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Abstract
We present an algorithm for computing the barcode of the image of a morphism in persistent
homology induced by an inclusion of filtered finite-dimensional chain complexes. The algorithm
makes use of the clearing optimization and can be applied to inclusion-induced maps in persistent
absolute homology and persistent relative cohomology for filtrations of pairs of simplicial complexes.
The clearing optimization works particularly well in the context of relative cohomology, and using
previous duality results we can translate the barcodes of images in relative cohomology to those in
absolute homology. This forms the basis for an implementation of image persistence computations
for inclusions of filtrations of Vietoris–Rips complexes in the framework of the software Ripser.
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1 Introduction

Over the last few decades, persistent homology has established its role as an important tool
in data science, with numerous applications in a variety of disciplines, including computer
vision, neuroscience, materials science, and evolutionary biology [18, 10, 15, 20, 7]. Recently,
there has also been renewed interest in image persistence, which is a natural extension of
persistent homology [21, 22, 17]. Persistent homology starts with a filtration of simplicial
complexes K• and concerns the barcode, which encodes the algebraic structure of the
persistence module H∗(K•). In contrast, image persistence starts with two filtrations L• and
K• that are related by a map of filtrations f• : L• → K•. This map induces a morphism
H∗(f•) : H∗(L•)→ H∗(K•). The image of this morphism, imH∗(f•), is again a persistence
module, and image persistence concerns the barcode of this persistence module.

A key part of the appeal of image persistence is that it enables the construction of
meaningful matchings, i.e., partial bijections, between the barcodes of the domain and
codomain of the morphism one starts with. The first such construction that appeared in
the literature was the induced matching construction, which was introduced by Bauer and
Lesnick [2] to give a proof of the famous stability theorem of Cohen-Steiner et al. [11]. Such

© Ulrich Bauer and Maximilian Schmahl;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@ulrich-bauer.org
www.ulrich-bauer.org
https://orcid.org/0000-0002-9683-0724
mailto:mschmahl@mathi.uni-heidelberg.de
https://doi.org/10.4230/LIPIcs.SoCG.2023.14
https://arxiv.org/abs/2201.04170
https://github.com/Ripser/ripser/tree/image-persistence-simple
https://archive.softwareheritage.org/swh:1:dir:135b51a39778c4004326b548ff59998f19a8cf74;origin=https://github.com/Ripser/ripser;visit=swh:1:snp:30aabbe0c8f10b6c5f8588ef12f0588d0c45b728;anchor=swh:1:rev:0ced04eff89fadbd36d18c6c2978b694f5873a1f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 Efficient Computation of Image Persistence

constructions have now also appeared in work with a more practical focus, with Reani and
Bobrowski [21] and García-Redondo et al. [17] proposing and applying general schemes for
matching cycles in different filtrations using image persistence, as well as Stucki et al. [22]
applying such a method in the context of medical image data analysis.

The first algorithm for computing image persistence in a special case was proposed
by Cohen-Steiner et al. [12] for maps f• of the form L• = K• ∩ L ↪→ K• for some fixed
subcomplex L ⊆ K (one-filtration setting). An implementation for the algorithm from [12]
exists in the framework of the software Dionysus by Dmitriy Morozov [19]. The algorithm
described by Cohen-Steiner et al. is similar to the standard algorithm for a single filtration and
naturally does not make use of many important speed-ups that have been developed for the
computation of the barcode of a single filtration since the publication of [12]. Cohen-Steiner
et al. also propose an adaption of their method to the general (two-filtration) setting using a
mapping cylinder construction, which however has never been implemented and might not
be computationally feasible. The goal of the present work is to adapt some of the speed-ups
for a single filtration to the computation of image persistence, and to show that the resulting
algorithm also works for general injective maps f• without the intersection assumption and
without the need for the mapping cylinder construction.

The basic algorithm for computing persistent homology is based on performing matrix
reduction, a variant of column-wise Gaussian elimination, on a boundary matrix associated
to the given filtration of simplicial complexes. This algorithm can be made faster using the
clearing optimization, introduced by Chen and Kerber in [9], and also used implicitly in the
cohomology algorithm by de Silva et al. [16]. In short, this optimization makes use of the
homological grading of the boundary matrix to disregard certain unnecessary columns in
the reduction process. The basic algorithm for image persistence additionally requires the
reduction of a permuted boundary matrix, to which clearing cannot be straightforwardly
applied. We will remedy this by showing that one can delete the columns in the permuted
boundary matrix that were already reduced to 0 in the boundary matrix corresponding to
the codomain filtration.

The clearing optimization works particularly well in conjunction with cohomology based
algorithms. These were first studied by de Silva et al. in [16] for the single filtration case
and justified by certain duality results that provide a translation between barcodes for
persistent homology and for persistent cohomology, as well as the barcodes for persistent
relative homology H∗(K,K•) : H∗(K,K0) → · · · → H∗(K,K) and similarly for persistent
relative cohomology. These duality results were recently extended by Bauer and Schmahl in
[5] in order to also provide translations for images of H∗(f•) and H∗(f•), as well as their
relative counterparts H∗(f, f•) and H∗(f, f•). This allows us to perform cohomology based
computations and still obtain the desired barcodes in homology.

To apply clearing in the relative cohomology setting for image persistence, we will
reformulate the algorithm for image persistence by Cohen-Steiner et al. [12] in the purely
algebraic setting of filtered chain complexes of vector spaces. More precisely, we will consider
two filtrations of (co)chain complexes C• and C ′

• and a monomorphism φ• : C• → C ′
•.

This setup includes both the absolute homology case C∗(L•) ↪→ C∗(K•) and the relative
cohomology case C∗(K,K•) ↪→ C∗(L,L•) from before. The general idea for computing the
image of H∗(φ•) is to first write it as a subquotient of C ′

•:

imH∗(φ•) ∼=
φ•(Z∗(C•))

φ•(Z∗(C•)) ∩B∗(C ′
•) ,

where the intersection of persistence modules is to be interpreted indexwise, meaning that
(φ•(Z∗(C•)) ∩B∗(C ′

•))t = φt(Z∗(Ct)) ∩B∗(C ′
t).
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Performing matrix reductions that make use of the clearing optimization, we will find
a pair of inclusion-related filtration compatible bases for the filtrations appearing in the
equation above. Filtration compatible bases provide a formal framework for many standard
arguments for barcode computations via matrix reduction, and they can be interpreted as
special cases of matching diagrams, which are equivalent to barcodes [3]. Using the general
theory of matching diagrams, the data we compute can easily be shown to determine the
barcode of imH∗(φ•).

Applying these general considerations in the relative cohomology setting and combining
this with the translation between relative cohomology and absolute homology from [5] yields
an algorithm for computing the absolute homology image of f• : L• → K• by reducing two
coboundary matrices that can be reduced with clearing as summarized in our main result
Theorem 22. An implementation of this method based on Ripser [1] is publicly available [6]
and we provide some computational benchmarks. Our software works under the assumption
that L• = Rips•(X, d) and K• = Rips•(X, d′) are filtrations of Vietoris–Rips complexes
corresponding to two metrics d and d′ on a finite set X that satisfy d(x, y) ≥ d′(x, y) for
all x, y ∈ X. This ensures that Lt = Ripst(X, d) is a subcomplex of Kt = Ripst(X, d′) for
all t, with the maps ft : Lt → Kt being given by inclusion. The implementation also makes
uses of a version of the emergent and apparent pairs optimizations, which shortcuts the
construction of the coboundary matrix and reduces the memory requirements for storing
persistence pairings [1].

Contributions
We propose the first algorithm for the general problem of computing the image of a
map in persistent homology induced by an inclusion of filtrations of simplicial complexes,
without imposing any restrictions on the subfiltration (called the “two function setting”
in [12]) and without the inefficient use of a mapping cylinder (Theorem 22).
We show that our general method can be augmented by the most important optimiza-
tions in persistence computations, including clearing (Corollary 20), cohomology based
computations (Proposition 21), and apparent pairs (Section 3.4).
We provide an implementation in the framework of Ripser [6] and experiments on data
sets of varying difficulty (Section 3.5).
This enables the use of image persistence and consequently induced matchings in compu-
tational settings, such as supervised learning [22, 17].

Notation. Throughout the paper, we fix a totally ordered set (T,≤) to be {0, . . . , n} with
the obvious order and a field F over which all vector spaces are considered.

2 Linear Algebra for Filtrations

In this section, we develop some machinery based on filtration compatible bases, which forms
the foundation for our constructions of image persistence barcodes. First, we need to recall
some basic theory for persistence modules and barcodes. We write Vec for the category of
vector spaces over our fixed field F. We fixed T = {0, . . . , n} as a finite totally ordered index
set, and we write T for T considered as a poset category.

▶ Definition 1. The category of persistence modules indexed by T is defined as the category
VecT whose objects are functors T→ Vec and whose morphisms are natural transformations.

SoCG 2023
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Since T is a small category and Vec is an abelian category, the functor category VecT is
again abelian, with kernels, cokernels, images, direct sums, and more generally, all limits
and colimits given pointwise. The prime example for a persistence module is the persistent
homology of a filtration of spaces. Other examples are given by interval modules. If I ⊆ T is
an interval, the corresponding interval module C(I)• is defined by

C(I)t =
{
F if t ∈ I,
0 otherwise,

with structure maps C(I)t,u =
{

idF if t, u ∈ I,
0 otherwise.

These interval modules are of particular interest because they lead to a structure theory
for persistence modules.

▶ Definition 2. If there is a family of intervals (Iα)α∈A such that for a persistence module
M• we have M• ∼=

⊕
α∈A C(Iα)•, then M• is said to have a barcode given by (Iα)α∈A.

If a persistence module has a barcode, then it is unique, by a version of the Krull–Remak–
Schmidt–Azumaya Theorem [8, Theorem 2.7]. In this paper, we will only consider persistence
modules consisting of finite dimensional vector spaces, which are guaranteed to have a
barcode by Crawley-Boevey’s Theorem [14].

Persistent homology is the homology of a chain complex of persistence modules. In
practice, the persistence modules forming these chain complexes arise from filtrations of
simplicial complexes, so their structure maps are all inclusions. We will now study this kind
of persistence module more closely, as our later considerations will mostly happen in terms
of chain complexes rather than in terms of homology.

▶ Definition 3. We say that a persistence module M• is a filtration of the vector space
M = Mn if for all t ≤ u the structure map Mt,u is a subspace inclusion Mt ↪→Mu. For any
m ∈M , we define its support in M• as suppM•

(m) = {t ∈ T | m ∈Mt)}. A basis M of M
is said to be filtration compatible if Mt = M ∩Mt is a basis for Mt for all t ∈ T . An
ordered basis (M,≤) for M is said to be a filtration compatible ordered basis if it is filtration
compatible and m ≤ m′ ∈M implies suppm′ ⊆ suppm.

If M• and M ′
• are filtrations of vector spaces, we write M• ⊆ M ′

• if Mt ⊆ M ′
t . We write

M ′
•/M• for the persistence module given by (M ′

•/M•)t = M ′
t/Mt. Similarly, if M ′′

• is
another filtration with M ′′

• ⊆ M ′
•, we write M• ∩M ′′

• for the persistence module given by
(M• ∩M ′′

• )t = Mt ∩M ′′
t .

Observe that if M• is a filtration of vector spaces and M is a filtration compatible
basis, then (supp(m))m∈M is a barcode of M•. By interpreting M as a so-called matching
diagram, this may be seen as a special case of the general equivalence of matching diagrams
and barcodes [3]. This theory also yields the following result that forms the basis for our
computational results.

▶ Proposition 4. Let M• ⊆ M ′
• be filtrations of vector spaces with respective filtration

compatible bases M and M′ related by an inclusion M ⊆M′. Then M ′
•/M• has the barcode(

suppM ′
•
(m) \ suppM•

(m)
)

m∈M
∪

(
suppM ′

•
(m)

)
m∈M′\M.

We now state some helpful facts about filtration compatible bases. We refer to the full
version of this paper [4] for the proofs. We start with a lemma relating supports of basis
elements with filtration compatibility.

▶ Lemma 5. Let M• be a filtration of the vector space M with filtration compatible basis M.
Let M′ be another basis for M such that there exists a bijection g : M→M′ with suppM•

(m) =
suppM•

(g(m)) for all m ∈M. Then M′ is a filtration compatible basis for M•.
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Next, we extend a standard fact about intersections of vector spaces to filtrations.

▶ Lemma 6. Let M ′
•,M

′′
• ⊆M• be filtrations of vector spaces and let M′ and M′′ be filtration

compatible bases for M ′
• and M ′′

• , respectively, such that M′ ∪M′′ is linearly independent.
Then M′ ∩M′′ is a filtration compatible basis for M ′

• ∩M ′′
• . Moreover, for all m ∈M′ ∩M′′

suppM ′
•∩M ′′

•
(m) = suppM ′

•
(m) ∩ suppM ′′

•
(m).

We will use the special case where M ′
• is included in M ′′

• at the last filtration step (but not
necessarily before):

▶ Corollary 7. Let M ′
•,M

′′
• ⊆M• be filtrations of vector spaces M ′ ⊆M ′′ ⊆M , respectively.

Moreover, let M′ ⊆M′′ be filtration compatible bases for M ′
• and M ′′

• , respectively. Then M′

is a filtration compatible basis for M ′
• ∩M ′′

• . Moreover, for all m ∈M′

suppM ′
•∩M ′′

•
(m) = suppM ′

•
(m) ∩ suppM ′′

•
(m).

Finally, we state a version of the rank-nullity-theorem for filtrations.

▶ Lemma 8. Let ϕ• : M• → P• be a morphism of filtrations of vector spaces and consider the
linear map ϕ = ϕn : M → P . Let M be a filtration compatible basis for M•, let M′ = M∩kerϕ,
and assume that M′′ = (ϕ(m))m∈M\M′ is a linearly independent family of vectors. Then

M′ is a filtration compatible basis for kerϕ•,
M′′ is a filtration compatible basis for imϕ•,
suppker ϕ•

(m′) = suppM•
(m′) for all m′ ∈M′, and

suppim ϕ•
(ϕ(m)) = suppM•

(m) for all m ∈M \M′.

Note that if one drops the assumption of the above lemma that P•, and hence the image
imϕ•, is a filtration, then it may happen that M′ = M ∩ kerϕ is a basis for the vector space
kerϕ but not a filtration compatible basis for the filtration kerϕ•.

3 Computing Image Persistence Barcodes

Recall that we fixed a finite totally ordered index set T = {0, . . . , n} and a field F over which
we consider vector spaces. For our purposes, a chain (resp. cochain) complex is a graded
finite dimensional vector space with a differential of degree −1 (resp. 1) that squares to 0. A
chain complex of persistence modules C• with differential ∂• is called a filtration of a chain
complex of vector spaces C with differential ∂ if C• is a filtration of C as a vector space
and ∂n = ∂. Recall that a basis for the final vector space in a filtration is called filtration
compatible if it yields bases for the constituent vector spaces of the filtration by intersecting.
Further, recall that if the basis is ordered, we say that it is a filtration compatible ordered
basis if its order refines the order in which the basis elements appear in the filtration.

▶ Definition 9. If C• is a filtration of the (co)chain complex C with a filtration compatible
ordered basis C, then the matrix D representing the (co)boundary operator on C with respect
to C is called filtration (co)boundary matrix.

▶ Example 10. If K• : ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K is a filtration of finite simplicial
complexes, we get a filtration of chain complexes C∗(K•). A filtration compatible ordered
basis is given by the simplices of K, ordered by a linear refinement of the order in which
they appear in the filtration. If DK is a corresponding filtration boundary matrix, then one
can check (see [16]) that (DK)⊥ is a filtration coboundary matrix for the filtration of relative

SoCG 2023



14:6 Efficient Computation of Image Persistence

cochains 0 = C∗(K,K) = C∗(K,Kn) ⊆ · · · ⊆ C∗(K,K0) = C∗(K, ∅) = C∗(K). The matrix
represents the coboundary operator on C∗(K) with respect to the dual basis corresponding
to the simplices of K, ordered by the opposite of the filtration order. Here, (−)⊥ denotes
taking the transpose of a matrix along its anti-diagonal.

To avoid notational clutter, we will from now on only talk about chain complexes in the
general setting, but everything also straightforwardly applies to cochain complexes.

▶ Definition 11. If X is a matrix, we write xi for the i-th column of the matrix X. For a
non-zero column vector xi, we define Pivotxi as the largest index where the column has a
non-zero entry. We write PivotsX for the set of all indices which occur as pivots of non-zero
columns of X. A matrix is called reduced if no two non-zero columns have the same pivot.

Note that any set of non-zero vectors with unique pivots is linearly independent. In particular,
the non-zero columns of a reduced matrix are linearly independent.

Computing the barcode for the homology of a filtration of a chain complex is done by
reducing a filtration boundary matrix D, i.e., performing a variant of Gaussian elimination
on the columns of this matrix until one obtains a reduced matrix. This can be expressed as
finding a reduced matrix R and a full-rank upper-triangular matrix V such that R = DV .
The columns of these matrices naturally represent elements of C by interpreting them as
coordinate vectors with respect to the ordered basis C. The barcode for persistent homology
may then be obtained from this data as follows.

▶ Theorem 12 (Cohen-Steiner et al. [13]). Let D be a filtration boundary matrix of a filtration
of chain complexes C• and assume we have a full-rank and upper-triangular matrix V such
that R = DV is reduced. Then H∗(C•) has a barcode given by the multiset{

suppC•
(rj) \ suppC•

(vj) | rj ̸= 0
}
∪

{
suppC•

(vi) | ri = 0 and i /∈ PivotsR
}
.

The supports of column vectors that appear in the theorem can easily be determined
from the initial data via pivots: If M is a filtration compatible ordered basis for a filtration
M• of a vector space M , then we can consider elements of M via their coordinate vectors
with respect to M. Because M is a filtration compatible ordered basis, we then have
suppM•

(v) = suppM•
(v′) if and only if Pivot v = Pivot v′ for any two such coordinate vectors

v and v′. In particular, this means that in the setting of simplicial complexes the support of
a column vector is the same as the support of its pivot simplex.

The theorem is formulated in a different language by Cohen-Steiner et al., but the
version above also follows as a special case from Theorem 14. Note that the theorem is
also compatible with the homological grading: Assume that C• =

⊕
d C•,d is graded with ∂

mapping C•,d to C•,d−1. If the filtration compatible ordered basis C used to build D is chosen
such that its intersection with each grading summand is a filtration compatible ordered basis
for that summand, then one gets a barcode for Hd(C•) by restricting the barcode given in
Theorem 12 to those intervals coming from columns that represent d-dimensional cycles.

3.1 Image Barcodes via Matrix Reduction
We now turn to the setting of image persistence. Let C• and C ′

• be filtrations of the chain
complexes C and C ′ with corresponding filtration compatible ordered bases C and C′. Let
D and D′ be the corresponding filtration boundary matrices. Assume that we are given an
injection of filtrations φ• : C• → C ′

• such that the map φ : C → C ′ on the final filtration step
is an isomorphism. Note that this is not a restriction, as any injection of filtrations can be
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extended to one satisfying this assumption, and subsequently restricting the barcodes to the
original indexing set provides the desired result for this more general setting as well. Let F
be the matrix representing φ with respect to C and C′ and define the mixed basis boundary
matrix Dφ = DF−1 = F−1D′. The columns of Dφ thus correspond to C′, while the rows
correspond to C.

▶ Example 13. If K• : ∅ = K0 ⊆ · · · ⊆ Kn = K and L• : ∅ = L0 ⊆ · · · ⊆ Ln = L

are filtrations of finite simplicial complexes, we get filtrations of chain complexes C∗(K•)
and C∗(L•). If we are given a monomorphism f• : L• → K• that induces an isomorphism
L→ K (i.e., assuming that Li ⊆ Ki for all i and L = K), then we are in the setting above.
Filtration compatible ordered bases are given by the simplices of K and L, ordered by a linear
refinement of the order in which they appear in the respective filtrations. Let DL and DK

denote the corresponding filtration boundary matrices, and let Df denote the mixed basis
boundary matrix for the induced map C∗(L•)→ C∗(K•). Then, analogously to Example 10,
we obtain that (DL)⊥, (DK)⊥ and (Df )⊥ are the filtration and mixed basis coboundary
matrices for the relative cohomology counterpart C∗(K,K•) → C∗(L,L•). In the mixed
matrix (Df )⊥, the columns thus correspond to L•, while the rows correspond to K•.

Our goal is to determine a barcode for imH∗(φ•) by reducing the matrices D and Dφ.
Assume that we have R = DV and Rφ = DφV φ reduced with V and V φ full-rank and
upper-triangular. The columns of the matrices R, D, V , Rφ, and Dφ naturally represent
elements of C by interpreting them as coordinate vectors with respect to C. Similarly, the
columns of V φ naturally represent elements of C ′ by interpreting them as coordinate vectors
with respect to C′. Recall that if X is a matrix, we denote its jth column by xj . The main
result can then be stated as follows.

▶ Theorem 14. The image of H∗(φ•) has a barcode given by the multisets{
suppC•

(rφ
j ) \ suppC′

•
(vφ

j ) ̸= ∅ | rφ
j ̸= 0

}
∪

{
suppC•

(vi) | ri = 0 and i /∈ PivotsR
}
.

Note that the intervals suppC•
(vi) in the barcode of imH∗(φ•) that are not bounded above

are precisely the same as those in the barcode of H∗(C•) as given in Theorem 12.
The proof of Theorem 14 will be based on a sequence of intermediate results. As mentioned

in the introduction, the general idea is to write

imH∗(φ•) ∼=
φ(Z∗(C•))

φ(Z∗(C•)) ∩B∗(C ′
•) ,

and to find filtration compatible bases Z and B for φ(Z∗(C•)) and φ(Z∗(C•)) ∩ B∗(C ′
•),

respectively, such that B ⊆ Z holds so that we can apply Proposition 4.
If X is a matrix, we will write colsX for the family of all its non-zero column vectors.

▶ Lemma 15. The family colsV φ is a filtration compatible basis for C ′
•, B = colsFRφ is a

filtration compatible basis for B∗(C ′
•), and for all j with rφ

j ̸= 0 we have

suppB∗(C′
•)(Fr

φ
j ) = suppC′

•
(vφ

j ).

Proof. We start by showing that colsV φ is a filtration compatible basis for C ′
•: We have

Pivot vφ
j = j since V φ is full-rank and upper-triangular. It follows that vφ

j has the same
support in C ′

• as the jth element of C′. Thus, colsV φ is a filtration compatible basis for C ′
•

by Lemma 5.

SoCG 2023



14:8 Efficient Computation of Image Persistence

Next, note that (∂(v))v∈cols V φ\ker ∂ = colsFRφ is linearly independent since Rφ is reduced
and F has full rank. Thus, we can apply Lemma 8 to the map of filtrations ∂• : C ′

• → C ′
•

and the filtration compatible basis colsV φ to obtain that colsFRφ is a filtration compatible
basis for B∗(C ′

•) = im ∂•. The assertion on the supports follows from the support formula in
Lemma 8. ◀

Now that we have a filtration compatible basis for B∗(C ′
•), we want to extend it to a

filtration compatible basis for φ•(Z∗(C•)).

▶ Lemma 16. Let X = colsRφ ∪ {vj | j /∈ PivotsRφ} and X′ = X ∩ ker ∂. Then X is a
filtration compatible basis for C•, Z = FX′ = B ∪ {Fvj | j /∈ PivotsRφ} is a filtration
compatible basis for φ•(Z∗(C•)), and for all x ∈ X′ we have

suppφ•(Z∗(C•))(Fx) = suppC•
(x).

Proof. We start by showing that X is a filtration compatible basis for C•. The same argument
as in the beginning of the proof of Lemma 15 yields that colsV is a filtration compatible
basis for C•. Next, note that X is linearly independent since all elements have unique pivots:
Rφ is reduced and we only consider those vj with Pivot vj = j /∈ PivotsRφ. Moreover,
we have a bijection X → colsV given by mapping vj to itself and mapping rφ

j to vi for
i = Pivot rφ

j . Recall that Pivot vi = i = Pivot rφ
j implies suppC•

(rφ
j ) = suppC•

(vi) . Since
colsV is a filtration compatible basis for C•, Lemma 5 now implies that X is also a filtration
compatible basis for C•.

Since R is reduced and thus (∂(v))v∈X\X′ ⊆ colsR is linearly independent, we can
apply Lemma 8 to the boundary operator ∂• : C• → C• and the filtration compatible
basis X. We obtain that X′ = F−1Z is a filtration compatible basis for ker ∂• = Z∗(C•) with
suppZ∗(C•)(x) = suppC•

(x) for all x ∈ X′. The claim now follows from the fact that φ• is
mono, so that its restriction is an isomorphism Z∗(C•)→ φ•(Z∗(C•)) represented by F . ◀

Since the filtration compatible basis B for B∗(C ′
•) extends to a basis Z for φ•(Z∗(C•)),

we can conclude that B is also a filtration compatible for φ•(Z∗(C•)) ∩B∗(C ′
•).

▶ Lemma 17. The family B = colsFRφ is a filtration compatible basis for φ•(Z∗(C•)) ∩
B∗(C ′

•), and for all j with rφ
j ̸= 0 we have

suppφ•(Z∗(C•))∩B∗(C′
•)(Fr

φ
j ) = suppC•

(rφ
j ) ∩ suppC′

•
(vφ

j ).

Proof. Recall that B is a filtration compatible basis for B∗(C ′
•), and Z extends B to one for

φ•(Z∗(C•)). Now Corollary 7 together with the support equalities from Lemmas 15 and 16
yield the claim. ◀

▶ Lemma 18. PivotsR = PivotsRφ.

Proof. The matrices D and Dφ = DF−1 have the same column space. Matrix reduction
does not change column spaces, so R and Rφ also have the same column space. In particular,
every non-zero column of R is a non-trivial linear combination of non-zero columns of Rφ

and vice versa. The pivots of a linear combination of a reduced set of column vectors must be
the same as the pivot of one of these vectors, so we indeed obtain PivotsR = PivotsRφ. ◀

We are now ready to prove the main result of this section.
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Proof of Theorem 14. By definition of the induced map in homology, we have

imH∗(φ•) ∼=
φ•(Z∗(C•))

φ•(Z∗(C•)) ∩B∗(C ′
•) .

The claim follows by applying Proposition 4 to the inclusion φ•(Z∗(C•)) ∩B∗(C ′
•) ⊆ B∗(C ′

•)
with the filtration compatible bases B ⊆ Z, with supports as previously determined in
Lemmas 16 and 17. Note that in the basis Z we choose columns Fvi with i /∈ PivotsRφ,
while the formula in Theorem 14 requires i /∈ PivotsR. These conditions are, however,
equivalent by Lemma 18. ◀

3.2 Clearing
The clearing optimization [9] is a key ingredient of efficient persistence computation. We first
recall the basic idea of clearing, which applies to the computation of persistent homology of
a filtration of chain complexes C• by reducing the boundary matrix D to R = DV . We keep
the notation from the beginning of this section, and we assume that our filtration compatible
basis C is compatible with the homological grading in the sense that the restriction of this
basis to each grading summand is again a basis of that summand. Our discussion focuses on
chain complexes, but of course the findings naturally apply to cochain complexes with the
appropriate adjustments to the grading.

If a column rj of the reduced matrix R is nonzero, then necessarily ri = 0 for i = Pivot rj .
The homological degree of the i-th element of C is one less than that of the j-th element.
This leads to the clearing procedure: Instead of reducing D by column operations from left
to right, we reduce columns in decreasing order of their homological degree (increasing in
the case of cohomology). Before reducing the columns in dimension d, we set rj = 0 for all j
which appear as pivots of the already reduced columns in dimension d+ 1.

Turning to the image setting, we also assume that the basis C′ and the map φ• : C• → C ′
•

are compatible with the grading. Here, there is no direct analogue to the procedure outlined
above, as the mixed basis boundary matrix Dφ fails to have the property described above;
rφ

j ̸= 0 does not imply rφ
i = 0 for i = Pivot rφ

j . In order to obtain a useful condition for
columns of Rφ to be zero, we need to additionally consider a reduction R′ = D′V ′ of the
boundary matrix D′ = FDφ.

▶ Proposition 19. Let R′ = D′V ′ and Rφ = DφV φ be reduced. For all indices j we have
rφ

j = 0 if and only if r′
j = 0.

Proof. First, note that rφ
j = 0 if and only if Frφ

j = 0 because F is invertible. Moreover,
FRφ and R′ have the same column space, since FRφ = R′(V ′)−1V φ. Thus, the number of
zero columns of Rφ is the same as the number of zero columns of R′ since their ranks are
equal and their non-zero columns are linearly independent. Now, it suffices to show that
rφ

j = 0 implies r′
j = 0, so assume rφ

j = 0. Then Frφ
j = 0, but Frφ

j is also the same as the
j-th column of R′(V ′)−1V φ. This is a linear combination of columns of R′ with non-zero
coefficient for r′

j since (V ′)−1V φ is full-rank and upper-triangular. Non-zero columns of R′

are linearly independent, so this linear combination can only be zero if r′
j = 0. ◀

In order to apply clearing to the reduction of Dφ, one can now reduce D′ with clearing as
usual, and clear the columns with the same indices in Dφ. Even more than that, one can not
only clear the columns of Dφ whose index appears as a pivot in R′, but rather every column
with the same index as a zero column in R′, meaning also those that have been reduced to
zero via column operations on D′. Thus, with this optimization, the reduction of Dφ only
establishes unique pivots among the non-zero columns, but no columns are reduced to zero.

SoCG 2023
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▶ Corollary 20. If D′ has already been reduced to R′, one can initialize the reduction Rφ of
Dφ by setting rφ

j = 0 for all j with r′
j = 0, and no further columns of Rφ will reduce to 0.

3.3 Assembling Barcodes from (Co)homology Computations
Recalling our concrete setting of persistent homology for simplicial complexes, assume that
we are given filtrations L• and K• of two isomorphic simplicial complexes L ∼= K and a
monomorphism f• : L• → K•, inducing an isomorphism f : L→ K. Following the notation
from Example 13 and applying the previous results with φ• = C∗(f•), we see that the barcode
of imH∗(f•) can be determined via reductions of DL and Df and that the reduction of Df

may be performed with clearing if DK has already been reduced before.
As known from the single filtration case, clearing requires a full persistence computation in

the first homological degree for which persistence is computed. As persistence computations
are often only feasible in low dimensions and practitioners are often only interested in
barcodes in low degrees, it is much more powerful to apply clearing for cohomological grading,
allowing for the initialization to be performed in degree 0. Thus, our goal is to perform
cohomological computations and still recover the image imH∗(f•) in homology.

As a first step towards that goal, we recall that imH∗(f•) and imH∗(f•) have the same
barcodes [5]. However, the persistent cochain complex giving rise to persistent cohomology is
not a filtration, so the basic matrix reduction algorithm does not directly apply there. Instead,
we perform computations in the relative cohomology setting given by the map H∗(f, f•).
Its image no longer has the same barcode as imH∗(f•), but there are some correspondence
results [5, Section 6.2], which we will summarize next. To state the result, for a barcode B
we write B† for the intervals in B that do not extend to any of the endpoints of our index
set T and B∞ for those intervals that do.

▶ Proposition 21 (Bauer, Schmahl [5]). For all degrees d, we have

B(imHd−1(f•))† = B(imHd(f, f•))†,

and the map I 7→ T \ I defines bijections

B(imHd(f•))∞ ↔ B(Hd(L,L•))∞ and B(imHd(f, f•))∞ ↔ B(Hd(K•))∞.

Note that none of the intervals in the barcodes considered here span the whole index set T ,
since we assume that our filtrations start with L0 = K0 = ∅.

Proposition 21 implies that in order to determine the barcode of imH∗(f•), it suffices to
compute B(H∗(L,L•))∞ and B(imH∗(f, f•))†. Following Example 10 and Theorem 12, we
observe that B(H∗(L,L•))∞ may be determined from a reduction of the coboundary matrix
(DL)⊥, and following Example 13 and Theorem 14, we know that B(imH∗(f, f•))† may be
determined from a reduction of the coboundary matrix (Df )⊥. In the relative cohomology
setting, the matrices (DL)⊥ and (Df )⊥ play the roles of D′ and Dφ in the general setting,
so by Corollary 20 we can simultaneously reduce these matrices with clearing.

We summarize the discussion in the following theorem. To simplify notation, we will
assume that we are given funtions k and l on K ∼= L that induce the filtrations K• and L•,
respectively, via their sublevel set filtrations. For example, if K• and L• are Vietoris–Rips
filtrations for different metrics on the same set of points, the functions l and k would be
given by the corresponding diameter functions. Recall that the column and row indices of
the matrices (Df )⊥ and (DL)⊥ correspond to the simplices of K ∼= L in different orders. We
denote the column of a matrix X corresponding to a simplex σ by xσ. Combining Theorem 14,
Corollary 20, and Proposition 21, we can now determine barcodes from reductions of boundary
matrices as follows.
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▶ Theorem 22. The matrices (Df )⊥ and (DL)⊥ can be reduced with clearing, and given
reductions S = (Df )⊥W and R = (DL)⊥V , the barcode of imH∗(f•) is the multiset

{[l(σ), k(Pivot sσ)) ̸= ∅ | sσ ̸= 0} ∪ {[l(τ),∞) | rτ = 0 and τ /∈ PivotsR} .

Recall that the column and row indices of the coboundary matrices indicated by (−)⊥

correspond to the simplices of K ∼= L in reverse filtration order. Hence, the pivot simplex of
a column vector appearing in the theorem will be the first simplex appearing in the filtration
among those that correspond to a non-zero entry of the column, while for the usual boundary
matrices DL, DK , etc., the pivot simplex of a column would be the one that appears last
in the filtration.We summarize the algorithm resulting from Theorem 22 in pseudocode in
Algorithm 1. To do so, we keep the notation from Section 3.3. In addition, for a column
vector c, we write PivotEntry c to denote the entry of c at its pivot index.

Algorithm 1 Algorithm to compute image persistence via two matrix reductions with
clearing in cohomological grading.

Input: Filtration boundary matrix DL with n columns, mixed basis boundary
matrix Df , maximum homological degree p for persistence to be computed

Result: Barcode of imH∗(f)
R← (DL)⊥; S ← (Df )⊥; B ← ∅
for m = 0, . . . , p do

while ∃σ <L τ with rσ ̸= 0, Pivot rσ = Pivot rτ , and dim σ = m do
rτ ← rτ − PivotEntry rτ

PivotEntry rσ
rσ

for σ with dim σ = m do
if rσ = 0 then

sσ ← 0
B ← B ⊔ {[l(σ),∞)}

else if σ /∈ PivotsR then
rPivot rσ

← sPivot rσ
← 0

while ∃σ <L τ with sσ ̸= 0 and Pivot sσ = Pivot sτ do
sτ ← sτ − PivotEntry sτ

PivotEntry sσ
sσ

for σ with dim σ = m, sσ ̸= 0, and l(Pivotwσ) < k(Pivot sσ) do
B ← B ⊔ {[l(σ), k(Pivot sσ))}

return B

3.4 Apparent and Emergent Pairs in Image Matrix Reduction
An important optimization in persistence computation leading to significant computational
improvements is given by utilizing the apparent pairs in the filtration, which are pairs (σ, τ)
in the filtration such that σ is the latest facet of τ in the filtration and τ is the earliest
cofacet of σ. Apparent pairs always form persistence pairs, since the corresponding columns
are reduced already in the (co)boundary matrix. More generally, if (σ, τ) is a persistence
pair and τ is the earliest cofacet of σ, we say that (σ, τ) is an emergent cofacet pair. The
special case where such a pair (σ, τ) has persistence 0 can be identified in Ripser [1] during
the construction of the columns of the coboundary matrix, terminating this construction
early without constructing the entire column.

This strategy turns out to carry over to the image setting as well. The criterion used in
Ripser for identifying the pivot index early is that its corresponding simplex appears in the
filtration simultaneously with the simplex corresponding to the column. When reducing the

SoCG 2023
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Table 1 Running time and memory usage for image barcode and standard barcode (of the
codomain filtration) for different data sets. The filtrations are defined by two different metrics on
the point cloud. The maximum homological degree for persistence to be computed is specified by p,
the number of points in the data set is specified by |X|.

Data Set p |X| image barcode standard barcode
S2 intrinsic → extrinsic 2 128 0.56 s, 45 MB 0.26 s, 47 MB

256 5.7 s, 315 MB 2.97 s, 316 MB
512 155 s, 5.7 GB 65.6 s, 5.7 GB

SO(3) intrinsic → extrinsic 3 64 0.71 s, 51.7 MB 0.39 s, 52.7 MB
128 13.7 s, 735 MB 7.3 s, 743 MB
256 317 s, 13.1 GB 160 s, 13.1 GB

Möbius strip → RP 2 1 256 0.34 s, 24.0 MB 0.11 s, 25.0 MB
512 2.66 s, 159 MB 0.73 s, 159 MB

1024 25.6 s, 1.06 GB 7.21 s, 1.06 GB
S2 → RP 2 2 32 0.37 s, 11.7 MB 0.00 s, 2.3 MB

64 10.9 s, 27.1 MB 0.02 s, 7.5 MB
128 574 s, 608 MB 0.24 s, 31.2 MB

mixed basis coboundary matrix (Df )⊥ for f• : L• → K•, we apply the criterion with respect
to the filtration K•, which determines the row order and hence the pivot of a column. Note
that the apparent or emergent pairs (σ, τ) identified this way thus have the same filtration
value for the filtration K•.

3.5 Computational Experiments
We provide an implementation [6] of the algorithm resulting from Theorem 22 including
the clearing optimization, based on the simple branch of Ripser [1], for the special case
where L• = Rips•(X, d) and K• = Rips•(X, d′) are filtrations of Vietoris–Rips complexes
corresponding to two metrics d and d′ on a finite set X that satisfy d(x, y) ≥ d′(x, y) for
all x, y ∈ X, with the map between filtrations given by the inclusions of Lt into Kt. Recall
that the inequality d ≥ d′ ensures that Lt is in fact a subcomplex of Kt. We did not include
a comparison with Dionysus [19], as the general two-filtration setting considered in this
paper is not supported. We further note that computation of image persistence is no longer
supported in the current version of Dionysus.

Our computations were done on a notebook computer with an Apple M2 processor
and 24 GB memory. The first example is given by X being {128, 256, 512} points sampled
uniformly from the unit sphere in R3, with the distance d being given by the geodesic
distance on the sphere and the distance d′ being given by the Euclidean distance in R3.
The second example consists of {64, 128, 256} points sampled uniformly at random from
SO(3), with d given by the geodesic distance on SO(3) ∼= RP 3 and d′ given by the Frobenius
norm distance on R3×3 (scaled by a factor of 1/

√
2 to ensure that d ≥ d′ holds). The third

example is constructed by sampling {256, 512, 1024} points uniformly from a cylinder with
height π over a unit circle, equipped with the quotient metric that identifies antipodal points,
resulting in a Möbius strip; the canonical map from the cylinder to the unit sphere given
by (ϕ, ψ) 7→ (sinϕ cosψ, cosϕ cosψ, sinψ) is nonexpanding, and it induces a nonexpanding
map from the Möbius strip to the projective plane, both with the intrinsic metric. The
fourth example is constructed by sampling {32, 64, 128} points from the unit sphere, and
considering the canonical quotient map to the projective plane. Running times and memory
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usage are summarized in Table 1. Note that the examples differ significantly in terms of
difficulty: while the first two examples comparing intrinsic and extrinsic metrics take only
roughly twice as long as a standard persistence computation, the other two examples are
more demanding, with the last one showing a huge difference in running time and memory
usage. We attribute this to the vastly different total orders of simplices for the two filtrations.
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