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Abstract
This paper proposes a simple algorithm for computing single-source reachability in a temporal
graph under waiting-time constraints, that is when waiting at each node is bounded by some time
constraints. Given a space-time representation of a temporal graph, and a source node, the algorithm
computes in linear-time which nodes and temporal edges are reachable through a constrained
temporal walk from the source.
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1 Introduction

Reachability, that is connectivity through a path, is a fundamental notion in graphs. There
exist simple and elegant algorithms that determine efficiently which nodes or edges can be
reached from a given source node, and finding optimal paths realizing such reachability.
On the other hand, temporal graphs, where edges evolve over time, offer a richer variety
of temporal connectivity, especially when considering waiting constraints as we discuss
below. By focusing on reachability without concern for any optimization criterion, we aim at
designing a simple algorithm under waiting constraints.

Temporal graphs

Temporal graphs arose with the need to better model contexts where the appearance of inter-
actions or connections depends on time, such as epidemic propagation or transport networks.
Starting with the work on time-dependent networks [8] and the telephone problem [5], the dis-
crete time version of temporal graphs we consider here was already investigated in [2, 16, 18]
and introduced later in various contexts ranging from social interactions to mobile networks
and distributed computing (see e.g. [6, 14, 13]). This classical point-availability model of
temporal graph is the following. The availability of an edge (u, v) at time τ is modeled by a
temporal edge e = (u, v, τ, λ). It represents the possibility to traverse the edge from u at
time exactly τ with arrival in v at time τ + λ. We refer to τ and τ + λ as the departure
time and arrival time of e respectively, while λ > 0 is called the travel time of e. Notice
that we consider travel time to be strictly positive, which is a natural assumption when
it comes down to application like, for example, transport networks. A temporal walk can
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Figure 1 A temporal graph with waiting constraints. Each temporal edge in the picture is labeled
with its departure time and has travel time one, each node has minimum waiting-time α = 0 and
maximum waiting-time β = 1. The only temporal edge entering d and reachable from s is (a, d, 7, 1)
through the temporal walk (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (a, d, 7, 1). Indeed, following
any of the two other edges (b, d, 5, 1) and (c, d, 4, 1) would require to wait 2 > β units of time either
at b (after edge (a, b, 2, 1)) or c (after edge (s, c, 1, 1)).

then be defined as a sequence of temporal edges such that each temporal edge arrives at the
departing node of the next one, and the arrival time of each temporal edge is less or equal to
the departure time of the next one. The inequality means that it is possible to wait at the
node in-between two consecutive temporal edges. In particular, the time elapsed between
the arrival time of an edge and the departure of the next one represents the amount of time
spent waiting at the node. We distinguish such a walk from a temporal path, which is a
temporal walk visiting at most once any node.

Without waiting constraints, that is when waiting at a node is unrestricted, numerous
works have investigated single-source temporal path computation with a primary focus on
earliest arrival. After several works inspired by Dijkstra algorithm (see e.g. [2, 3, 16, 18]), a
simple and elegant linear-time algorithm for earliest arrival time was first claimed in [20] with
a similar algorithm as [10] through a single scan of temporal edges ordered by non-decreasing
departure time. Assuming strictly positive travel times is important here as it ensures that
the temporal edges of any temporal path appear in order during this scan. These algorithms
indeed focus their target on temporal paths rather than walks, since unrestricted waiting
allows to transform any walk into a path by waiting at nodes instead of performing any loops.
In this setting they allow to determine which nodes or edges are reachable. However, we
consider the following more general model.

Waiting constraints

We consider temporal graphs subject to waiting constraints. In such graphs, during a temporal
walk, it is not possible to wait at a node less than α time or more than β time, before moving
to another node. Such constraints can be used to model, for example, preferences of a user
in a public transport network, or to take into account incubation time and recovery time of
a disease in a temporal network of contacts.

We focus on the following rechability problem. We say that a temporal edge e = (u, v, τ, λ)
is reachable from a node s if there exists a temporal walk from s ending with e and respecting
waiting constraints. The reachability problem consists in identifying all the temporal edges
that are reachable from a given source node s (see Figure 1 for an example). Note that we can
easily compute which nodes are reachable from this. Moreover, this problem generalizes the
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single-source earliest arrival time problem: indeed, given the set of the s-reachable edges, a
linear scan allows to identify for each node v the s-reachable edge with head v that has lowest
arrival time, and which corresponds to the earliest arrival time at v. Computing the number
of nodes reachable from a given source can be interesting when measuring connectivity
properties of a temporal network [9]. Reachability of edges additionally provides information
about all times at which it is possible to reach such nodes. This is related to the profile
problem [11], which consists in computing a function that for each possible departure time
from the source return the earliest arrival time towards the destinations.

Waiting constraints significantly modify temporal connectivity. Most strikingly, it has
been proved that the computation of temporal paths in this setting becomes NP-hard [7].
While unrestricted waiting makes reachability through temporal paths or walks equivalent,
this result moves the interest to the sole case of temporal walks when dealing with bounded
waiting. It is thus necessary to design algorithms following a different approach.

In a recent break-through, [1] proposes an algorithm computing single-source optimal
temporal walks under waiting-time constraints in O(M log M) time, where M is the total
number of temporal edges in the graph. It computes walks that optimize a linear combination
of the most classical criteria, and can thus solve the reachability problem as well. The
algorithm is quite involved. It relies on first transforming the temporal graph so as to zero
all travel times and then performing a Dijkstra computation for each time instant when a
temporal edge departs or arrives. More precisely, it first builds an equivalent temporal graph
where all edges have zero travel time. This is done by adding a dummy node with appropriate
waiting restrictions for each temporal edge. Note that this can considerably increase the
number of nodes. Then, it scans time instants when temporal edges occur in increasing order.
For each time instant t, a static directed graph is constructed and a Dijkstra computation
allows to update the reachability of nodes with temporal edges up to time t. It feels natural
to investigate whether in the context of bounded waiting it is possible to develop an easier
and more efficient method to solve the simpler reachability problem.

Contribution

We develop an algorithm to solve the reachability problem in temporal graphs subject to
waiting constraints. The main strength of the algorithm is its simplicity, which comes with
no downplay in efficiency, since it runs in linear time. It thus improves by a factor log M

the state of the art in the setting of positive travel times. The algorithm performs a linear
scan of the list of temporal edges, in a spirit similar to [10]. In this case, however, the
algorithm requires in input not one, but two, sorted lists, one containing the temporal edges
sorted by departure time and the other by arrival time. Exploiting these two lists is a new
technique for handling waiting constraints that could be useful for computing optimum
temporal walks or other temporal connectivity problems. Interestingly, this representation of
the temporal graph through two lists is closely related to the more classical “space-time” (or
“time-expanded”) graph [17, 18, 19, 15, 14] where each node is split into node events, one for
each time where a temporal edge arrives to it or departs from it, and each temporal edge is
turned into an arc between two node events. If the input is given as a list of temporal edges,
the two appropriate lists can be obtained in O(M log M) time. However, our algorithm runs
in linear time when given a space-time representation as input since two appropriate lists
can easily be obtained from a topological ordering of the corresponding static directed graph.
The positive travel time assumption can be loosened to a more general acyclic setting as
described in a follow-up paper [4].

SAND 2023
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The paper is organized as follows. In Section 2 we define the main notions. In Section 3
we present our main algorithmic result. Finally, in Section 4 we show how to adapt our
algorithm in order to take as input a space-time representation of a temporal graph.

2 Preliminary definitions

A temporal graph is a tuple G = (V, E, α, β), where V is the set of nodes, E is the set of
temporal edges and α, β ∈ [0, +∞]V are minimum and maximum waiting-times at each node.
A temporal edge e is a quadruple (u, v, τ, λ), where u ∈ V is the tail of e, v ∈ V is the head
of e, τ ∈ R is the departure time of e, and λ ∈ R>0 is the travel time of e. We also define the
arrival time of e as τ + λ, and we let dep(e) = τ and arr(e) = τ + λ denote the departure
time and arrival time of e respectively. For the sake of brevity, we often say edge instead
of temporal edge. We let n = |V | and M = |E| denote the number of nodes and edges
respectively.

Given a temporal graph G = (V, E, α, β) a walk Q from u to v, or a uv-walk for short, is
a sequence of temporal edges ⟨e1 = (u1, v1, τ1, λ1), . . . , ek = (uk, vk, τk, λk)⟩ ⊆ Ek such that
u = u1, vk = v, and, for each i with 1 < i ≤ k, ui = vi−1 and ai−1 + αui ≤ τi ≤ ai−1 + βui

where ai−1 = τi−1 + λi−1 is the arrival time of ei−1. Note that the waiting time τi − ai−1 at
node ui is constrained to be in the interval [αui , βui ]. Note that since travel times are positive,
such a walk is strict in the sense that τi−1 < τi for 1 < i ≤ k as the constraint ai−1 +αui

≤ τi

implies τi ≥ ai−1 = τi−1 + λi−1 > τi−1 for λi−1 > 0. The departing time dep(Q) of Q is
defined as τ1, while the arrival time arr(Q) of Q is defined as τk +λk. We say that a temporal
edge e = (x, y, τ, λ) extends Q when x = vk and arr(Q) + αx ≤ τ ≤ arr(Q) + βx. When e

extends Q, we can indeed define the walk Q.e = ⟨e1, . . . , ek, e⟩ from u to y. Moreover, we
also say that e extends ek as it indeed extends any walk Q having ek as last edge. We also
say that an edge e is an s-reachable edge whenever there exists an sv-walk ending with edge
e. Let us now introduce some orderings of temporal edges with respect to certain temporal
criteria. Given an ordering of the temporal edges Eord we use e <Eord f to denote that e

appears before f in Eord. We say that an ordering Eord of all the temporal edges is departure
sorted if the edges are ordered by non-decreasing departure time in Eord, that is we have
e <Eord f whenever e, f ∈ E satisfy dep(e) < dep(f). Similarly, we say that an ordering
Eord of all the temporal edges is arrival sorted if the edges are ordered by non-decreasing
arrival time in Eord, that is we have e <Eord f whenever e, f ∈ E satisfy arr(e) < arr(f).

Finally, we define the doubly-sorted representation of a temporal graph (V, E, α, β) as
a data-structure with two lists (Edep, Earr), containing |E| quadruples each, representing
all temporal edges in E, where Edep is a list sorted by non-decreasing departure time and
Earr is a list sorted by non-decreasing arrival time. Moreover, we assume that we have
implicit pointers between the two lists, that link each quadruple of one list to the quadruple
representing the same temporal edge in the other list.

Without loss of generality, we can restrict our attention to nodes appearing as head or
tail of at least one temporal edge and we thus assume |V | = O(|E|). An algorithm is said
to be linear in time and space when it runs in O(|E|) time and uses O(|E|) space. Given a
doubly sorted representation (Edep, Earr), we also assume that we are given for each node v

the list Edep
v of pointers to temporal edges with tail v ordered by non-decreasing departure

time, as it can be computed in linear time and space from Edep through bucket sorting. We
assume that each list Earr, Edep, or Edep

v is stored in an array T such that each element T [i]
can be accessed directly through its index i ∈ [1, |T |] in constant time. Given two indexes
i ≤ j, we also let T [i : j] denote the sub-array of elements of T with index in [i, j].
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3 A linear-time Algorithm to compute reachability

In this section we will provide our main result: an algorithm that solves in linear time and
space the reachability problem, which is defined as follows.

Singles-Source Reachability Problem. Given a temporal graph with waiting
constraints G = (V, E, α, β) and a source node s, compute the set of all temporal
edges that are s-reachable.

In the following we will assume to be given a doubly-sorted representation (Edep, Earr)
of the temporal graph. We design an algorithm which mainly consists in scanning linearly
edges in Earr while updating the set Av of s-reachable edges terminating sv-walks in the
temporal graph resulting from the edges read so far. To help identifying edges that will
appear in such walks in next iterations, we also mark edges that extend these walks.

We now describe more precisely how edges are scanned and marked as formalized in
Algorithm 1. We first build the lists Edep

v of temporal edges with tail v by bucket sorting
Edep at Line 1. We then identify the s-reachable edges as follows. We linearly scan Earr. In
the temporal graph resulting from the temporal edges read up to edge e = (u, v, τ, λ) ∈ Earr,
the only walks from s that have not been considered yet must contain e, and must have it as
last edge as Earr is sorted by non-decreasing arrival time. If its tail u is s, or if e is marked,
then we know that there exists a walk from s to its head v. In that case, we add edge e to Av

at Line 9, and we then mark edges that extend e, that is edges in Edep
v with departure time

in [a + αv, a + βv], since the arrival time of e is a = τ + λ. These edges appear consecutively
in Edep

v which is processed linearly as walks from s to v are identified. This process is done
in Lines 10-14 in Algorithm 1, starting from the index pv of the last processed edge in Edep

v ,
and such edges f that extend e are marked at Line 13 before updating pv. Moreover, we use
classical parent pointers to be able to compute an sv-walk for each s-reachable edge with
head v. Each parent pointer P [f ] of an edge f is initially set to a null value ⊥ at Line 6.
Whenever we mark edge f , that extend the currently scanned edge e, we set the parent
pointer of f to e. If f is an s-reachable edge at v, we can then get an sv-walk by following
the parent pointer P [f ], P [P [f ]], . . . .

▶ Theorem 1. Given a doubly-sorted representation of a temporal graph with waiting
constraints G = (V, E, α, β) and a source node s ∈ V , Algorithm 1 computes all s-reachable
temporal edges in linear time and space.

Proof.
Correctness. Let us denote by Gk = (V, Earr[1 : k], α, β) the temporal graph induced by
the first k temporal edges in Earr. We will prove, by induction on k, the following two
invariants:

(I1
k) For every node v, Av contains all s-reachable edges with head v in Gk.

(I2
k) The marked edges are all the edges in E that extend a walk from s in Gk.

The correctness of the algorithm will follow from invariant (I1
k) for k = |E|. The invariants

are satisfied for k = 0 since there are no edges in G0 while the sets (Av)v∈V of s-reachable
edges are initially empty and no edge is initially marked.

Now suppose that the two invariants hold for k − 1, with k ≥ 1, and let us prove that
they still hold for k after scanning the kth edge ek = (u, v, τ, λ) in Earr. To prove (I1

k) and
(I2

k), we first show that the condition of the if statement at Line 8 is met when ek is an
s-reachable edge in Gk. It is obviously the case when u = s as ⟨ek⟩ is in Gk, or when ek was

SAND 2023



4:6 Temporal Reachability Under Waiting-Time Constraints in Linear Time

Algorithm 1 Computing, for each node v, the set Av of all s-reachable edges with
head v.

Input: A doubly-sorted representation (Earr, Edep) of a temporal graph G with
waiting constraints (α, β), and a source node s ∈ V .

Output: The sets (Av)v∈V of s-reachable edges at each node v sorted by
non-decreasing arrival time.

1 For each node v, generate the list Edep
v by bucket sorting Edep.

2 For each node v do
3 Set Av := ∅. /* Set of s-reachable edges (as a sorted list). */
4 Set pv := 0. /* Index of the last processed edge in Edep

v . */

5 Set all the edges in Earr as unmarked.
6 Set P [e] :=⊥ for each edge e ∈ Earr./* Parent of e, initially null. */
7 For each edge e = (u, v, τ, λ) in Earr do
8 If u = s or e is marked then

/* e is s-reachable. */
9 Av := Av ∪ {e}

10 Let a = τ + λ be the arrival time of e.
/* Process further edges from v with dep. time ≤ a + βv: */

11 Let l > pv be the first index of an edge (v, w, τ ′, λ′) ∈ Edep
v such that

τ ′ ≥ a + αv (set l := |Edep
v | + 1 if no such index exists).

12 Let r ≥ l be the last index of an edge (v, w, τ ′, λ′) ∈ Edep
v such that

τ ′ ≤ a + βv (set r := l − 1 if no such index exists).
/* Mark unmarked edges with dep. time in [a + αv, a + βv]: */

13 If l ≤ r then mark each edge f ∈ Edep
v [l : r] and set P [f ] := e.

14 Set pv := r.

15 Return the sets (Av)v∈V .

previously marked, as Invariant (I2
k−1) then implies that it extends a walk Q from s in Gk−1

and that Q.ek is a walk in Gk. The converse also holds: if ek is an edge of a walk Q from s

in Gk, then either it is the first edge and we have u = s or the sequence Q′ of edges before
ek in Q is a walk in Gk−1 and (I2

k−1) implies that it is marked.
Note that when ek appears in a walk Q of Gk, it must be the last edge of Q as Earr is

sorted by non-decreasing arrival time and edges have positive travel time. This allows to
prove (I1

k): as we assume (I1
k−1), we just have to consider walks from s that are in Gk but

not in Gk−1, that is those containing ek. Since all these walks have ek as last edge, and ek is
the only edge added to Av when such walks exist, we can conclude that (I1

k) holds.
Similarly, to prove (I2

k) when (I2
k−1) holds, we just have to consider the edges extending

a walk Q from s which is in Gk but not in Gk−1. As discussed above, when such a walk
Q exists, ek is its last edge and the condition of the if statement Line 8 holds. Edges
extending such a walk Q are thus those extending ek, that is all edges f ∈ Edep

v such that
a + αv ≤ dep(f) ≤ a + βv. Note that the ordering of Edep

v implies that these edges are
consecutive in Edep

v . If no such edges exist, let l′ and r′ designate the first and last indexes
respectively where they are placed in Edep

v . To prove (I2
k), it thus suffices to prove that all

edges in Edep
v [l′ : r′] are marked after scanning ek and that only edges in Edep

v [l′ : r′] are
marked during the iteration for ek (if no such edges exist we prove that we mark no edges).
Consider the values l and r computed at Lines 11 and 12 respectively. If no edge f extends
ek, then we get r = l − 1 and no edge is marked. Now, we assume that such edges exist and
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that l′ and r′ are well defined. First assume l ≤ r and thus that l was not set to |Edep
v | + 1.

The choice of l, r then imply a + αv ≤ dep(Edep
v [l]) and dep(Edep

v [r]) ≤ a + βv. We thus
have l′ ≤ l ≤ r ≤ r′ and all marked edges at Line 13 are in Edep

v [l′ : r′]. Moreover, the
choice of r indeed then implies r = r′. We still need to prove that edges in Edep

v [l′ : l − 1]
have already been marked. Otherwise, when r = l − 1, no edge is marked. This occurs
when pv ≥ r′ and we then have l = pv + 1. In both cases, it remains to prove that all edges
f ∈ Edep

v [l′ : min{l − 1, r′}] have already been marked. This interval is non empty when
l′ ≤ l − 1 and thus pv = l − 1 by the choice of l. We thus have pv ≥ min{l − 1, r′}. Let i be
the index of f in Edep

v and consider the iteration j < k when pv was updated from a value
smaller than i to a value r′′ ≥ i where l′′ and r′′ denote the indexes computed for variables l

and r respectively during the j-th iteration for edge ej ∈ Earr.
Since Earr is sorted by non-decreasing arrival time, the arrival time a′ of ej satisfies

a′ ≤ a and we thus have dep(f) ≥ a + αv ≥ a′ + αv. The choice of index l at Line 11 in that
iteration thus guarantees that the index l′′ must satisfy l′′ ≤ i. We thus have l′′ ≤ i ≤ r′′

and f was marked at Line 13 during the jth iteration. This completes the proof of (I2
k).

We finally prove that the parent pointers allow us to compute for each s-reachable edge
f = (u, v, τ, λ) with head v an sv-walk ending with f . If f ∈ Av and it is not marked, then
P [f ] =⊥, and we must have u = s as f was added to Av. In this case, ⟨f⟩ is an sv-walk itself.
Now consider the case f ∈ Av and f is marked. Consider the iteration k where f was marked.
By (I2

k−1) and (I2
k), f extends a walk from s ending with ek, where ek is the edge scanned

at iteration k, and P [f ] was then set to ek. This guarantees by a simple induction that,
if P [f ] ̸=⊥, by following the parent pointers in classical manner, namely P [f ], P [P [f ]], . . . ,
until ⊥ is found, it is possible to obtain a walk terminating with edge f .

Complexity analysis. The preprocessing of Edep and the initialization from Line 1 to Line 6
clearly take linear time. The main for loop scans each temporal edge e = (u, v, τ, λ) in Earr

exactly once. For each iteration there are three operations that may require non-constant
time: the computation of l and r at Lines 11 and 12, and marking edges in Edep

v [l, r] at
Line 13. They all take O(r − pv) time as l and r can be found by scanning edges in Edep

v

from pv + 1. Thanks to the update of the index pv to r, each edge in Edep
v is processed at

most once for a total amortized cost of O(|Edep
v |). Overall, this leads to a time complexity of

O(|E| +
∑

v∈V |Edep
v |) = O(|E|). Algorithm 1 thus runs in linear time. Finally, let us notice

that for all nodes v, the set Av has size bounded by the number of temporal edges with head
v. We thus have

∑
v∈V |Av| ≤ |E|, and the space complexity of Algorithm 1 is linear. ◀

4 Taking a space-time representation as input

Let us first recall the definition of the “space-time” representation [17]. It consists in a
transformation of a temporal graph into a static graph by introducing a copy of each node
for each possible time instant. Each temporal edge is then turned into a static edge from the
two corresponding copies of its tail and head. We consider here a variant where we introduce
copies of a node only for time instants corresponding to a departure time of an edge from
that node, or an arrival time of an edge to that node, following the approach of [19].

Formally, given a temporal graph G = (V, E), its space-time representation is a directed
graph D = (W, F c ∪ F w), where:

The nodes in W are labeled nodes vτ , where v ∈ V refers to a node of G and τ is a time
label. More precisely, vτ ∈ W if and only if there exists a temporal edge in E with tail v

and departure time τ or a temporal edge with head v and arrival time τ . We will also
refer to such nodes as copies of v. Let us denote with Predw(vτ ) the copy of v in W with
maximum time label less than τ , if it exists.

SAND 2023
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Figure 2 Space-time representation of the temporal graph of Figure 1. Plain arcs cor-
respond to temporal edges while dotted arcs correspond to waiting at a node. The tem-
poral walk (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (a, d, 7, 1) corresponds to the directed path
s1, a2, b3, b4, c5, a6, a7, d8. Note that the directed path s1, a2, b3, b4, b5, d6 does not corresponds to a
valid temporal walk, since waiting at node b from time 3 to time 5 violates the constraint β = 1.

We distinguish two types of arcs F c and F w called connection arcs and waiting arcs
respectively. The set F c contains an arc (uτ , vτ+λ) for each temporal edge e = (u, v, τ, λ) ∈
E. These arcs represent a temporal connection between nodes in V and are called
connection arcs. Note that each arc (vτ , wν) in F c satisfies τ < ν, since travel times are
positive. The set F w is defined to contain an arc (Predw(vτ ), vτ ) for each v ∈ V and for
each copy vτ of v such that Predw(vτ ) is defined. These arcs represent the possibility to
wait at a node in v ∈ V during a walk in G and are called waiting arcs. Note that each
arc (vτ , vν) in F w satisfies τ < ν.

The main property of this representation is that any temporal walk Q corresponds to a
directed path in the representation using arcs in F c corresponding to temporal edges of Q plus
waiting arcs in F w each time the walk waits at a node (see Figure 2 for an example). Note
that the converse is also true in the unrestricted waiting setting but not with waiting-time
constraints.

We will now show that Algorithm 1 runs correctly when Earr and Edep satisfy weaker
requirements and how to compute such lists from a space-time representation.

Let us introduce some orderings of temporal edges with respect to certain temporal
criteria. We say that an ordering Eord of the edges of a temporal graph G is walk-respecting
when the edges of any walk Q in G appear in order in Eord. Equivalently, Eord is walk-
respecting when for any pair e, f ∈ E of edges such that f extends e, then e <Eord f , where
e <Eord f means that e appears before f in Eord. Moreover, we say that an ordering Eord

of all the temporal edges is node-departure sorted if all edges departing from the same node
are ordered by non-decreasing departure time in Eord, that is we have e <Eord f whenever
e, f ∈ E have same tail and satisfy dep(e) < dep(f). Similarly, we say that an ordering Eord
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of all the temporal edges is node-arrival sorted if all edges arriving to the same node are
ordered by non-decreasing arrival time in Eord, that is we have e <Eord f whenever e, f ∈ E

have same head and satisfy arr(e) < arr(f).
Let us consider a temporal graph G and its temporal edges E. Let (Edep, Earr) be two

lists representing all temporal edges in E, where Edep is node-departure sorted, and Earr

is walk-respecting and node-arrival sorted. Notice that these hypothesis are weaker than
the doubly-sorted representation we defined and used earlier. Indeed, if Earr is sorted by
non-decreasing arrival time, then it is trivially node-arrival sorted. It is also walk-respecting
since we are assuming positive travel time of the temporal edges, thus the edges of a temporal
walk Q have strictly increasing arrival times. On the other side, a simple example can prove
that the opposite does not hold. Let e = (s, u, τ1, λ1) and f = (s, v, τ2, λ2) be two temporal
edges such that arr(e) < arr(f). Then {f, e} is a node-arrival and walk-respecting sorted
list, but it is not sorted by non-decreasing arrival time. We can now state the following.

▷ Claim 2. Given two lists (Edep, Earr), where Edep is node-departure sorted, and Earr

is walk-respecting and node-arrival sorted, that represent a temporal graph with waiting
constraints G = (V, E, α, β), and a source node s ∈ V , Algorithm 1 computes all s-reachable
temporal edges in linear time and space.

We sketch a proof of Claim 2 by going through the key points that exploited the order of
the lists of the proof of correctness in Theorem 1:

In the preprocessing, it is still possible to compute in linear time, for each node v, the
list Edep

v by bucket sorting Edep.
Let ek be the edge scanned during the k-th iteration. Then, if ek appears in a walk Q in
Gk it is still its last edge. The reason is that if it appears in a previous position in Q,
then Q would contradict the walk-respecting hypothesis of Earr.
When proving that the algorithm correctly marks edges in Edep

v [l′ : r′], we used the
non-decreasing arrival time property of Earr to leverage that the edges entering v are
scanned in Earr by non-decreasing arrival time. This property actually coincides with
the node-arrival definition.

We now show that an appropriate pair of lists (Edep, Earr) can easily be computed from
a space-time representation.

▷ Claim 3. Given the space-time representation D = (W, F c ∪ F w) of a temporal graph
G = (V, E), it is possible to compute in linear time ans space two lists (Edep, Earr), where
Edep is node-departure sorted, and Earr is walk-respecting and node-arrival sorted.

In order to prove Claim 3 we provide a simple algorithm based on Kahn’s algorithm [12].
Indeed, because of the positive travel assumption, D is a directed acyclic graph. It is then
possible to use Kahn’s algorithm to compute a topological ordering of D in linear time that
is an ordering W ord of W such that uτ <W ord vν for all arcs (uτ , vν) ∈ F c ∪ F w.

Let us see how to compute a list of temporal edges Earr that is node-arrival and walk-
respecting sorted from such a topological ordering W ord of D (see Figure 3 for an example).
We start with an empty list Earr. Then, for each node vν ∈ W ord, from the first one to
the last one, we consider its incoming arcs (uτ , vν) in F c. For each of such arc (uτ , vν), we
append to Earr the temporal edge (u, v, τ, ν − τ). The list we obtain this way is:

Walk-respecting sorted: A temporal walk Q in G corresponds to a path P in D. Moreover,
the time labels of the nodes in P are strictly increasing. Thus the topological order
guarantees that we consider the arcs in P ∩ F c in the same order as the corresponding
temporal edges appear in Q.
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s1 c2 c4 d5 a2 b3 b4 c5 b5 a6 a7 d6 d8

Figure 3 The topological order s1, c2, c4, d5, a2, b3, b4, c5, b5, a6, a7, d6, d8 of the space-time repre-
sentation of Figure 2 leads to the node-arrival sorted and walk-respecting ordering Earr = (s, c, 1, 1),
(c, d, 4, 1), (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (b, d, 5, 1), (a, d, 7, 1). It also results in the node-
departure sorted and walk-respecting ordering Edep = (s, a, 1, 1), (s, c, 1, 1), (c, d, 4, 1), (a, b, 2, 1),
(b, c, 4, 1), (c, a, 5, 1), (b, d, 5, 1), (a, d, 7, 1).

Node-arrival sorted: Since there is a path connecting the copies of each node v ∈ V

through increasing time labels, we are guaranteed to extract each copy by increasing
time label. Thus the edges entering v will be considered and appended to Earr by
non-decreasing arrival time.

A list Edep of temporal edges which is node-departure sorted (and walk respecting) can
be similarly obtained in linear time by scanning out-arcs of each node in the topological
ordering instead of in-arcs. As a consequence of Theorem 1, Claim 2 and Claim 3, we thus
obtain:

▶ Theorem 4. Given a doubly-sorted representation, or a space-time representation, of
a temporal graph with waiting constraints G = (V, E, α, β) and a source node s ∈ V , it is
possible to compute all s-reachable temporal edges in linear time and space.

5 Conclusion

We provided an algorithm that, given in input a space-time representation of a temporal
graph with waiting constraints, computes in linear time and space all the reachable edges
from a given source. In particular, this also solves the single-source earliest arrival time
problem. We are working on extending this technique for computing single-source optimal
temporal walks optimizing classical criteria such as shortest duration or number of edges [4].

A future line of work consists in considering a more flexible model in the context of
applications to public transport networks, for example by also allowing footpaths arcs that
are available at any point in time.
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