vertices A, B and C and works as follows. On times
k ≡ 1 mod 3 (resp. k ≡ 2 mod 3, k ≡ 0 mod 3), all vertices from the rest of the graphs are
adjacent to A (resp. B, C). If an agent enters the trap, it will alternate between vertices A,
B and C and cannot go out.

4.1.4 Validity of the reduction
We are now ready to prove that the formula is satisfiable if and only if the graph can be
fully explored, starting at the vertex v1

1 (gadget of the first clause).

▶ Lemma 13. If the formula is satisfiable then the agent can explore the whole graph.

Proof. Consider a truth assignment σ satisfying the formula. We consider the following
exploration of the graph. The agent visits first the clause-gadgets, from the first to the
last one. As explained earlier, they can do this while exploring all but one vertex among
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A

B

C A

B

C A

B

C

Figure 4 The three different snapshots of the trap-gadget.

{ℓ1
i , ℓ2

i , ℓ3
i } in each clause-gadget. The vertex we choose not to visit is one that corresponds

to a satisfied literal in σ.
We are at v5

m at some time t ≡ 1 mod 3. We then enter the first variable-gadget at
t + 1 ≡ 2 mod 3. Then we visit all the variable-gadgets using path P1 if yi is set to true,
using path P2 if yi is set to false. After visiting all the variable-gadgets, we go to the trap
and visit A, B and C.

As in the clause-gadget the vertex which was not visited during the exploration of the
gadget is set to true, it is visited during the exploration of the corresponding variable-gadget.
Thus, all the vertices of the graph are visited. ◀

▶ Lemma 14. If the agent can explore the whole graph then the formula is satisfiable.

Proof. The agent starts at v1
1 at time 1. As noted previously, the trap must be visited at

the end of the exploration.
We look at the first vertex w1

1 of the first variable-gadget. The agent is necessarily here
at some time t ≡ 2 mod 3 (from the edge (v5

m, w1
1), as the agent cannot be at w2

1 at time
≡ 2 mod 3, so the edge (w2

1, w1
1) cannot be used to reach w1

1). Then, as mentioned earlier,
in this variable-gadget they are in yj

1 or −yj
1 only at time ≡ 1 mod 3. Suppose that they

leave the variable-gadget and enters a clause gadget. Then they must take an edge leading
to a first vertex v1

i of the clause gadget, and the agent is stuck there (i.e., they must go to
the trap and cannot finish the exploration). So, the agent must follow either path P1 or
path P2. They are in w10

1 , i.e. in the first vertex of the second variable-gadget at some time
≡ 2 mod 3. More generally, this means that when the agent reaches the first vertex w1

i of a
variable-gadget, then they must stay inside the variable-gadgets, and visit all the subsequent
such gadgets, using P1 or P2, till the last vertex w10

n of the last gadget. Then, they must go
to the trap.

The exploration starts from vertex v1
1 . Suppose now that the exploration leaves some

clause-gadget (before v5
m). This must be at some ℓj

i , where they are either at time 2 or 3
mod 3 (coming from v1

i or some ℓj′

i ). There is no edge present at time 2 mod 3 incident at
some yi-vertex in the variable-gadget.

If ℓj
i is a vertex y1

i or −y1
i , then, to leave the clause-gadget, the agent must reach w2

i at
time 1 mod 3, and is stuck there.
If ℓj

i is a vertex y2
i (resp. −y2

i ), then, to leave the clause-gadget, the agent must reach w4
i

(resp. w6
i ), then w8

i at time 2 mod 3, and is stuck here.
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In summary, the agent must first visit the clause-gadgets without leaving them. So, they
arrive at v5

m while having visited all the corresponding vertices but one in each clause-gadget.
Then, they must follow one path among P1 and P2 in each variable-gadget, and the visit the
trap.

We set variable yi to true (resp. to false) if the agent took path P1 (resp. P2) when
visiting the corresponding variable-gadget. As all the vertices have been explored, every ℓj

i

left unexplored in the visit of the clause-gadgets corresponds to a literal set to true in the
truth assignment, which concludes the proof.

◀

4.2 Case p ≥ 4
We now show Theorem 3 for p ≥ 4. The proof is based on a similar reduction from 3-Sat-
(2,2). We first extend the clause-gadget and the trap in Section 4.2.1. We then build the
variable-gadget in Section 4.2.2. We prove the validity of the reduction in Section 4.2.3.

4.2.1 Extending the clause-gadget and the trap
In order to extend the clause-gadget to a larger period, one has to extend its tail. More
precisely, we start with the same gadget as for period 3 (up to the fact that edges are
present on time modulo p instead of modulo 3). We add p − 3 vertices v6

i , . . . , vp+2
i . For

j = 6, . . . , p + 2, vertex vj−1
i is linked to vj

i with an edge present on times k ≡ j − 2 mod p.
Now, vertex vp+2

i of the gadget of clause Ci is merged with vertex v1
i+1 of the gadget of

clause Ci+1.
It is easy to see that the gadget works the same as in the case of period 3: if the agent is

at v1
1 at time 1 modulo p and stays inside the clause-gadgets, then they will be at vp+2

m at
time 1 modulo p, and will have visited every vertex but one ℓj

i for every i.

The trap is generalized in a natural way: it has p vertices, say f1, . . . , fp. At time i

modulo p, fi is linked to all other vertices of the graph (including the other vertices of the
trap). Then, if an agent enters the trap at time i modulo p (in fi), at i + 1 they must go to
fi+1, and so on. They can visit all the vertices of the trap but never get out of it.

4.2.2 Variable-gadget
The variable-gadget is simpler for p ≥ 4. As previously, to each variable yi are already
associated 4 vertices in the clause-gadgets, two associated to the literal yi (denoted y1

i and y2
i

here) and two associated to the literal yi (denoted −y1
i and −y2

i here). The gadget contains
p − 1 vertices w1

i , . . . , wp−1
i , and the following edges:

One edge (w1
i , w2

i ) present on times k ≡ 2 mod p;
Two edges (w2

i , y1
i ) and (w2

i , −y1
i ) present on times k ≡ 3 mod p;

Two edges (y1
i , y2

i ) and (−y1
i , −y2

i ) present on times k ≡ 4 mod p;
Two edges (y2

i , w3
i ) and (−y2

i , w3
i ) present on times k ≡ 5 mod p;

If p ≥ 5, for each j = 3, . . . , p − 2, an edge (wj
i , wj+1

i ) present on times k ≡ j + 3.

This construction is illustrated in Figure 5.
Let us call P1 the path (w1

i , w2
i , y1

i , y2
i , w3

i , . . . , wp−1
i ) and P2 the path (w1

i , w2
i , −y1

i , −y2
i ,

w3
i , . . . , wp−1

i ). Note that if an agent is at w1
i at time 2 mod p, then they can follow either

P1 or P2, and be at wp−1
i at time 2 mod p. If they stay inside the gadget, then these are the

only 2 paths that they may follow.
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Figure 5 The variable-gadget. The number above each edge denotes the timeframes where it
appears.

To complete the construction, the last vertex wp−1
i of a variable-gadget is merged with

the first vertex w1
i+1 of the next variable-gadget. Also, there is an edge, present at times 1

mod p, between the last vertex vp+2
m of the last clause-gadget and the first vertex w1

1 of the
first variable-gadget.

4.2.3 Validity of the reduction

We consider the exploration problem starting at vertex v1
i .

▶ Lemma 15. An agent can explore the whole graph if and only if the formula is satisfiable.

Proof. If the formula is satisfiable, let us consider a satisfying assignment σ. As in the
case of period 3, an agent can first visit the clause-gadgets, visiting all vertices but one
per clause-gadget which corresponds to a true literal in σ. They arrive in vp+2

m at time 1
modulo p. Then they go to the first vertex of the first variable-gadget, and visit all the
variable-gadgets, choosing path P1 if the variable is true in σ, and P2 otherwise. Finally,
they go to the trap and visits it. With the very same argument as previously, we see that
they have visited all the vertices of the graph.

Conversely, suppose that an agent can explore all the vertices. Suppose first that they
leave a clause-gadget, at some vertex in {y1

i , y2
i , −y1

i , −y2
i }. They must be in this vertex at

time 2 or 3 modulo p.
If it is y1

i or −y1
i , they are stuck if they are there at time 2. If they are there at time 3,

they can go to w2
i , but then they are stuck there.

If it is y2
i or −y2

i , they are immediately stuck.
So, the agent must go through all the clause-gadget first, till vp+2

m . Similarly, it is easy to see
that an agent cannot leave a variable-gadget:

they are at vertices y1
i or −y1

i at time 4 modulo p, and cannot use an edge of the
clause-gadget then,
they are at vertices y2

i or −y2
i at time 5 modulo p. If p ≥ 5 they are stuck there, and if

p = 4, they can go to the first vertex v1
i of some clause-gadget but then are stuck there.

To conclude, they have to visit first all the clause-gadgets, then all the variable-gadgets,
then the trap. We set variable yi to true (resp. false) if they used path P1 (resp. P2) in the
corresponding variable-gadget. As in the case of period 3, from the fact that the agent visits
all the vertices of the clause-gadgets, we conclude that every clause has a true literal in the
built assignment. ◀
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5 Exploration time bounds

In this section we focus on the time required to explore the temporal graph (whenever
possible). Recall that in the model where the agent is not forced to move, time O(n2) is
sufficient to explore a temporal graph with connected snapshots, and that this bound is tight
(Ω(n2) steps are necessary for some family of temporal graphs).

We prove here similar results for p-periodical temporal graphs under the restlessness
1-constraint.

▶ Theorem 16. Any (restlessly) fully explorable p-periodical temporal graph can be explored in
at most pn2 steps. Moreover, for every p ≥ 2 there are families of fully explorable p-periodical
temporal graphs that require Ω(pn2) steps to be fully explored.

We note that the lower bound Ω(pn2) is still valid under the condition that the snapshots
are connected (using a trap-structure as in the NP-hardness proof, we can easily make them
connected without changing significantly the exploration time bound).

The first part of the theorem, restated in the following lemma, easily follows from
Lemma 7.

▶ Lemma 17. Any explorable p-periodical temporal graph can be explored restlessly in at
most pn2 steps.

Proof. If the graph is explorable, let us consider a journey that visits all vertices. By
Lemma 7, we can go from one vertex to the next one in the walk with a walk of at most
pn − 1 edges. The result follows. ◀

Let us now show the second part of the theorem, restated in the following lemma.

▶ Lemma 18. For every p ≥ 2 there are families of explorable p-periodical temporal graphs
that require Ω(pn2) steps to be explored.

Proof. We first consider the case where p is even. We build the following graph: first, we
consider two even cycles C1 = (s, v2, . . . , v2k, s) and C2 = (s, z2, . . . , z2k, s) of the same size
2k, sharing a vertex s. We choose k (larger than p) such that 2k ≡ 2 mod p. In C1, (s, v2)
and every (v2i−1, v2i) are present at odd times, and the other edges (including (v2k, s)) are
present at even times. In C2, starting from s through z2, z3,. . . , the ith edge is present at
times ≡ i mod p.

To complete the construction, we split vertex z2 into 2k + 1 identical copies (so each copy
is linked to s and to z3). The initial vertex is s. Note that the graph has 6k − 1 vertices.

This consutrction is illustrated in Figure 6
Let us suppose that at some time t ≡ 1 mod p, the agent is in s and enters C2. Then

they must follow the whole cycle, visiting one copy of z2, then z3, . . . , z2k, being back in
s at t′ = t + 2k ≡ 3 mod p. Then, if p ̸= 2 they must follow C1 (visiting v2, v3,. . . ), being
back in s at t′′ = t′ + 2k ≡ 5 mod p. In order to be able to go back in C2 again, they must
make p/2 − 1 tours of C1, so that they are in s at some time ≡ 1 mod p (note that this is
also true for p = 2 as p/2 − 1 = 0).

Then, starting at s at time 1, as the agent must go 2k + 1 times through C2 in order to
visit all copies of z2, they must make (at least) 2k (complete) tours of C2 and 2k(p/2 − 1)
(complete) tours of C1, so in total at least kp tours of cycles of length 2k, leading to an
exploration time at least 2k2p ≥ n2p/18 = Ω(n2p).

It is easy to see that the graph is indeed explorable with the previous strategy.
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Figure 6 The graph our construction provides. C1 is on the left, C2 on the right.

If the period is odd, it is no longer possible for an edge to only appear at odd or at even
timeframes and our construction requires a little adaptation. We modify C1 as follows:

Edges (s, v2) and (v2i−1, v2i) are present at times equivalent to 1, 3, . . . , p − 2 mod p, let
us call them odd edges;
Edges (v2i, v2i+1) and (v2k, s) are present at times equivalent to 2, 4, . . . , p − 1 mod p, let
us call them even edges;
For each even edge, we add a vertex wi, with an edge (v2i, wi) present at p − 1 mod p,
and an edge (wi, v2i+1) (or (wi, s)) present at 0 mod p.

For example, Figure 7 illustrates the changes we make to the graph of Figure 6 if p is odd.
This way, if the agent is in C1, they will alternate between odd and even edges, up to

time p − 1 mod p, where they are at an “odd” vertex v2i, has to use the extra vertex wi,
leaving wi at 0 mod p, reaching v2i+1 (or s if i = k) at time 1 mod p. Then, in p units of
times they travel from vi to vi+p−1. We set the length of the cycle C1 (on s and the vertices
vi) to be 2k ≡ 2 mod (p − 1).

Then in this configuration, if the agent starts visiting the tour C1 at s ≡ 3 mod p, it ends
the tour (visiting some vertices w during the travel) at s at time t′ ≡ 5 mod p, and so on.
After (p − 3)/2 such tours, it will be at s at t ≡ 0 mod p, will start a new tour of C1, will be
at v2k at time t′ ≡ 0 mod p, and then can use the edge (v2k, s) to be back on s at time ≡ 1
mod p.

So, to visit all copies of z2, the agent must make at least 2k (complete) tours of C2, and
2k(̇p − 1)/2 tours of C1. As tours have (at least) 2k vertices, we get again a lower bound of
2k2p = Ω(pn2) to explore the whole graph restlessly.

Here again, the previous strategy shows that the graph is fully explorable. ◀

6 Conclusion and perspective

In the previous section, we proved that the maximum amount of time required for the
exploration of an explorable p-periodic graph of n vertices is in Θ(pn2). However, we only
proved that this value is somewhere between pn2

18 and pn2 and we leave its exact value as an
open question.
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Figure 7 We add an extra vertex wi for every odd edge. Note that here, even edges are present
on timeframes 2, 4, ..., p − 1 and odd edges on timeframes 1, 3, 5, ..., p − 2 but not p, which is dealt
with separately.

Another natural extensions of our work could be to investigate the complexity of ∆-restless
exploration with ∆ > 1 or cases where the agent walking in the graph is allowed to move
by more than one edge at each time step but we do not know if those cases would be more
interesting than the case ∆ = 1.

A problem that we believe would be of great interest is the study of the tractability of
the NP-complete cases of the problem for some fixed relevant parameters. This could include
structural parameters of the underlying graph (the timeless graph that contains all the edges
that appear at any given time) or parameters related to the temporality. In particular, our
gadgets were inspired by our previous works on edge-colored graphs and most edges are
present in only one snapshot, which makes the graph change drastically from a timeframe to
the next. We believe it could be of great interest to study the complexity of cases where the
graph cannot change too much in one timeframe.
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This is a revised version of the eponymous paper appeared in the proceedings of SAND 2023
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June, 2023), in which the variable-gadget construction of Section 4.1.2 has been changed (in
particular the gadget depicted in Figure 3), to correct a flaw in the initial version.
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