
FPT Constant-Approximations for Capacitated
Clustering to Minimize the Sum of Cluster
Radii
Sayan Bandyapadhyay
Department of Computer Science, Portland State University, OR, USA

William Lochet
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract
Clustering with capacity constraints is a fundamental problem that attracted significant attention
throughout the years. In this paper, we give the first FPT constant-factor approximation algorithm
for the problem of clustering points in a general metric into k clusters to minimize the sum of
cluster radii, subject to non-uniform hard capacity constraints (Capacitated Sum of Radii). In
particular, we give a (15 + ϵ)-approximation algorithm that runs in 2O(k2 log k) · n3 time.

When capacities are uniform, we obtain the following improved approximation bounds.

A (4 + ϵ)-approximation with running time 2O(k log(k/ϵ))n3, which significantly improves over
the FPT 28-approximation of Inamdar and Varadarajan [ESA 2020].
A (2 + ϵ)-approximation with running time 2O(k/ϵ2·log(k/ϵ))dn3 and a (1 + ϵ)-approxim- ation
with running time 2O(kd log((k/ϵ)))n3 in the Euclidean space. Here d is the dimension.
A (1 + ϵ)-approximation in the Euclidean space with running time 2O(k/ϵ2·log(k/ϵ))dn3 if we
are allowed to violate the capacities by (1 + ϵ)-factor. We complement this result by showing
that there is no (1 + ϵ)-approximation algorithm running in time f(k) · nO(1), if any capacity
violation is not allowed.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Clustering, FPT-approximation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.12

Related Version Full Version: https://arxiv.org/abs/2303.07923

Funding Saket Saurabh: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no. 819416), and
Swarnajayanti Fellowship (no. DST/SJF/MSA01/2017-18).

1 Introduction

The Sum of Radii (clustering) problem is among the most popular and well-studied clustering
models in the literature, together with k-center, k-means, and k-median [12, 25, 4, 30]. In
Sum of Radii , we are given a set P of n points in a metric space with distance dist, and a
non-negative integer k specifying the number of clusters sought. We would like to find: (i)
a subset C of P containing k points (called centers) and a non-negative integer rq (called
radius) for each q ∈ C, and (ii) a function assigning each point p ∈ P to a center q ∈ C such
that dist(p, q) ≤ rq. The goal is to minimize the sum of the radii

∑
q∈C rq. Alternatively,

the objective is to select k balls in the metric space centered at k distinct points of P , such
that each point p ∈ P is contained in at least one of those k balls and the sum of the radii of
the balls is minimized.

© Sayan Bandyapadhyay, William Lochet, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.SoCG.2023.12
https://arxiv.org/abs/2303.07923
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 FPT Approx. for Capacitated Sum of Radii

In a seminal work, Charikar and Panigrahy [12] studied the Sum of Radii problem.
As mentioned in their paper, sum of radii objective can be used as an alternative to the
k-center objective to reduce the so called dissection effect. The k-center objective is similar
to sum of radii, except here one would want to minimize the maximum radius. As in k-center
all balls are assumed to have the same maximum radius, the balls can have huge overlap.
Consequently, points that should have been assigned to the same cluster might end up in
different clusters. This phenomenon is called the dissection effect which can be reduced by
using the sum of radii objective instead.

Considering the sum of radii objective, Charikar and Panigrahy [12] obtained a 3.504-
approximation running in polynomial time, which is the best known approximation factor for
this problem in polynomial time to date. Their algorithm is based on a primal-dual scheme
coupled with an application of Lagrangean relaxation. Subsequently, Gibson et al. [23]
obtained a (1 + ϵ)-approximation in quasi-polynomial time. It follows from the standard
complexity theoretic assumptions that the problem cannot be APX-hard. We note that the
problem is known to be NP-hard even in weighted planar metrics and metrics of constant
doubling dimension [23]. Surprisingly, the problem can be solved in polynomial time in
Euclidean spaces when the dimension is fixed [24]. When the dimension is arbitrary, one
can obtain a (1 + ϵ)-approximation in 2O((k log k)/ϵ2) · nO(1) time, extending the coreset based
algorithm for k-center [5].

1.1 Our Problem and Results
In this work, we are interested in the capacitated version of Sum of Radii . Clustering
with capacity constraints is a fundamental problem and has attracted significant attention
recently [10, 8, 11, 13, 21, 33, 34, 7, 22, 1, 37, 19]. Indeed, capacitated clustering is relevant
in many real-life applications, such as load balancing where the representative of each cluster
can handle the load of only a bounded number of objects. It is widely known that clustering
problems become much harder in the presence of capacity constraints.

Formally, in the Capacitated Sum of Radii problem, along with the points of P in a
metric space, we are also given a non-negative integer ηq for each q ∈ P , which denotes the
capacity of q. The goal is similar to the goal of Sum of Radii except here each chosen center
q ∈ C can be assigned at most ηq points of P . Alternatively, each cluster contains a bounded
number of points specified with respect to the center of the cluster. In the uniform-capacitated
version of the problem, ηp = ηq for all p, q ∈ P , and we denote the capacity by U . We note
that in this work, we only consider hard capacities, i.e., each point can be chosen at most
once to be a cluster center. In this setting, a major open question is to determine whether
there is a polynomial time O(1)-approximation algorithm for Capacitated Sum of Radii ,
even in the uniform-capacitated case.

Question 1: Does Capacitated Sum of Radii admit a polynomial time constant-
approximation algorithm, even with uniform capacities?

Designing polynomial time constant-approximations for capacitated clustering problems
are notoriously hard. In fact such algorithms exist only for the k-center objective out
of the four objectives mentioned before. For uniform capacitated k-center, Khuller and
Sussmann [31] designed a 6-approximation improving a 10-approximation of Bar-Ilan et
al. [6] who introduced the problem. The first constant-approximation in the non-uniform
case [20] was designed after 12 years, which was subsequently improved to a 9-approximation
by An et al. [3]. The capacitated problems with k-means and k-median objectives have

S. Bandyapadhyay, W. Lochet, and S. Saurabh 12:3

attracted a lot of attention over the years. But, despite a recent progress for the uniform
version in R2 [14], where a PTAS is achieved, even in R3, the problem of finding a polynomial
time constant-approximation remains open. The best-known polynomial time approximation
factor in general metrics is O(log k) [19], which is based on a folklore tree embedding scheme.

Technical Barriers for Sum of Radii. The problem with sum of radii objective also appears to
be fairly challenging. The main difficulty in achieving a polynomial time O(1)-approximation
for Capacitated Sum of Radii is obviously the presence of the capacity bounds even if
they are uniform, which makes the problem resilient to the techniques used for solving Sum
of Radii . The only polynomial time O(1)-approximation known for Sum of Radii is via a
primal-dual scheme. However, it is not clear how to interpret the capacity constraints in
the primal, in the realm of dual. Also, while the algorithms for capacitated k-center use
LP-relaxation of the natural LP, the standard LP relaxation for Capacitated Sum of
Radii has a large integrality gap [29]. Needless to say, the situation becomes much more
intractable in the non-uniform capacitated case.

Hardness of Approximation. The lower bounds known for capacitated clustering are equally
frustrating as their upper bounds. Surprisingly, the only known lower bounds are the ones for
the uncapacitated versions, and hence trivially translated to the capacitated case. Due to the
20-year old work of Guha and Khuller [26], k-median and k-means are known to be NP-hard
to approximate within factors of 1.735 and 3.943, respectively. In a recent series of papers,
Cohen-Addad, Karthik and Lee [16, 17, 18] have obtained improved constant lower bounds
for various clustering problems in different metrics and settings. In particular, in the last
work, they introduced an interesting Johnson Coverage Hypothesis [18] which helped them
obtain improved bounds in various metrics. As mentioned before, Sum of Radii cannot be
APX-hard, and hence there is no known inapproximability results that can be translated to
the capacitated version.

In the light of the above discussions, one may conclude that the rather benign capacity
constraints have played a bigger role compared to the choice of objective function, in our
current lack of understanding of practical clustering models. Therefore, it seems that making
any intermediate progress towards understanding capacitated clustering, irrespective of the
objective function, is significant and timely.

Coping with Capacitated Clustering. In order to improve the understanding of these
challenging open questions, researchers have mainly studied two types of relaxations to obtain
constant-approximation algorithms. The more traditional approach taken for k-means and
k-median is to design bi-criteria approximation where we are allowed to violate either capacity
or the bound on the number of clusters by a small amount [10, 8, 11, 13, 21, 33, 34]. The
other (relatively newer) approach is to design fixed-parameter tractable (FPT) approximation,
thus allowing an extra factor f(k) in the running time. We note that, in recent years, FPT
approximations are designed for classic problems improving the best known approximation
factors in polynomial time, e.g., k-vertex separator [32], k-cut [27] and k-treewidth deletion
[28].

FPT Approximation for Clustering. In the context of clustering problems, the number of
clusters k is a natural choice for the parameter, as the value of k is typically small in practice,
e.g., k ≤ 10 in [35, 36]. Consequently, the approach of designing FPT approximation have
become fairly successful for clustering problems and have led to interesting results which

SoCG 2023

12:4 FPT Approx. for Capacitated Sum of Radii

are not known or impossible in polynomial time. For example, constant-approximations
are obtained for the capacitated version of k-median and k-means [1, 37, 19], which almost
match the polynomial time constant approximation factors in the uncapacitated case. In
the uncapacitated case of k-median and k-means, tight (1.735 + ϵ) and (3.943 + ϵ)-factor
FPT approximations are recently obtained [15, 1, 37], whereas the best known factors in
polynomial time are only 2.611 [9] and 6.357 [2]. These results are interesting in particular,
as a popular belief in the clustering community is that there is no algorithmic separation
between FPT and polynomial time in general metrics (for example, see the comment in
[17] after Theorem 1.3). We note that it is possible to obtain (1 + ϵ)-approximations in
high-dimensional Euclidean spaces [7, 22], which is impossible in polynomial time, assuming
standard complexity theoretic conjectures.

Inamdar and Varadarajan [29] adapted the approach of designing FPT approximation to
study the Capacitated Sum of Radii problem with uniform capacities. They make the
first substantial progress in understanding this problem through the lens of fixed-parameter
tractability. In particular, they obtained a 28-approximation algorithm for this problem that
runs in time 2O(k2)nO(1). Unfortunately, their algorithm does not work in the presence of
non-uniform capacities. Based on their result, the following natural questions arise.

Question 2: Does Capacitated Sum of Radii admit a constant-approximation
algorithm, in FPT time, even when capacity constraints are non-uniform?

Question 3: Does Capacitated Sum of Radii admit a (1 + ϵ)-approximation
algorithm, in FPT time, when the points are in Rd (Euclidean Metric)?

We make significant advances towards answering Questions 2 and 3. Our first result
completely answers Question 2.

▶ Theorem 1. For any constant ϵ > 0, the Capacitated Sum of Radii problem admits a
(15 + ϵ)-approximation algorithm with running time 2O(k2 log k) · n3.

Next, we consider the uniform-capacitated version and prove the following theorem
significantly improving over the approximation factor of 28 in [29].

▶ Theorem 2. For any constant ϵ > 0, there exists a randomized algorithm for the Capacit-
ated Sum of Radii problem with uniform capacities that outputs with constant probability
a (4 + ϵ)-approximate solution in time 2O(k log(k/ϵ)) · n3.

The approximation factor in the above result is interesting in particular, as it almost
matches the approximation factor of 3.504 in the uncapacitated case and keeps the avenue of
obtaining a matching approximation in polynomial time open.

Finally, we mention the Euclidean version of the problem where we show that adapting
the standard coreset argument for regular k-clustering allows us to obtain the following two
results.

▶ Theorem 3. For any constant ϵ > 0, there exists a randomized algorithm for the Euclidean
version of Capacitated Sum of Radii with uniform capacities that outputs with constant
probability a (2 + ϵ)-approximate solution in time 2O((k/ϵ2) log(k/ϵ)) · dn3, where d is the
dimension.

▶ Theorem 4. For any constant ϵ > 0, the Euclidean version of Capacitated Sum of
Radii admits an (1 + ϵ)-approximation algorithm with running time 2O(kd log((k/ϵ)))n3.

S. Bandyapadhyay, W. Lochet, and S. Saurabh 12:5

We also complement our approximability results by hardness bounds. The NP-hardness
of Capacitated Sum of Radii trivially follows from the NP-hardness of Sum of Radii .
We strengthen this bound by showing the following result.

▶ Theorem 5. Capacitated Sum of Radii with uniform capacities cannot be solved in
f(k)no(k) time for any computable function f , unless ETH is false. Moreover, it does not
admit any FPTAS, unless P=NP.

We also show an inapproximability bound in the Euclidean case even with uniform
capacities.

▶ Theorem 6. The Euclidean version of Capacitated Sum of Radii with uniform capacities
does not admit any FPTAS even if k = 2, unless P=NP.

Although the above bound does not eradicate the possibility of obtaining a (1 + ϵ)-
approximation in the Euclidean case, it shows that to obtain such an approximation, even
when k = 2, one needs nf(ϵ) time for some non-constant function f that depends on ϵ.
This is in contrast to the uncapacitated version of the problem, where one can get (1 + ϵ)-
approximation in 2O((k log k)/ϵ2) · nO(1) time as mentioned before.

As by products of our techniques we have also obtained improved bi-criteria approxima-
tions for the uniform-capacitated version of the problem where we are allowed to use (1 + ϵ)U
capacity.

▶ Theorem 7. There is a randomized algorithm for Capacitated Sum of Radii with
uniform capacities that runs in time 2O(k log(k/ϵ)) · nO(1) and returns a solution with constant
probability, such that each ball in the solution uses at most (1 + ϵ)U capacity and the cost of
the solution is at most (2 + ϵ) · OPT, where OPT is the cost of any optimal solution in which
the balls use at most U capacity.

The above theorem improves the approximation factor in Theorem 2. In the Euclidean
case, we obtain a similar algorithm.

▶ Theorem 8. There is a randomized algorithm for the Euclidean version of Capacitated
Sum of Radii with uniform capacities that runs in time 2O((k/ϵ2) log k) · dn3 and returns a
solution with constant probability, such that each ball in the solution uses at most (1 + ϵ)U
capacity and the cost of the solution is at most (1 + ϵ) · OPT, where OPT is the cost of any
optimal solution in which the balls use at most U capacity.

Note that, by Theorem 6, a result as in the above theorem is not possible if we are not
allowed to violate the capacity.

1.2 Preliminaries
Capacitated Sum of Radii . We are given a set P of n points in a metric space with
distance dist, a non-negative integer ηq for each q ∈ P , and a non-negative integer k. The
goal is to find: (i) a subset C of P containing k points and a non-negative integer rq for each
q ∈ C, and (ii) a function µ : P → C, such that for each p ∈ P , dist(p, µ(p)) ≤ rµ(p), for each
q ∈ C, |µ−1(q)| ≤ ηq, and

∑
q∈C rq is minimized. We will sometimes use OPT to denote the

value of an optimal solution.
In the uniform-capacitated case, we denote the common capacity of all centers by U .

In the general metric version of our problem, we assume that we are given the pairwise
distances dist between the points in P . In the Euclidean version, P is a set of points in Rd

for some d ≥ 1, dist is the Euclidean distance and any point in Rd can be selected as a center.
Moreover, the capacities of all these centers are uniform.

SoCG 2023

12:6 FPT Approx. for Capacitated Sum of Radii

We denote the ball with center c and radius r by B(c, r). For any ball B = B(c, r), we
will use ext(B, r′) to denote the ball B(c, r +r′). Sometimes we will also use rad(B) to denote
the radius of B. Let S be a set of points in Rd. The minimum enclosing ball of S, noted
MEB(S) is the smallest ball in Rd containing all points of S. We say a ball B covers a point
p if p is in B.

One important remark regarding solving our capacitated clustering problem on P is
that, given a set of k balls B, the problem of deciding whether there is a valid assignment
µ : P → B satisfying the capacities can easily be modeled as a bipartite matching problem.
This implies in particular that if such an assignment exists, it can also be found in O(

√
kn3/2)

time. Therefore, in all our descriptions of the algorithms, we will focus on finding the solution
balls while ensuring that a valid assignment exists.

Another remark is that, in the case where every ball has capacity U , we can assume that
|P | ≤ k · U , or the instance is a trivial NO instance.

Organization. Due to limited place, we chose to only present the proof of Theorem 1. The
rest of the proofs can be found in the extended version.

2 Capacitated Sum of Radii : General Metric

In this section, we study the case of non uniform capacities. In this setting, for every point x

of P , there is an associated integer ηx and any ball centered at x can be assigned at most ηx

points. The uniform case correspond to the case where ηx = U for all x ∈ P . For convenience,
we restate the theorem statement.

▶ Theorem 1. For any constant ϵ > 0, the Capacitated Sum of Radii problem admits a
(15 + ϵ)-approximation algorithm with running time 2O(k2 log k) · n3.

From now on, let B⋆ := {B⋆
1 , · · · , B⋆

k} denote the set of balls of a hypothetical optimal
solution, µ⋆ : P → B⋆ be the associated assignment and for all i ∈ [k], let r⋆

i and
c⋆

i denote the radius and the center of the ball B⋆
i , respectively. By Lemma 9, just

below, we can assume that the algorithm knows an approximate radius ri for each r⋆
i .

For a ball B⋆
i ∈ B⋆, we say that a ball Bi is an approximate ball of B⋆

i if B⋆
i ⊆ Bi,

and if xi denotes the center of Bi, then ηxi
≥ ηc⋆

i
. Note that because of the capacity

constraints, we can associate (µ⋆)−1(B⋆
i) to Bi.

Let us first mention that it is possible to guess an approximation to each of the radii, ri,
in polynomial time. The proof can be found in the extended version.

▶ Lemma 9. For every 0 < ϵ < 1, there exists a randomized algorithm, running in linear
time that finds with probability at least ϵk

kk·n2 a set of reals {r1, . . . , rk} such that for every
i ∈ [k], r⋆

i ≤ riand
∑

i∈[k] ri ≤ (1 + ϵ)
∑

i∈[k] r⋆
i .

From now on we assume for simplicity that the algorithm knows an approximate value ri

of r⋆
i for all i ∈ [k]. Let us give some informal ideas about how the algorithm of Theorem

1 works. Some technicalities, especially about making sure we don’t pick the same center
twice, will be left out to the more formal description of the algorithm.

S. Bandyapadhyay, W. Lochet, and S. Saurabh 12:7

Informal sketch

Ideally we would like to find for each optimal ball B⋆
i an approximate ball Bi having the

same center as B⋆
i and a radius ri ≤ C · r⋆

i , for some constant C. Indeed, if we have such a
set of balls, then the obvious assignment µ defined as µ(x) = Bi whenever µ⋆(x) = B⋆

i would
give a solution. While this is not possible in general, the algorithm will start with a greedy
procedure to get a set of approximate balls B1 for some indices I1. The procedure is quite
simple: start with B1 := ∅, I1 = ∅ and as long as the union of balls in B1 does not cover P ,
pick a point x of P not in the union, guess the index i such that µ⋆(x) = B⋆

i and pick c the
point at distance at most ri of x which maximises the value of ηc. Since c⋆

i is at distance at
most ri of x, we have that ηc⋆

i
≤ ηc and that dist(c, c⋆

i) ≤ 2ri, which means that the ball Bi

of radius 5ri centered around c is an approximate ball of B⋆
i . Therefore, the algorithm will

add Bi to B1 and the index i to I1. This procedure stops when the union of B1 covers P . At
the end of that first step, we have that B1 contains an approximate ball for each ball B⋆

i of
radius 5ri with i ∈ I1. And while the union of B1 covers all P , we are far from being done as
the capacity constraints have not been taken into account.

Consider now a ball B⋆
j such that j ̸∈ I1, which means that no approximate ball of B⋆

j is
in B1. In the best case (Lemma 13 below), there is a ball Bi ∈ B1 of center xi approximating
B⋆

i such that 5ri ≤ rj and Bi ∩ B⋆
j is non empty. Indeed, in that case the ball of radius

5ri + rj around xi contains c⋆
j , the center of B⋆

j . This means that if x is the point in that
ball maximizing ηx, then the ball of center x and radius 2 · (5ri + 2rj) ≤ 4rj contains x⋆

j

and thus the ball Bj of center x and radius 2 · (5ri + 2rj) + rj ≤ 5rj contains B⋆
j and is an

approximate ball of B⋆
j . Therefore, if such indices j and i exist, the algorithm can guess

them and add a new approximate ball to B1.
After this second step, we reach a point where, if j ̸∈ I1 and i ∈ I1 are such that

B⋆
j ∩ Bi ̸= ∅, then rj ≤ 5ri. In particular, incurring an extra 5ri as we just did to get a

replacement for xc⋆
j is too costly. For this reason, at this step of the algorithm we stop trying

to find approximate balls and instead focus on finding balls to “fix” the assignment. Since
the balls in B1 are approximate balls, it means that we can replace B⋆

i with Bi ∈ B1 for any
i ∈ I1 (and take the other B⋆

j), and still have a solution to our problem with slightly bigger
balls. Abusing notation we can still use µ⋆ for the valid assignment. Now for an index j ̸∈ I1,
the ball B⋆

j intersects a subset, say Tj , of balls in B1. Ideally we would like to find a ball Bj

of center x and radius rj such that ηx ≥ ηxj
and |Bj ∩ (µ⋆)−1(Bi)| ≥ |(µ⋆)−1(B⋆

j)∩Bi| for all
i ∈ Tj . Indeed, in that case we could replace B⋆

j by Bj and the condition on Bj ∩ B⋆
i ensures

that we could adapt the assignment µ⋆ to be a valid assignment by assigning (µ⋆)−1(B⋆
j)∩Bi

to Bi and a set of the same size in Bj ∩ (µ⋆)−1(Bi) to Bj .
The main difficulty here is that even if we guess the set Tj , picking Bj greedily is not

possible as there might be some competitions between the sizes of the intersection with the
different balls in Bi for i ∈ Tj (we cannot afford to guess the |(µ⋆)−1(B⋆

j) ∩ Bi|). The way
to avoid this problem is to expand all the balls Bi of B1 by 10ri. Indeed, since we have
assumed that rj ≤ 5ri for every i ∈ Tj , it means now that B⋆

j is entirely contained in
the ext(Bi, 10ri) (expanded ball) for i ∈ Tj . So now, denoting Pj to be the intersection of
all the ext(Bi, 10ri) for i ∈ Tj where we removed all the other Bi′ for i′ ∈ I1 \ Tj , we have
that (µ⋆)−1(B⋆

j) is a subset of Pj , and we can take Bj as the ball of center x and radius
rj which maximizes sx = min{ηx, |B(x, rj) ∩ Pj |}. Here there are some technicalities if Bj

intersects some ball B⋆
j′ for j′ ̸∈ I1 (that includes j = j′), but assume for the moment that it

is not the case and let us hint why we can actually replace B⋆
j by Bj in our solution if all

the balls Bi ∈ B1 are replaced by ext(Bi, 10ri). Indeed, by choice of Bj , we can assign sx

points of Pj to Bj . By our assumptions, all these points were assigned to Bi for i ∈ Tj in µ⋆,
which means that by assigning these points to Bj , there is now a new budget sx of available

SoCG 2023

12:8 FPT Approx. for Capacitated Sum of Radii

points in the union of ext(Bi, 10ri) for i ∈ Tj . However, since B⋆
j is entirely contained in the

ext(Bi, 10ri) for i ∈ Tj , and by choice of sx, we can assign all the elements of (µ⋆)−1(B⋆
j) to

the balls ext(Bi, 10ri) for i ∈ Tj using this new budget.
Therefore, the last phase of the algorithm consists in building a set of “replacement”

balls B2 for the balls B⋆
j with j ̸∈ I1 by guessing Tj and building the intersection Pj to take

greedily a ball of radius rj inside that set (see Lemma 14). This is done sequentially, and
the set I2 will contain all indices j for which B2 contains a replacement ball Bj for B⋆

j . An
important remark here is that the properties required for balls in B2 are dependent on the
balls in B1 and not just the optimal balls. For technical reasons, we might have to add a
new ball in B1 during the process of building B2, in which case we cannot guarentee that
the properties of balls in B2 hold anymore. If this happens, the algorithm will then erase all
the choices of B2 and I2 and start the second phase again. However, since we only do this
when I1 gets bigger, this is done at most k times before I1 = [k]. The algorithm stops when
the sets I1 and I2 contains all indices of [k] which means that each ball B⋆

j either has an
approximate ball in B1 or a replacement ball in B2.

The algorithm
As explained previously, the algorithm maintains two disjoint sets of indices I1 and I2,
initially set to ∅, as well as two sets of balls B1 and B2, also initially set to ∅. B1 and B2
will eventually contain a representative ball Bi for every ball B⋆

i in the optimal solution.
Moreover, we will argue that there exists a valid assignment of the points to the balls (with
an expansion) in the union of these two sets.

For every i ∈ I2, let Ti denote the set of indices j of I1, such that B⋆
i ∩ Bj is not empty,

and Pi denote the intersection of the extensions ext(Bj , 10rj) over all j ∈ Ti after removing
the points of Bs for s ∈ I1 \ Ti.

We say that the sets (I1, I2, B1, B2) form a valid configuration if the following properties
are satisfied.

For every i ∈ I1, there is an approximate ball Bi ∈ B1 of B⋆
i of radius at most 5ri.

For every i ∈ I2, Ti is non-empty, B⋆
i ⊆ Pi and there exists a ball Bi ∈ B2 of center xi

and radius ri, such that both ηxi and Bi ∩ Pi have size at least |(µ⋆)−1(B⋆
i)|.

For i, j ∈ I2, Bi and Bj do not intersect.
For every i ∈ I2 and s ̸∈ I1, B⋆

s and Bi do not intersect.
For every j ∈ [k], if c⋆

j is a center of a ball in B1 (respectively, B2), then j ∈ I1 (respectively,
I2) and c⋆

j is the center of Bj .

Before describing the algorithm to construct a valid configuration (I1, I2, B1, B2) such
that I1 ∪ I2 = [k], let us show that such a configuration would indeed yield an approximate
solution.

▶ Lemma 10. Let (I1, I2, B1, B2) be a valid configuration such that I1 ∪ I2 = [k], then the
set of balls B containing the balls in B2, as well as for every i ∈ I1 the ball ext(Bi, 10ri) is a
15-approximate solution.

Proof. The fact that the sum of radii of the balls in B is at most 15 times the optimal
solution follows from the definition. To prove the lemma, we have to show that this is a valid
solution by giving a valid assignment. Recall that µ⋆ is the assignment for B⋆.

For every i ∈ I2, recall that Ti denotes the set of indices j of I1 such that B⋆
i intersects

Bj and Pi denotes the intersection of all the ext(Bj , 10rj) for j ∈ Ti where we removed the
points in Bs for s ∈ I1 \ Ti for j ∈ I1. By definition of a valid configuration, if we use Yi to
denote the set (µ⋆)−1(B⋆

i), then there exists a set Xi of size |Yi| in Bi ∩ Pi. The following
claim is a crucial part of the proof.

S. Bandyapadhyay, W. Lochet, and S. Saurabh 12:9

▷ Claim 11. Any point x ∈ Xi is such that µ⋆(x) = B⋆
j for some j ∈ Ti

Proof. Indeed, by definition, the only balls Bj ∈ B1 containing an element x of Pi are such
that j ∈ Ti, so in particular if j ∈ I1 \ Ti, B⋆

j ⊆ Bj doesn’t contain x. Moreover, if j ∈ I2,
then we know by definition that B⋆

j ∩ Bi is empty (that includes B⋆
i). Since x ∈ Bi, this

concludes the proof of our claim. ◁

The previous claim implies that, if we define for every j ∈ Ti the set Xi,j := Xi ∩
(µ⋆)−1(B⋆

j), then the Xi,j for j ∈ Ti actually defines a partition of Xi. As |Xi| = |Yi|, we can
partition the set Yi into sets Yi,j for j ∈ Ti such that |Xi,j | = |Yi,j | for all j ∈ Ti. Remember
that, for j ∈ Ti, Yi ⊆ ext(Bj , 10rj). By convention, if j ∈ T1 \ Ti, then Xi,j and Yi,j are
defined as the empty set.

For every j ∈ I1, we can now define Lj =
(
(µ⋆)−1(B⋆

j) \ (∪i∈I2Xi,j)
)

∪i∈I2 Yi,j . Since
the sets Bi, for i ∈ I2, are pair-wise disjoint and |Xi,j | = |Yi,j | for all elements j ∈ I1
and i ∈ I2, we have that |Lj | = |(µ⋆)−1(B⋆

j)|. Moreover, since Yi,j is non empty only if
Yi ⊆ ext(Bj , 10rj), it means that Lj ⊆ ext(Bj , 10rj) and because Bj is an approximate ball
of B⋆

j , it means that the center xj of Bj is such that ηxj
≥ |(µ⋆)−1(B⋆

j)| = |Lj |.
Finally this means that the function µ such that µ−1(ext(Bj , 10rj)) = Lj for all j ∈ I1

and µ−1(Bi) = Xi for all i ∈ I2 is a valid assignment from P to B, which ends the proof. ◀

Now, we describe the algorithm that constructs the desired configuration. The first phase
of the algorithm will consist of a greedy selection of elements in I1, such that the union of B1
covers P (Lemma 12). As said previously, this will not imply that we can assign points to
these balls, without violating capacity constraints. The following two other lemmas (Lemma
13 and 14) will be used to achieve that.

As we deal with hard capacities, we cannot reuse any center. We need the following
definition to enforce that. We call a point p ∈ P an available center, if p has not already
been selected as a center of a ball in B1 or B2.

▶ Lemma 12. If (I1, I2 = ∅, B1, B2 = ∅) is a valid configuration such that the union of the
balls in B1 do not cover P , then there exists a randomized algorithm, running in linear time
and with probability at least 1/2k2, that finds an index s and a ball Bs such that adding s to
I1 and Bs to B still yields a valid configuration.

Proof. Let x be any point in P not covered by the union of the balls in B1 and i be the index
such that µ⋆(x) = B⋆

i . Let c be the available potential center in P at distance at most ri

from x which maximises the value of ηc. If c is not a center of some B⋆
j for j ̸∈ (I1 ∪ I2), then

the ball Bi of center c and radius 3ri is an approximate ball of B⋆
i and thus adding Bi to B1

and i to I1 yields a valid configuration. If c is a center of some B⋆
j for j ̸∈ (I1 ∪ I2), then

adding the ball Bj of center c and radius rj to B1 and j to I1 also yields a valid configuration.
The algorithm will then pick uniformly at random an index i′ ∈ [k], then decide uniformly

at random wether the available center c′ at distance at most ri′ is a center of some B⋆
j for

some j ̸∈ (I1 ∪ I2). If it decides negatively, then the algorithm will output s := i′ and Bs the
ball of center c′ and radius 3ri′ . If it decides positively, then the algorithm will then also
pick uniformly at random and index j′ ∈ [k] and output s := j′ as well as Bs the ball of
center c′ and radius rj′ .

The algorithm then suceeds if i′ = i, if it decides correctly if c′ is a center of some B⋆
j

and if j′ = j in the case where it is. Overall this is true with probability at least 1
k·2·k , which

ends the proof. ◀

SoCG 2023

12:10 FPT Approx. for Capacitated Sum of Radii

The first phase of the algorithm consists of applying the algorithm from Lemma 12 until
the union of the balls in B1 covers all the points in P . The next two lemmas are used in the
next phase of the algorithm.

▶ Lemma 13. If (I1, I2 = ∅, B1, B2 = ∅) is a valid configuration such that the balls in B1
cover the points of P and there exist two indices i ∈ I1 and j ∈ [k] \ (I1 ∪ I2) such that Bi

and B⋆
j intersect and rj ≥ 5ri, then there exists a randomized algorithm that in linear time

and with probability at least 1/2k, finds an index t ∈ [k] \ (I1 ∪ I2) and a ball Bt such that
(I1 ∪ {t}, I2, B1 ∪ {Bt}, B2) is a valid configuration.

Proof. Let xi denote the center of Bi, and B′ be the ball of center xi and radius 5ri + rj .
Because Bi is an approximate ball of B⋆

i , and B⋆
j and Bi intersect, we have that B′ contains

c⋆
j . Let x be the potential center of B′ which maximises ηx. If there exists an index

j′ ∈ [k] \ (I1 ∪ I2), such that the ball B⋆
j′ is centered at x, then t := j′ and the ball Bt of

center x and radius rj′ satisfy the property of the lemma (remember that B2 = ∅). If not,
then the ball Bj at center x and of radius 2 · (5ri + rj) + rj is an approximate ball of B⋆

j of
radius at most 5rj . Indeed, because the ball at center xi and of radius (5ri + rj) contains
both x and c⋆

j , it means that the ball at center x and of radius 2(5ri + rj) contains c⋆
j and

thus B⋆
j ⊆ Bj . Again, as B2 = ∅, then t := j and Bt := Bj satisfy the properties of the

lemma.
The algorithm therefore consists of choosing uniformly at random which of the two cases

is true. In the first case it also chooses uniformly at random an index j1 ∈ [k] and outputs
t := j1 as well as the ball Bt of center x and radius rj1 . In the second case it outputs t := j

as well as the ball Bt of center x and radius 2 · (5ri + rj) + rj . The previous discussion
implies that the algorithm succeeds if it chooses correctly between the two cases, and in the
first case if j1 = j′. Overall, the probability of success is at least 1/2k. ◀

▶ Lemma 14. Suppose (I1, I2, B1, B2) is a valid configuration with the property that the balls
in B1 cover the points of P and for every i ∈ [k] \ (I1 ∪ I2) and j ∈ I1, such that Bj and B⋆

i

intersect, ri ≤ 5rj. Then there exists a randomized algorithm that in linear time and with
probability at least 1/4k2, either finds an index t ∈ [k] \ (I1 ∪ I2) and a ball Bt such that
(I1 ∪{t}, I2 = ∅, B1 ∪{Bt}, B2 = ∅) is a valid configuration, or finds an index s ∈ [k]\ (I1 ∪I2)
and a ball Bs such that (I1, I2 ∪ {s}, B1, B2 ∪ {Bs}) is a valid configuration.

Proof. Let i be the element of [k] \ (I1 ∪ I2) minimizing ri, and let Ti denote the set of
indices j ∈ I1 such that Bj ∩ B⋆

i is non-empty. By the hypothesis of the lemma, we have that
ri ≤ 5rj for each element j ∈ Ti. In particular, it means that B⋆

i ⊆ ext(Bj , 10rj) for every
j ∈ Ti. Let Pi denotes the intersection of all those sets ext(Bj , 10rj) where we removed Bs

for all s ∈ I1 \Ti. Let x be the available center in Pi such that, denoting Bx the ball at center
x and of radius ri, Bx is disjoint from all the elements in B2 and sx = min{ηx, |Bx ∩ Pi|} is
maximized. Note that because (I1, I2, B1, B2) is a valid configuration, x⋆

i is an available center
in Pi and B⋆

i does not intersect any of the balls in B2. This implies that sx ≥ |(µ⋆)−1(B⋆
i)|.

If Bx does not intersect any ball B⋆
i′ with i′ ∈ [k] \ (I1 ∪ I2), then by the above discussion we

have that setting Bi = Bx, (I1, I2 ∪ {i}, B1, B2 ∪ {Bi}) is a valid configuration.
Suppose now that Bx intersects some B⋆

i′ with i′ ∈ [k] \ (I1 ∪ I2). (i′ can also be i.) In
that case, the ball at center x and of radius ri + ri′ contains c⋆

i′ . Since ri ≤ ri′ by the choice
of i, this means that the ball Bi′ of center x and radius ri + 2ri′ ≤ 3ri′ is an approximate ball
of B⋆

i′ . There might be several options for i′, but we can just make an arbitrary choice. The
only thing to be careful about is if x = c⋆

i′′ for some i′′ ∈ [k] \ (I1 ∪ I2), then the algorithm
will pick that index and add the ball Bi′′ of center x and radius ri′′ to B1. In any case,
(I1 ∪ {i′}, I2 = ∅, B1 ∪ {Bi′}, B2 = ∅) or (I1 ∪ {i′′}, I2 = ∅, B1 ∪ {Bi′′}, B2 = ∅), depending on
that last condition, is a valid configuration, in particular as B2 = ∅.

S. Bandyapadhyay, W. Lochet, and S. Saurabh 12:11

Finally, the algorithm just decides between these two cases randomly, and in the second
case picks uniformly the index i′ and then outputs the described ball and index. In the
second case, it also needs to decide if there exists i′′ such that x = c⋆

i′′ and in which case pick
that index uniformly at random as well. Overall, the probability of success of this algorithm
is at least 1/4k2. ◀

We are now ready to prove our main theorem.

Proof of Theorem 1. Let us describe the algorithm. First, it applies Lemma 9 to obtain an
approximation ri of each r⋆

i with probability at least ϵk

kk·n2 . Then the algorithm initialize a
valid configuration (I1 = ∅, I2 = ∅, B1 = ∅, B2 = ∅) and run the algorithm of Lemma 12 at
most k times, until B1 covers all the points of P . At each step, the probability of success is
at least 1/k2, so in total at least 1/k2k. Then the algorithm enters into the second phase.
This phase is divided into multiple steps.

In the beginning of each step, we maintain the invariant that the current configuration is
valid with I2 = ∅ and B2 = ∅. Each step then consists of a series of applications of Lemma
13 followed by a series of applications of Lemma 14. The current step ends when an index is
added to I1 by the application of Lemma 14, and hence at that point I2 = ∅ and B2 = ∅,
or I1 ∪ I2 = [k]. We go to the next step (maintaining the invariant), unless I1 ∪ I2 = [k] in
which case the algorithm terminates.

In a step, the algorithm decides which lemma to apply as long as I2 = ∅. Otherwise,
it applies only Lemma 14. If I2 = ∅, it randomly decides if there exists indices i ∈ I1 and
j ∈ [k] \ (I1 ∪ I2) such that B⋆

i and B⋆
j intersect and rj ≥ 5ri. In which case, the algorithm

applies Lemma 13 to increase the size of |I1| in linear time and with probability at least
1/22k. If no such pair of indices exists, then the algorithm applies Lemma 14 to increase
|I1 ∪ I2| or |I1| in linear time and with probability at least 1/2k2.

▷ Claim 15. Assuming the algorithm made all the correct random choices, it terminates
with a valid configuration (I1, I2, B1, B2) such that I1 ∪ I2 = [k] after O(k2) applications of
Lemma 13 and 14.

Proof. First, we argue about the maximum number of applications of the two lemmas. Note
that in each step, we add at least one index to I1 and then only go to the next step. Also,
once an index is added to I1 it is never removed. Thus, the total number of steps is at most
k. Also, in each step, everytime we apply a lemma, the size of I1 ∪ I2 gets increased, which
can be at most k. Thus, in each step we will apply the lemmas at most k times in total.
Hence, the total number of applications of both lemmas is O(k2).

Next, we prove that the algorithm terminates with the desired configuration. Fix a step.
Note that if I2 = ∅ and we make correct choices, we can correctly apply a lemma and make
progress. This is true, as the conditions in the two lemmas are complementary. Now, if
I2 ̸= ∅, then we have applied Lemma 14 at least once. This implies for every i ∈ [k] \ (I1 ∪ I2)
and j ∈ I1, such that Bj and B⋆

i intersect, ri ≤ 5rj . Hence, the condition of Lemma 13
is false for the current set I1. Now, we do not change I1 throughout a step once we apply
Lemma 14, except at the last time, in which case we go to the next step emptying I2. Thus,
once I2 ̸= ∅, throughout the step, it holds that for every i ∈ [k] \ (I1 ∪ I2) and j ∈ I1,
such that Bj and B⋆

i intersect, ri ≤ 5rj . Hence, we can always apply Lemma 14 and make
progress.

Now, consider the last step, we prove that at the end of this step I1 ∪ I2 = [k]. By the
above discussion, this step ends either if I1 ∪ I2 becomes [k] or an index is added to I1. In
the latter case, we go to the next step. However, as the current step is the last one, it must
be the case that I1 ∪ I2 = [k]. This completes the proof of the claim, as we always maintain
a valid configuration. ◁

SoCG 2023

12:12 FPT Approx. for Capacitated Sum of Radii

If the algorithm made all the correct random choices, by the above claim together with
Lemma 10, we can get a 15-approximate solution from B1 and B2. The algorithm runs
in linear time and succeeds with probability at least ϵk

kk·n2 · 1
k2k · 1

(2k3)k2 . This means that

running the previous algorithm 2O(k2 log k) · n2 times, we obtain a (15 + ϵ)-approximation
algorithm with constant probability. Lastly, it is not hard to derandomize this algorithm by
performing exhaustive searches in each step instead of making decisions randomly. The time
bound still remains the same. ◀

3 Conclusions

In this paper, considering the Capacitated Sum of Radii problem, we obtained the first
constant-factor (15 + ϵ) approximation algorithm that runs in FPT time, making significant
progress towards understanding the barriers of capacitated clustering. While our techniques
are tailor-made for FPT type results, we hope some of the ideas will also be useful in obtaining
a similar approximation in polynomial time. We leave this as an open question.

Question 1: Does Capacitated Sum of Radii admit a polynomial time constant-
approximation algorithm, even with uniform capacities?

For the problem with uniform capacities, we obtained improved approximation bounds of
4 + ϵ and 2 + ϵ in general and Euclidean metric spaces, respectively. We also showed hardness
bounds in both general and Euclidean metric spaces complementing our approximation
results. The following two natural open questions are left by our work.

Question 2: What is the best constant-factor approximation possible for Capacit-
ated Sum of Radii or uniform Capacitated Sum of Radii in FPT time?

Question 3: Does Euclidean Capacitated Sum of Radii admit an (1 + ϵ)-
approximation algorithm, in f(k, ϵ) · ng(ϵ) time for some functions f and g?

References
1 Marek Adamczyk, Jaroslaw Byrka, Jan Marcinkowski, Syed Mohammad Meesum, and Michal

Wlodarczyk. Constant-factor FPT approximation for capacitated k-median. In Michael A.
Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium
on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144
of LIPIcs, pages 1:1–1:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ESA.2019.1.

2 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for
k-means and euclidean k-median by primal-dual algorithms. SIAM Journal on Computing,
49(4):FOCS17–97, 2019.

3 Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek Madan, and
Ola Svensson. Centrality of trees for capacitated k-center. Math. Program., 154(1-2):29–53,
2015. doi:10.1007/s10107-014-0857-y.

4 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
J. Comput., 33(3):544–562, 2004.

5 Mihai Badoui, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002,

https://doi.org/10.4230/LIPIcs.ESA.2019.1
https://doi.org/10.4230/LIPIcs.ESA.2019.1
https://doi.org/10.1007/s10107-014-0857-y

S. Bandyapadhyay, W. Lochet, and S. Saurabh 12:13

Montréal, Québec, Canada, STOC ’02, pages 250–257, New York, NY, USA, 2002. Association
for Computing Machinery. doi:10.1145/509907.509947.

6 Judit Barilan, Guy Kortsarz, and David Peleg. How to allocate network centers. Journal of
Algorithms, 15(3):385–415, 1993.

7 Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Faster algorithms for the constrained k-
means problem. Theory Comput. Syst., 62(1):93–115, 2018. doi:10.1007/s00224-017-9820-7.

8 Jaroslaw Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim Spoerhase. Bi-factor
approximation algorithms for hard capacitated k-median problems. In Piotr Indyk, editor,
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 722–736. SIAM, 2015.

9 Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization. In
Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages
737–756. SIAM, 2014.

10 Jaroslaw Byrka, Bartosz Rybicki, and Sumedha Uniyal. An approximation algorithm for
uniform capacitated k-median problem with 1+\epsilon capacity violation. In Quentin
Louveaux and Martin Skutella, editors, Integer Programming and Combinatorial Optimization
- 18th International Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings,
volume 9682 of Lecture Notes in Computer Science, pages 262–274. Springer, 2016.

11 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149,
2002.

12 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. J.
Comput. Syst. Sci., 68(2):417–441, 2004. doi:10.1016/j.jcss.2003.07.014.

13 Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform capacities. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 952–958. SIAM,
2005.

14 Vincent Cohen-Addad. Approximation schemes for capacitated clustering in doubling metrics.
In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2241–2259. SIAM,
2020. doi:10.1137/1.9781611975994.138.

15 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight fpt
approximations for k-median and k-means. arXiv preprint arXiv:1904.12334, 2019.

16 Vincent Cohen-Addad and CS Karthik. Inapproximability of clustering in lp metrics. In 2019
IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 519–539.
IEEE, 2019.

17 Vincent Cohen-Addad, CS Karthik, and Euiwoong Lee. On approximability of clustering
problems without candidate centers. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2635–2648. SIAM, 2021.

18 Vincent Cohen-Addad and Euiwoong Lee. Johnson coverage hypothesis: Inapproximability
of k-means and k-median in ?p-metrics. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1493–1530. SIAM, 2022.

19 Vincent Cohen-Addad and Jason Li. On the fixed-parameter tractability of capacitated
clustering. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 41:1–41:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.41.

20 Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding for k-centers with
non-uniform hard capacities. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 273–282. IEEE
Computer Society, 2012. doi:10.1109/FOCS.2012.63.

SoCG 2023

https://doi.org/10.1145/509907.509947
https://doi.org/10.1007/s00224-017-9820-7
https://doi.org/10.1016/j.jcss.2003.07.014
https://doi.org/10.1137/1.9781611975994.138
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.1109/FOCS.2012.63

12:14 FPT Approx. for Capacitated Sum of Radii

21 H. Gökalp Demirci and Shi Li. Constant approximation for capacitated k-median with
(1+epsilon)-capacity violation. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 73:1–73:14, 2016.

22 Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without locality
property. Algorithmica, 82(4):808–852, 2020. doi:10.1007/s00453-019-00616-2.

23 Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R. Varadarajan.
On metric clustering to minimize the sum of radii. Algorithmica, 57(3):484–498, 2010. doi:
10.1007/s00453-009-9282-7.

24 Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R. Varadarajan.
On clustering to minimize the sum of radii. SIAM J. Comput., 41(1):47–60, 2012. doi:
10.1137/100798144.

25 Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

26 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
Journal of algorithms, 31(1):228–248, 1999.

27 Anupam Gupta, Euiwoong Lee, and Jason Li. An fpt algorithm beating 2-approximation
for k-cut. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2821–2837. SIAM, 2018.

28 Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and Michał Włodarczyk. Losing
treewidth by separating subsets. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1731–1749. SIAM, 2019.

29 Tanmay Inamdar and Kasturi R. Varadarajan. Capacitated sum-of-radii clustering: An FPT
approximation. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th
Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy
(Virtual Conference), volume 173 of LIPIcs, pages 62:1–62:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.62.

30 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Comput.
Geom., 28(2-3):89–112, 2004.

31 Samir Khuller and Yoram J. Sussmann. The capacitated K -center problem. SIAM J. Discret.
Math., 13(3):403–418, 2000. doi:10.1137/S0895480197329776.

32 Euiwoong Lee. Partitioning a graph into small pieces with applications to path transversal.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1546–1558. SIAM, 2017.

33 Shi Li. On uniform capacitated k-median beyond the natural LP relaxation. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 696–707, 2015.

34 Shi Li. On uniform capacitated k-median beyond the natural LP relaxation. ACM Trans.
Algorithms, 13(2):22:1–22:18, 2017.

35 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

36 Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document clustering
techniques. Proceedings of the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining Workshop on Text Mining, pages 525–526, 2000.

37 Yicheng Xu, Yong Zhang, and Yifei Zou. A constant parameterized approximation for
hard-capacitated k-means. CoRR, abs/1901.04628, 2019. arXiv:1901.04628.

https://doi.org/10.1007/s00453-019-00616-2
https://doi.org/10.1007/s00453-009-9282-7
https://doi.org/10.1007/s00453-009-9282-7
https://doi.org/10.1137/100798144
https://doi.org/10.1137/100798144
https://doi.org/10.4230/LIPIcs.ESA.2020.62
https://doi.org/10.1137/S0895480197329776
https://arxiv.org/abs/1901.04628

	1 Introduction
	1.1 Our Problem and Results
	1.2 Preliminaries

	2 Capacitated Sum of Radii : General Metric
	3 Conclusions

