
Partial Gathering of Mobile Agents in
Dynamic Tori
Masahiro Shibata #

Kyushu Institute of Technology, Fukuoka, Japan

Naoki Kitamura #

Osaka University, Japan

Ryota Eguchi #

NAIST, Nara, Japan

Yuichi Sudo #

Hosei University, Tokyo, Japan

Junya Nakamura #

Toyohashi University of Technology, Aichi, Japan

Yonghwan Kim #

Nagoya Institute of Technology, Aichi, Japan

Abstract

In this paper, we consider the partial gathering problem of mobile agents in synchronous dynamic tori.
The partial gathering problem is a generalization of the (well-investigated) total gathering problem,
which requires that all k agents distributed in the network terminate at a non-predetermined single
node. The partial gathering problem requires, for a given positive integer g (< k), that agents
terminate in a configuration such that either at least g agents or no agent exists at each node.
So far, in almost cases, the partial gathering problem has been considered in static graphs. As
only one exception, it is considered in a kind of dynamic rings called 1-interval connected rings,
that is, one of the links in the ring may be missing at each time step. In this paper, we consider
partial gathering in another dynamic topology. Concretely, we consider it in n × n dynamic tori
such that each of row rings and column rings is represented as a 1-interval connected ring. In such
networks, when k = O(gn), focusing on the relationship between the values of k, n, and g, we aim to
characterize the solvability of the partial gathering problem and analyze the move complexity of
the proposed algorithms when the problem can be solved. First, we show that agents cannot solve
the problem when k = o(gn), which means that Ω(gn) agents are necessary to solve the problem.
Second, we show that the problem can be solved with the total number of O(gn3) moves when
2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12. Finally, we show that the problem can be solved with
the total number of O(gn2) moves when k ≥ 2gn + 6n + 16g − 11. From these results, we show
that our algorithms can solve the partial gathering problem in dynamic tori with the asymptotically
optimal number Θ(gn) of agents. In addition, we show that agents require a total number of
Ω(gn2) moves to solve the partial gathering problem in dynamic tori when k = Θ(gn). Thus, when
k ≥ 2gn + 6n + 16g − 11, our algorithm can solve the problem with asymptotically optimal number
O(gn2) of agent moves.

2012 ACM Subject Classification Theory of computation → Self-organization

Keywords and phrases distributed system, mobile agents, partial gathering, dynamic tori

Digital Object Identifier 10.4230/LIPIcs.SAND.2023.2

Funding This work was partially supported by JSPS KAKENHI Grant Number 18K18031, 20H04140,
20KK0232, 21K17706, and 22K11971; and Foundation of Public Interest of Tatematsu.

© Masahiro Shibata, Naoki Kitamura, Ryota Eguchi, Yuichi Sudo, Junya Nakamura,
and Yonghwan Kim;
licensed under Creative Commons License CC-BY 4.0

2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023).
Editors: David Doty and Paul Spirakis; Article No. 2; pp. 2:1–2:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shibata@csn.kyutech.ac.jp
https://orcid.org/0000-0003-1414-8033
mailto:n-kitamura@ist.osaka-u.ac.jp
https://orcid.org/0009-0000-0132-251X
mailto:ry.eguchi@is.naist.jp
https://orcid.org/0000-0002-4836-2903
mailto:sudo@hosei.ac.jp
https://orcid.org/0000-0002-4442-1750
mailto:junya@imc.tut.ac.jp
https://orcid.org/0000-0002-1363-4358
mailto:kim@nitech.ac.jp
https://orcid.org/0000-0002-5437-7626
https://doi.org/10.4230/LIPIcs.SAND.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Partial Gathering of Mobile Agents in Dynamic Tori

1 Introduction

1.1 Background and Related Work
A distributed system comprises a set of computing entities (nodes) connected by communi-
cation links. As a promising design paradigm of distributed systems, (mobile) agents have
attracted much attention [7]. The agents can traverse the system, carrying information
collected at visited nodes, and execute an action at each node using the information to
achieve a task. In other words, agents can encapsulate the process code and data, which
simplifies the design of distributed systems [10].

The total gathering problem (or the rendezvous problem) is a fundamental problem for
agents’ coordination. When a set of k agents are arbitrarily placed at nodes, this problem
requires that all the k agents terminate at a non-predetermined single node. By meeting
at a single node, all agents can share information or synchronize their behaviors. The total
gathering problem has been considered in various kinds of networks such as rings [9, 13],
trees [5, 1], tori [8], and arbitrary networks [3, 4].

Recently, a variant of the total gathering problem, called the g-partial gathering prob-
lem [14], has been considered. This problem does not require all agents to meet at a single
node, but allows agents to meet at several nodes separately. Concretely, for a given positive
integer g (< k), this problem requires that agents terminate in a configuration such that
either at least g agents or no agent exists at each node. Notice that the g-partial gathering
problem is equivalent to the total gathering problem when k < 2g. From a practical point of
view, the g-partial gathering problem is still useful especially in large-scale networks. That
is, when g-partial gathering is achieved, agents are partitioned into groups each of which has
at least g agents, each agent can share information and tasks with agents in the same group,
and each group can partition the network and then patrol its area that it should monitor
efficiently.

As related work, Shibata et al. considered the g-partial gathering problem in rings
[14, 15, 20], trees [17], and arbitrary networks [16]. In [14, 15], they considered it in
unidirectional ring networks with whiteboards (or memory spaces that agents can read and
write) at nodes. They mainly showed that, if agents have distinct IDs and the algorithm is
deterministic, or if agents do not have distinct IDs and the algorithm is randomized, agents
can achieve g-partial gathering with the total number of O(gn) moves (in expectation), where
n is the number of nodes. In [20], they considered g-partial gathering for another mobile
entity called mobile robots that have no memory but can observe all nodes and robots in the
network. In the case of using mobile robots, they also showed that g-partial gathering can be
achieved with the total number of O(gn) moves. In addition, the g-partial (resp., the total)
gathering problem in ring networks requires a total number of Ω(gn) (resp., Ω(kn)) moves in
both agent and robot models. Thus, the above results are asymptotically optimal in terms
of the total number of moves, and the number O(gn) is strictly smaller than that for the
total gathering problem when g = o(k). In tree and arbitrary networks, they also proposed
algorithms to solve the g-partial gathering problem with strictly smaller total number of
moves compared to the total gathering problem for some settings.

While all the above work on the total gathering problem and the g-partial gathering
problem are considered in static graphs where a network topology does not change during an
execution, recently many problems involving agents have been studied in dynamic graphs,
where a topology changes during an execution. For example, the total gathering problem [12],
the exploration problem [11, 6], the compacting and grouping problem [2], and the uniform
deployment problem [18] are considered in dynamic graphs. Also, in [19], the g-partial

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:3

: node : agent : missing link

Figure 1 An example of the g-partial gathering problem in a 4 × 4 dynamic torus (g = 3).

gathering problem is considered in a kind of dynamic rings called 1-interval connected
rings [12, 11, 18], that is, one of the links in the ring may be missing at each time step. In
such networks, focusing on the relationship between the values of k and g, they clarified
the solvability of the g-partial gathering problem and analyzed the move complexity of the
proposed algorithms when the problem can be solved. As a result, they showed that (i) when
k ≤ 2g, the g-partial gathering problem cannot be solved, (ii) when 2g + 1 ≤ k ≤ 3g − 2, the
problem can be solved with the total number of O(gn log g) moves, and (iii) when k ≥ 3g − 1,
the problem can be solved with the asymptotically optimal total number O(gn) of agent
moves.

1.2 Our Contribution

In this paper, we consider the g-partial gathering problem of mobile agents in another
dynamic topology. Concretely, we consider the problem in n × n dynamic tori such that each
of row rings and column rings is represented as a 1-interval connected ring. An example is
given in Fig. 1. An edge with a cross means that it is missing. In this paper, we assume that
each node has a whiteboard. In addition, we assume that agents have distinct IDs, common
sense of direction, knowledge of k and n, and behave fully synchronously. In such settings,
when k = O(gn), focusing on the relationship between the values of k, n, and g, we aim to
characterize the solvability of the g-partial gathering problem and analyze the time and move
complexities of the proposed algorithms when the problem can be solved.

We summarize our results in Table 1. First, we show that agents cannot solve the g-partial
gathering problem when k = o(gn), which means that Ω(gn) agents are necessary to solve
the problem. Second, we show that the problem can be solved with O(n2) rounds and the
total number of O(gn3) moves when 2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12. Finally, we
show that the problem can be solved with O(n2) rounds and the total number of O(gn2)
moves when k ≥ 2gn + 6n + 16g − 11. From these results, we show that our algorithms
can solve the g-partial gathering problem in dynamic tori with the asymptotically optimal
number Θ(gn) of agents. In addition, we show that agents require a total number of Ω(gn2)
moves to solve the g-partial gathering problem in n × n dynamic tori when k = Θ(gn). Thus,
when k ≥ 2gn + 6n + 16g − 11, our algorithm can solve the problem with asymptotically
optimal number O(gn2) of agent moves.

Due to the page limitation, we omit to describe several pseudocodes and several proofs of
theorems and lemmas.

SAND 2023

2:4 Partial Gathering of Mobile Agents in Dynamic Tori

Table 1 Results of g-partial gathering for agents with distinct IDs in dynamic tori when k = O(gn)
(n: #nodes, k: #agents).

Result 1 (Sec. 3) Result 2 (Sec. 5) Result 3 (Sec. 6)

Relation between k and g k = o(gn) k ≥ 2gn + 2n − 1 and
k ≤ 2gn + 6n + 16g − 12 k ≥ 2gn + 6n + 16g − 11

Solvable/Unsolvable Unsolvable Solvable Solvable
Time complexity - O(n2) O(n2)

Total number of agent moves - O(gn3) Θ(gn2)

2 Preliminaries

2.1 System Model

We basically follow the model defined in [6]. An n × n dynamic torus T is defined as
2-tuple T = (V, E), where V is a set of nodes {vi,j | 0 ≤ i, j ≤ n − 1} and E is a set of
links {(vi,j , v(i+1) mod n,j), (vi,j , vi,(j+1) mod n) | 0 ≤ i, j ≤ n − 1}. For simplicity, we denote
v(i+i′) mod n,(j+j′) mod n by vi+i′,j+j′ for any integers i, i′, j, and j′. The distance between
nodes vi,j and vp,q is defined as min{i − p, p − i} + min{j − q, q − j}. Notice that this
definition of the distance is correct when no corresponding link that connects vi,j and vp,q is
missing. We call the direction from vi,j to vi,j+1 (resp., to vi+1,j , to vi,j−1, and to vi−1,j)
the right (resp., down, left, and up) direction. Intuitively, torus T comprises n row rings
and n column rings. A row ring Ri (resp., a column ring Cj) is a subgraph of T induced by
{vi,j | 0 ≤ j ≤ n − 1} (resp., {vi,j | 0 ≤ i ≤ n − 1}) (see Fig. 2). We assume that each of row
rings and column rings is 1-interval connected, that is, one of the links in the ring may be
missing at each time step, and which link is missing is controlled by an adversarial scheduler.
Then, since each of the row and column rings is 1-interval connected, the dynamic torus T is
always connected. In addition, we assume that nodes are anonymous, i.e., they do not have
IDs (and thus the indices of nodes are used just for notation purposes). Every node vi,j ∈ V

has a whiteboard that agents at node vi,j can read from and write on.
Let A = {a0, a1, . . . , ak−1} be a set of k (≤ n) agents. Agents can move through links,

that is, they can move from vi,j to vi,j+1 (move right), from vi,j to vi+1,j (move down), from
vi,j to vi,j−1 (move left), or from vi,j to vi−1,j (move up), for any i and j. Agents have
distinct IDs and knowledge of k and n. Agents have the common sense of directions, that is,
they agree on the directions of right, down, left, and up in the torus. In addition, agents
cannot detect whether other agents exist at the current node or not. An agent ah is defined as
a deterministic finite automaton (S, W , δ, sinitial, sfinal, winitial, w′

initial). The first element
S is the set of all states of an agent, including two special states, initial state sinitial and
final state sfinal. The second element W is the set of all states (contents) of a whiteboard,
including two special initial states winitial and w′

initial. We explain winitial and w′
initial in the

next paragraph. The third element δ : S × W 7→ S × W × M is the state transition function
that decides, from the current state of ah and the current node’s whiteboard, the next states
of ah and the whiteboard, and whether ah moves to its neighboring node or not. The last
element M ={null, right, down, left, up} in δ represents which direction ah tries to move
in the next movement. The value “null” means staying at the current node. We assume
that δ (sfinal, wij) = (sfinal, wij, null) holds for any state wij ∈ W , which means that ah never
changes its state, updates the contents of the current node vi,j’s whiteboard, or leaves vi,j

once it reaches state sfinal. We say that an agent terminates when its state changes to sfinal.
Notice that S, δ, sinitial, and sfinal can be dependent on the agent’s ID.

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:5

𝑣 ,𝑅

𝐶

𝑣 ,

𝑣 ,𝑣 ,

𝑣 ,

up

down

left right

Figure 2 An example of a torus graph (n = 4).

In an agent system, (global) configuration c is defined as a product of the states of all
agents, the states (whiteboards’ contents) of all nodes, and the locations (i.e., the current
nodes) of all agents. We define C as a set of all configurations. In an initial configuration
c0 ∈ C, we assume that agents are deployed arbitrarily at mutually distinct nodes (or no
two agents start at the same node), and the state of each whiteboard is winitial or w′

initial
depending on the existence of an agent. That is, when an agent exists at node vi,j in the
initial configuration, the initial state of v′

i,js whiteboard is winitial. Otherwise, the state is
w′

initial.
During an execution of the algorithm, we assume that agents move instantaneously, that

is, agents always exist at nodes (do not exist on links). Each agent executes the following
four operations in an atomic action: 1) reads the contents of its current node’s whiteboard,
2) executes local computation (or changes its state), 3) updates the contents of the current
node’s whiteboard, and 4) moves to its neighboring node or stays at the current node. If
several agents exist at the same node, they take atomic actions interleavingly in an arbitrary
order. In addition, when an agent tries to move to its neighboring node (e.g., from node vi,j

to vi,j+1) but the corresponding link is missing, we say that the agent is blocked, and it still
exists at vi,j at the beginning of the next atomic action.

In this paper, we consider a synchronous execution, that is, in each time step called
round, all agents perform atomic actions. Then, an execution starting from c0 is defined as
E = c0, c1, . . . where each ci (i ≥ 1) is the configuration reached from ci−1 by atomic actions
of all agents. An execution is infinite, or ends in a final configuration where the state of
every agent is sfinal.

2.2 The Partial Gathering Problem
The requirement for the partial gathering problem is that, for a given integer g, agents
terminate in a configuration such that either at least g agents or no agent exists at each
node. Formally, we define the g-partial gathering problem as follows.

▶ Definition 1. An algorithm solves the g-partial gathering problem in dynamic tori when
the following conditions hold:

Execution E is finite (i.e., all agents terminate in state sfinal).
In the final configuration, at least g agents exist at any node where an agent exists.

SAND 2023

2:6 Partial Gathering of Mobile Agents in Dynamic Tori

In this paper, we evaluate the proposed algorithms by the time complexity (the number
of rounds required for agents to solve the problem) and the total number of agent moves.

3 The case of k = o(gn)

When k = o(gn), the following impossibility result holds. Intuitively, this is because (i) when
there exists an agent at each of nodes v0,0, v1,1, . . . , vn−1,n−1 in the initial configuration, the
adversary can make the n agents never leave their starting nodes, and thus (ii) to achieve
g-partial gathering, it is necessary that there exist at least g agents at each of the n nodes,
which requires at least gn agents in total.

▶ Theorem 2. When k = o(gn) holds, the g-partial gathering problem cannot be solved in
dynamic tori.

4 Lower bound on the total number of agent moves when k = Θ(gn)

By Theorem 3, since at least Ω(gn) agents are necessary to solve the problem, in the following,
we assume that there exist Θ(gn) agents in the torus. Then, we have the following theorem
on the lower bound of the total number of agent moves. Intuitively, this is because when
there exists an agent at each of nodes v0,0, v1,1, . . . , vn−1,n−1 and each of the other agents is
placed at a node with distance Ω(n) from vi,i (0 ≤ i ≤ n − 1) in the initial configuration,
and when the adversary makes agents at vi,i never leave their starting node, it is necessary
that at least gn − n agents need to stay at either v0,0, v1,1, . . . , or vn−1,n−1, which requires
the total number of Ω(gn2) moves in total.

▶ Theorem 3. A lower bound on the total number of agent moves to solve the g-partial
gathering problem in dynamic tori when k = Θ(gn) is Ω(gn2).

5 The case of 2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12

In this section, when 2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12, we propose an algorithm to
solve the g-partial gathering problem with O(n2) rounds and the total number of O(gn3)
moves. In the algorithm, agents aim to make a configuration such that there exist at least
2g + 1 agents in each of row rings. Then, agents achieve g-partial gathering by applying the
existing method [19] for g-partial gathering in 1-interval connected rings to each row ring
independently. To this end, agents repeat the following two phases n times: the counting
phase and the adjusting phase. In the counting phase, each agent in row ring Ri tries to move
horizontally to count the number of agents existing in Ri at the beginning of the counting
phase. In the adjusting phase, several agents in row rings with a lot of agents try to move
vertically to a row ring with less agents at the beginning of the adjusting phase.

The overall pseudocode is given in Algorithm 1 (the pseudocodes of the counting phase
and the adjusting phase are given as procedures Counting() and Adjusting(), respectively).
Global variables used in the algorithm are given in Table 2. In the following subsections, we
explain the details of each phase.

5.1 Counting phase
The aim of this phase is that each agent ah in row ring Ri calculates the total number of
agents existing in Ri at the beginning of this counting phase by making either of the following
two configurations: (i) Each agent ah travels once around the row ring Ri and gets IDs of

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:7

Table 2 Global variables used in proposed algorithms.

Variables for agent ah.
Type Name Meaning Initial value
int ah.phase phase number stored by ah 0 or 1
int ah.rounds number of rounds from some round 1
int ah.nVisited number of nodes that ai has visited from some round 0
int ah.nAgentsRowRing number of agents existing in the current row ring 0

int ah.rank ordinal number of how its ID is small
among IDs of agents at the same node 0

int ah.dir direction to which ah tries to move
(1: right or down, -1: left or up) 0

array ah.IDs[p] list of IDs that ah has observed in the phase p ⊥
Variables for node vi,j.
Type Name Meaning Initial value
int vij.phase phase number stored by vi,j 1
int vij.nAgentsCurrent number of agents staying at the current node vi,j 0
array vij.IDs[p] list of IDs stored by vi,j in phase p ⊥

array vij.nAgentsAdjust[p]
number of agents existing in the current row ring
at the beginning of the current adjusting phase
with phase number p

⊥

Algorithm 1 The behavior of agent ah for the proposed algorithm when 2gn + 2n − 1 ≤
k ≤ 2gn + 6n + 16g − 12.

Main Routine of Agent ah:
1 ah.phase := 1
2 while ah.phase ≤ n do
3 Counting()
4 Adjusting()
5 ah.phase++
6 Apply the existing method [19] to the currently staying row ring
7 Terminate the algorithm execution

all the agents existing in Ri, or (ii) it detects that all the agents existing in Ri are at the
same node. To this end, we use an idea similar to [12] which considers total gathering in
1-interval connected rings. First, each agent ah writes its ID ah.id and the current phase
number ah.phase to the variables vij.IDs[ah.phase] and vij.phase, respectively, on the current
node vi,j ’s whiteboard and then tries to move right for 3n rounds. During the movement, ah

memorizes values of observed IDs that are written in the current counting phase to array
ah.IDs[ah.phase]. After the 3n rounds, the number ah.nVisited of nodes that ah has visited
from the beginning of this counting phase is (a) at least n or (b) less than n due to missing
links. In case (a), ah must have completed traveling once around the row ring Ri. Hence, ah

can calculate the number ah.nAgentsRowRing of agents existing in Ri through the number
of observed IDs (i.e., |ah.IDs[ah.phase]|). Thus, it reaches configuration (i). In case (b) (i.e.,
ah has visited less than n nodes during the 3n rounds), we show in Lemma 4 that all the
agents existing in Ri stay at the same node (they reach configuration (ii)). Thus, through
the value vij.nAgentsCurrent of the current node v′

i,js whiteboard representing the number
of agents currently staying at vi,j, ah can calculate ah.nAgentsRowRing.

SAND 2023

2:8 Partial Gathering of Mobile Agents in Dynamic Tori

Algorithm 2 Procedure Counting() (vi,j is the current node of ah).
Main Routine of Agent ah:

1 vij.phase := ah.phase, vij.IDs[vij.phase] := vij.IDs[vij.phase] ∪ ah.id, vij.nAgentsCurrent++
2 ah.nVisited := 1, ah.rounds := 1, ah.IDs[ah.phase] := vij.IDs[vij .phase]
3 while ah.rounds ≤ 3n do
4 vij.nAgentsCurrent--
5 Try to move from the current node vi,j to the right neighboring node vi,j+1

6 if ah reached vi,j+1 (that becomes new vi,j) then
7 ah.nVisited++
8 if (vij.phase = ah.phase) ∧ (ah.nVisited ≤ n) then
9 ah.IDs[ah.phase] := ah.IDs[ah.phase] ∪ vij.IDs[vij.phase]

10 vij.nAgentsCurrent++, ah.rounds++
11 if ah.nVisited < n then ah.nAgentsRowRing := vij.nAgentsCurrent // all the agents in row

ring Ri stay at the current node
12 if ah.nVisited ≥ n then ah.nAgentsRowRing := |ah.IDs[ah.phase]| // ah traveled once

around the row ring
13 Terminate the counting phase and enter the adjusting phase

The pseudocode of the counting phase is described in Algorithm 2. Note that, during the
counting phase, an agent ah may visit more than n nodes and then the number of observed
IDs is more than the number of agents in the row ring when it is blocked less than 2n times.
In this case, ah stops measuring IDs when it has visited more than n nodes (line 8).

Concerning the counting phase, we have the following lemma.

▶ Lemma 4. Let nai be the number of agents existing in row ring Ri at the beginning of the
current counting phase with phase number p. Then, at the end of the counting phase, each
agent ah existing in Ri in phase p stores the correct value of nai to ah.nAgentsRowRing.

5.2 Adjusting phase
In this phase, several agents in a row ring with a lot of agents try to move vertically to a row
ring with few agents to reduce the gap of the number of agents between row rings. Concretely,
several agents in each row ring Ri first move horizontally in Ri and write the number of
agents existing in Ri at the beginning of this adjusting phase (i.e., ah.nAgentsRowRing for
agent ah), to each node’s whiteboard of Ri. Then, several agents belonging to a row ring
with at least 2g + 3 agents try to move in the torus vertically and stay at a node of a row
ring with less than 2g + 1 agents at the beginning of this adjusting phase. By repeating this
behavior and the counting phase explained before, agents eventually reach a configuration
such that there exist at least 2g + 1 agents in each row ring (and then g-partial is achieved
by applying the existing method [19] to each row ring independently).

First, we explain how to write the number nai of agents in Ri at the beginning of this
adjusting phase (or at the end of the counting phase just before) to each node’s whiteboard
of Ri. By Lemma 4, at the end of the counting phase just before, each agent ah in row ring
Ri knows the number nai (= ah.nAgentsRowRing) of agents currently existing in Ri. In
addition, by Algorithm 2, ah can get the list of agent IDs existing in Ri. Among the agents,
let ai

1 (resp., ai
2) be the agent with the smallest (resp., the second smallest) ID. Then, for n

rounds, ai
1 (resp., ai

2) tries to move right (resp., left) and then ai
1 (resp., ai

2) tries to move left
(resp., right) for the next n rounds. During the movement, ai

1 and ai
2 write values of nai for

the current phase p to variable vij.nAgentsAdjust[p] of each node vi,j ’s whiteboard. By this

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:9

behavior, we show in Lemma 5 that every node in Ri is visited by ai
1 or ai

2 and the value of
nai is stored when there exist at least two agents in Ri. Notice that it is possible that there
exists only one agent a in Ri at the beginning of some adjusting phase and a cannot visit all
nodes in Ri and write necessary information to nodes’ whiteboards in Ri. In this case, when
some agents in a row ring other than Ri try to move vertically and visit some node in Ri

(this method is explained in the next paragraphs), they can recognize that no information is
written to the node of Ri and there exist less than 2g + 1 (actually one) agents in Ri.

Next, we explain how agents in a row ring with many agents move vertically to a node of a
row ring with less agents. First, when nai ≥ 2g +3, for 3n rounds, each agent ah in Ri tries to
move right until reaching the node vi

min where the smallest ID is written in the counting phase
just before. Then, by the similar discussion of agents’ behaviors and the proof for Lemma 4,
all the agents in Ri that does not reach vi

min stay at the same node v′
i. From such a situation,

nai − (2g + 1) agents in total try to move vertically to visit a node in a row ring with less
than 2g + 1 agents (or node vi′,j with vi’j.nAgentsAdjust[p] < 2g + 1). Intuitively, among the
nai − (2g + 1) agents, around half agents try to move up and another half agents try to move
down. Concretely, let ah.rank be the ordinal number of how small its ID is among agents at the
same node vi,j (1 ≤ ah.rank ≤ vij.nAgentsCurrent). Then, when all the nai agents in Ri stay
at the same node vi

min (or v′
i), each agent ah with 1 ≤ ah.rank ≤ ⌊(nai − (2g + 1))/2⌋ (resp.,

⌊(nai−(2g+1))/2⌋+1 ≤ ah.rank ≤ nai−(2g+1)) belongs to the up group (resp., down group),
like Fig. 3(a). On the other hand, when there exist two nodes vi

min and v′
i where an agent exists,

let vi
more (resp., vi

less) be the node where at least ⌈nai/2⌉ (resp., at most ⌊nai/2⌋) agents exist
and let nai

more (resp., nai
less) be the number of agents staying at vi

more (resp., vi
less). Then,

when nai
more ≥ 2g+1, each agent ah at vi

more with 1 ≤ ah.rank ≤ ⌊(nai
more−(2g+1))/2⌋ (resp.,

⌊(nai
more−(2g+1))/2⌋+1 ≤ ah.rank ≤ nai

more−(2g+1)) and each agent ah′ at node vi
less with

1 ≤ ah′ .rank ≤ ⌊nai
less/2⌋ (resp., ⌊nai

less/2⌋ + 1 ≤ ah′ .rank ≤ nai
less) belong to the up group

(resp., the down group), like Fig. 3(b). When nai
more < 2g + 1, each agent ah at vi

more with
1 ≤ ah.rank ≤ ⌊(nai − (2g + 1))/2⌋ (resp., ⌊(nai − (2g + 1))/2⌋+ 1 ≤ ah.rank ≤ nai − (2g + 1))
belongs to the up group (reps., the down group), and agents at vi

less do not try to move in
this classification, like Fig. 3(c).

Thereafter, for n rounds, each agent in the up (resp., down) group tries to move up (resp.,
down) until it reaches a node in some row ring Ri′ with nai′ < 2g + 1 (or no value of nai′ is
written). By this behavior, since each column ring is represented as a 1-interval connected
ring, either an up group or a down group can visit a node in a row ring with less than 2g + 1
agents. By repeating such an adjusting phase and the previous counting phase n times in
total, we show that agents eventually reach a configuration such that there exist at least
2g + 1 agents in each of row rings (Lemma 5). Thus, they achieve g-partial gathering by
applying the existing method [19] to each row ring independently.

The pseudocode of the adjusting phase is described in Algorithm 3. In Algorithm 3, each
agent uses procedure DecideDirection() to determine the vertical direction it should move (or
it should keep staying at the current node), whose pseudocode is described in Algorithm 4.
For simplicity, we omit how to calculate ah.rank in Algorithm 4.

Concerning the adjusting phase, we have the following lemma.

▶ Lemma 5. After executing the adjusting phase n times in total, agents reach a configuration
such that there exist at least 2g + 1 agents in each of row rings.

Proof. First, we simply show that, when there exist at least two agents in Ri at the beginning
of the p-th adjusting phase, after ai

1 and ai
2 move right and left for 2n rounds (lines 1 to

15 of Procedure Adjusting()), the correct number nai of agents existing in a row ring Ri is
stored to variable vij.nAgentsAdjust[p] of each node vi,j’s whiteboard in Ri. By Procedure

SAND 2023

2:10 Partial Gathering of Mobile Agents in Dynamic Tori

𝑹𝒊
10

𝒗𝒎𝒊𝒏
𝒊

𝑹𝒊
7

a

𝑹𝒊
9

𝒗𝒎𝒐𝒓𝒆𝒊
𝑹𝒊

7

b

𝒗𝒍𝒆𝒔𝒔
𝒊

𝑹𝒊
6

𝒗𝒎𝒐𝒓𝒆𝒊
𝑹𝒊

4

c

𝒗𝒍𝒆𝒔𝒔
𝒊

: agent in up group : agent in down group

Figure 3 Examples of forming up groups and down groups (g = 3).

Adjusting(), agent ai
1 (resp., ai

2) first tries to move right (resp., left) for n rounds. When ai
1

and ai
2 start their behaviors at the same node, since at most one link is missing in each of

row rings at each round, every node is visited within this n rounds and the value of nai is
stored to each node’s whiteboard in Ri. When ai

1 and ai
2 start their behaviors at different

nodes and there exists at least one unvisited node during the n rounds, it means that ai
1

and ai
2 are blocked by the same link. In this case, for the next n rounds, they switch their

directions and ai
1 (resp., ai

2) tries to move left (resp., right). Then, by the similar discussion
of the case when they start their movements at the same node, every node is visited wihtin
this n rounds and the value of nai is stored to each node’s whiteboard in Ri. Thus, when
there exist at least two agents in Ri at the beginning of the p-th adjusting phase, the correct
value of nai is stored to vij.nAgentsAdjust[p] of each node vi,j’s whiteboard in Ri.

In the following, we discuss the number of agents in each row ring after executing the
adjusting phase n times. In the proof, we assume that k = 2gn + 2n − 1 holds (we can
show the lemma in the case of k > 2gn + 2n − 1 similarly). At the beginning of some
adjusting phase, we call a row ring Ri enough if there exist at least 2g + 1 agents in Ri.
Otherwise, we call the row ring lacking. In addition, we define the number diffi

enough (resp.,
diffi

lack) of how more (resp., less) agents exist in row ring Ri compared to 2g + 1, and it is
calculated as nai − (2g + 1) (resp., (2g + 1) − nai). Notice that diffi

enough and diffi
lack are

always non-negative numbers. Moreover, we define SumDiffenough =
∑

i|Ri is enough diffi
enough

(resp., SumDifflack =
∑

i|Ri is lacking diffi
lack). Then, we first show the following claim.

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:11

Algorithm 3 Procedure Adjusting() (vi,j is the current node of ah).
Main Routine of Agent ah:

1 ah.rounds := 1
2 if ah.nAgentsRowRing ≥ 2g + 3 then
3 if ah.id is smallest among ah.IDs[ah.phase] then ah.dir := 1
4 if ah.id is the second smallest among ah.IDs[ah.phase] then ah.dir := −1
5 while ah.rounds ≤ n do
6 vij.nAgentsCurrent--
7 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

8 if ah reached vi,j+ah.dir (that becomes new vi,j) then
vij.nAgentsAdjust[ah.phase] := ah.nAgentsRowRing

9 vij.nAgentsCurrent++, ah.rounds++
10 ah.dir := ah.dir × (−1)
11 while ah.rounds ≤ 2n do
12 vij.nAgentsCurrent--
13 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

14 if ah reached vi,j+ah.dir (that becomes new vi,j) then
vij.nAgentsAdjust[ah.phase] := ah.nAgentsRowRing

15 vij.nAgentsCurrent++, ah.rounds++
16 ah.dir := 1
17 while ah.rounds ≤ 5n do
18 if vi,j is not the node where min{ah.IDs[ah.phase]} is not written in

vij.IDs[vij.phase] then
19 vij.nAgentsCurrent--
20 Try to move from the current node vi,j to the right neighboring node vi,j+1

21 vij.nAgentsCurrent++
22 ah.rounds++
23 ah.dir := DecideDirection()
24 while ah.rounds ≤ 6n do
25 if vij .nAgentsAdjust[ah.phase] ≥ 2g + 1 then
26 vij.nAgentsCurrent--
27 Try to move from the current node vi,j to the right neighboring node vi+ah.dir,j

28 vij.nAgentsCurrent++
29 ah.rounds++

30 else
31 While ah.rounds ≤ 6n do ah.rounds++
32 Terminate the adjusting phase
33 // ah increments its phase number and starts the next counting phase

▷ Claim 6. At the end of each adjusting phase, compared to the beginning of the adjusting
phase, either of the following two properties holds: (i) The value of SumDifflack at least
halves, or (ii) The number of lacking rings decreases by at least one.

Proof. First, we briefly show that SumDiffenough = SumDifflack + n − 1 always holds. Let
nrenough (resp., nrlack) be the number of enough (resp., lacking) row rings. Notice that
nrenough = n − nrlack holds. Then, there exist nrlack × (2g + 1) − SumDifflack agents in total
in lacking row rings and hence there exist 2gn + 2n − 1 − (nrlack × (2g + 1) − SumDifflack)
agents in total in enough row rings. Since the total number of agents in enough row rings can
be also represented as nrenough × (2g + 1) + SumDiffenough, 2gn + 2n − 1 − (nrlack × (2g + 1) −
SumDifflack) = nrenough × (2g + 1) + SumDiffenough holds. Thus, since nrenough = n − nrlack
holds, the following equanality holds.

SAND 2023

2:12 Partial Gathering of Mobile Agents in Dynamic Tori

Algorithm 4 Procedure DecideDirection() (vi,j is the current node of ah).
Main Routine of Agent ah:

1 ah.dir := 0
2 if vij.nAgentsCurrent = ah.nAgentsRowRing then
3 // All the agents in the current row ring stay at the same node
4 Calculate ah.rank among the agents at the same node
5 if 1 ≤ ah.rank ≤ ⌊(vij.nAgentsCurrent − (2g + 1))/2⌋ then ah.dir := −1
6 else if

⌊(vij.nAgentsCurrent − (2g + 1))/2⌋ + 1 ≤ ah.rank ≤ vij.nAgentsCurrent − (2g + 1)
then ah.dir := 1

7 else
8 // There exist two nodes where an agent exists in the current row ring
9 Calculate ah.rank among the agents at the same node

10 if vij.nAgentsCurrent ≥ ⌈ah.nAgentsRowRing/2⌉ then
11 if vij.nAgentsCurrent ≥ 2g + 1 then
12 if 1 ≤ ah.rank ≤ ⌊(vij.nAgentsCurrent − (2g + 1))/2⌋ then ah.dir := −1
13 else if

⌊(vij.nAgentsCurrent−(2g+1))/2⌋+1 ≤ ah.rank ≤ vij.nAgentsCurrent−(2g+1)
then ah.dir := 1

14 else
15 if 1 ≤ ah.rank ≤ ⌊(ah.nAgentsRowRing − (2g + 1))/2⌋ then ah.dir := −1
16 else if ⌊(ah.nAgentsRowRing − (2g + 1))/2⌋ + 1 ≤ ah.rank ≤

ah.nAgentsRowRing − (2g + 1) then ah.dir := 1

17 else
18 if ah.nAgentsRowRing − vij.nAgentsCurrent ≥ 2g + 1 then
19 if 1 ≤ ah.rank ≤ ⌊(vij.nAgentsCurrent)/2⌋ then ah.dir := −1
20 else ah.dir := 1

21 return ah.dir

SumDiffenough = 2gn + 2n − 1 − (nrlack × (2g + 1) − SumDifflack) − nrenough × (2g + 1)
= 2gn + 2n − 1 − (nrlack × (2g + 1) − SumDifflack) − (n − nrlack) × (2g + 1)
= SumDifflack + n − 1.

Then, by line 2 of Algorithm 3, since several agents in a row ring with at least 2g+3 (resp.,
less than 2g + 3) agents try to (resp., do not try to) move vertically, the situation where the
number of agents trying to move vertically from an enough row ring to a node in lacking row
rings is the minimum, is that, among nrenough enough row rings, there exist 2g + 2 agents in
each of nrenough −1 enough row rings, and there exist the remaining 2g +1+SumDiffenough −
(nrenough − 1) agents in the other enough row ring. Then, by Algorithm 3 and the fact of
nrenough ≤ n and SumDiffenough = SumDifflack + n − 1, the number of agents trying to move
vertically is at least 2g + 1 + SumDiffenough − (nrenough − 1) − (2g + 1) = SumDiffenough −
(nrenough − 1) ≥ SumDiffenough − (n − 1) = SumDifflack + n − 1 − (n − 1) = SumDifflack. In
addition, since at most one link is missing in each of column rings, ⌊SumDifflack/2⌋ agents
can visit a node in a lacking row ring Rj

lack. If ⌊SumDifflack/2⌋ ≤ diffj
lack, SumDifflack halves

(property (i) holds). Otherwise, Rj
lack becomes an enough row ring from the next adjusting

phase (property (ii) holds). Therefore, the claim follows. ◁

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:13

Thus, by Claim 6 and the fact that the value of SumDifflack is at most = (2g+1)×(n−1) =
O(gn), after executing the adjusting phase n times in total, SumDifflack becomes 0, which
means there exist at least 2g+1 agents in each of row rings. Therefore, the lemma follows. ◀

We have the following theorem for the proposed algorithm.

▶ Theorem 7. When 2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12, the proposed algorithm solves
the g-partial gathering problem in dynamic tori with O(n2) rounds and the total number of
O(gn3) moves.

6 The case of k ≥ 2gn + 6n + 16g − 11

In this section, when k ≥ 2gn + 6n + 16g − 11, we propose an algorithm to solve the problem
with O(n2) rounds and the total number of O(gn2) (i.e., optimal) moves. In the algorithm,
agents aim to make a configuration such that there exist at least (n + 8)g agents in some
row ring Ri. Then, several agents that gathered in Ri are partitioned into several groups
each having at least g agents and they try to visit all the nodes in the torus in total. During
the movement, if some agent group starting from Ri visits a node with less than g agents,
the less than g agents join the group’s movement. Thus, after all nodes are visited, agents
achieve g-partial gathering.

Concretely, the algorithm comprises the following three phases: the observing phase, the
semi-gathering phase, and the achievement phase. In the observing phase, each agent moves
horizontally in the current row ring Ri and recognizes the minimum agent ID among agents
in Ri (the actual behavior is almost the same as that of the counting phase in Section 5.1).
In the semi-gathering phase, several agents in row ring Ri move in the torus, observe the
minimum ID written in each of row rings, and share the information with agents in Ri.
Thereafter, each agent tries to move vertically to visit a node in the row ring Rmin where
there exists an agent with the minimum ID among all agents in the initial configuration.
However, there may exist agents that cannot reach a node in Rmin due to link-missings.
Hence, in the achievement phase, agents in Rmin visit all the nodes in the torus in total to
achieve g-partial gathering.

6.1 Observing phase
The behavior of agents in this phase is almost the same as that of the counting phase in
Section 5.1. Concretely, each agent ah first writes its ID on the current node vi,j ’s whiteboard.
Thereafter, for 3n rounds, ah tries to move right in its row ring Ri and stores the observed IDs
during the movement. By this behavior, by the similar discussion of the proof for Lemma 4,
(i) each agent ah in row ring Ri travels once around the row ring, or (ii) all the agents in
Ri stay at the same node. Then, in either case, each agent ah can get the list of IDs for all
agents in Ri. Among the IDs, ah stores the minimum ID to variable ah.minIDrow, and it
selects the semi-gathering node vsGather as the node where the minimum ID is written in the
row ring (the information of the semi-gathering node is used in the next subsection).

The pseudocode in the observing phase is described in Algorithm 5. Variables newly used
from this section are given in Table 3. Notice that several variables are used in the following
phases. Concerning the observing phase, by the same proof idea as that in Lemma 4, we
have the following lemma.

▶ Lemma 8. After finishing the observing phase, each agent ah in row ring Ri stores the
minimum agent ID among agents existing in Ri in the initial configuration to variable
ah.minIDrow.

SAND 2023

2:14 Partial Gathering of Mobile Agents in Dynamic Tori

Table 3 Global variables newly used in Section 6.

Variables for agent ah.
Type Name Meaning Initial value

int ah.minIDrow the minimum agent ID among agents
existing in the same row ring as ah in c0

⊥

int ah.minIDall the minimum agent ID among all the agents in Arow7 ⊥
Variables for node vi,j.
Type Name Meaning Initial value
int vij.ID ID stored at vi,j ⊥

int vij.minIDrow the minimum agent ID among agents
existing in the row ring Ri in c0

⊥

int vij.minIDall the minimum agent ID among all the agents in Arow7 ⊥

Algorithm 5 The behavior of agent ah in the observing phase (vi,j is the current node of
ah).

Main Routine of Agent ah:
1 vij.ID := ah.id, vij.nAgentsCurrent++
2 ah.nVisited := 1, ah.rounds := 1, ah.IDs[ah.nAgentsRowRing] := ah.id

ah.nAgentsRowRing++
3 while ah.rounds ≤ 3n do
4 vij.nAgentsCurrent--
5 Try to move from the current node vi,j to the right neighboring node vi,j+1

6 if ah reached vi,j+1 (that becomes new vi,j) then
7 ah.nVisited++
8 if (vij.ID ̸=⊥) ∧ (ah.nVisited ≤ n) then
9 ah.IDs[ah.nAgentsRowRing] := vid.ID

10 ah.nAgentsRowRing++

11 vij.nAgentsCurrent++, ah.rounds++
12 if ah.nVisited ≥ n then
13 // ah traveled once around the row ring
14 Let min be the minimum ID among ah.IDs[]
15 ah.minIDrow := min
16 Select the semi-gathering node vsGather as a node where min (or ah.minIDrow) is written
17 if ah.nVisited < n then
18 // all the agents in row ring Ri stay at the current node
19 Let min be the ID of agent ah′ with ah′ .rank = 1
20 ah.minIDrow := min
21 Select the current node as the semi-gathering node vsGather

22 Terminate the counting phase and enter the semi-gathering phase

6.2 Semi-gathering phase
In this phase, agents try to move vertically to visit a node in the row ring R so that there exist
at least (n + 8)g agents in R. To this end, the semi-gathering phase comprises the following
two sub-phases: the recognizing sub-phase and the moving sub-phase. In the recognizing
sub-phase, several agents in each row ring Ri move horizontally to write the value of the
minimum agent ID among agents in Ri, move vertically to collect information of minimum
IDs written in each row ring, and share the information of the row ring Rmin where, in the
initial configuration, there exists the agent with the minimum ID among all agents that try
to move in the torus in this sub-phase, with other agents in Ri. In the moving sub-phase,
each agent moves vertically to visit a node in Rmin.

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:15

6.2.1 Recognizing sub-phase

By Lemma 8, at the beginning of the recognizing sub-phase, each agent ah in row ring Ri

knows the list of IDs of all agents in Ri. When the number of IDs is less than 7 (i.e., there
exist less than 7 agents in Ri in the initial configuration), agents in Ri do nothing in this
sub-phase (and the next moving sub-phase) and wait for other agents’ instructions, which is
described in Section 6.3. Hence, in the following, we describe the behavior of agents in a row
ring in which there exist at least 7 agents in the initial configuration. Notice that there exists
at least one such a row ring with at least 7 agents because we assume k ≥ 2gn + 6n + 16g − 11
in this section and thus it never happens that there exist at most 6 agents in each row ring.
We denote Rrow7 by the set of such row rings and Arow7 by the set of agents existing in
Rrow7 at the beginning of the recognizing sub-phase. Let ai

1 (resp., ai
2) be the agent with

the smallest (resp., the second smallest) ID among agents in Ri. Then, similar to the first
behavior of the adjusting phase in Section 5.2 (Algorithm 3), ai

1 (resp., ai
2) tries to move

right (resp., left) for n rounds and then tries to move left (resp., right) for n rounds. During
the movement, ai

1 and ai
2 write the value of ID of ai

1 (= ai
1.minIDrow or ai

2.minIDrow) to
variable vij.minIDrow of each node vi,j ’s whiteboard. By this behavior, by the same proof
idea of Lemma 5, the value of ai

1’s ID is stored to each node’s whiteboard in row ring Ri.
Thereafter, for 3n rounds, each agent ah tries to move right until visiting vsGather (where

ai
1 exists in the initial configuration). After the movement, by the similar discussion of the

proof of Lemma 4, all the agents in Ri that do not reach vsGather stay at the same node v′
i.

Between vsGather and v′
i, we call the node with more (resp., less) agents vi

more (resp., vi
less)

(tie is broken using agent IDs), and let nai
more be the number of agents at vi

more. Then, since
there exist at least 7 agents in Ri, nai

more ≥ 4 holds and the four agents at vi
more try to move

vertically to collect the information of minimum IDs written in each row ring. We use the
procedure called Splitting(), introduced in [18]. Concretely, let aiMore

1 (resp., aiMore
2 , aiMore

3 ,
and aiMore

4) be the agent with the smallest (resp., the second, third, and fourth smallest)
ID at vi

more. We call aiMore
1 and aiMore

2 (resp., aiMore
3 and aiMore

4) the up group (resp., the
down group). Then, each agent aiMore

h (1 ≤ h ≤ 4) tries to move up or down for 12n rounds.
Concretely, for the first 3n rounds, aiMore

h tries to move up regardless of whether it belongs
to the up group or the down group. Next, for the second 3n rounds, agents in the up (resp.,
down) group try to move up (resp., down). Thereafter, for the third 3n rounds, each agent
aiMore

h tries to move up. Finally, for the last (or fourth) 3n rounds, agents in the up (resp.,
down) group try to move up (resp., down). During the movement, aiMore

h memorizes the value
of the minimum ID that has ever observed to variable aiMore

h .minIDall. By this behavior, we
can show by [18] that either the up group or the down group travels ounce around the current
column ring, which means the group can know the value of the minimum agent ID among
Arow7. Without loss of generality, we assume that the up group (aiMore

1 and aiMore
2) traveled

once around the column ring. Then, after Splitting(), for n rounds, aiMore
1 and aiMore

3 (resp.,
aiMore

2 and aiMore
4) try to move up (resp., down) to visit a from where they started these

movements (i.e., vi
more). Since at most one link is missing in each of column rings, either

aiMore
1 or aiMore

2 can visit vi
more and either aiMore

3 or aiMore
4 can also visit vi

more. Hence, after
the movement, there exist at least two agents at vi

more, and they can know the minimum
agent ID among Arow7. Among the two agents, let aiMore

1′ (resp., aiMore
2′) be the agent with

a smaller (resp., larger) ID. Then, for n rounds, aiMore
1′ (resp., aiMore

2′) tries to move right
(resp., left) and writes the value of aiMore

h .minIDall (h = 1′, 2′) to the variable vij.minIDall
for each node vi,j ’s whiteboard in Ri. Then, since aiMore

1′ and aiMore
2′ can visit all the n nodes

in Ri in total, through vij.minIDall, each agent ah in Ri can store the correct value of the
minimum agent ID among Arow7 to ah.minIDall.

SAND 2023

2:16 Partial Gathering of Mobile Agents in Dynamic Tori

The pseudocode of the recognizing sub-phase is described in Algorithm 6. In Algorithm 6,
agents use Procedure Splitting(), whose pseudocode is described in Algorithm 7. For simplicity,
in Splitting(), we omit the description of from which node vsGather or v′ agents try to move
vertically using IDs in the case that there exist the same number of agents at both vsGather
and v′. In addition, for simplicity, we omit the detailed description of whether the up group
traveled once around the column ring or the down group did so.

Concerning the recognizing sub-phase, we have the following lemma.

▶ Lemma 9. Let Arow7 be the set of agents such that there exist at least 7 agents in their
initially belonging row ring in the initial configuration, and let Rrow7 be the set of row rings
having agents in Arow7 in the initial configuration. Then, after finishing the recognizing
sub-phase, each agent in Rrow7 recognizes the minimum agent ID among Arow7.

6.2.2 Moving sub-phase

In this sub-phase, agents try to visit a node in the row ring Rmin where there exists the
agent with the minimum ID among Arow7 in the initial configuration. First, for 3n rounds,
each agent ah in row ring Ri tries to move right until visiting a node vi

sGather where there
exists an agent with the minimum ID among all the agents in the current row ring Ri in the
initial configuration. Then, by a similar discussion of the proof of Lemma 4, agents that do
not reach vi

sGather stay at the same node v′
i. Next, ah calculates its rank among agents at

the same node. If its rank is at most (resp., more than) the half of the number of agents
at the current node, ah belongs to an up (resp., a down) group. Then, for n rounds, until
visiting a node in Rmin, ah tries to move up (resp., down) if it is in an up (resp., a down)
group. Since at most one link is missing in each column ring, either the up group or down
group can visit a node in Rmin after the movement. By this behavior, we show in Lemma 10
that there exist at least (n + 8)g agents in Rmin after finishing the moving sub-phase.

The pseudocode of the moving sub-phase is described in Algorithm 8. Notice that, in the
previous recognizing sub-phase, agents that belonged to an up group or a down group may
stay at a node not in Rrow7 at the beginning of the moving sub-phase due to link-missings.
In this case, such agents do nothing in this sub-phase and wait for other agents’ instructions
in the next phase (lines 2 and 3).

Concerning the moving sub-phase, we have the following lemma.

▶ Lemma 10. After finishing the moving sub-phase, there exist at least (n + 8)g agents in
some row ring.

Proof. By the behavior for the moving sub-phase (Algorithm 8), all agents existing in Rrow7
try to visit a node in Rmin and at least the half of such agents can visit there. Then, the
initial configuration such that the number of agents that try to visit a node in Rmin is the
minimum is that (1) there exist 7 agents in Rmin, (2) there exist 6 agents in each of n − 2
row rings, and (3) there exist the remaining agents in one row ring Ri. In this case, each
agent in the n − 2 row rings does not move in this sub-phase. In addition, it is possible that
two agents that, existed in Rmin in the initial configuration and belonged to an up or a down
group in the previous recognizing sub-phase, do not stay at a node in Rmin or Ri after the
movement. The same thing holds for agents in Ri. Thus, at the beginning of the moving
sub-phase, since there exist at least 5 agents in Rmin and they do not move in this sub-phase,
and since there exist at least k − 7 − 6(n − 2) − 2 = k − 6n + 3 agents in Ri, the number of
agents in Rmin at the end of the moving sub-phase is at least

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:17

Algorithm 6 The behavior of agent ah in the recognizing sub-phase (vi,j is the current
node of ah).

Main Routine of Agent ah:
1 ah.rounds := 1, ah.dir := 0
2 if ah.nAgentsRowRing < 7 then
3 while ah.rounds < 23n do ah.rounds++
4 Terminate the semi-gathering phase and enter the achievement phase
5 else
6 if ah.id is smallest among ah.IDs[] then ah.dir := 1
7 if ah.id is the second smallest among ah.IDs[] then ah.dir := −1
8 while ah.rounds ≤ n do
9 vij.nAgentsCurrent--

10 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

11 if ah reached vi,j+ah.dir (that becomes new vi,j) then vij.minIDrow := ah.minIDrow
12 vij.nAgentsCurrent++, ah.rounds++
13 ah.dir := ah.dir × (−1)
14 while ah.rounds ≤ 2n do
15 vij.nAgentsCurrent--
16 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

17 if ah reached vi,j+ah.dir (that becomes new vi,j) then vij.minIDrow := ah.minIDrow
18 vij.nAgentsCurrent++, ah.rounds++
19 while ah.rounds ≤ 5n do
20 if vij.ID ̸= vij.minIDrow then
21 vij.nAgentsCurrent--
22 Try to move from the current node vi,j to the right neighboring node vi,j+1

23 vij.nAgentsCurrent++
24 ah.rounds++
25 ah.minIDall := ah.minIDrow
26 Splitting()
27 ah.rounds := 1
28 while ah.rounds ≤ n do
29 if vij.minIDrow ̸= ah.minIDrow then
30 vij.nAgentsCurrent--
31 Try to move from the current node vi,j to the neighboring node vi+ah.dir,j

32 vij.nAgentsCurrent++
33 ah.rounds++
34 if vij.minIDrow = ah.minIDrow then
35 if ah visited all the nodes in the current column ring during Splitting() then

vij.minIDall := ah.minIDall
36 ah.minIDall := vij.minIDall
37 if ah.rank = 1 then ah.dir := 1
38 else if ah.rank = 2 then ah.dir := −1
39 while ah.rounds ≤ 2n do
40 vij.nAgentsCurrent--
41 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

42 vij.minIDall := ah.minIDall, vij.nAgentsCurrent++, ah.rounds++

43 Terminate the recognizing sub-phase and enter the moving sub-phase

SAND 2023

2:18 Partial Gathering of Mobile Agents in Dynamic Tori

Algorithm 7 Procedure Splitting() (vi,j is the current node of ah.)
Main Routine of Agent ah:

1 ah.rounds := 1, ah.dir := 0
2 if (vij.nAgentsCurrent ≥ ⌈ah.nAgentsRowRing/2⌉) ∧ (vij.nAgentsCurrent ≥ 4) then
3 if 1 ≤ ah.rank ≤ 2 then ah.dir := −1
4 else if 3 ≤ ah.rank ≤ 4 then ah.dir := 1
5 while ah.rounds ≤ 3n do
6 vij.nAgentsCurrent--
7 Try to move from the current node vi,j to the up neighboring node vi−1,j

8 vij.nAgentsCurrent++
9 If vij.minIDrow < ah.minIDall then ah.minIDall := vij.minIDrow

10 ah.rounds++
11 while ah.rounds ≤ 6n do
12 vij.nAgentsCurrent--
13 Try to move from the current node vi,j to the neighboring node vi+ah.dir,j

14 vij.nAgentsCurrent++
15 If vij.minIDrow < ah.minIDall then ah.minIDall := vij.minIDrow
16 ah.rounds++
17 while ah.rounds ≤ 9n do
18 vij.nAgentsCurrent--
19 Try to move from the current node vi,j to the up neighboring node vi−1,j

20 vij.nAgentsCurrent++
21 If vij.minIDrow < ah.minIDall then ah.minIDall := vij.minIDrow
22 ah.rounds++
23 while ah.rounds ≤ 12n do
24 vij.nAgentsCurrent--
25 Try to move from the current node vi,j to the neighboring node vi+ah.dir,j

26 vij.nAgentsCurrent++
27 If vij.minIDrow < ah.minIDall then ah.minIDall := vij.minIDrow
28 ah.rounds++
29 if (ah.rank = 1) ∨ (ah.rank = 3) then ah.dir := −1
30 else ah.dir := 1

(7 − 2) + ⌊(k − 6n + 3)/2⌋ ≥ 5 + (k − 6n + 3)/2 − 1
≥ 4 + (2gn + 16g − 8)/2
= 4 + gn + 8g − 4
= (n + 8)g

The second inequality comes from the assumption of k ≥ 2gn + 6n + 16g − 11. Therefore,
the lemma follows. ◀

6.3 Achievement phase
In this phase, agents in Rmin move in the torus to achieve g-partial gathering. Intuitively,
from Rmin, some 2g agents visit a node in a row ring. Thereafter, the 2g agents visit all the
nodes in the row ring in a way such that an agent group Ar with some g agents tries to move
right and another agent group Al with the other g agents tries to move left. In addition,
during the movement, when Ar or Al visits a node with less than g agents, the less than g

agents join the group’s movement. By executing such a behavior in each of the n row rings,
agents can achieve g-partial gathering.

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:19

Algorithm 8 The behavior of agent ah in the moving sub-phase (vi,j is the current node
of ah.)

Main Routine of Agent ah:
1 ah.rounds := 1, ah.dir := 0
2 if vij.minIDall =⊥ then
3 while ah.rounds ≤ 4n do ah.rounds++
4 else
5 while ah.rounds ≤ 3n do
6 if vij.ID ̸= vij.minIDrow then
7 vij.nAgentsCurrent--
8 Try to move from the current node vi,j to the right neighboring node vi,j+1

9 vij.nAgentsCurrent++,
10 ah.rounds++
11 if ah.rank ≤ ⌈vij.nAgentsCurrent/2⌉ then ah.dir := −1
12 else ah.dir := 1
13 while ah.rounds ≤ 4n do
14 if vij.minIDrow ̸= ah.minIDall then
15 vij.nAgentsCurrent--
16 Try to move from the current node vi,j to the neighboring node vi+ah.dir,j

17 vij.nAgentsCurrent++,
18 ah.rounds++

19 Terminate the moving sub-phase and enter the achievement phase

To this end, each agent ah in Rmin first executes procedure Counting() in Section 5.1 for
3n rounds. Then, ah can count the number of agents currently existing in Rmin. Thereafter,
for 3n rounds, ah tries to move right until visiting the node vmin

i,j with vmin
ij .ID = ah.minIDall.

Then, similarly to the previous discussion, all the agents in Rmin that do not reach vmin
i,j stay

at the same node v′
min. Between the two nodes, we call the node with more (resp., less) agents

vmore
min (resp., vless

min) (tie is broken using agent IDs). In addition, let Rℓ
fromMin (0 ≤ ℓ ≤ n − 1)

be the ℓ-th up row ring from Rmin. Here, we say a row ring Ri is ℓ-th up from row ring
Ri′ when i′ − i = ℓ holds. Notice that R0

fromMin is Rmin itself. Then, agents execute the
following sub-phases n times: in the ℓ-th sub-phase, 4g agents from vmore

min or vless
min try to move

vertically so that at least 2g agents visit a node in Rℓ
nomMin, and then at least 2g agents try

to move horizontally to visit all the nodes in Rℓ
fromMin.

First, as a special case, we explain the behaviors of the 0-th sub-phase (i.e., movements
in row ring R0

fromMin or Rmin). Let namore
min (resp., naless

min) be the number of agents staying
at vmore

min . When naless
min ≥ g, agents in Rmin do nothing for 2n rounds. Otherwise, several

agents at vmore
min move horizontally to visit vless

min. Concretely, each agent ah at vmore
min with

1 ≤ ah.rank ≤ g (resp., g+1 ≤ ah.rank ≤ 2g) belongs to a right-left group Arl (resp., left-right
group Alr). Then, for n rounds, each agent in Arl (resp., Alr) tries to move right (resp.,
left). By this behavior, Arl and Alr can visit all the n nodes in Rmin in total. During the
movement, if Arl or Alr visits vless

min, the agents that stayed at vless
min join the group’s movement.

Thereafter, for n rounds, each agent in Arl (resp., Alr) tries to move left (resp., right) until
visiting vmore

min . By this behavior, Arl or Alr can return to vmore
min , there exist at most two nodes

vmore
min and vless

min with an agent, and both vmore
min and vless

min have at least g agents. Notice that
the position of vless

min may change by these movements, but it does not affect the following
explanations. In the following, we explain the behavior of each i-th sub-phase (i ≥ 1) with
the updated numbers of namore

min and naless
min.

SAND 2023

2:20 Partial Gathering of Mobile Agents in Dynamic Tori

In the 1-st sub-phase, for n rounds, each agent ah at vmore
min with 1 ≤ ah.rank ≤ 2g (resp.,

2g + 1 ≤ ah.rank ≤ 4g) belongs to an up (resp., a down) group and tries to move up (resp.,
down) until visiting a node v1

fromMin in R1
fromMin. Since at most one link is missing in each

column ring at each round, the up group or the down group can reach v1
fromMin. Without

loss of generality, we assume that the up group reached there. Thereafter, among agents
in the up group, each agent ah with 1 ≤ ah.rank ≤ g (resp., g + 1 ≤ ah.rank ≤ 2g) belongs
to a right-left group Arl (resp., left-right group Alr). Then, for n rounds, each agent in
Arl (resp., Alr) tries to move right (resp., left). By this behavior, Arl and Alr can visit all
the n nodes in R1

fromMin in total. During the movement, when Arl or Alr visits a node with
less than g agents, the less than g agents join the group’s movement. However, if the number
nanew of agents in the updated group is at least 2g, using IDs, only g agents continue their
movements and the remaining nanew − g (≥ g) agents stay at the current node to reduce
the total number of agent moves. Thereafter, for n rounds, each agent in Arl (resp., Ale)
tries to move left (resp., right) until returning to v1

fromMin. By this behavior, Arl or Alr can
reach v1

fromMin.
Next, at the beginning of the 2-nd sub-phase, letting Cmore

min be the column ring including
vmore

min , there exist at least g agents at v1
fromMin (i.e., Arl or Alr), 2g agents at some node in

Cmore
min (i.e., the down group that may not have reached v1

fromMin in the 1-st sub-phase), and
namore

min − 4g agents at vmore
min . From this situation, for n rounds, until visiting a node v2

fromMin
in R2

fromMin, the 2g agents that may not have reached v1
fromMin in the 1-st sub-phase (the

down group in this explanation) try to move down, the g agents at v1
fromMin try to move up,

and the g agents at vmore
min whose ID is either of the 1-st, 2nd, . . ., or g-th smallest newly try

to move up. By this behavior, at least 2g agents can reach v2
fromMin by the similar discussion

of the 1-st sub-phase. Thereafter, the 2g agents try to move right or left and visit all the
n nodes in R2

fromMin, and some less than g agents at a node in R2
fromMin join a group’s

movement. Agents repeat such sub-phases until the number of agents at vmore
min becomes less

than 2g at the end of some sub-phase ℓ′.
In the (ℓ′ + 1)-th sub-phase, agents at vless

min execute the exact same behavior as that of
agents at vmore

min in the 1-st sub-phase. Thereafter, agents that existed at vless
min complete the

remaining sub-phases (i.e., until agents that existed in Rmin execute the sub-phases n times
in total). Then, agents achieve g-partial gathering. Notice that it is possible no agent at
vless

min moves in these sub-phases when there exist a large number of agents at vmore
min at the

beginning of the 1-st sub-phase. Agents at vless
min can determine whether or not they need

to move in the torus and when they should start moving if they need to move, by using
the information of naless

min and the total number of agents existing in Rmin calculated at the
beginning of this achievement phase.

Concerning the achievement phase, we have the following lemma.

▶ Lemma 11. After finishing the achievement phase, agents solve the g-partial gathering
problem.

Proof. First, in the 0-th sub-phase, when naless
min < g, by the behavior for the achievement

phase, 2g agents at vmore
min are partitioned into a right-left group Arl with at least g agents

and a left-right group Arl with at least g agents, and Arl (resp., Arl) tries to move right
(resp., left) for n rounds and then tries to move left (resp., right) for n rounds until returning
to vmore

min . In addition, during the movement, when Arl or Alr visits node vless
min with less than

g agents, the less than g agents join the group’s movement. Hence, by this behavior, at
least g agents or no agent exists at each node in Rmin. Thereafter, in the ℓ-th sub-phase
(1 ≤ ℓ ≤ n − 1), since at least 2g agents try to move up and another at least 2g agents try to
move down to visit the vℓ in the ℓ-th up ring Rℓ

fromMin from Rmin, at least 2g agents can

M. Shibata, N. Kitamura, R. Eguchi, Y. Sudo, J. Nakamura, and Y. Kim 2:21

reach vℓ. Then, by the same discussion in the case of the 0-th sub-phase, a right-left group
Arl and a left-right group Arl visit all the nodes in Rℓ

fromMin in total, at least g agents or
no agent exists at each node in Rℓ

fromMin, and Arl or Alr returns to vℓ. Hence, by executing
such a behavior in each row ring one by one, agents can achieve g-partial gathering.

In the following, we show that there exist the sufficient number of agents in Rmin to solve
the problem at the beginning of the achievement phase. To execute the above behaviors in
r consecutive row rings, at least (r + 3)g agents are required (4g agents are required when
agents from vmore

min or vless
min start their vertical movements for the first time, and additional g

agents are required otherwise). In addition, since agents start the above behavior from at
most two nodes vmore

min and vless
min, the situation where the required number of agents staying

in Rmin (i.e., agents staying at vmore
min or vless

min) is the maximum when agents starting from
vmore

min visit r′ (⌈n/2⌉ ≤ r′ ≤ n − 1) consecutive row rings in total is such that there exist
(r′ + 3)g + (g − 1) agents at vmore

min and there exist (n − r′ + 3)g + (g − 1) agents at vless
min. Thus,

(r′ + 3)g + (g − 1) + (n − r′ + 3)g + (g − 1) < (n + 8)g agents are required in Rmin at the
beginning of the achievement phase to solve the problem. In Lemma 10, we already showed
that such agents exist.

Therefore, the lemma follows. ◀

We have the following theorem for the proposed algorithm.

▶ Theorem 12. When k = O(gn) and k ≥ 2gn + 6n + gn − 11, the proposed algorithm solves
the g-partial gathering problem with O(n2) rounds and the total number of O(gn2) moves.

7 Conclusion

In this paper, we considered the g-partial gathering problem of mobile agents in n × n

dynamic tori and considered the solvability of the problem and the time and move complexity,
focusing on the relationship between values of k, n, and g. First, we showed that agents
cannot solve the problem when k = o(gn), and showed that agents require a total number
of Ω(gn2) moves to solve the problem when k = Θ(gn). Second, we showed that the
problem can be solved with O(n2) rounds and the total number of O(gn3) moves when
2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12. Finally, we showed that the problem can be
solved with O(n2) rounds and the total number of O(gn2) moves when k = O(gn) and
k ≥ 2gn + 6n + 16g − 11. From these results, our algorithms can solve the partial gathering
problem in dynamic tori with the asymptotically optimal number Θ(gn) of agents and the
second algorithm is also asymptotically optimal in terms of the total number of agent moves.

Future works are as follows. First, we consider the lower bound on the time complexity
to solve the problem. Next, we consider whether or not agents can solve the problem with
the asymptotically optimal total number of agent moves when k = Ω(gn) but it is not in the
range considered in Section 6. Finally, we will consider the solvability of the problem for
agents with weaker capabilities. In this paper, as a first step to propose algorithms for solving
the problem, we assumed that agents have distinct IDs, knowledge of k and n, common sense
of direction, and they behave fully synchronously. In addition, we assumed that each node
has a whiteboard. However, at this stage, we do not know whether or not agents with weaker
capability can also solve the problem (e.g., agents without distinct IDs, without the common
sense of direction, or agents that behave semi-synchronously or asynchronously). Hence, we
plan to consider algorithms using agents with such weak capabilities. We conjecture that, in
any of the above cases, agents cannot solve the problem or require more total number of
moves than the proposed algorithms.

SAND 2023

2:22 Partial Gathering of Mobile Agents in Dynamic Tori

References
1 D. Baba, T. Izumi, F. Ooshita, H. Kakugawa, and T. Masuzawa. Linear time and space

gathering of anonymous mobile agents in asynchronous trees. Theoretical Computer Science,
478:118–126, 2013.

2 S. Das, Di GA. Luna, D. Mazzei, and G. Prencipe. Compacting oblivious agents on dynamic
rings. PeerJ Computer Science, 7:1–29, 2021.

3 Y. Dieudonné and A. Pelc. Anonymous meeting in networks. Algorithmica, 74(2):908–946,
2016.

4 Y. Dieudonné, A. Pelc, and V. Villain. How to meet asynchronously at polynomial cost. SIAM
Journal on Computing, 44(3):844–867, 2015.

5 P. Fraigniaud and A. Pelc. Deterministic rendezvous in trees with little memory. DISC, pages
242–256, 2008.

6 T. Gotoh, Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa. Group exploration of
dynamic tori. ICDCS, pages 775–785, 2018.

7 R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’agents: Applications and performance of a
mobile-agent system. Softw., Pract. Exper., 32(6):543–573, 2002.

8 E. Kranakis, D. Krizanc, and E. Markou. Mobile agent rendezvous in a synchronous torus.
LATIN, pages 653–664, 2006.

9 E. Kranakis, D. Krozanc, and E. Markou. The Mobile Agent Rendezvous Problem in the Ring.
Synthesis Lectures on Distributed Computing Theory, Vol. 1, 2010.

10 D.B. Lange and M. Oshima. Seven good reasons for mobile agents. CACM, 42(3):88–89, 1999.
11 Di GA. Luna, S. Dobrev, P. Flocchini, and N. Santoro. Distributed exploration of dynamic

rings. Distributed Computing, 33(1):41–67, 2020.
12 Di GA. Luna, P. Flocchini, L. Pagli, G. Prencipe, N. Santoro, and G. Viglietta. Gathering in

dynamic rings. Theoretical Computer Science, 811:79–98, 2018.
13 F. Ooshita, S. Kawai, H. Kakugawa, and T. Masuzawa. Randomized gathering of mobile agents

in anonymous unidirectional ring networks. IEEE Transactions on Parallel and Distributed
Systems, 25(5):1289–1296, 2014.

14 M. Shibata, S. Kawai, F. Ooshita, H. Kakugawa, and T. Masuzawa. Partial gathering of
mobile agents in asynchronous unidirectional rings. Theoretical Computer Science, 617:1–11,
2016.

15 M. Shibata, N. Kawata, Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa. Move-optimal
partial gathering of mobile agents without identifiers or global knowledge in asynchronous
unidirectional rings. Theoretical Computer Science, 822:92–109, 2020.

16 M. Shibata, D. Nakamura, F. Ooshita, H. Kakugawa, and T. Masuzawa. Partial gathering
of mobile agents in arbitrary networks. IEICE Transactions on Information and Systems,
102(3):444–453, 2019.

17 M. Shibata, F. Ooshita, H. Kakugawa, and T. Masuzawa. Move-optimal partial gathering of
mobile agents in asynchronous trees. Theoretical Computer Science, 705:9–30, 2018.

18 M. Shibata, Y. Sudo, J. Nakamura, and Y. Kim. Uniform deployment of mobile agents in
dynamic rings. SSS, pages 248–263, 2020.

19 M. Shibata, Y. Sudo, J. Nakamura, and Y. Kim. Partial gathering of mobile agents in dynamic
rings. arXiv preprint , 2022. arXiv:2212.03457.

20 M. Shibata and S. Tixeuil. Partial gathering of mobile robots from multiplicity-allowed
configurations in rings. SSS, pages 264–279, 2020.

https://arxiv.org/abs/2212.03457

	1 Introduction
	1.1 Background and Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 System Model
	2.2 The Partial Gathering Problem

	3 The case of k = o(gn)
	4 Lower bound on the total number of agent moves when k = Theta(gn)
	5 The case of 2gn+2n-1 <= k <= 2gn + 6n +16g -12
	5.1 Counting phase
	5.2 Adjusting phase

	6 The case of k > = 2gn + 6n +16g -11
	6.1 Observing phase
	6.2 Semi-gathering phase
	6.2.1 Recognizing sub-phase
	6.2.2 Moving sub-phase

	6.3 Achievement phase

	7 Conclusion

