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Abstract
We show that the decision problem of determining whether a given (abstract simplicial) k-complex
has a geometric embedding in Rd is complete for the Existential Theory of the Reals for all d ≥ 3
and k ∈ {d − 1, d}. Consequently, the problem is polynomial time equivalent to determining whether
a polynomial equation system has a real solution and other important problems from various fields
related to packing, Nash equilibria, minimum convex covers, the Art Gallery Problem, continuous
constraint satisfaction problems, and training neural networks. Moreover, this implies NP-hardness
and constitutes the first hardness result for the algorithmic problem of geometric embedding (abstract
simplicial) complexes. This complements recent breakthroughs for the computational complexity of
piece-wise linear embeddability.
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1 Introduction

For now almost 100 years, much attention has been devoted to studying embeddings of
complexes [8, 21, 30, 31, 42, 54, 66, 67]. Typical types of embeddings include geometric
(also referred to as linear), piecewise linear (PL), and topological embeddings, see also
Figure 1. For formal definitions, we refer to Section 1.2; here we give an illustrative example.
Embeddings of a 1-complex in the plane correspond to crossing-free drawings of a graph in
the plane. In a topological embedding, each edge is represented by a Jordan arc, in a PL
embedding it is a concatenation of a finite number of segments, and in a geometric embedding
each edge is represented by a segment.

We are interested in the problem of deciding whether a given k-complex has a linear/-
piecewise linear/topological embedding in Rd. Several necessary and sufficient conditions are
easy to identify and have been known for many decades. For instance, a k-simplex requires
k + 1 points in general position in Rd and, thus, k ≤ d is an obvious necessary condition.
Moreover, it is straight-forward to verify that every set of n points in R3 in general position
allows for a geometric embedding of any 1-complex on n vertices, i.e., the points are the
vertices of a straight-line drawing of a (complete) graph. Indeed, this fact generalizes to
higher dimensions: every k-complex embeds (even linearly) in R2k+1 [42]. Van Kampen
and Flores [25, 57, 66] showed that this bound is tight by providing k-complexes that do
not topologically embed into R2k. For some time, it was believed that the existence of a
topological embedding also implies the existence of a geometric embedding, e.g., Grünbaum
conjectured that if a k-complex topologically embeds in R2k, then it also geometrically embeds
in R2k [30]. In R2, this is in fact true: For 1-complexes this is commonly known as Fáry’s
theorem [35] but it also follows from Steinitz’ earlier theorem [62]; for 2-complexes one needs
a few additional arguments [32]. In higher dimensions, however, the conjecture was disproven.
In particular, for every k, d ≥ 2 with k + 1 ≤ d ≤ 2k, there exist k-complexes that have a
PL embedding in Rd, but no geometric embedding in Rd [9, 10, 11]. In contrast, PL and
topological embeddability coincides in many cases, e.g., if d ≤ 3 [8, 48] or d−k ≥ 3 [12]. Very
recently, Frick, Hu, Scheel, and Simon [27] characterized when a complex on d + 3 vertices
embeds into the d-sphere, namely, if and only if its non-faces do not form an intersecting
family. Additionally, they showed that if a complex on d + 3 vertices embeds topologically
into Rd then it also embeds linearly into Rd. There are many further necessary and sufficient
conditions known for geometric embeddings [6, 46, 47, 57, 63, 64] and PL or/and topological
embeddings [20, 26, 49, 54, 65, 61].

In recent years, the algorithmic complexity of deciding whether or not a given
complex is embeddable gained attention. In the absence of a complete characterization,
an efficient algorithm is the best tool to decide embeddability. For instance, deciding
whether a 1-complex embeds in the plane corresponds to testing graph planarity and is thus
polynomial time decidable [33]. Similarly, Gross and Rosen [29] present a linear time planarity
algorithm for 2-complexes in the plane. On the other hand, PL embeddability is sometimes
even algorithmically undecidable. To give a concrete example, let Embedk→d denote the
algorithmic problem of determining whether a given k-complex has a PL embedding in Rd.
Because Embed4→5 has been shown to be algorithmically undecidable [40], there is no
algorithm to decide the problem (never mind an efficient one). This provides strong evidence
that PL embeddability for these parameters does not allow a reasonable characterization.

More recently, there have been several breakthroughs concerning the PL embeddability.
For an overview of the state of the art, consider Table 1. In dimensions d ≥ 4, the decision
problem Embedk→d is polynomial-time decidable for k < 2/3 · (d − 1) [16, 13, 15, 36] and
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Table 1 Overview of the complexity of Embedk→d.
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NP-hard for all remaining non-trivial cases [40], i.e., for all k with 2/3 · (d − 1) ≤ k ≤ 2d.
For d ≥ 5 and k ∈ {d − 1, d}, Embedk→d is even known to be undecidable [40]. For all other
NP-hard cases and d ≥ 4 decidability is unknown; we note that the proof for undecidability
in the case of codimension > 1 in [24] has an error [58]. For the case d = 3, Matoušek,
Sedgwick, Tancer, and Wagner proved decidability of Embed2→3 and Embed3→3 [39] and
de Mesmay, Rieck, Sedgwick, and Tancer proved NP-hardness [43].

Building upon [40], Skopenkov and Tancer [60] proved NP-hardness for a relaxed notion
called almost (PL/topological) embeddability where it is only required that disjoint sets
are mapped to disjoint objects, i.e., two edges incident to a common vertex may cross in
an interior point. More precisely, they showed that recognizing almost embeddability of
k-complexes in Rd is NP-hard for all d, k ≥ 2 with d (mod 3) = 1 and 2/3 · (d − 1) ≤ k ≤ d.

The analogous questions for geometric embeddings are wide open. Let GEMk→d

denote the algorithmic problem of determining whether a given k-complex has a geometric
embedding in Rd. In contrast to PL embeddability, however, it is easy to see that GEMk→d

is decidable for all k, d, since every instance can be expressed as a sentence in the first order
theory of the reals, which is decidable; for more details see Section 1.1.

The question of whether GEMk→d is complete for ∃R is a well-known open problem,
mentioned for example by Cardinal [18, Section 4].

Our Results. In this work, we present the first results concerning open problem for any
non-trivial entry with d ≥ 3. More precisely, we establish the exact computational complexity
of GEMk→d for all values d ≥ 3 and k ∈ {d − 1, d}. This includes a complete understanding
of the most intriguing entries with d = 3.

▶ Theorem 1. For every d ≥ 3 and each k ∈ {d − 1, d}, the decision problem GEMk→d is
∃R-complete. Moreover, the statement remains true even if a PL embedding is given.

Table 2 summarizes the current knowledge on the computational complexity of GEMk→d.
Our proof implies that distinguishing between k-complexes with PL and geometric embeddings
in Rd is complete for ∃R. Because NP ⊆ ∃R, our result yields NP-hardness for d ≥ 3 and
each k ∈ {d − 1, d}. This confirms the conjecture by Skopenkov that GEMk→d is NP-hard
for all k, d with max{3, k} ≤ d ≤ 3/2 · k + 1 for the corresponding values of k and d [59,
Conjecture 3.2.2]. Moreover, if NP ̸= ∃R, the problem GEMk→d cannot be tackled with well
developed tools for NP-complete problems such as SAT and ILP solvers. For more details,
we refer to Section 1.1.
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Table 2 Overview of the computational complexity of GEMk→d.
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The closely related question of polyhedral complexes (generalizing simplicial complexes
because each simplex is a basic polyhedron), posed in the Handbook of Discrete and
Computational Geometry, reads as follows: When is a given finite poset isomorphic to the
face poset of some polyhedral complex in a given space Rd? [53, Problem 20.1.1]. The
recognition of polyhedral complexes (with triangles and quadrangles) in R3 has been claimed
to be ∃R-complete [18, Theorem 5]. Focussing on convex polytopes, Richter-Gebert proved
that recognizing convex polytopes in R4 is ∃R-complete [50, 51]. Our result settles the
computational aspects of the question, even for the special case of simplicial complexes.

A geometric embedding of a complex can also be viewed as a simplicial representation of
a hypergraph, i.e., a representation in which every hyperedge is represented by a simplex. Of
particular interest is the case of uniform hypergraphs where all hyperedges have the same
number of elements. Thus, in the language of hypergraphs, our result reads as follows.

▶ Corollary 2. For all d ≥ 3 and every k ∈ {d − 1, d}, deciding whether a (k + 1)-uniform
hypergraph has a simplicial representation in Rd is ∃R-complete.

Outline and techniques. Our proof of Theorem 1 consists of three steps: Establishing
∃R-membership, showing ∃R-hardness in R3, i.e., of GEM2→3 and GEM3→3, and reducing
GEMk→d to GEMk+1→d+1. The core of the proof lies in establishing hardness of GEM2→3.

The main idea to prove hardness of GEM2→3 is to reduce from the problem Stretch-
ability. In Stretchability, we are given an arrangement of pseudolines (curves) in the
plane and we are asked to decide whether there exists a set of straight lines that has the
same combinatorial pattern as the pseudoline arrangement, see Figure 2(a) for an illustration
and Section 1.2 for a formal definition. Given a pseudoline arrangement L, we construct a
2-complex C which has a geometric embedding in R3 if and only if L is stretchable. On a
high level, our construction of C goes along the following lines: We add a helper triangle that
contains all intersections of the pseudolines, see Figure 2(b). We place each pseudoline in R3

and replace it by a special edge of the complex C; these will not be part of any triangle of C.
We surround the special edges by so called tunnels, which are tubes formed by triangular
sections, see Figure 2(c) and (d). One side of the tunnel defines its bottom, while the other
two span its roof. For each crossing in L, we glue the corresponding tunnel sections together,
see Figure 2(e). At last, we insert an apex u high above that is connected to all visible
tunnel parts, see Figure 2(f) and we insert additional objects in order to ensure that the
neighborhood of u is an essentially 3-connected graph, Figure 2(i). The objects incident to
the apex will also ensure that the special edges actually lie inside the tunnel.
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(a)

(i)

si ti`i

(b)

(c)
(d) (e)

(f) (g) (h)

Figure 2 (a) We start with a pseudoline arrangement L. (b) We add three segments forming a
triangle that contains all intersections of L. (c) Each pseudoline is represented by a special edge
that is surrounded by a tunnel. (d) Each tunnel consists of tunnel sections. (e) For the crossings of
the special edges, we identify parts of the tunnels. (f) We add an apex u and insert triangles to
the visible parts of the construction; we enhance the neighborhood of the apex to an essentially
3-connected graph depicted in (i). (g) In the correctness proof, we use a small sphere around the
apex and the projection of each special edge onto the sphere. (h) We argue that the combinatorics
of the projected special edges on the sphere are equivalent to L and then project the special edges
onto a plane. This will yield a stretched arrangement. (i) The neighborhood graph of the apex u.

SoCG 2023



1:6 Geometric Embeddability of Complexes Is ∃R-Complete

It is relatively straightforward to verify that if L is stretchable, then the complex C

embeds geometrically into R3. The other direction requires more care and work: We show
that a geometric embedding of C induces a line arrangement with the same combinatorics
as L. The idea of the proof is to consider a small sphere around the apex u and to project
its neighborhood and the special edges onto the sphere, see Figure 2(g). Because the
neighborhood graph of u is essentially 3-connected by construction, all its crossing-free
drawings on the sphere are equivalent. This is a crucial property to show that each special
edge lies in the projection of its tunnel roof (when restricting the attention to an interesting
part within the helper triangle). We remark that our proof does not show this explicitly.
Instead, we establish some even stronger properties. As a consequence, the projection of the
tunnels have the intended combinatorics and thus also the special edges which represent the
pseudolines. At last, we project the arcs from the sphere onto a plane, see Figure 2(h). In
this way, we obtain a line arrangement with the same combinatorics as L.

In order to show hardness of GEM3→3, we use a similar construction, in which we “fatten”
each triangle to a tetrahedron, by adding extra vertices.

We finally present a dimension reduction, i.e., we reduce GEMk→d to GEMk+1→d+1.
Given a k-complex C, we create a (k +1)-complex C+ that contains C and has two additional
vertices a and b. Moreover, for each subset e of C, C+ has the additional subsets e ∪ {a}
and e ∪ {b}. We prove that C geometrically embeds in Rd if and only if C+ geometrically
embeds in Rd+1. In this way, we show that distinguishing PL embeddable and geometrically
embeddable complexes is ∃R-complete.

1.1 Existential Theory of the Reals
The class of the existential theory of the reals ∃R (pronounced as is a complexity class
which has gained a lot of interest in recent years, specifically in the computational geometry
community. To define this class, we first consider the algorithmic problem Existential Theory
of the Reals (ETR). An instance of this problem consists of a sentence of the form

∃x1, . . . , xn ∈ R : Φ(x1, . . . , xn),

where Φ is a well-formed quantifier-free formula in the variables and the alphabet {0, 1, +, ·, ≥
, >, ∧, ∨, ¬}, and the goal is to check whether this sentence is true. As an example of an
ETR-instance, consider ∃x, y ∈ R : Φ(x, y) = (x · y2 + x ≥ 0) ∧ ¬(y < x), for which the goal
is to determine whether there exist real numbers x and y satisfying the formula Φ(x, y).

The complexity class ∃R is the family of all problems that admit a polynomial-time
many-one reduction to ETR. It is known that NP ⊆ ∃R ⊆ PSPACE. The first inclusion
follows from the definition of ∃R. Showing the second inclusion was first established by
Canny in his seminal paper [17]. The complexity class ∃R gains its significance because a
number of well-studied problems from different areas of theoretical computer science have
been shown to be complete for this class.

Famous examples from discrete geometry are the recognition of geometric structures, such
as unit disk graphs [41], segment intersection graphs [38], Stretchability [45, 56], and
order type realizability [38]. Other ∃R-complete problems are related to graph drawing [37],
Nash-Equilibria [7, 28], geometric packing [5], the art gallery problem [3], non-negative
matrix factorization [55], polytopes [22, 51], geometric linkage constructions [1], training
neural networks [4], visibility graphs [19], continuous constraint satisfaction problems [44],
and convex covers [2]. The fascination for the complexity class stems not merely from
the number of ∃R-complete problems but from the large scope of seemingly unrelated ∃R-
complete problems. We refer the reader to the lecture notes by Matoušek [38] and surveys
by Schaefer [52] and Cardinal [18] for more information on the complexity class ∃R.
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1.2 Definitions

Simplex. A k-simplex σ is a k-dimensional polytope which is the convex hull of its k + 1
vertices V , which are not contained in the same (k − 1)-dimensional hyperplane. Hence, a
0-simplex corresponds to a point, a 1-simplex to a segment, and a 2-simplex to a triangle
etc. The convex hull of any nonempty proper subset of V is called a face of σ. A simplicial
complex K is a set of simplices satifying the following two conditions: (i) Every face of
a simplex from K is also in K. (ii) For any two simplices σ1, σ2 ∈ K with a non-empty
intersection, the intersection σ1 ∩ σ2 is a face of both simplices σ1 and σ2. The purely
combinatorial counterpart to a simplicial complex is an abstract simplicial complex, which
we refer to simply as a complex.

Complex. A complex C = (V, E) is a finite set V together with a collection of subsets
E ⊆ 2V which is closed under taking subsets, i.e., e ∈ E and e′ ⊆ e imply that e′ ∈ E. A
k-complex is a complex where the largest subset contains exactly k + 1 elements. We call a
complex pure if all (inclusion-wise) maximal elements in E have the same cardinality.

For any vertex v ∈ V in a k-complex C = (V, E), the neighbourhood of v gives rise
to a lower dimensional complex Cv := (V ′, E′), where E′ := {e \ {v} | v ∈ e ∈ E} and
V ′ := N(v) =

⋃
e∈E′ e are the neighbors of v. Complexes are in close relation to Hypergraphs.

Hypergraphs. Hypergraphs generalize graphs by allowing edges to contain any number of
vertices. Formally, a hypergraph H is a pair H = (V, E) where V is a set of vertices, and E

is a set of non-empty subsets of V called hyperedges (or edges). A k-uniform hypergraph
is a hypergraph such that all its hyperedges contain exactly k elements. Note that the
maximal sets of a pure k-complex yield a (k + 1)-uniform hypergraph and vice versa. Hence,
(k + 1)-uniform hypergraphs and pure k-complexes are in a straightforward one-to-one
correspondence. A simplicial representation of a (k + 1)-uniform hypergraph is a geometric
embedding of the corresponding complex.

Geometric embeddings. A geometric embedding of a complex C = (V, E) in Rd is a
function φ : V → Rd fulfilling the following two properties: (i) for every e ∈ E, φ(e) :=
conv({φ(v) : v ∈ e}) is a simplex of dimension |e| − 1 and (ii) for every pair e, e′ ∈ E, it holds
that

φ(e) ∩ φ(e′) = φ(e ∩ e′).

Note that if φ is a geometric embedding, then {φ(e) : e ∈ E} is a simplicial complex. The
problem GEMk→d asks whether a given k-complex has a geometric embedding in Rd.

Topological and PL embeddings. Consider a complex C = (V, E). In contrast to geometric
embeddings, for PL or topological embeddings it is not sufficient to describe the mapping of
the vertices V . Choose d′ so large that C admits a geometric embedding φ′ : V → Rd′ , and
define S =

⋃
e∈E φ′(e). We then say that an injective and continuous function φ : S → Rd is

a topological embedding of C in Rd. If furthermore for each e ∈ E, the image φ(φ′(e)) is a
finite union of connected subsets of (|e| − 1)-dimensional hyperplanes, then φ is a piecewise
linear (PL) embedding. The problem Embedk→d asks whether a given k-complex has a PL
embedding in Rd.

SoCG 2023
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Graph Drawings. A graph is a 1-complex. A graph is planar if there exists a crossing-free
drawing in the plane, i.e., a (topological) embedding in R2. As mentioned above, a graph
has a topological embedding in R2 if and only if it has a geometric embedding in R2. A
plane graph is a planar graph together with a rotation system, i.e., a cyclic ordering of the
incident edges around each vertex that comes from a crossing-free drawing. By means of
stereographic projection, any graph that has a crossing-free drawing in the plane also has a
crossing-free drawing on the sphere and vice versa. Two crossing-free drawings of a graph
(in the plane or on the sphere) are equivalent if they can be transformed into one another
by a homeomorphism (of the plane or the sphere); note that the homeomorphism could be
orientation reversing. In particular, two equivalent drawings have the same rotation system;
two equivalent drawings in the plane additionally have the same outer face. When talking
about an arbitrary drawing D of a plane graph G, we mean a crossing-free drawing with the
same rotation system.

Stretchability. A pseudoline arrangement is a family of curves that apart from “straightness”
share similar properties with a line arrangement. More formally, a (Euclidean) pseudoline
arrangement is a set of labeled x-monotone curves in the Euclidean plane such that any two
meet in exactly one point. A curve in R2 is x-monotone if it is the image of a continuous
function f : R → R. In fact, each pseudoline arrangement can be encoded by a wiring
diagram; see also Figure 4. A pseudoline arrangement is stretchable if it is combinatorially
equivalent to an arrangement of straight-lines, i.e., if the arrangements can be transformed
into one another by a homeomorphism of the plane. Stretchability denotes the algorithmic
problem of deciding whether a given pseudoline arrangement is stretchable. In a seminal
paper, Shor [56] proved that Stretchability is NP-hard. Shor points out that Mnëv’s
proof implies that stretchability is complete for the existential theory of the reals. For a
stream-line exposition of this result see the expository paper by Matoušek [38].

1.3 Pitfalls
While the general proof ideas are fairly straightforward, our arguments in Section 2 may
at first glance appear a bit tedious. In the following, we highlight one of the appearing
challenges. It is easy to see that each special edge lies inside its tunnel in any geometric
embedding. It follows that the projection of the special edge lies also inside the projection of
the tunnel on the sphere centered at the apex. Furthermore, we know that the roofs of the
tunnels are seen by the apex. One may be tempted to (directly) conclude that the projection
of the special edge is thus also contained in the projection of the roof; the underlying thought
being that the projection of the tunnel bottom lies below the tunnel roof in the geometric
representation and thus the projection of the tunnel bottom is contained in the projection
of the tunnel roof. Yet, the latter is not true in general, as can be seen in Figure 3. In the

Figure 3 From the perspective of u, the tunnel bottom is not always hidden below the tunnel
roof: From the three sections displayed, the bottom (yellow) of the middle one is partially visible.
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figure, the tunnel bottom is not covered by the roof. We (implicitly) show that the projection
of the special edge lies inside the projection of the roof by establishing some even stronger
topological and geometric properties.

2 The Proof

In this section, we prove Theorem 1. Our proof consists of the following three parts.

a) Establishing ∃R-membership (Section 2.1: Lemma 3).
b) Showing ∃R-hardness in R3, i.e., of GEM2→3 and GEM3→3 (Section 2.2: Theorem 4

and Corollary 9).
c) Reducing GEMk→d to GEMk+1→d+1 (Section 2.3: Lemma 10).
Together Lemmas 3 and 10, Theorem 4 and Corollary 9 prove Theorem 1.

2.1 Membership
In this subsection, we show ∃R-membership of GEMk→d. Note that this is essentially
folklore [14]. We present a proof for the sake of completeness.

▶ Lemma 3. For all k, d ∈ N, the decision problem GEMk→d is contained in ∃R.

Proof. In order to show membership in ∃R, we use the following characterization by Erickson,
Hoog and Miltzow [23]: A problem P lies in ∃R if and only if there exists a verification
algorithm A for P that runs in polynomial time on the real RAM, which we refer to as a real
verification algorithm. In particular, for every yes-instance I of P there exists a polynomial
sized witness w such that A(I, w) returns yes, and for every no-instance I of P and any
witness w, A(I, w) returns no. In contrast to the definition of the complexity class NP, we
also allow witnesses that consist of real numbers. Consequently, we execute A on the real
RAM as well.

It remains to present a real verification algorithm for GEMk→d. While the witness
describes the coordinates of the vertices, the algorithm checks for intersections between any
two simplices. Note that each simplex is a convex set and the intersection of convex sets is a
convex set as well. For any simplex S with n vertices, we can efficiently determine n linear
inequalities and at most one linear equality that together describe S: the inequalities may
describe the n facets and the equality describes the subspace in case S is not d-dimensional.
Then checking for intersections can be reduced to a linear program, which is polynomial
time solvable in any fixed dimension. This finishes the description of the real verification
algorithm. ◀

We note that one does not need to resort to the characterization of ∃R with verifiers as
in [23]. It is possible to directly construct a polynomial system of polynomial size (in fixed
dimension) in the coordinates of the vertices of the given complex in order to encode its
geometric realizability. It may appear to be overly complicated to use the tools from [23], if
you do not know this tool. However, if you know this tool it appears strange not to use it.

SoCG 2023
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2.2 Hardness in three dimensions
This section is dedicated to proving Theorem 1 for d = 3 and k ∈ {2, 3}. The crucial part
lies in the case k = 2.

▶ Theorem 4. The decision problem GEM2→3 is ∃R-hard.

Proof. We reduce from the ∃R-hard problem Stretchability, as described in Section 1.2.
In particular, for each pseudoline arrangement L, we construct a 2-dimensional complex C in
time polynomial in L such that C geometrically embeds in R3 if and only if L is stretchable.

Let L be an arrangement of n pseudolines in the plane. Every pseudoline arrangement
has a representation as a wiring diagram in which each pseudoline is given by a monotone
curve consisting of 2n − 1 sections. For an illustration consider Figure 4; each section could
be represented by a segment, however for a visual appealing display, the bend points are
rounded. We add a pseudoline ℓ0 that intersects all pseudolines in the beginning, see Figure 4,
and call the resulting pseudoline arrangement L∗. Note that L∗ is stretchable if and only if
L is stretchable. For later reference, we endow a natural orientation upon each pseudoline
from left to right. In the following, we construct a 2-complex C = (V, E) that allows for a
geometric realization if and only if L∗ (and thus L) is stretchable. In order to define C, we
add a helper triangle △ (consisting of three segments!) to our arrangement that intersects
the pseudolines of L∗ as illustrated in Figure 4. In particular, the helper triangle contains all
intersection points of L∗.

ℓ1

ℓn

ℓ2

ℓ0

...

ℓ1

ℓn

ℓ2

ℓ0

...

Figure 4 Adding an extra pseudoline ℓ0 and the helper triangle △ to the construction. (left) A
pseudoline arrangement L∗. (right) The crossing diagram contains an additional helper triangle.

Construction of the 2-complex. In order to define C, we associate an almost geometric
embedding of already defined parts along the way; where only a set of special edges is
represented in a PL fashion, all other elements are already geometrically embedded. We will
refer to the subsets in C as vertices, edges, and triangles depending on whether they contain
one, two or three elements. The construction has five steps.

In the first step, we place the pseudolines and the helper triangle △ in 3-space. Each
pseudoline ℓi lies in the plane z = i such that an observer high above (at infinity) sees the
wiring diagram. Similarly, we place the segments of the helper triangle △ in 3-space such
that it lies in the plane z = n + 1. Note that no two pseudolines intersect. Therefore, we
can surround each lifted pseudoline by a triangulated sphere which we call a tunnel; see also
Figure 5. The tunnel T +

i of ℓi is formed by 2n + 3 + i sections; later, we will be particularly
interested in a part of a tunnel, denoted by Ti, in which the first two and last two sections
are removed. Each section consists of six triangles forming a triangulated triangular prism
as illustrated in Figure 5. We close the tunnel with triangles at the ends and think of the
bottom side of the prism to lie in the plane z = i − 1/2 (for now). The remaining part of
the tunnel, i.e., the tunnel without its bottom, constitutes the roof, see Figure 5. The roof
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contains three disjoint paths on 2n + 4 + i vertices. The edges and vertices on the boundary
of both the bottom and the roof form the left and right roof path; the edges of the closing
triangles on either end do not belong to either path. The remaining vertices induce the
central roof path. The three roof paths are thickened in Figure 5.

si
tiℓi

Figure 5 First step in the construction of the complex C – tunnel construction. (left) A tunnel
viewed from side. (middle) A section of a tunnel. (right) A tunnel viewed from above.

Note that we do not add a tunnel for the helper triangle. We distribute the sections along
T +

i to edges and crossings of the crossing diagram as follows: Generally, we associate one
section per edge and one section per crossing of two pseudolines. Moreover, we associate
one extra section of T +

j to a crossing of ℓi and ℓj whenever i < j. In order to represent the
pseudoline ℓi, we insert a special edge ei between the two top vertices on either end of the
tunnel; for later reference, we denote the start vertex by si and the end vertex by ti. In the
associated almost geometric embedding, ei is represented inside the tunnel by a concatenation
of segments, one for each tunnel section. We aim for the fact that the special edge ei lies
inside the tunnel in every geometric embedding (if one exists).

In the second step, we identify parts of the tunnels. To this end, consider the tunnel
sections assigned to a crossing of a pseudoline ℓi with ℓj , i < j. Recall that we assigned one
section of T +

i and two sections of T +
j to the crossing. We identify the four triangles in the

bottom of the two sections of T +
j with the four triangles in the roof of one section of T +

i

as indicated in Figure 6. Note that we hereby identify six times two vertices, four of which
belong to a left or right roof path of both tunnels, T +

i and T +
j .

Ti

Tj

Figure 6 Second step in the construction of the complex C: (left) Gluing of tunnel parts viewed
from above. (right) During the identification process, the vertices of the top tunnel are moved to
the vertices of the bottom tunnel.

For the associated almost geometric embedding, we shortly explain here how to geometri-
cally embed the tunnels. To this end, we may easily distribute the sections of the tunnels
such that the six vertices of both tunnels (which will be pairwise identified) have the same
x, y-coordinates. Then, during the identification process, we move the vertices of the top
tunnel to the vertices of the lower tunnel.

In the third step, we add a new vertex to the construction that we call the apex and
which we denote by u. We think of u as the observer high above (at infinity) and insert a
triangle defined by u and the vertices of every edge that is visible from u. Clearly, every edge
of the helper triangle △ is visible. Moreover, note that every roof section that is neither
glued in a crossing nor hidden by the helper triangle is visible. In contrast, no bottom of any
tunnel is visible in the almost geometric embedding.

SoCG 2023
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In the fourth step, we enhance the 1-complex induced by the neighborhood N(u) of
the apex u such that it corresponds to an essentially 3-connected planar graph G+. We
call a graph essentially 3-connected if it is a subdivision of a 3-connected graph. With the
description so far, the 1-complex corresponds to the graph H depicted in black in Figure 7.

f0

Figure 7 Third and fourth step in the construction of the complex C: neighborhood of the
apex u. The graph Hafter the third step is depicted in black. Together with the gray edges, the
graph is a candidate for the essentially 3-connected plane graph G+ and its subgraph G inside △.
Each red vertex outside of △ is a start vertex si or an end vertex ti of some special edge ei; its black
component represents the first or last section of tunnel T +

i , respectively.

To construct G+, we make use of the following fact. We define the degree of a face in a
potentially disconnected plane graph as the number of edges in the face boundary (counted
with multiplicity), plus 1 for each but one component incident to the face. Note that the
degree of a face is thus lower bounded by the number of incident vertices and upper bounded
by twice the number of incident vertices.

▷ Claim 5. For every plane graph G1 = (V1, E1), there exists an essentially 3-connected plane
graph G2 = (V2, E2) such that G1 is a subgraph of G2 and any straight-line drawing D1 of
G1 in the plane can be extended to a straight-line drawing of G2. Moreover, if the maximum
face degree of G1 is k, then the size of G2 can be bounded by |V2| + |E2| ≤ O(k|V1|).

Let G+ := G2 be an essentially 3-connected plane graph guaranteed by Claim 5 for the
case that G1 = H. Note that G1 has O(n2) vertices and edges, and every face has degree
O(n). Hence, the size of G2 is in O(n3). We denote the outer face of G2 by f0. The reader
is invited to think about the far more sparse graph depicted in Figure 7, which also serves
as a candidate for G+. Indeed, the depicted graph also fulfills all properties necessary for
our construction; however, not all properties of Claim 5. For example, the depicted graph is
even 3-connected. The proof of this is straightforward, but a bit tedious. Thus, we leave it
as an exercise to the interested reader to check that the graph remains connected even after
the deletion of any two vertices or alternatively, that any pair of vertices is connected by
three disjoint paths.
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Later, the subgraph G of G+ that is induced by all vertices of
⋃

i Ti will be of particular
interest; in Figure 7, these vertices (and their convex hull) lie inside the helper triangle △.
Recall that Ti denotes the part of the tunnel T +

i obtained by deleting the first two and last
two sections.

It is a well-known fact that all (straight-line or topological) planar drawings of a 3-
connected planar graph on the sphere are equivalent [34]; for a definition of equivalent
drawings consult Section 1.2. Consequently, the result extends to essentially 3-connected
graphs as it also holds for topological drawings. For later reference, we note the following.

▷ Claim 6. The planar graph G+ is essentially 3-connected. Therefore, all crossing-free
drawings of G+ on a sphere are equivalent. Furthermore, any straight-line drawing of H in
the plane can be extended to a straight-line drawing of G+.

We ensure that the neighborhood complex of u is the underlying planar graph of G+, i.e.,
for each edge of G+ not present in H, we insert a triangle formed by the vertices of this edge
together with u and call the resulting complex C.

In the fifth and last step, our final complex C consist of two copies of C in which
the apex vertices are identified. We use these two copies in order to guarantee that in any
geometric embedding the apex lies outside of all tunnels for one copy of C. This finishes the
construction of the abstract complex C.

It remains to show that our construction runs in polynomial time and fulfills the claimed
properties.

Time Complexity. In order to verify that the construction shows ∃R-hardness, we argue
that it has a running time that is polynomial in the size of the input. To this end, note that
a pseudoline arrangement with n pseudolines can be described by the sequence of crossings
along each pseudoline, i.e., by the O(n2) crossings. Thus, the input size is N = O(n2). After
adding the helper triangle and ℓ0, the crossing diagram still has a size in O(n2). It is easy to
see that our construction has a size proportional to N3/2: For each segment and crossing of
the diagram, we insert a constant number of objects. Moreover, we add a triangle for every
(additional) edge in G+; recall that G+ has size O(n3). Consequently, the total construction
has size O(n3) = O(N3/2). We remark, that a more careful choice of G+, as in Figure 7,
yields a construction that is linear in N .

It remains to show that the pseudoline arrangement L is stretchable if and only if C has
a geometric embedding in R3.

Correctness. If L is stretchable, it is relatively straight-foward to construct a geometric
embedding of C.

▷ Claim 7. If L is stretchable, then C has a geometric embedding.

The reverse direction is more involved and the interesting challenge.

▷ Claim 8. If C has a geometric embedding, then L is stretchable.

This finishes the proof of Theorem 4. ◀

SoCG 2023
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Fattening the Complex. In the following, we present a simple modification for the proof of
Theorem 4 to obtain hardness for pure 2- and 3-complexes.

▶ Corollary 9. The decision problems GEM2→3 and GEM3→3 are ∃R-hard, even when
restricting to pure complexes.

Proof. The constructed 2-complex C in the proof of Theorem 4 was not pure because the
special edges are not contained in any triangle. We obtain a pure 2-complex Ĉ by adding
one new vertex to each special edge such that it forms a special triangle. On the one hand,
given a geometric embedding of C in R3, the new vertices can easily be added close enough
to their defining set in C. On the other hand, any geometric embedding of Ĉ induces an
embedding of C. Hence, C has a geometric embedding if and only if Ĉ has a geometric
embedding in R3.

Analogously, we can add a private vertex to each triangle of Ĉ to form a pure 3-complex
which has a geometric embedding if and only if C has a geometric embedding in R3. ◀

Alternatively for showing hardness of GEM3→3, we remark that hardness of GEMk→d

for k < d easily implies hardness of GEMℓ→d for all k ≤ ℓ ≤ d by adding a disjoint ℓ-simplex
to the construction which always has a geometric embedding in Rd.

2.3 Dimension Reduction
In order to show hardness for all remaining cases of Theorem 1, we establish the following
dimension reduction.

▶ Lemma 10. The decision problem GEMk→d reduces to GEMk+1→d+1.

The idea is to add two apices to a k-complex C in order to obtain a (k + 1)-complex C+.
We then argue that C has a geometric embedding in Rd if and only if C+ has a geometric
embedding in Rd+1. More formally, for a complex C = (V, E) and a disjoint vertex set U ,
C ∗U denotes the join complex (V ∪U, E′) where E′ := {e∪u | e ∈ E, u ∈ U}. The following
claim immediately implies Lemma 10.

▷ Claim 11. Let C = (V, E) be a complex, a, b /∈ V two new vertices, and C+ := C ∗ {a, b}
their join complex. Then C has a geometric embedding in Rd if and only if C+ has a
geometric embedding in Rd+1.

Proof. Let φ be a geometric embedding of C in Rd. Then, we define for v ∈ V ∪ {a, b},

φ′(v) =


( φ(v) , 0 ) if v ∈ V,

(0, . . . , 0, +1) if v = a,

(0, . . . , 0, −1) if v = b.

It is easy to check that φ′ is a geometric embedding of C+ in Rd+1: By definition of the last
coordinate, any two simplices where one possibly contains a and the other possibly contains b

can only intersect in the subspace induced by the first d coordinates. Consequently, all
(interesting) potential intersections happen in the d-dimensional subspace induced by the
first d coordinates. Hence φ implies the correctness of the geometric embedding.

For the reverse direction, consider a geometric embedding φ of C+ in Rd+1. Let φa := φ(a)
and φb := φ(b). Without loss of generality, we assume that φa − φb is orthogonal to the first
d coordinates, i.e., φa −φb is parallel to the (d+1)-st coordinate axis. Let φ(C) :=

⋃
e∈E φ(e)
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denote the induced geometric subrepresentation of C. We claim that the orthogonal projection
f : φ(C) → Rd to the first d coordinates (i.e.,the effect of the function is the one of restricting
to the first d coordinates, .) is injective. Thus φ′ := f ◦ φ yields a representation of C in Rd.

For the purpose of a contradiction, suppose that f is not injective. Then there exist
two distinct points p = (p1, . . . , pd+1) and q = (q1, . . . , qd+1) with p, q ∈ φ(C) such that
(p1, . . . , pd) = (q1, . . . , qd) and pd+1 ̸= qd+1. Without loss of generality, we may assume that
pd+1 > qd+1. Consider the plane P spanned by φa, φb, p. Note that q ∈ P because φa − φb

and p − q are parallel (to the (d + 1)st coordinate axis). For an illustration, see Figure 8.

ϕa

p

q

ϕb

ϕa

ϕb

Figure 8 Illustration for the proof of Claim 11. The geometric embedding φ of C+ gives a
monotone embedding of C, otherwise we can find an intersection in C+.

Let us denote with ep ∈ E and eq ∈ E any choice of hyperedges such that p ∈ φ(ep) and
q ∈ φ(eq). Consider the two open segments seg◦(φa, q) ∈ φ(eq ∪a) and seg◦(φb, p) ∈ φ(ep ∪b).
Clearly, these open segments intersect in a point x, as illustrated in Figure 8. Because φ is a
geometric embedding, it holds that

x ∈ φ(eq ∪ a) ∩ φ(ep ∪ b) = φ(eq ∩ ep) = φ(eq) ∩ φ(ep).

In particular, this implies that x ∈ φ(eq) and thus that x ∈ seg◦(φa, q) ∩ φ(eq). However,
because φ(eq ∪a) is a simplex, φa does not lie in span(φ(eq)) and thus seg◦(φa, q)∩φ(eq) = ∅.
A contradiction. ◁

3 Conclusion

We established the computational complexity of GEMk→d for all d ≥ 3 and k ∈ {d−1, d}. In
particular, we showed that for these values it is complete for ∃R to distinguish PL embeddable
k-complexes in Rd from geometrically embeddable ones. Arguably, GEM2→3 is the most
interesting case.

Investigating the computational complexity for the remaining open entries in Table 2
remains for future work. We strengthen the conjecture of Skopenkov [59] as follows.

▶ Conjecture. The problem GEMk→d is ∃R-complete for all k, d such that max{3, k} ≤
d ≤ 2k.
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