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Abstract
In this work, we investigate the analysis of generators for dynamic graphs, which are defined as
graphs whose topology changes over time. We focus on generated graphs whose orders are neither
growing nor constant along time. We introduce a novel concept, called “sustainability,” to qualify the
long-term evolution of dynamic graphs. A dynamic graph is considered sustainable if its evolution
does not result in a static, empty, or periodic graph. To measure the dynamics of the sets of
vertices and edges, we propose a metric, named “Nervousness,” which is derived from the Jaccard
distance. As an illustration of how the analysis can be conducted, we design a parametrized generator,
named D3G3 (Degree-Driven Dynamic Geometric Graphs Generator), that generates dynamic graph
instances from an initial geometric graph. The evolution of these instances is driven by two rules that
operate on the vertices based on their degree. By varying the parameters of the generator, different
properties of the dynamic graphs can be produced. Our results show that in order to ascertain the
sustainability of the generated dynamic graphs, it is necessary to study both the evolution of the
order and the Nervousness for a given set of parameters.
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1 Introduction

Nature and human societies offer many examples of systems composed of entities that interact,
communicate or are just connected with each other. The Internet, a transportation network,
a swarm of robots, an ant colony, a social network, a urban network, or a crowd are some
examples [2].

Graphs are certainly one of the best formalism for modeling them. Every vertex in the
graph models one entity. A link is added between two vertices when a particular condition
about the corresponding entities is verified. For instance: two people are talking to each
other, a predator catches a prey, two playing cards are in the same hand, a virus passes from
one individual to another, two actors perform in the same play, etc. The semantic of the
interaction, communication or connection is proper to the system.

During the last two decades, many works have been dedicated to the study of networks
modeling these systems. It has been shown that, unlike classical, regular or random graphs,
graphs modeling complex real systems present specific statistical properties, leading re-
searchers to introduce the term of complex networks for naming them. Among the main
characteristics that were highlighted are the small-world and the scale-free properties. The
small-world property was discovered many years ago, in the 60s, when Stanley Milgram
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imagined and conducted the “small-world problem” in order to measure, through postal mail,
the number of intermediaries between any two persons in the USA [15, 20]. The scale-free
property was also observed quite a long time ago for some datasets.

Researchers working on networks are motivated by one key question: “How can we
explain the existence of certain properties in these networks?” To answer this, they aim
to design generative processes that can produce networks with these properties. In 1998,
Watts and Strogatz proposed a rewiring process to generate small-world networks from a
regular lattice [21]. In 1999, Barabàsi and Albert introduced the preferential attachment
mechanism to create networks with both small-world and scale-free properties [1]. Other
works have also used preferential attachment to generate networks with other features, such
as soft community structures [9] and navigability [3]. For example, Papadopoulos et al.
introduced self-similarity [17] as a mechanism that can create soft communities. This new
concept aims at connecting entities not because one is popular, but because they share
similarities. This work has been possible using hyperbolic geometry which helps embedding
both popularity (the preferential attachment) and similarity [19, 13]. Other models using
such a geometry have then been investigated creating networks with more properties, such
as the Geometric Preferential Attachment [22] and the nonuniform Popularity-similarity
Optimization model [16]. One relevant point to highlight is that such processes generate
growing networks: at each time step a new vertex is added to the graph and is more likely
linked to high degree vertices. Other mechanisms exist where the amount of vertices does
not change over time. For instance, this is the case of edge-markovian processes where only
edges are changed over time [6]. Other models such as Erdos-Renyi evolution model [7] or
the configuration model [4] can also be seen as such a model.

However many real-world systems are composed of a varying number of entities (increasing
and decreasing). For instance, living being populations may see the number of individuals
increase during some periods and decrease for some other periods [14]. And, to our knowledge,
generative models with such a characteristic have not been deeply studied. The work developed
in this paper aims at addressing this more general case where the set of vertices, between
two consecutive time steps, may either increase or decrease or may change while keeping the
same cardinality. To provide an example of the latter case, consider the interaction between
players during a game of rugby. The total number of players on the field remains constant
at 30 (assuming no exclusions); therefore, the order of the players is fixed. Nevertheless,
substitutions occur throughout the game.

Given a generative process, questions asked are: “how the dynamics of generated graphs
can be characterized?”; “what metrics might be used for that purpose, and how to compute
them?”; “from the point of view of dynamics, is it possible to classify or gather generators
into classes or families?”. In this ongoing work, not all questions are addressed. But we
hope it will be a milestone for carrying out analysis of dynamic graphs generators. For
this, in Section 2 a generic model of generators is presented and discussed. It is followed
by the definition of a novel notion based on a specific metric, both targeting the dynamics
of the graphs. Finally, the Degree-Driven Dynamic Geometric Graph Generator (D3G3)
is presented. D3G3 is a parameterized generator and according to the parameters, it can
produce a wide variety of dynamics. It will be used as a case study. A first global analysis of
the generated graph families is performed in Section 3. Section 4 focuses on specific values
of the parameters and present a rigorous analysis of the evolution of the dynamics of the
graph and of the likelihood of its sustainability. A conclusion, drawing some perspectives
and future investigations, closes temporarily this work.
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2 Definitions and Generative Model and Definitions

2.1 Notations
Consider two sets A and B:

△ operator: A△B is defined as A ∪ B − A ∩ B. For instance if A = {1, 2, 3, 4, 5} and
B = {4, 5, 6, 7, 8} then A△B = {1, 2, 3, 6, 7, 8}
Consider G a dynamic graph, Gt = (Vt, Et) denotes the state of the graph at time t,
where Vt is the set of vertices and Et is the set of edges.
|Vt| (resp. |Et|) corresponds to the number of vertices (resp. edges) of graph Gt.
For simplifying notations in the document, |Vt| is often denoted by nt

G = (V, E) is said to be a null graph if both V = ∅ and E = ∅. In the report such a null
graph can also be called an empty graph.
Let a and b to real numbers such that a < b. Then [a, b] refers to as a closed interval of
real number. Both end points belong to the interval. The open interval (a, b) represents
the same object, but end points are not included. A half-open interval [a, b) is an interval
including the endpoint a but not b. The (a, b] one includes b but not a.
The set N refers to as the set of non-negative integers ({0, 1, . . . }). The set of positive
integers is referred to as N∗ ({1, 2, . . . }).

2.2 Position of the work with respect to Temporal Networks
Current definitions of temporal networks (TN) include time-varying graphs [18], temporal
networks [12], evolving graphs [8], etc. They all define structures described by sequence of
static graphs, ordered by a timestamp (e.g., G = (Gi = (Vi, Ei))i⩾0) where i refers to the
time step). It is worth mentioning that TN definitions do not include information about the
generative process. Thus, the way the graph at time t + 1 is obtained from the graph at
time t is not described. In this report, the emphasis is precisely on the study of generative
processes. This work is therefore positioned upstream of TN. In the sequel graphs produced
by generators are called dynamic graphs or simply graphs.

2.3 Generalities
From a general point of view, a dynamic graph generator can be defined as a process with
input data, that produces at each time step t+1 a new static graph Gt+1. It is produced from
already generated static graphs {G1, . . . , Gt} and possibly additional information. Thus, the
output of a dynamic graph generator is a flow of static graphs identified by time stamps. The
time stamps may also corresponds to events, and in such a case, the time interval between
two time stamps may be different. However, in this report, for sake of clarity, we consider
integer time stamps. If the flow stops, for whatever reason (e.g. clock has been stopped,
evolution process is finished) at step T , the set of generated static graphs {G1, G2, . . . , GT }
corresponds to a temporal network (TN).

2.4 Sustainability
The goal of this section is to introduce a novel notion for qualifying the dynamics of a graph.
Only measurement of the order (or of the density) of the graph is not enough for qualifying
its dynamics. For instance, if a dynamic graph becomes static, all vertices remain the same
and the graph order does not change. Conversely, if between two consecutive time steps
all vertices are replaced by new ones, the order also remains the same, but the dynamics
is different. Sustainability qualifies a dynamic graph that never becomes null or periodic
(which includes static). A graph owing the sustainability property is said sustainable.

SAND 2023
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▶ Definition 1 (Graph sustainability). A dynamic graph G is said sustainable if both Condi-
tion 1 and Condition 2 are not verified.

Condition 1: ∃T ∈ N, ∀t ⩾ T, Gt = (∅, ∅)
Condition 2: ∃T ∈ N and ∃k ∈ N∗, ∀t ⩾ T, Gt = Gt+k

Some well-known graph generators produce sustainable dynamic graphs. For instance
generators of growing networks. Indeed, for all t ∈ N, |Vt| > |Vt−1|, and Gt ̸= (∅, ∅). For
these generators, graph sustainability is obvious and does not require any analysis.

Unlike these cases, some generators are based on mechanisms making the evolution of
the vertices (and edges) more difficult to predict, and the dynamics is worth studying. For
that purpose, we propose to consider a metric enabling a quantification of the dynamics.

2.5 Nervousness
This metric provides a way of measuring the dynamics of a graph. Note that this metric
is derived from the Jaccard distance, which can be defined as one minus the coefficient
of community as outlined in [11]. However, in the context of dynamic graphs it seems to
us more meaningful to call it nervousness. This metrics is defined at the level of vertices,
edges and at the level of the graph. In this work, only vertices nervousness is defined. It is
different from the burstiness which is defined at the node/edge level during the lifetime of
the graph [10] and aims at representing the frequency of events occurring on each node/edge.
Nervousness metric aim is to capture the dynamics of creation and deletion of nodes and
edges between two time steps at graph level.

▶ Definition 2 (Vertices Nervousness). Given a dynamic graph G, such that at time t

Gt = (Vt, Et). We call vertices nervousness at time t and denoted by N V (t), the ratio:

N V (t) = |Vt+1△Vt|
|Vt+1 ∪ Vt|

= |Vt+1 ∪ Vt − Vt ∩ Vt+1|
|Vt+1 ∪ Vt|

This metric is complementary with the graph order measure. Indeed, graph order can
remain constant between two consecutive time steps although some vertices change. If all
vertices are replaced, nervousness equals 1. If all vertices are kept, nervousness is 0. Similarly
we define the edges nervousness as N E(t) = |Et△Et+1|

|Et∪Et+1| . Accordingly, Graph Nervousness is
defined as N G(t) = (N V (t), N E(t)).

For illustrating this definition, consider the following cases for a dynamic graph, from t

to t + 1. We denote |Vt| = nt. We also assume that between t and t + 1 the order remains
the same, thus |Vt+1| = nt+1 = nt = n.

if all vertices are replaced:

N V (t) = |Vt△Vt+1|
|Vt ∪ Vt+1|

= 2n

2n
= 1

if half of the vertices are replaced: N V (t) = 3n/2−n/2
3n/2 = n

3n/2 = 2
3

if the vertices remain the same, the union of the sets is equal to their intersection thus:
N V (t) = 0

When the order changes, for instance if all vertices are duplicated, thus |Vt+1| = 2nt = 2n:
N V (t) = 2n−n

2n = 1
2
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2.6 Sustainability vs Nervousness
Sustainability and nervousness are closely related. Sustainability describes a dynamic graph
property while nervousness enables the measure of the evolution of vertices and edges sets
between two consecutive time steps. When nervousness is null for both sets, the graph is
static and thus does not have the sustainability property. Consider a dynamic graph G, if
for all t ∈ N, N V (t) ̸= 0 or N E(t) ̸= 0, then G holds the sustainability property, except if G

is periodic.

2.7 D3G3: definition
In this section we define a parameterized model generating families of dynamic graphs. An
instance of the generative model is defined by a set of parameters. For studying the model,
we analyze, according to the parameters set, the dynamic graphs families produced and rely
on both the sustainability and the nervousness for that purpose.

The generator has two types of inputs: a set of parameters, Sp, and an initial graph,
called seed graph and denoted G0. At each time step t + 1 it produces, from the previous
graph Gt, a new graph Gt+1 as illustrated on the figure.

Evolution
Process Gt

seed graph G0

Sp = {parameters}

Clock

t + 1

Gt+1

G
t+1

Graphs produced by D3G3 are geometric graphs. A geometric graph is defined by an
euclidean space and a threshold d. For this study, without loss of generality we consider a
2D-unit-torus (i.e., a square [0; 1)2 where the two opposite sides are connected). Each vertex
is characterized by a set of coordinates, such that given two vertices u and v it is possible to
compute their euclidean distance: dist(u, v). Given V the set of vertices, the set of edges E

is defined in the following way: E = {(u, v) ∈ V 2 | dist(u, v) ⩽ d}. It is important to notice
that borders of the square modeling the torus are connected. Therefore considering one node
on the torus, the value of d for which the surface of the disk of radius d centered on this
node reaches its maximum for d =

√
2/2. It represents the half diagonal of the square.

Graphs generated by D3G3 are produced thanks to an evolution process. This mechanism
is parameterized by an initial graph (the seed graph) and by two transition rules driving the
evolution of the graph between two consecutive time steps. Apart from a random generator,
no external decision or additional information is used by this mechanism. Rules are based
on node degrees only and rely on a random generator for positioning new nodes in the 2D
euclidean space. This leads to the name of the generator: Degree-Driven Dynamic Geometric
Graphs Generator or D3G3.

From now, graphs we are studying are referred to as sequences of static graphs (Gt =
(Vt, Et))t⩾0, where t ⩾ 0 is the time step. The initial graph, G0 (t = 0) is called the seed
graph.

SAND 2023
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▶ Definition 3 (Degree Driven Dynamic Geometric Graph Generator). An instance of D3G3 is
defined by an initial graph, a set of parameters and two rules:

G0 ̸= (∅, ∅) the seed graph,
parameters:

d ∈ (0,
√

2
2 ) (distance threshold for connection),

SS a set of non-negative integers
SC a set of non-negative integers

rules applied on Gt leading to Gt+1:
if v ∈ Vt, then v ∈ Vt+1 if and only if deg(v) ∈ SS (conservation rule)
if v ∈ Vt and if deg(v) ∈ SC then add a new vertex to Vt+1 with a random position in
the unit-torus (creation rule)

At a given time step, two nodes are connected if and only if their euclidean distance is
lower than d. Graph evolution between two consecutive time steps t and t + 1, is driven by
two rules applied to each vertex v ∈ Vt simultaneously. The first rule determines for a vertex
v ∈ Vt whether it is kept at step t + 1 while the second rule concerns the possibility for a
vertex v ∈ Vt to create a new vertex in Vt+1 according to its degree.
▶ Remark. For generating new vertices by the second rule we had two possibilities. Either
we choose, for each new vertex w stemmed from a vertex u, a random position in a finite
space, or, we choose a random position close to the position of u with no constraint on space
limits. We opted for the first option (the space is a unit 2D-torus), and we plan to analyze
the differences with the second option.

▶ Definition 4 (Conserved/Create/Removed/Duplicated nodes). Let t ⩾ 0 and G = (Gt) a
D3G. Let u ∈ Vt and v ∈ Vt+1, then

u is said to be a conserved node iff u ∈ Vt ∩ Vt+1.
u is said to be removed iff u ∈ Vt − Vt+1.
u is said to be a creator/creating node iff deg(u) ∈ SC .
v is said to be a created node iff v ∈ Vt+1 − Vt.
u is said to duplicate iff it is both a conserved and a creator node.

Once created, a node never change its position. Positions of created nodes do not depend
on the creating nodes positions. The position of a created node is chosen randomly and
uniformly over the unit-torus.

3 Theoretical Analysis

While the model is very simple, it presents a wide variety of dynamics and long-term
evolution. According to SS and SC composition, several classes of dynamic behaviors have
been identified. These classes have been defined by computing two measures: the evolution
of the order of the graph, and the evolution of the Graph Nervousness N G. Results are
reported in Table 1. A detailed analysis of each limit case is available in the report [5].

3.1 General Cases
General cases correspond to all cases for which both SC and SS are non empty sets and none
of both sets are equal to N. We classify all possible cases according to the tree represented
on Figure 1.

The case SC = SS composed of consecutive integers will be considered in Section 4. In
the present section we consider the cases for which SC ̸= SS .
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Table 1 Order, Nervousness evolution and sustainability property for the different cases. nt

denotes the order of graph Gt, N V (t) its vertices nervousness and N G(t) the graph nervousness.

SS

SC N Finite set ∅

N

∀t, nt = 2tn0 ∀t, nt+1 ⩾ nt ∀t, Gt = G0

∀t, N V (t) = 0.5 ∀t, 0 ≤ N V (t) ≤ 0.5 ∀t, N G(t) = (0, 0)
limnt→∞ P (nt+1 > nt) = 0

Sustainable Asymptotically non sustainable Non sustainable

Finite set

∀t, nt+1 ⩾ nt ∀t, nt+1 ⩽ nt

∀t, 0.5 ≤ N V (t) ≤ 1 General cases limt→∞ n = constant
limnt→∞ P (nt+1 > nt) = 0 (see Section 3.1) limt→∞ N G(t) = (0, 0)

Sustainable Sustainable

∅
∀t, nt+1 = nt ∀t, nt+1 ⩽ nt

∀G0, G1 = (∅, ∅)∀t, N G(t) = (1, 1) ∀t, Vt ̸= ∅ =⇒ N G(t) = (1, 1)
Sustainable Depends on parameters Non sustainable

SS , SC /∈ {∅,N}

SS and SC are segments SS and/or SC are/is not a segment

SS = SC = S SS ∩ SC ̸= ∅SS ∩ SC = ∅ SS ∩ SC = ∅ SS ∩ SC ̸= ∅

SS ∪ SC = N SS ∪ SC ⊂ N SS ∪ SC = N SS ∪ SC ̸= N

Figure 1 Leaves of the tree represent the general cases. Rounded corners green boxes corresponds
to cases for which results are presented in this section and in Section 4. Dashed boxes are cases not
covered within this report.

if SC ∩ SS = ∅ and SC ∪ SS ⊂ N then the order of the graph is non-increasing.
if SC ∩ SS ̸= ∅ and SC ∪ SS = N then the order of the graph is non-decreasing.
If SC ∩ SS = ∅ and SS ∪ SC = N, then |Vt| = |V0|, the order of the graph is constant.

On the second time they are assumed to cover the whole set of natural integer numbers.

▶ Theorem 5 (Disjoint sets). Let t ⩾ 0 and Gt = (Vt, Et) a graph and SS and SC two sets
of positive integers. If SS ∩ SC = ∅, then the series (|Vt|)t⩾0 is decreasing.

Proof. Let consider (Gt)t⩾0 a generated graph. Let t ⩾ 0 and u be a vertex in Vt. Then, as
SS ∩ SC = ∅, the degree of node u can’t belong to both sets. It follows that vertex u can’t
be both conserved and a creator. As this holds for every vertex in Vt, the order of generated
snapshot graph is not increasing between two consecutive steps. ◀

▶ Theorem 6 (Union set). Let SS and SC subsets of N. If SS ∪ SC = N, then the series
(|Vt|)t⩾0 is increasing.

Proof. The main argument here is the same used in the proof of theorem 5, except that the
degree of every node in Vt belongs to at least one of the two sets SS and SC . Therefore, the
order of generated snapshot graphs is not decreasing between two consecutive steps. ◀

SAND 2023
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3.1.1 Partition sets
In this section, SS and SC are considered to be a partition of N. This means SS ∩ SC = ∅
and SS ∪ SC = N. From theorems 5 and 6, one can say that for every graph Gt = (Vt, Et),
the series (|Vt|)t⩾0 remains steady. Two cases rises from that situations:

SS = N and SC = ∅: in that case the graph is constant (∀t, Gt = G0).
SS = ∅ and SC = N: the series of static graphs (Gt)t⩾0 is a series of independent random
geometric graph with a constant number of nodes (∀t, nt = n0).

4 Segments

This section focuses on the case SC = SS = S where S is a segment (i.e., an interval of
consecutive integers).

4.1 Model and conjecture
In this section parameters SS and SC are limited to equal sets of consecutive integers. Both
sets are such that SS = SC = [m, M ] (called segments), where m, M ∈ N2 and referred to as
S in the following. The evolution of graph order for different values of parameters m and M

is investigated. Some statements and properties are theoretically and experimentally proved
for the special case S = {0}. A relationship between graph order at a step t + 1 and at step
t and an upper bound for nt (t > 0) are given. Then, a theoretical analysis of the general
case is provided, and a new concept named sustainable interval is introduced. In the last
part of this section, vertices nervousness of graphs is studied through experimentation. It is
shown to be equal in average to 2

3 . The reason behind this particular value will be explained
in this last part.

4.2 S = {0}
The case SS = SC = S = {0} is considered in this section. The seed graph, G0, is supposed
to be a random geometric graph whose order is arbitrarily chosen. The main result about
this case is an estimation of the mean value of graph order. An approximation for small
values of the distance threshold d is provided.

▶ Theorem 7 (Expected value of graph order). Let S = {0}, d > 0 and G0 = (V0, E0) such
that there exists at least one node u ∈ V0 being isolated (i.e., deg(u) = 0), then either the
graph becomes empty, or the average number of conserved nodes is l(d) = 1 − log (

√
1+4α−1

2 )
log α

with α = 1
1−p and p = p(d).

Proof. Let t ⩾ 1. Two cases are to be discussed: the case of conserved vertices from step
t − 1 to step t (Vt ∩ Vt−1) and the case of created nodes at step t (Vt − Vt−1). As the
number of created nodes is the same as the number of conserved nodes from t − 1 to t, we
set ct = |Vt ∩ Vt−1| = |Vt − Vt−1|.

First let’s study the number of conserved vertices from step t to step t + 1 among those
conserved from step t − 1 to step t. cconserved

t+1 denotes this number. Let u ∈ Vt ∩ Vt−1. The
probability for u to be conserved is the probability that its degree to created nodes remains
equal to 0.

deg(u) =
∑

v∈Vt−Vt−1

X(u, v)
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Let v ∈ Vt − Vt−1. As in the previous section, X(u, v) ∼ B(p) and deg(u) ∼ B(ct, p) as a
sum of independent Bernoulli variables of same parameter p. Yt(u) denotes the event “u is
conserved at step t + 1”. The probability that u survives is P (Yt(u) = 1) = P (deg(u) = 0) =
(1 − p)ct , thus: Yt(u) ∼ B((1 − p)ct). Therefore, the number of conserved vertices at step
t + 1 among those conserved at step t is:

cconserved
t+1 =

∑
u∈Vt∩Vt−1

Yt(u)

As the position of created nodes are independent from themselves and from conserved vertices,
Yt(u) are independent for all u ∈ Vt ∩ Vt−1, cconserved

t+1 ∼ B(ct, (1 − p)ct).
Let’s study the number of conserved vertices among created nodes. ccreated

t+1 denotes this
number. Let u ∈ Vt − Vt−1. To study the degree of u, two cases must be studied. The first
one is the number of connections between u and all other created nodes (denoted as degC(u)).
The second one is the number of connections to already present nodes (denoted as degS(u)).
degC(u) and degS(u) can be obtained using the following formulas:

degC(u) =
∑

v∈Vt−Vt−1,u̸=v

X(u, v)

degS(u) =
∑

v∈Vt∩Vt−1

X(u, v)

As the position of created points on the torus are independent one from the others,
degC(u) is a sum of independent Bernoulli variables and therefore, degC(u) ∼ B(ct − 1, p).
For degS(u), connections between a created node and an already present node are not
independent from each other: knowing u is connected to an already present node means it is
close to it and as other conserved nodes are farther than d, it implies that degS(u) is not a
sum of independent Bernoulli variables. However, as a first approximation, this quantity will
be considered as a sum of independent Bernoulli variables.

Thus, the computation of the expectation of ct+1 = cconserved
t+1 + ccreated

t+1 gives:

ct+1 = ct(1 − p)ct + ct(1 − p)2ct−1

By looking for a limit to this series gives l ⩾ 0 satisfying:

l = l(1 − p)l + l(1 − p)2l−1

Solving this equation gives l = 0 or :

l = 1 −
log
(√

1+4α−1
2

)
log α

with α = 1
1 − p

◀

Experiments have been run to see if this relationship holds.

▶ Corollary 8. Let d > 0 and l(d) as defined in the Theorem 7. Then for small values of d:

l(d) ∼ −
log
(√

5−1
2

)
πd2 = log ϕ

πd2

where ϕ is the golden ratio
(

1+
√

5
2

)
.

SAND 2023
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Proof. Let d > 0 be small. Thus, applying Taylor expansion gives 1
1−πd2 ∼ 1 + πd2

and log
(

1
1−πd2

)
∼ πd2. The numerator comes from 4 · 1

1−πd2 ≃ 4. The golden ratio is

obtained using operations on log and by noticing that 2√
5−1 = 2(

√
5+1)
4 = ϕ, the golden ratio.

Combining these results leads to the statement of the corollary. ◀

It is therefore possible to state that, in the case where S = {0}, it is possible to theoretically
get an expectation of graph order as well as to get an upper bound for graph order depending
on parameter d.

Experiments have been performed to see whether the expected value graph order holds.
These experiments has been performed for different values of threshold d. A linear regression
shows that the relationship holds with a R2 of more than 0.99.

4.3 The general case
Now the focus is on S = [m, M ] for every m and M integers. The goal is to provide a
tool aiming at stating, for given parameters m, M and d, whether the graph is likely to be
sustainable or not. This part mainly focuses on a simpler model. This model is studied as it
helps understanding the evolution of graph order.

4.3.1 Study of graph evolution
In this Section we aim at estimating the evolution of the graph order during graph dynamics.
However, in the D3G3 model, between two time steps, non-conserved nodes are removed from
the graph and conserved nodes are located at the same position, which entails a remanent
graph. This remanent graph induces a structure influencing the computation of graph order.
More precisely, nodes that are about to be removed connected to conserved ones interfere in
the probability that conserved nodes at time t are still conserved at time t + 1. This is linked
to computing the degree of the neighbors of a node u knowing the degree of node u. To
our knowledge, this is a difficult question. For that purpose, a relaxed version of the D3G3
model is considered enabling analytical study of this evolution. In this model, conserved
nodes are moved (i.e., their position are changed) such that obtained graph is a new random
geometric graph at each step. We call this model “the redistributed model”. This will help
us proving the following theorem:

▶ Theorem 9. Let G = (Gt) be a dynamic graph obtained with the redistributed model, then
at every step t, nt+1

2 ∼ B(nt, p(S, d, nt)), where p(S, d, nt) is the probability that a node is
conserved between step t and t + 1:

p(S, d, nt) =
M∑

k=m

(
nt − 1

k

)
pk(1 − p)nt−1−k

Here, p(d) refers to the probability for two different nodes to be connected (i.e., the probability
that the distance between them is lower than or equal to d), which is, for d ⩽ 1

2 , πd2.

Proof. In the redistributed model, at time step t a RGG (Gt) is built. If the graph order
at time t is equal to nt, the graph order at t + 1 is equal to twice the number of surviving
nodes at time t. As every node has an independent position in the torus, this probability is
the same for all nodes. Let’s denote it p(S, d, nt). Let u ∈ Vt. Then:

p(S, d, nt) = P (deg(u) ∈ S) =
M∑

k=m

P (deg(u) = k) =
M∑

k=m

(
nt − 1

k

)
pk(1 − p)nt−1−k (1)
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Assuming one node is a conserved node, it does not affect the probability of conservation
for other nodes. The number of conserved nodes can be computed summing independent
Bernoulli’s events of parameter p(S, d, nt). This gives nt+1

2 follows a binomial distribution of
parameter nt and p(S, d, nt). ◀

Computing expectation for a binomial distribution leads to an expectation for nt+1
knowing nt. Indeed, this expectation is 2ntp(S, d, nt). For a fixed set S, this provides a
relationship between nt and nt+1:

▶ Definition 10 (Expectation of graph order). Let m, M and d be parameters for the
redistributed model. Let G = (Gt) be an obtained graph with such parameters. Then, the
expectation of graph order at step t + 1 (nt+1) knowing graph order at step t (nt) is fS,d(nt)
and satisfies nt+1 = fS,d(nt) = 2ntp(S, d, nt), and then:

∀n ∈ N, fS,d(n) = 2np(S, d, n) (2)

This quantity is referred to as the relationship in the sequel. Studying the relation for
every value of m, M and d turns out to be a difficult problem. However some results may be
conjectured. A first conjecture concerns the variations of the relationship:

▶ Conjecture 11. Let m, M and d be parameters of the model. Let S = [m, M ] and fS,d the
relationship as defined above. Then there exists n∗ ∈ N such that fS,d is increasing on [0, n∗]
and decreasing on [n∗ + 1, +∞[.

This conjecture is difficult to prove due to the sum involved in the computation of fS,d.
However, it is not necessary to study the relationship for all integers. It is possible to perform
the study on a limited interval. This is the purpose of theorem 13 (below). But before
proving this theorem, it is necessary to provide another formulae computing variations of
fS,d:

▶ Lemma 12. Let m, M and d be parameters of the model. Let ∆fS,d defined as the variation
of fS,d: for n ∈ N, ∆fS,d(n) = fS,d(n + 1) − fS,d(n). Then:

∀n ∈ N, ∆fS,d(n) = 2
M∑

k=m

(k + 1)
(

n

k

)
pk(1 − p)n−1−k

(
1 − n + 1

k + 1 p

)
Proof. Let m, M and d be parameters of the model. Let n a be non-negative integer. This
proof only focuses on the terms of the sum of ∆fS,d:

∆fS,d(n) = 2
(

M∑
k=m

(n + 1)
(

n

k

)
pk(1 − p)n−k − n

(
n − 1

k

)
pk(1 − p)n−1−k

)

= 2
M∑

k=m

pk(1 − p)n−1−k

(
(n + 1)

(
n

k

)
(1 − p) −

(
n − 1

k

))
Let k ∈ N such that m ⩽ k ⩽ M . Every term of the sum of ∆fS,d can be expressed as follow
only using results on binomial coefficients:

∆fS,d(n) = 2
M∑

k=m

(k + 1)
(

n

k

)
pk(1 − p)n−1−k

(
1 − n + 1

k + 1 p

)
◀

It is now possible to state the following theorem about variations of fS,d:
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▶ Theorem 13. Let m, M and d be the parameters of the model. Let S = [m, M ] and fS,d

the relationship as defined above. Let p = p(d) be the probability for two different nodes to be
connected. Then, fS,d is increasing between 0 and m+1

p − 1 and decreasing from M+1
p − 1 to

infinity.

Proof. The goal is to prove that ∆fS,d(n) is positive for n < m+1
p − 1 and negative for

n > M+1
p − 1. To understand this, ∆fS,d(n) can be rewritten as shown in lemma 12. It is

sufficient to notice that, for all k ∈ S, the sign of every single term of the sum is the sign of(
1 − n+1

k+1 p
)

. For fixed k, the term is positive if and only if n is lower than k+1
p − 1. As this

last term is an increasing function of k, all terms of the sum are therefore positive if n is
lower than m+1

p − 1 and negative if n is greater than M+1
p − 1. Hence, the relationship is

increasing from 0 to m+1
p − 1 and decreasing from M+1

p − 1 to infinity. ◀

Thanks to theorem 13, conjecture 11 is proved for intervals [0, xm] and [xM , ∞[ for xm =
m+1

p − 1 and xM = M+1
p − 1. At this stage, quantifying more precisely the evolution of the

graph order is not achievable. However, a study of the fixed points of fS,d enables to draw
some conclusion about generated graphs sustainability.

4.3.2 Graph evolution and sustainability
First note that knowing the variations of fS,d is not enough to deal with graphs sustainability.
Indeed, as claimed by the following theorem, big graphs are not sustainable.

▶ Theorem 14 (Non-sustainability of big graphs). Let m, M and d be parameters of the model.
Let fS,d be the relationship. Then, there exists N > 0 such that for all n > N, fS,d(n) < 1.

Proof. For this proof, it is sufficient to prove that fS,d(n) → 0 when n → +∞. To do so,
fS,d(n) can be rewritten as follow:

fS,d(n) = 2n

(
M∑

k=m

(
n − 1

k

)
pk(1 − p)n−k−1

)

From theorem 24, the sum tends toward 0 as the product of a polynomial and an exponential,
therefore, fS,d(n) is also tending toward 0. ◀

This theorem says that there always exists a graph order limit such that graphs whose order
are greater than this limit are likely to become empty. Therefore, it is not possible to obtain
sustainable graphs with a large amount of nodes.

A new mathematical concept is now introduced aiming at classifying parameters into
three classes. This concept is referred to fixed point and is defined as follow:

▶ Definition 15 (Fixed Point). Let m, M and d be parameters of the model. A fixed point
for the relationship fS,d is an non-negative integer n such that:{

fS,d(n) ⩽ n and fS,d(n + 1) > n + 1
or fS,d(n) ⩾ n and fS,d(n + 1) < n + 1

Such fixed points characterize variation of graph order. Indeed, graph of order n for n

taken between two consecutive fixed points is either always decreasing or increasing. From
experiment performed on the redistributed model as well as on D3G3, three different cases
appear and are conjectured as follow:
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▶ Conjecture 16. For all m, M and d being parameters of the model, the relationship fS,d

has either one, two or three fixed points.

This conjecture is the main tool aiming at studying sustainability in the segment case. Indeed,
in the three different cases, it is possible to answer whether a given set of parameters is
sustainable or not. However, their is no characterisation about parameters value that may
help founding which case parameters lead to. The only one claim that can be made is that d

does have an influence on this case.
The conjecture 16 is assumed in this subsection. This section aims at stating about

sustainability in the three different cases. This is illustrated by a description of the behavior
of the relationship fS,d in every case.

4.3.2.1 One fixed point

First let’s consider the case where the relationship has only one fixed point. When it has only
one fixed point, this point is 0. This comes from fS,d(0) = 0. Moreover, for all n, fS,d(n) < n.
As for a snapshot graph of order nt at step t, fS,d(nt) gives the expectation value of nt+1 at
step t + 1. Graph orders of generated graphs are decreasing in average. Graphs obtained in
this case are therefore not sustainable.

One fixed point. Two fixed points. Three fixed points.

4.3.2.2 Two fixed points

For the two fixed points case, 0 is also a fixed point. The argument is also because fS,d(0) = 0.
The other one is greater than zero. The case where fS,d has two fixed points is assumed to
happen if and only if 0 ∈ S and is stated in the following conjecture.

▶ Conjecture 17 (Characterisation of the two fixed points). The relationship fS,d has two
fixed points if and only if m = 0.

An argument is that a snapshot graph with one vertex becomes empty if and only if 0 /∈ S,
that is m = 0. Moreover, for n = 0, the first term of the sum defining fS,d is equal to 1 so
fS,d(0) = 2. Graphs generated in such configurations are therefore sustainable as long as
their graph order does not exceed a limit. This limit is a consequence of theorem 14. In this
case, graphs whose order exceeds the limit are likely to become empty.

4.3.2.3 Three fixed points

For the last case, the goal is to show that graph order is likely to remain bounded. Deeply
looking at this case raises the question of values of graph order for which the size is not too
large and not too small so that it does not collapse. For that purpose we define an interval,
called sustainable interval, such that, if the graph order remains within that interval, this
ensures the persistence of the graph. This sustainable interval is considered as a tool to
study graph sustainability. It concerns expectation of graph order evolution through time. It
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says that if the image of the function fS,d for all integers within the interval does not exceed
the upper bound, then the graph is likely not to collapse. Let’s define more precisely this
concept:

▶ Definition 18 (sustainable interval). Let m, M and d be parameters of the model. Let
consider fS,d set such that it has three fixed points. Let Nm be the first positive fixed point and
N ′

m the smallest integer greater than Nm such that fS,d(N ′
m) ⩾ Nm and fS,d(N ′

m + 1) < Nm.
The sustainable interval associated to m, M and d is defined as the interval [Nm, N ′

m].

Such an interval satisfies a property about the values fS,d takes when it is restricted to it:

▶ Theorem 19 (Sustainability in the sustainable interval). Let m, M and d be parameters of
the model. Let assume the relationship fS,d has three fixed points and that [Nm, N ′

m] is its
associated sustainable interval. If the relationship does not exceed N ′

m, then the relationship
satisfies:

∀n ∈ [Nm, N ′
m], fS,d(n) ∈ [Nm, N ′

m]

Proof. The lower bound of the interval comes comes from definition of the sustainable
interval. The upper bound is a hypothesis of the theorem. ◀

Main interpretation of that theorem is graphs are sustainable in probability in the sustainable
interval if and only if there are no values of fS,d that exceed the upper bound of the sustainable
interval.

The following paragraphs provide arguments aiming at obtaining the sustainable interval.
They also provide arguments to check whether the relationship exceeds the upper bound of
the interval. The theorem 13 clearly gives bounds to find out the maximum of the relationship
fS,d. Three algorithms are sufficient to answer both questions: an algorithm to compute
the argument of the maximum of the relationship fS,d, an algorithm to find its fixed point
between 0 and the argument of the maximum and an algorithm to solve fS,d(n) = y for n

greater than the argument of the maximum and y > 0 lower than or equal to the maximum.
In the following, these algorithms are first implemented. It is then explained how to use
them to answer questions about the sustainable interval.

The argument maximum: To compute the argument maximum of the relationship, it is
sufficient to study fS,d on the interval [xm, xM ] for xm and xM as defined above. This is
a consequence of theorem 13. Let’s denote it N∗.

The first positive fixed point: To find the fixed point of fS,d mentioned in the definition
of the sustainable interval, it is sufficient to compute the argument maximum of it.
The previous algorithm answers this question. Then, as the relationship is increasing
from 0 to N∗, it is sufficient to iterate and find an integer n such that fS,d(n) ⩽ n and
fS,d(n + 1) > n + 1.

The solution of the equation: For the last algorithm, the goal is to find an integer n such
that n is greater than N∗ of fS,d, fS,d(n) ⩾ y and fS,d(n) < y, for a fixed y which is
assumed to be positive and lower than the maximum of fS,d.

From these algorithms it is possible to implement algorithms stating the existence of the
sustainable interval and its bounds. For the existence or not of the sustainable interval, it is
sufficient to check whether the maximum of the relationship is greater than its argument. This
comes from that sustainable interval exists if and only if there are values of the relationship
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that exceed their argument. As the relationship is increasing from 0 to fS,d(N∗), then
sustainable interval exists if and only if fS,d(N∗) > N∗. For computing the sustainable
interval boundaries, it is sufficient to know the value of the first fixed point Nm (as it provides
the lower bound) and to solve the equation fS,d(x) = Nm as finding the corresponding
x to this equation provides the upper bound (N ′

m). The existence of N ′
m is ensured by

theorem 14.

4.4 Vertex nervousness
The goal is to highlight a characterization aspect of the segment family using the vertex
nervousness metric. As edge nervousness will not be studied for that case, vertex nervousness
will be referred to as nervousness in this section. As in this particular configuration, survivors
are the same as created nodes, it is possible to state particular results about the value of
nervousness:

▶ Theorem 20. Let S be a segment set of non-negative integer and d ∈ (0,
√

2
2 ). Let G be a

generated graph of order nt at step t and number of survivor from step t to step t + 1 referred
to as st. Then:

N v
t = nt

nt + st

Proof. To prove this result, it is sufficient to notice that nt+1 = 2st, as SS = SC , which
means the number of survivors is the same as the number of created nodes. Thus, applying
some basic result about set sizes and noticing that st = |Vt ∩ Vt+1|, leads to:

|Vt ∪ Vt+1| = nt + nt+1 − st = nt + st

|Vt△Vt+1| = nt + nt+1 − 2|Vt ∩ Vt+1| = nt

It follows that vertex nervousness is well equal to nt

nt+st
. ◀

Result about the nervousness observed in generated graphs parameterized with a segment
set S is stated in the following conjecture:

▶ Conjecture 21. Let m, M ∈ N. Let S = [m, M ] and d > 0 be parameters of the generator
and let G = (Gt)t⩽0 be a generated graph. Then the vertex nervousness is in average equal
to 2

3 .

Although this conjecture has not been proved theoretically, experimentation have been
performed. They all highlight this conjecture telling that the average nervousness of generated
graphs is roughly equal to 2

3 . Results of this experimentation are gathered on picture 2. A
possible interpretation of this conjecture and performed experimentation relies on the result
stated in theorem 20 and on results from last part. Indeed, if vertex nervousness is close
to 2

3 , it means st ≃ nt

2 . Then, as nt+1 = 2st, it comes nt+1 ≃ nt, which means that graph
order is close to a fixed point of the relationship fS,d mentioned in the previous section.

5 Conclusion

This paper shows our first investigations in the study of dynamic graph generators. This
work concerns a simple generator. As a reminder, the model is parameterized through three
variables: a connection threshold d aiming at connecting all points closer than a distance d

and two sets SS and SC containing non-negative integers. The first one aims at deciding
whether a node is kept between two consecutive steps and the second one whether a node is
at the origin of a new node at the very next step. Several non-trivial properties are shown
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Figure 2 Mean value of nervousness got from experimentation. Points represent the average
over 20 runs and 30000 time steps for a single m and M . The yellow surface is the plan of equation
z = 2

3 . For all these parameters, d is set to 0.05. Red points represent nervousness of value greater
than 2

3 . Blue points represent nervousness of value lower than 2
3 .

about the model. All these properties concern products of the generator. The generator, for
a single configuration, produces a family of graphs and not a single graph. Properties are
therefore about the whole family of graphs the generator provides for a single configuration.
All these properties shown try to answer a single question. This question concerns graph
sustainability. It is defined as the property, for a given graph obtained with a given seed
graph and evolving rules, that the graph becomes neither empty after a finite number of
steps nor periodic. Defining this concept for this model is not simple since the evolving
rules are not deterministic. It involves probabilistic computations and therefore questions
about a possible threshold for which the graph is said to be sustained if the probability of
the emptiness of the graph is greater than this threshold. Here the focus has been made on
two different metrics, graph order evolution and vertex nervousness, the second one being
a renaming of the Jaccard distance metric. Different values of the parameters have been
studied, but it has not been possible to try them all as the amount of possible cases is far
too big. Cases for which properties have been shown are limit cases, the general case and
a very specific case referred to as “segments”. Limit cases have led to a first classification
when at least one of the two parameter sets is either empty or contains all non-negative
integers. General cases highlights some properties for specific values of the two sets. Finally,
the case where both sets are equal and contains consecutive non-negative integers has been
studied. These sets are called segments. It has revealed theoretical difficulties, especially
when computing graph order between consecutive steps. This has led to the creation of a
new tool named the “sustainable interval”. This tool aims at estimating bounds that frames
graph order even though it is not always reliable as probabilities are involved. This last
study is only about equal sets. For further studies, the case where both sets are segments
but not equal seems relevant as it does not change too much from the segment case.
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A Appendices

A.1 Binomial coefficient and Binomial distribution
This section aims at providing results about binomial coefficient and binomial distribution.
From now the objective of the two following theorems is to provide asymptotic equivalent of
expressions involving a binomial coefficient. The first theorem gives an asymptotic equivalent
of
(

n
k

)
:

▶ Theorem 22 (Asymptotic analysis of binomial coefficient). Let k and n be non-negative
integers such that k ⩽ n and k does not depend on n. Then as n tends to infinity, the
following holds(

n

k

)
∼ nk

k!
Proof. Let k and n as in the above statement. Then, it is sufficient to rewrite the binomial
coefficient as follow:(

n

k

)
= n!

k!(n − k)! = 1
k!

k−1∏
i=0

(n − i) ∼ nk

k! (Asymptotic equivalent of a polynomial) ◀

The following theorem provides an equivalent of the mass function of a binomial distribution:

▶ Theorem 23 (Asymptotic analysis of binomial distribution). Let k and n be non-negative
integers such that k does not depend on n. Let x ∈ (0, 1). Then the following limit holds:

lim
n→+∞

(
n

k

)
xk(1 − x)n−k = 0

Moreover the following equivalent can be expressed:(
n

k

)
xk(1 − x)n−k ∼ 1

k!

(
x

1 − x

)k

nk(1 − p)n

Proof. Let k, n and x as defined in the above statement. As stated in theorem 22, an
asymptotic equivalent of

(
n
k

)
is 1

k! × nk. Therefore, the following holds:(
n

k

)
xk(1 − p)n−k =

(
x

1 − x

)k (
n

k

)
xn ∼ 1

k!

(
x

1 − x

)k

nkxn

To conclude it is sufficient to notice that nkxn tends toward 0 as n tends to infinity (due to
x ∈ (0, 1)). ◀

▶ Theorem 24. Let A ⊂ N be a finite set of non-negative integers. Let n be a non-negative
integer and x ∈ (0, 1). Then the following holds

lim
n→+∞

(∑
k∈A

(
n

k

)
xk(1 − x)n−k

)
= 0

https://doi.org/10.1038/30918
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Proof. As set A is finite, the sum in the statement has a finite number of terms. Let denote
a = |A| and M = max A. For values of n such that n ⩾ 2M , the following inequality holds:

∀k ⩽ M,

(
n

k

)
⩽

(
n

M

)
Moreover, as 1−x < 1, y 7−→ (1−x)n−y is increasing. Therefore, for all k ⩽ M , (1−x)n−k ⩽
(1 − x)n−M . It is thus possible to get the following inequality for all k ⩽ M :

0 ⩽

(
n

k

)
(1 − x)n−kxk ⩽

(
n

M

)
(1 − p)n−M xk ⩽

(
n

M

)
(1 − p)n−M

Noticing the sum is composed of a elements, it can be bounded as follow

0 ⩽
∑
k∈A

(
n

k

)
xk(1 − x)n−k ⩽ a

(
n

M

)
(1 − x)n−M

As M is fixed an equivalent to right term of the previous inequality as n grows to infinity is:

a

(
n

M

)
(1 − x)n−M ∼ a

(1 − x)M

nM

M !eM
(1 − x)n

As nM xn tends toward 0, the right term of the equivalent tends toward 0 too. Moreover, the
sum is composed of positive elements. Applying the squeeze theorem leads to the wanted
limit. ◀

▶ Theorem 25. Let k and n be two non-negative integers. Let x ∈ (0, 1). Then, the following
holds:

(n + 1)
(

n

k

)
(1 − p) − n

(
n − 1

k

)
= (k + 1)

(
n

k

)(
1 − p

n + 1
k + 1

)
Proof. The above statement can be proved with the following equations:

(n + 1)
(

n

k

)
(1 − p) − n

(
n − 1

k

)
= (k + 1)

(
n + 1
k + 1

)
(1 − p) − (k + 1)

(
n

k + 1

)
= (k + 1)

((
n + 1
k + 1

)
− p

(
n + 1
k + 1

)
−
(

n

k + 1

))
= (k + 1)

((
n

k

)
− p

(
n + 1
k + 1

))
= (k + 1)

((
n

k

)
− p

n + 1
k + 1

(
n

k

))
= (k + 1)

(
n

k

)(
1 − p

n + 1
k + 1

)
◀
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