
Efficient Two-Parameter Persistence Computation
via Cohomology
Ulrich Bauer #Ñ

Department of Mathematics, TUM School of Computation, Information and Technology, and
Munich Data Science Institute, Technical University of Munich, Germany

Fabian Lenzen #

Department of Mathematics, TUM School of Computation, Information and Technology, Technical
University of Munich, Germany

Michael Lesnick # Ñ

Department of Mathematics, SUNY Albany, NY, USA

Abstract
Clearing is a simple but effective optimization for the standard algorithm of persistent homology
(ph), which dramatically improves the speed and scalability of ph computations for Vietoris–Rips
filtrations. Due to the quick growth of the boundary matrices of a Vietoris–Rips filtration with
increasing dimension, clearing is only effective when used in conjunction with a dual (cohomological)
variant of the standard algorithm. This approach has not previously been applied successfully to
the computation of two-parameter ph.

We introduce a cohomological algorithm for computing minimal free resolutions of two-parameter
ph that allows for clearing. To derive our algorithm, we extend the duality principles which underlie
the one-parameter approach to the two-parameter setting. We provide an implementation and
report experimental run times for function-Rips filtrations. Our method is faster than the current
state-of-the-art by a factor of up to 20.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Computational geometry

Keywords and phrases Persistent homology, persistent cohomology, two-parameter persistence,
clearing

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.15

Related Version Full Version: https://arxiv.org/abs/2303.11193 [8]

Supplementary Material Software (Source Code): https://gitlab.com/flenzen/2-parameter-
persistent-cohomology [33]

archived at swh:1:dir:7ef1c55bee7980f9a68507241eeb461e0af7d99e

Funding Ulrich Bauer : Supported by the German Research Foundation (DFG) through the Collab-
orative Research Center SFB/TRR 109 Discretization in Geometry and Dynamics – 195170736.

1 Introduction

Motivation. Persistent homology [19, 50, 37] analyzes how the homology of a filtered
topological space changes as the filtration parameter increases. By assigning filtered spaces
(e.g., Vietoris–Rips filtrations) to data sets, it provides simple signatures of the data called
barcodes, which encode multi-scale information about the shape of the data. Thanks to recent
advances in ph computation and software [4, 49, 1, 39, 45, 26, 27], ph has become popular
for practical data applications [25]. A well-known stability result [16, 9, 12] guarantees
that small perturbations (in the Gromov–Hausdorff distance) of the input data lead to
small perturbations (in the bottleneck distance) of the barcodes of the ph of Vietoris–Rips
filtrations. However, Vietoris–Rips ph is notoriously unstable to outliers. Besides other
strategies [12, Section 1.7], a commonly proposed remedy for this is the introduction of a

© Ulrich Bauer, Fabian Lenzen, and Michael Lesnick;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@ulrich-bauer.org
www.ulrich-bauer.org
https://orcid.org/0000-0002-9683-0724
mailto:fabian.lenzen@tum.de
https://orcid.org/0000-0001-9579-6854
mailto:mlesnick@albany.edu
https://www.albany.edu/~ml644186/
https://orcid.org/0000-0003-1924-3283
https://doi.org/10.4230/LIPIcs.SoCG.2023.15
https://arxiv.org/abs/2303.11193
https://gitlab.com/flenzen/2-parameter-persistent-cohomology
https://gitlab.com/flenzen/2-parameter-persistent-cohomology
https://archive.softwareheritage.org/swh:1:dir:7ef1c55bee7980f9a68507241eeb461e0af7d99e;origin=https://gitlab.com/flenzen/2-parameter-persistent-cohomology;visit=swh:1:snp:1a9ed1e4491b3eebeab3d79b60606dbbf75ef737;anchor=swh:1:rev:58f971c497a7f10eee157c239e79bca185f99d15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Efficient Two-Parameter Persistence Computation via Cohomology

second filtration parameter controlling the local density of the point cloud, which leads to
the notions of two- and multi-parameter ph [14, 43, 17, 34, 41, 13]. A central computational
problem of two-parameter ph, somewhat akin to the computation of a barcode, is the
computation of a minimal free presentation or a minimal free resolution (mfr) of the ph
module. While a resolution contains more information than a presentation, the underlying
algorithmic problems are essentially the same, and we focus on the computation of a mfr
in this work. Such a resolution is often quite small in practice [23], and computing it is a
natural first step in computing invariants or metrics in the multi-parameter setting [13].

Computing a mfr of two-parameter ph is more involved than in the one parameter case.
The problem can be solved by classical Gröbner basis algorithms, which work in much greater
generality but do not scale well enough for practical TDA applications [35]. Recently, a
specialized algorithm was introduced [35, 32], which is far more efficient than the Gröbner
basis approach, both in theory and in practice. This has substantially lowered the barrier
to practical data analysis with two-parameter persistence [30]. For recent applications, see,
e.g., [11, 46].

Nevertheless, existing software for two-parameter ph is much slower and less scalable than
one-parameter ph implementations such as [4, 1, 39, 49]. The approach of [35, 32] boils down
to a matrix reduction scheme similar to the standard algorithm of one-parameter ph [50],
and has the same asymptotic run time, cubic in the size of the complex. However, modern
one-parameter ph algorithms incorporate several critical optimizations. In particular, it is
known that for Vietoris–Rips filtrations, clearing [5, 15] leads to major performance gains
when combined with a dual (cohomological) variant of the standard persistence algorithm
[18, 5]. All state-of-the-art software for computing Vietoris–Rips ph employ this strategy.
In two parameters, however, working with persistent cohomology (pc) is more challenging,
essentially because, in contrast to one parameter, relative simplicial cochains of filtered
complexes do not form free modules.

Contributions. In order to compute mfrs of ph of function-Rips bifiltrations more efficiently,
we introduce a cohomological variant of the algorithm of [35, 32], which we outline now.

Let K∗ be a finite simplicial Zn-filtration with K =
⋃

z∈Zn Kz. Assume that K∗ is
one-critical, i.e., the set {z | σ ∈ Kz} has a unique minimal element g(σ) for every σ ∈ K. We
define a certain cochain complex N•(K∗) of free persistence modules. In this paper, H•(K)
always denotes the reduced simplicial homology of K. If Hd(Kz) = 0 for all d but finitely
many indices z ∈ Zn (which can easily be ensured by adding additional simplices to K∗), then
Hd+n(N•(K∗)) is isomorphic to the dual module of Hd(K∗) for all d (see Proposition 6). This
can be seen as a generalization of a corresponding statement for one-parameter persistence,
in which case N•(K∗) equals the relative cochain complex C•(K, K∗) [18, Theorem 2.4]; see
also [10].

Given a (minimal) free resolution F• of an n-parameter persistence module M and a
choice of basis for each module of F•, we show that the matrices representing F• also represent
a (minimal) injective resolution of M ; see Theorem 10. In particular, this allows us to easily
convert a (minimal) free resolution of a module (e.g., Hd+n(N•(K∗))) to a (minimal) free
resolution of its dual (i.e., Hd(K∗)); see Corollary 14.

For n = 2, we propose a method to compute a mfr of Hd+2(N•(K∗)) (and thus Hd(K∗))
solely from the coboundary map δd+1 : Nd(K∗) → Nd+1(K∗); see Section 3.4. At the core of
this method is an algorithm for the following problem: given a morphism f : F → F ′ of free
persistence modules and a basis of the vector space colim im f , compute a basis of the free
persistence module ker f ; see Theorem 19. The algorithm is compatible with the clearing
optimization, which improves its performance considerably.

U. Bauer, F. Lenzen, and M. Lesnick 15:3

We have implemented our approach [33] and report timing results from computational
experiments with function-Rips bifiltrations. On most instances considered, our approach
is significantly faster than the approach [23] used in mpfree, and on certain instances, our
implementation is able to outperform the approach of by a factor of up to 20.

A number of recent methods for computation of multiparameter persistence focus on
decreasing the size of the input complex without changing its homology [22, 42, 23, 2]. These
methods can be used as a preprocessing step to the computation of a minimal free resolution.
In our computational experiments, we explore the effect of the chunk preprocessing method of
[23] on the efficiency of our method. We find that in our experiments, our method generally
performs better without this preprocessing. In contrast, we observe that the preprocessing is
very helpful for the the approach of [35, 32], as previously reported [23]. We also observe
that applying the chunk algorithm on cochain complexes instead of chain complexes may
significantly increase the performance even for homology computation.

2 Background

2.1 Persistence modules
Let k be a field, let n ∈ N, let vec denote the category of finite dimensional k-vector
spaces, and consider Zn as a poset with the usual product partial order. A (pointwise
finite dimensional) Zn-persistence module, also called an n-parameter persistence module,
is a functor M : Zn → vec. The maps Mz≤z′ : Mz → Mz′ are called the structure maps of
M . If m ∈ Mz, we call z the grade of m, denoted by g(m). The total dimension of M is∑

z∈Zn dim Mz. We write Zn-pers for the abelian category of pointwise finite dimensional
Zn-persistence modules. Its morphisms are natural transformations. Zn-pers is equivalent
to a full subcategory of the category of multigraded modules over the ring k[x1, . . . , xn];
see [14]. The algebra k[x1, . . . , xn] is not a principal ideal domain unless n = 1; therefore,
Zn-persistence modules cannot be described by a barcode for n > 1.

Let V ∗ = Homk(V, k) denote the dual of a k-vector space V . The dual of a Zn-persistence
module M is the Zn-persistence module M∗ with (M∗)z = (M−z)∗ and (M∗)z≤z′ =
(M−z′≤−z)∗. An object M of an abelian category C is projective (respectively injective)
if the functor HomC(M, −) (respectively HomC(−, M)) is exact. The duality M 7→ M∗ is an
exact contravariant equivalence of categories and thus maps projective to injective modules
and vice versa.

For z ∈ Zn, let F (z) be the module with F (z)w =
{

k if z ≤ w,
0 otherwise, and F (z)w≤w′ = idk if

z ≤ w ≤ w′. A module F is free if there are elements (zi)i∈I ⊆ Zn, for some indexing set I,
such that there is an isomorphism b :

⊕
i∈I F (zi) → F . Every finitely generated projective

persistence module is free [40, 44, 28]. Let ei denote the element 1 ∈ F (zi)zi of the component
of

⊕
i∈I F (zi) indexed by i. The set {b(ei) | i ∈ I} is a basis of F . The multiset rk F := {zi |

i ∈ I} is uniquely determined by F and called its (graded) rank. A module M is finitely
generated if there is a pointwise surjection F → M from a free module F of finite rank; the
image of a basis of F under such a map is called a generating system of M .

A graded matrix M is a matrix with entries Mij ∈ k whose rows and columns are
decorated with row grades rgM

∗ and column grades cgM
∗ . The graded transpose of a graded

m × n-matrix M is the graded n × m-matrix MT with entries (MT)ij = Mm+1−j,n+1−i, row
grades rgMT

i = −cgM
n+1−i and column grades cgMT

j = −rgM
m+1−i. A morphism f : F → F ′ of

finite rank free modules F and F ′ with respective bases b1, . . . , bn and b′
1, . . . , b′

m is uniquely
represented by a graded m × n-matrix M with cgM

j = g(bj), rgM
i = g(b′

i), and entries Mij

such that f(bj) =
∑

i MijF ′
g(b′

i
)≤g(bj)(b′

i) for all j.

SoCG 2023

15:4 Efficient Two-Parameter Persistence Computation via Cohomology

▶ Lemma 1. A graded matrix M represents a morphism of finite rank free modules iff
Mij = 0 whenever rgM

i ̸≤ cgM
j .

Proof. This follows from the fact that Hom(F (z), F (z′)) =
{

k if z ≥ z′,
0 otherwise. ◀

If bases of free modules F, F ′ are fixed, we identify a morphism F → F ′ with the graded
matrix representing it. A free resolution (resp., injective resolution) of a module M is a chain
complex F• : · · · → F1 → F0 of free modules (resp., cochain complex I• : I0 → I1 → · · ·
of injective modules) concentrated in non-negative degrees that is quasi-isomorphic to M .
A (homological) d-ball is an acyclic chain complex of the form · · · → 0 → F (z) id→ F (z) →
0 → · · · for some z ∈ Zn, concentrated in degrees d, d − 1. A free resolution, and, more
generally, a chain complex of free modules, is called minimal if it contains no direct summand
isomorphic to a ball. An injective resolution is minimal if its dual is minimal. A morphism
F1 → F0 of free modules is called a (minimal) free presentation of a module M if it extends
to a (minimal) free resolution of M .

▶ Theorem 2 (see [21, Theorem 20.2], [38, Theorem 7.5]). Every finitely generated module
has a mfr. Every free resolution is isomorphic to the direct sum of a mfr with a direct sum
of homological balls. In particular, a mfr is unique up to isomorphism of chain complexes.

Thus, letting F• be a mfr of a finitely generated persistence module M , the graded ranks
βq(M) := rk Fq, called the graded Betti numbers of M , are independent of the choice of F•.

▶ Theorem 3 (Hilbert’s Syzygy theorem [38, Theorem 15.2], [21, Corollary 19.7]). Every
Zn-persistence module has a mfr of length at most n.

2.2 Filtrations
For P any poset, a (simplicial) P -filtration is a functor K∗ from Zn to the category of simplicial
complexes such that the simplicial maps Kz≤z′ are inclusions. We write K =

⋃
z∈Zn Kz.

▶ Example 4. Let S be a metric space and let diam σ = maxs,t∈σ d(s, t) for every finite,
non-empty σ ⊆ S. The Vietoris–Rips filtration V̂R∗(S) associated to S is the R-filtration
given by V̂Rr(S) = {σ ⊆ S | 0 < |σ| < ∞, diam σ ≤ r}. If S is finite and non-empty, let
r1 < r2 < · · · < rn be the distinct values diam σ can attain for σ ⊆ S. By setting

VRi(S) =

 V̂R(S)r1 if i ≤ 1,
V̂R(S)ri

if 1 < i < n,

V̂R(S)rn if n ≤ i,

we obtain a Z-filtration VR∗(S), which we also call a Vietoris–Rips filtration.

If K∗ is a Zn-filtration, its absolute and relative simplicial chains C•(K∗) and C•(K, K∗)
(with coefficients in k) form chain complexes of Zn-persistence modules, and the respective
cycles Zd(−), boundaries Bd(−) and homology Hd(−) are Zn-persistence modules for all d.
The dual cochain complex C• := (C•)∗ of a chain complex C• has components Cd = (Cd)∗. Its
cocycles Zd(C•), coboundaries Bd(C•) and cohomology Hd(C•) are Zn-persistence modules
for all d. Because (−)∗ is exact, there is a natural isomorphism Hd(C•) → Hd(C•)∗ for all d.
Our indexing convention is that a chain complex C• has the boundary morphisms ∂d : Cd →
Cd−1 and a cochain complex C• has coboundary morphisms δd = (∂d)∗ : Cd−1 → Cd. This
differs from the standard convention, but is chosen such that C• = (C•)∗ has δd = (∂d)∗.

A Zn-filtration K∗ is one-critical if for every σ ∈ K the set {z ∈ Zn | σ ∈ Kz} has a
unique minimal element g(σ), called the grade of σ. In this case, C•(K∗) =

⊕
σ∈K∗

F (g(σ))
is free, with a basis {eσ |σ ∈ K∗} satisfying g(eσ) = g(σ). In particular, ∂• can be represented
by a graded matrix [∂•].

U. Bauer, F. Lenzen, and M. Lesnick 15:5

−1 0 1

−1.0

−0.5

0.0

0.5

1.0

0

5

10

15

20

25

d
en
si
ty

1

0 1

Rips

−20

−10

–d
en
si
ty

1

0 1

Rips

−20

−10

–d
en
si
ty

1Figure 1 A point set S (left) with |S| = 400, with density function ρ(p) :=
∑

q∈S\{p} exp
(
− d(p,q)2

2σ2

)
for σ = 0.15; graded Betti numbers (teal: β0, red: β1, orange: β2) and Hilbert function (shades of
blue increasing from dim = 0 to dim ≥ 10) of H0(VRρ

∗(S)) (middle) and H1(VRρ
∗(S)) (right).

▶ Example 5. The function-Rips bifiltration VRf
∗(S) associated to a finite metric space

S and a function f : S → Z is the one-critical Z2-filtration with VRf
x,y = {σ ∈ VRy(S) |

maxs∈σ f(s) ≤ x}. Figure 1 illustrates the Hilbert function and graded Betti-numbers of the
ph of a function-Rips bifiltration, where the function is a density function.

2.3 One-parameter persistence and clearing
We next turn attention to persistence modules over Z. For −∞ ≤ bi < di ≤ ∞, let I(b, d)
be the interval module with I(b, d)z =

{
k if b ≤ z < d,
0 otherwise and I(b, d)z≤z′ = idk if b ≤ z ≤ z′ < d.

Every pointwise finite-dimensional Z-persistence module is isomorphic to an essentially
unique direct sum

⊕
i∈I I(bi, di) [47, 50]. The collection of the pairs (bi, di) is called the

barcode of M .
Given a finite Z-filtered complex K∗, one is usually interested in computing the barcode

of H•(K∗). Since k[x] is a principal ideal domain, the submodules Zd(K∗), Bd(K∗) ⊆ Cd(K∗)
are free for all d. The standard algorithm [20, §3] computes bases of Zd(K∗) and Bd(K∗)
and thus the barcode of H•(K∗) by applying an order-respecting Gaussian column reduction
scheme to each graded matrix [∂d]. Each relative cochain module Cd(K, K∗) is also free, so
the same algorithm computes the barcode of H•(K, K∗) from the graded matrices [δd] = [∂d]T
representing the coboundary operators δd. The barcodes of H•(K∗) and H•(K, K∗) determine
each other in a simple way, as is seen by considering the long exact sequence of the pair
(K, K∗) [18, 10].

It has been observed that for Vietoris–Rips filtrations, computing H•(K, K∗) instead of
H•(K∗) is far more efficient. This increase in efficiency hinges on the use of the clearing
optimization scheme [5, 15, 4], which we now explain. The pivot of a matrix column is
the largest row index of a non-zero entry in that column. The standard algorithm applies
left-to-right column additions to bring [δd+1] into reduced form Rd+1, meaning that all
columns of Rd+1 have pairwise distinct pivots. If a column Rd

j is non-zero with pivot i, then
Rd+1

i = 0. Therefore, if Rd is known from previous computations, the reduction of [δd+1]j
to zero can be skipped. As the standard algorithm would typically spend most of its run
time on the columns of [δd+1] that are reduced to zero, skipping most of these accelerates
the algorithm considerably.

If the reduced homology Hd(K) is zero for all d, then the long exact sequence of the pair
(K, K∗) shows that Hd+1(K, K∗)∗ ∼= Hd(K∗) for all d, so one would expect that they can
be computed from the same data. Indeed, one can use clearing to compute Hd+1(K, K∗)
(respectively Hd(K∗)) from δd+1 (respectively ∂d+1) alone; see Algorithm 3 in the full version.

SoCG 2023

https://arxiv.org/abs/2303.11193{}{}{}#algocf.3{}{}{}

15:6 Efficient Two-Parameter Persistence Computation via Cohomology

2.4 Computation of 2-parameter persistence
The LW-Algorithm. Assume that C• is a chain complex of free Z2-persistence modules of
finite rank; e.g., C• = C•(K∗) for a one-critical Z2-filtration K∗, and let Dd be the matrix
representing ∂d : Cd → Cd−1 for all d. Theorems 2 and 3 imply that the kernel of a morphism
of finitely generated free Z2-modules is free. In particular, Zd(C•) is free for all d, so the
sequence 0 → Zd+1(C•) id+1−−−→ Cd+1

pd+1−−−→ Zd(C•) is a free resolution of Hd(K∗). From Dd,
the LW-Algorithm [35, 32] (see Algorithm 4 in the full version) computes a graded matrix
Id representing id : Zd(C•) ↪→ Cd. A variant of that algorithm (see Algorithm 5 in the full
version) computes from Dd+1 a graded matrix D′

d+1 : C ′
d+1 → Cd, whose columns represent

a minimal generating system of Bd(C•), together with a graded matrix I ′
d+1 representing the

kernel Z ′
d+1 of the morphism represented by D′

d+1. There is a unique graded matrix P ′
d+1

such that D′
d+1 = IdP ′

d+1, which can be obtained by Algorithm 9 in the full version. Then
I ′

d+1 and P ′
d+1 represent a free resolution

0 → Z ′
d+1

I′
d+1−−−→ C ′

d+1
P ′

d+1−−−→ Zd(C•) (1)

of Hd(C•). To obtain a mfr, it remains to split off summands from (1) that are isomorphic
to homological balls. There is an embarrassingly parallel algorithm that computes a minimal
chain complex quasi-isomorphic to a given one; see Remark 23 in the full version. In particular,
this algorithm can be used to convert a free resolution to a minimal one. It can also be
used to split off balls from the input complex C•. This is known as chunk preprocessing and
typically improves performance of the LW-algorithm by a considerable amount [22, 32, 23].

3 Cohomology computation

Let K∗ be a one-critical Zn-filtration. If n > 1, then neither C•(K∗) nor C•(K, K∗) are
complexes of free modules. Since the LW-algorithm assumes that the input complex is a
complex of free modules, the strategy from Section 2.4 cannot be used to compute H•(K∗)
or H•(K, K∗) directly. Instead, we consider a cochain complex N•(K∗) that can be used to
compute Hd(K∗).

3.1 The free cochain complex N•(K∗)

For a module M and z ∈ Zn, let M⟨z⟩ be the module with graded components M⟨z⟩w =
Mz+w. For z ≥ 0, the structure maps of M give a morphism M → M⟨z⟩. Note that
M⟨z⟩∗ = M∗⟨−z⟩. For a graded matrix A, let A⟨z⟩ be the graded matrix with A⟨z⟩ij = Aij ,
rgA⟨z⟩

i = rgA
i + z and cgA⟨z⟩

j = rgA
j + z for all i, j.

Fix a total order on the simplices of K∗, so that the boundary map ∂• of the chain complex
C•(K∗) =

⊕
σ∈K∗

F (g(σ)) is represented by the graded matrix [∂•]. Let ϵ = (1, . . . , 1) ∈ Zn.
Let

N•(K∗) =
⊕

σ

F (−g(σ) + ϵ)

be the cochain complex whose coboundary operator δ•
N is represented by [∂•]T ⟨−ϵ⟩ with

respect to the standard basis. It follows from Lemma 1 that this is a well-defined cochain
complex. The key property of this chain complex is summarized in the following proposition,
whose proof is deferred to the next subsection.

https://arxiv.org/abs/2303.11193{}{}{}#algocf.4{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.5{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.9{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#theorem.23{}{}{}

U. Bauer, F. Lenzen, and M. Lesnick 15:7

▶ Proposition 6. If Hd(K∗) has finite total dimension for all d, then there is a natural
isomorphism Hd(K∗) ∼= Hd+n(N•(K∗))∗ for all d.

▶ Corollary 7. If H•(K∗) has finite total dimension and F• is a free resolution of
Hd+n(N•(K∗)), then (F•)∗ is an injective resolution of Hd(K∗).

3.2 The Calabi–Yau-property of persistence modules
Besides proving Proposition 6, we will need to convert the injective resolution of Hd(K∗)
from Corollary 7 into a free resolution of Hd(K∗). Both will follow from Theorem 10, which
establishes a property of persistence modules known as the Calabi–Yau property in some areas
of algebra [24]; see [29, Lemma 4.1] for a proof in a more general context. As it turns out,
there is a close correspondence between injective and free resolutions that we explore in this
section. For z ∈ Zn, we define the injective module I(z) = F (−z)∗; i.e., I(z)w =

{
k if w ≤ z,
0 otherwise,

and I(z)w≤w′ = id if w ≤ w′ ≤ z.

▶ Definition 8. For persistence modules M, N , let Hom(M, N) be the persistence module
with components Hom(M, N)z = Hom(M, N⟨z⟩).

Let PZn-pers and IZn-pers be the full subcategories of Zn-pers consisting of free and
injective modules, respectively.

▶ Lemma 9 (see [3, Proposition 2.10 in Chapter III]). The Nakayama functor

ν := Hom(−, F (0))∗ : PZn-pers → IZn-pers

is an equivalence of categories with quasi-inverse ν−1 = Hom(I(0)∗, −).

One checks that νF (z) = I(z) and ν−1I(z) = F (z). Therefore, N•(K∗) = (νC•(K∗)⟨ϵ⟩)∗.
For a chain complex C• and i ∈ Z, let C•[i] be the chain complex whose dth module is
(C•[i])d = Ci+d. Analogously, for a cochain complex C•, let C•[i] be the cochain complex
with (C•[i])d = Ci+d. Note that C•[i]∗ = (C•)∗[i].

▶ Theorem 10. If F• is a complex of free Zn-persistence modules such that Hd(F•) has
finite total dimension for all d, then F• and νF•[n]⟨ϵ⟩ are naturally quasi-isomorphic.

Proof. For z ∈ Zn, we write z = (z1, . . . , zn). For n ∈ N, let [n] := {1, . . . , n} and let([n]
k

)
:= {S ⊆ [n] | |S| = k}. For S = {s1 < . . . < sk} ∈

([n]
k

)
and z ∈ Zn, w ∈ Zk, we let

z|Sw := (z1, . . . , zs1−1, w1, zs1+1, . . . , zsk−1, wk, zsk+1, . . . , zn)

be the n-tuple obtained from z by replacing the components indexed by S by the entries
of w. For any module M ∈ Zn-pers and S ⊆ [n], we let ColimS M be the module with

(ColimS M)z = colimw∈Zk Mz|S
w

, (ColimS M)z≤z′ = colimw∈Zk Mz|S
w≤z′|S

w
.

For example, for n = 3 we get (Colim{1,3} M)(z1,z2,z3) = colim(w1,w2)∈Z2 M(w1,z2,w2). The
module ColimS M is constant along the axes specified by S. In particular, Colim M =
Colim[n] M is the module that is constantly colim M . For a module M , we define the
modules KkM =

⊕
S∈([n]

k) ColimS M for each k. If S ⊆ S′, then there is a canonical
morphism ColimS M → ColimS′ M . For a free module F (z), these assemble to an exact
sequence

0 → F (z) → K1F (z) → · · · → KnF (z) → I(z)⟨ϵ⟩ → 0, (2)

SoCG 2023

15:8 Efficient Two-Parameter Persistence Computation via Cohomology

called the Koszul complex of F (z). The last morphism is the canonical morphism KnF (z) =
Colim F (z) = Lim I(z)⟨ϵ⟩ → I(z)⟨ϵ⟩. Let F• be a bounded complex of free modules. Using
νF (z) = I(z), we get an exact sequence

K• : 0 → F• → K1F• → · · · → KnF• → νF•⟨ϵ⟩ → 0 (3)

of chain complexes, given by taking a shifted copy of (2) for every F (z) in F•. We unsplice (3)
into short exact sequences

0 0 0

U
(1)
• U

(n−1)
•

0 F• K1F• K2F• KnF• νF•⟨ϵ⟩ 0

F• U
(2)
• νF•⟨ϵ⟩

0 0 0

· · · (4)

with chain complexes U
(k)
• for each k. Each of these short exact sequences gives a triangle in

the derived category Db(Zn-pers) [48, §10.4.9]. We obtain connecting homomorphisms

∂(1) : U
(1)
• [1] → F•, ∂(2) : U

(2)
• [1] → U

(1)
• , · · · ∂(n−1) : νF•⟨ϵ⟩[1] → U

(n−1)
•

in Db(Zn-pers). These fit into the long exact sequences

· · · → Hd+1(K1F•) → Hd+1(U1
•) ∂(1)

−−−−→ Hd(F•) → Hd(K1F•) → · · · ,

· · · → Hd+2(K2F•) → Hd+2(U2
•) ∂(2)

−−−−→ Hd+1(U (1)
•) → Hd+1(K2F•) → · · · ,

...

· · · → Hd+n(KnF•) → Hd+n(νF•⟨ϵ⟩) ∂(n−1)

−−−−→ Hd+n−1(U (n−1)
•) → Hd+n−1(KnF•) → · · · ,

(5)

induced by the short exact sequences (4). Since Hd(F•) is of finite total dimension for all
d, we have ColimS Hd(F•) = 0 if |S| > 0. The functor ColimS is exact for all S because it
is a directed colimit. In particular, Hd(KkF•) = Hd

(⊕
|S|=k ColimS F•

)
= 0 for all k > 0.

Therefore, the long exact sequences (5) show that all connecting homomorphisms ∂(k) are
quasi-isomorphisms. Thus, ∂(1) ◦ · · · ◦ ∂(n−1) : νF•[n]⟨ϵ⟩ −→ F• is a quasi-isomorphism. ◀

▶ Corollary 11. Let M ∈ Zn-pers be of finite total dimension.
1. If F• is a free resolution of M , then νF•[n]⟨ϵ⟩ is an injective resolution of M .
2. If I• is an injective resolution of M , then ν−1I•[−n]⟨−ϵ⟩ is a free resolution of M .

Proof of Proposition 6. With N•(K∗) = (νC•(K∗)⟨ϵ⟩)∗, Theorem 10 gives

Hd+n(N•(K∗))∗ ∼= Hd(N•(K∗)∗[n]) ∼= Hd(νC•(K∗)⟨ϵ⟩[n]) ∼= Hd(C•(K∗)) = Hd(K∗). ◀

▶ Lemma 12. A graded matrix M represents a morphism
⊕

j I(cgM
j) →

⊕
i I(rgM

i) iff
Mij = 0 whenever rgM

i ̸≤ cgM
j .

Proof. This follows from Hom(I(z), I(z′)) =
{

k if z ≥ z′

0 otherwise ◀

In particular, a graded matrix represents a morphism of free modules iff it represents a
morphism of injective modules (cf. Lemma 1).

U. Bauer, F. Lenzen, and M. Lesnick 15:9

▶ Lemma 13. Let f :
⊕n

j=1 F (zj) →
⊕m

i=1 F (z′
i) be a morphism of free modules represented

by the graded matrix [f]. Then the morphism νf :
⊕n

j=1 I(zj) →
⊕m

i=1 I(z′
i) is represented

by the same graded matrix [νf] = [f].

▶ Corollary 14. For M ∈ Zn-pers of finite total dimension and graded matrices U1, . . . , Un,
the following are equivalent:
1. U1, . . . , Un represent a free resolution · · · 0 → Fn

Un−−→ · · · U1−−→ F0 of M ,
2. U1⟨ϵ⟩, . . . , Un⟨ϵ⟩ represent an injective resolution I0 Un⟨ϵ⟩−−−→ · · · U1⟨ϵ⟩−−−→ In → 0 · · · of M ,

3. U1⟨ϵ⟩T , . . . , Un⟨ϵ⟩T represent a free resolution · · · 0 → Gn
Un⟨ϵ⟩T

−−−−→ · · · U1⟨ϵ⟩T

−−−−→ G0 of M∗.
In this case Iq = νFn−q⟨ϵ⟩ = G∗

q for all q.

▶ Example 15. Consider the module

M = ,

where Mz = k if z lies in the shaded region, Mz = 0 otherwise, and all structure morphisms
between non-zero vector spaces of M being identities. The first line of the following diagram
exhibits F• as a free resolution of M , and the second line exhibits νF•[2]⟨ϵ⟩ as an injective
resolution of M :

0 0

F2 F1 F0 M

0 0.

M νF2⟨ϵ⟩ νF1⟨ϵ⟩ νF0⟨ϵ⟩

(1
−1

1

) (1 1 0
0 −1 1

)

(1
−1

1

) (1 1 0
0 −1 1

)

3.3 Pulling back modules from the colimit
From now on, we consider Z2-persistence modules only. It remains to explain how we
compute H•(N•(K∗)). In principle, this could be done by a procedure analogous to the
LW-Algorithm described in Section 2.4: the horizontal sequence in the commutative diagram

Nd(K∗)

0 Zd+1(N•(K∗)) Nd+1(K∗) Zd+2(N•(K∗))

Nd+2(K∗)

Nd+3(K∗)

δd+1

id+1

pd+1

id+2

δd+3

δd+2
(6)

is a free resolution of Hd+2(N•(K∗)), and we can obtain matrices representing this resolution
as described in Section 2.4. This would, however, involve the coboundary maps δd+2 and

SoCG 2023

15:10 Efficient Two-Parameter Persistence Computation via Cohomology

δd+3, leading to a very expensive computation, especially for function-Rips bifiltrations.
Instead, we propose a method that computes a free resolution of Hd+2(N•(K∗)) from δd+1

only.
For a vector space V , denote by ∆V the persistence modules with components (∆V)z = V ,

such that all structure morphisms of ∆V are the identity. Let Colim M = ∆ colim M .

▶ Definition 16. For a module M ∈ Z2-pers and a vector space V ⊆ colim M , we let [V]M ∈
Z2-pers be the preimage of ∆V under the canonical map ηM : M → Colim M .

▶ Lemma 17. If f : M → N is a morphism and N is free, then ker f = [colim ker f]M .

Proof. If N is free, then ηN : N → Colim N is injective. For every submodule L ⊆ M , we
have L ⊆ η−1

M (Colim L) = [colim L]M , so ker f ⊆ [colim ker f]M . It remains to show the
other inclusion [colim ker f]M ⊆ ker f . Consider the commutative diagram

[colim ker f]M

ker f M N

Colim ker f Colim M Colim N.

j

η[colim ker f]M
i

ηker f

f

ηM ηN

Colim i Colim f

The functor Colim is a directed colimit and thus exact. Therefore, Colim ker f = ker Colim f .
This implies ηN ◦ f ◦ j = Colim f ◦ Colim i ◦ η[colim ker f]M

= 0. Since ηN is injective, we
obtain f ◦ j = 0. Therefore, j factors uniquely through ker f . This proves the claim. ◀

The lexicographic order ⪯lex and the colexicographic order ⪯colex are the total orders
on Z2 defined as

(x, y) ⪯lex (x′, y′) iff either x < x′ or x = x′ and y ≤ y′,

(x, y) ⪯colex (x′, y′) iff either y < y′ or y = y′ and x ≤ x′.

Two grades z1, z2 ∈ Z2 satisfy z1 ≤ z2 iff z1 ⪯colex z2 and z1 ⪯lex z2.

▶ Definition 18. For b ∈ km and r ∈ (Z2)m, the lex pivot of b with respect to r, l-piv(b), is
the smallest index i such that bi ̸= 0 and ri takes its maximum value with respect to ⪯lex.
The colex piot, c-piv(b), is defined analogously. For 0 ∈ km, we let l-piv(0) = c-piv(0) = 0.

▶ Theorem 19. Let M be a free Z2-persistence module of finite rank with a fixed basis, let
V ⊆ colim M be a subspace, and let B be a matrix representing a generating set of V . Then
[V]M is free, and Algorithm 1 calculates a graded matrix representing a basis of [V]M .

For a tuple r ∈ (Z2)m and a matrix M with m rows, let [M]r be the graded matrix with
rg[M]r

i = ri and cg[M]r

j =
∨

Mij ̸=0 ri. Then [M]r has the least possible column grades for
which [M]r represents a map of free modules.

Proof of Theorem 19. Let m1, . . . , ms be a basis of M and r = (g(m1), . . . , g(ms)). Without
loss of generality, we assume that B represents a basis of V . The first for-loop in Algorithm 1
is a standard reduction scheme. In each iteration, the pivot index of one column decreases,
so the loop terminates. When it does, all columns have distinct colex-pivots. During each
iteration of the second for-loop, the lex-pivot of a column decreases. When it terminates, all
columns have distinct lex-pivots. During the second loop, line (∗) ensures that no column

U. Bauer, F. Lenzen, and M. Lesnick 15:11

Algorithm 1 Computes a basis of [V]M , where M =
⊕m

i=1 F (ri) and V ⊆ colim M .

Data: An m× n-matrix B representing a generating set of V , r = (r1, . . . , rm) ∈ (Z2)m.
Result: A graded m× n-matrix whose nonzero columns represent a basis of [V]M .
function Bireduce(B):

p← 0 ∈ [m]n
for j = 1, . . . , n do

while i← c-piv(Bj) ̸= 0 do
if pi = 0 then pi ← j; break
Bj ← Bj + Bpi

p← 0 ∈ [m]n
for j′ = 1, . . . , n do

j ← j′

while i← l-piv(Bj) ̸= 0 do
if pi = 0 then pi ← j; break

(∗) if c-piv(Bj) < c-piv(Bpi) then swap pi and j

Bj ← Bj + Bpi

return [B]r

is added to another column with a smaller colex-pivot. Since all columns have distinct
colex-pivots after the first for-loop, the colex-pivots of the columns thus do not change
during the second for-loop. Therefore, when the algorithm terminates, all columns of B have
pairwise distinct lex- and colex-pivots.

Let A = [B]r for the state of B when the algorithm terminates. Then A represents a
basis α1, . . . , αt of a free submodule N of M , with g(αj) = cgA

j . It remains to show that
N = [V]M . Since all column operations performed by Algorithm 1 are invertible, A represents
a basis of V . Therefore, colim N = V , which implies N ⊆ [V]M . Let v ∈ [V]M . Then
there are unique coefficients ξj such that ηM (v) =

∑t
j=1 ξjηM (αj). Since ηM is injective,

Mg(v)≤z(v) =
∑t

j=1 ξjMg(αj)≤z(αj) for all z ≥ g(v) ∨
∨

ξj ̸=0 cgA
j . Since all columns of A

have distinct lex- and colex-pivots, v cannot have smaller grade than
∨

ξj ̸=0 cgA
j , so v ∈ N .

This proves the claim. ◀

3.4 The free resolution of cohomology
Assume C• is a cochain complex of free modules such that colim H•(C•) = 0, and recall
the commutative diagram (6). A matrix [δd+1] representing δd+1 is a generating system for
colim Zd+1(C•), and Lemma 17 states that Zd+1(C•) = [colim Zd+1(C•)]Cd+1 . Applying
Algorithm 1 to [δd+1] thus yields a graded matrix [id+1] representing a basis of Zd+1(C•).

▶ Lemma 20. If 0 → F2
f2−→ F1

f1−→ F0 is a free resolution of a module of finite total
dimension, then (νF0)∗ = ker(νf2)∗.

Proof. The sequence 0 → F2
f2−→ F1

f1−→ F0 is exact. By Theorem 10, the sequence
νF2

νf2−−→ νF1
νf1−−→ νF0 → 0 and therefore also the dual sequence 0 → (νF0)∗ (νf1)∗

−−−−→
(νF1)∗ (νf2)∗

−−−−→ (νF2)∗ are exact. ◀

Thus, if a matrix [f2] representing f2 is known, then the matrix [f1]T = [(νf1)∗] can be
computed by applying the LW-Algorithm (Algorithm 4 in the full version) to [f2]T = [(νf2)∗].
In particular, if Hd(C•) has finite total dimension, then so has Hd+2(N•(K∗)), so Lemma 20
can be applied to the free resolution (6) of Hd+2(N•(K∗)). This shows that [pd+1]T can be
computed by applying the LW-Algorithm to [id+1]T .

SoCG 2023

https://arxiv.org/abs/2303.11193{}{}{}#algocf.4{}{}{}

15:12 Efficient Two-Parameter Persistence Computation via Cohomology

Algorithm 2 Computes a minimal free resolution of H•(C•) for a cochain complex C• of
free Z2-modules, using clearing.

Input: Graded matrices [δ•] representing C•.
Output: Pairs of graded matrices representing a free resolution of Hd(C•) for d = 0, 1,
q ← ∅ ▷ pivots for clearing
for d = 0, 1, . . . do

for j ∈ q do [δd+1]j ← 0 ▷ clearing
[id+1]← Bireduce([δd+1])
n← #columns of [id+1]
q ← {piv[id+1]1, . . . , piv[id+1]n}
[id+1]T , [pd+1]T ← MGSWithKer([id+1]T) ▷ See Algorithm 5 in the full version
yield MinimizeChainComplex([id+1], [pd+1]) ▷ mfr of Hd+2(νC•⟨ϵ⟩) ∼= Hd(C•)

▶ Corollary 21. Let C• be a cochain complex of free modules such that dim H•(C•) is finite.
Then Algorithm 2 computes free resolutions of Hd(C•).

▶ Remark 22 (Clearing). In general, [δd+1] is not injective. As in one-parameter persistent
cohomology, the first loop in Algorithm 1 spends a significant amount of time on reducing the
columns of [δd+1] that are eventually reduced to zero. The computation can be accelerated
considerably by using the pivots of the reduced matrix [δd] to implement a clearing scheme
before invoking Algorithm 1. This is implemented in Algorithm 2.

4 Experiments

We have implemented our cohomology algorithm in C++ [33]. We have also implemented
the algorithm [23] used in mpfree [31], in order to vary the implementation details. Where
applicable, the run time of our clone is similar to the one of mpfree. We have run our
implementation to compute mfrs of the ph of various function-Rips bifiltrations.

4.1 Setup
All computations are done with coefficients in k = F2. Matrix columns are implemented
as binary heaps [7]. Our code also implements an alternative representation of columns as
dynamically allocated arrays. We have run our code on a MacBook Pro 2017 with a 2.3 GHz
Dual-Core Intel Core i5 and 16GB RAM. The code is compiled using clang++ 15.0.7. Each
instance of our program may run four threads in parallel.

The run time of the homology algorithm for minimal presentation computation [23] is
dominated by chunk preprocessing and the LW-Algorithm. While it is standard to implement
chunk preprocessing in an embarrassingly parallel way, no way is known to parallelize the LW-
Algorithm. While the minimization step in Algorithm 2 is parallelized in our implementation,
the bigraded reduction (Algorithm 1) is not, although we hypothesize it could be parallelized
analogously to [36] or [6]. We found that the minimization is not a performance bottleneck
of our algorithm, so one would expect similar performance on a single core.

Datasets. We have generated point clouds S by sampling n-spheres Sn, n-tori S1 × · · · × S1

and orthogonal groups O(n). Additionally, we use some of the point clouds from [37]. To
each point p ∈ S, we associate the value

∑
q∈S\{p} exp

(
− d(p,q)2

2σ2

)
for a manually chosen

parameter σ. These values and a distance matrix are written to a file, from which the
program generates the coboundary matrices of the associated full function-Rips bifiltration.

https://arxiv.org/abs/2303.11193{}{}{}#algocf.5{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.5{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.7{}{}{}

U. Bauer, F. Lenzen, and M. Lesnick 15:13

Chunk preprocessing. The LW-Algorithm works most efficiently if combined with chunk
preprocessing [22, 23]; this is the approach implemented in mpfree. Chunk preprocessing
(Algorithm 7 in the full version) applies a certain column operation scheme to the matrices
representing the chain complex C•. As an alternative, we propose to manipulate C•(K∗)
by row operations. Equivalently, one can see this procedure as column operations on the
matrices representing the cochain complex νC•(K∗); hence, we refer to this approach as
cochain complex chunk preprocessing; see Algorithm 8 in the full version.

Coning off. To ensure that Hd+2(N•(K∗)) ∼= Hd(K∗)∗, Corollary 21 requires that C• has
homology of finite total dimension. Therefore, our implementation offers the ability to
cone off the complex as follows. Let C• be a chain complex of free Z2-persistence modules.
The assignment C ′

d : y 7→ colimx∈Z(Cd)xy defines a chain complex C ′
• of free Z-persistence

modules. We compute the barcode of Hd(C ′
•) using the cohomological standard algorithm

with clearing (Algorithm 3 in the full version). This can be used to implement a clearing
mechanism in the homological standard algorithm, which we use to compute representatives
for the homology classes in the barcode of Hd(C ′

•). Let y0 such that y0 ≥ gy(σ) for all
σ, where g(σ) = (gx(σ), gy(σ)). Let Ĉ• = C•. For every bar (b, d) of Hd(C ′

•) of non-zero
length represented by a q-cycle c ∈ C ′

q of grade g(c) = b, we add a basis element ĉ of grade
g(ĉ) = (b, y0) to Ĉq+1 with ∂q+1(ĉ) = c. If d < ∞, then c bounds a chain c′ with g(c′) = d,
and we add a basis element ĉ′ of grade g(ĉ′) = (d, y0) to Ĉq+2 with ∂q+2(ĉ′) = c′ − ĉ. The
resulting chain complex Ĉ• satisfies H•(Ĉ•)xy = 0 for y ≥ y0. If not stated otherwise,
cohomology computation is done with this preprocessing applied to the density parameter.

Sparsification. We observe that the second for-loop in Algorithm 1 runs considerably longer
than the first. The loop also increases the matrix density, which many incur a high cost on
the subsequent steps in Algorithm 2. For an interpretation, see Remark 24 in the full version.
As a remedy, we have added a step that decreases the sparsity of the matrix using row
operations that are compatible with the column sparse matrix implementation. Specifically,
if a row contains only a single entry, any row addition from this row to another affects only a
single entry. Therefore, an entry in a row with grade g can be eliminated directly if there is a
row with grade g′ ≥ g containing only a single entry in the same column; see Algorithm 10 in
the full version. All cohomology computation run times are reported with this sparsification
scheme applied.

4.2 Results
An overview of the results is given in Table 1. We report only the time needed to compute
the mfr and, if applicable, to apply the chunk preprocessing. We do not report the time
necessary to set up the (co)boundary matrices. In all cases with d ≥ 2, computing Hd+2(N•)
(without chunk preprocessing) was faster than computing Hd with chunk preprocessing.
Our cohomology approach does not benefit from chunk preprocessing. The speedup of the
cohomology approach increases with dimension. For two instances, computation of Hd(K∗)
did not terminate within five minutes, while computing Hd+2(N•(K∗)) was no problem. We
also observe that the cohomology algorithm uses less memory for almost all instances with
d ≥ 2.

Matrix representations. The efficiency of the LW-Algorithm and of chunk preprocessing
does not vary very much depending on the matrix implementation; see Table 1 and Table 2
in the full version. In contrast, our cohomology algorithm runs faster in the implementation

SoCG 2023

https://arxiv.org/abs/2303.11193{}{}{}#algocf.7{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.8{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.3{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#theorem.24{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.10{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#table.caption.14{}{}{}

15:14 Efficient Two-Parameter Persistence Computation via Cohomology

Table 1 Run times (in milliseconds) comparing our implementation of [35, 23] (including chunk
preprocessing) and our cohomology algorithm, applied a density-Rips filtration on 300 vertices
(d = 1), 100 vertices (d = 2) and 60 vertices (d = 3). RSS is peak resident memory as measured
by time. Speed up is the run time of the homology computation (including chunk preprocessing),
divided by the run time of the cohomology algorithm. The program has been killed after exceeding
five minutes of run time.

d sample chunk Hd sum RSS Hd+2 RSS speedup

1 c. elegans 5,457 40,841 46,298 6,423,600 119,444 6,526,976 0.39
2-torus 11,480 19,875 31,355 6,620,404 5,032 2,827,912 6.23
4-torus 6,342 28,627 34,969 5,916,816 50,607 3,384,472 0.69
dragon 9,721 18,489 28,210 5,774,492 5,064 2,829,620 5.57

2-sphere 8,657 29,180 37,837 6,421,312 25,021 4,098,268 1.51
4-sphere 7,699 33,619 41,318 6,642,260 47,355 7,154,632 0.87

O(3) 7,023 33,874 40,897 6,315,708 42,702 3,816,124 0.96

2 c. elegans 28,583 7,484 36,067 4,428,440 5,655 2,371,324 6.38
2-torus 39,630 2,191 41,821 3,216,372 5,054 2,334,712 8.27
4-torus 33,788 19,875 53,663 5,538,232 5,969 2,425,136 8.99
dragon 19,023 2,379 21,402 2,557,124 5,188 2,367,488 4.13

2-sphere 32,611 12,416 45,027 5,099,604 6,417 2,426,924 7.02
4-sphere 29,272 25,357 54,629 6,039,576 8,637 2,505,664 6.32

O(3) 31,780 29,123 60,903 6,654,692 6,796 2,445,996 8.96

3 c. elegans 38,349 2,393 40,742 3,515,708 8,984 4,227,820 4.53
2-torus >300,000 – – 7,141,648 11,725 5,072,192 >25.59
4-torus >300,000 – – 10,843,356 9,930 4,358,580 >30.21
dragon 67,463 2,334 69,797 6,666,732 9,782 4,900,800 7.14

2-sphere 59,385 3,110 62,495 4,280,112 9,051 4,185,036 6.90
4-sphere 92,365 8,577 100,942 5,526,344 8,818 4,197,636 11.45

O(3) 204,263 25,284 229,547 7,966,600 10,851 4,365,864 21.15

with binary heaps. We observe that the vector based implementations generally use less
memory than the heap based ones. This happens because, in contrast to vectors, heaps may
contain multiple entries for the same row index.

Cochain chunk preprocessing. For the homology computation, the cochain complex chunk
preprocessing described above often is more efficient than chunk preprocessing if combined
with the heap implementation of matrix columns, see Table 3 in the full version. This is
true in particular for higher homology dimensions. If combined with vector-based matrices,
cochain chunk preprocessing is less efficient than conventional chunk preprocessing in almost
all cases, and does not terminate at all within five minutes.

References
1 Manu Aggarwal and Vipul Periwal. Dory: Overcoming Barriers to Computing Persistent

Homology, March 2021. arXiv:2103.05608.
2 Ángel Javier Alonso, Michael Kerber, and Siddharth Pritam. Filtration-domination in bifiltered

graphs. In 2023 Proceedings of the Symposium on Algorithm Engineering and Experiments
(ALENEX), pages 27–38, 2023. doi:10.1137/1.9781611977561.ch3.

https://arxiv.org/abs/2303.11193{}{}{}#table.caption.15{}{}{}
https://arxiv.org/abs/2103.05608
https://doi.org/10.1137/1.9781611977561.ch3

U. Bauer, F. Lenzen, and M. Lesnick 15:15

3 Ibrahim Assem, Daniel Simson, and Andrzej Skowronski. Elements of the Representation
Theory of Associative Algebras, volume 1 of London Mathematical Society Student Texts.
Cambridge University Press, Cambridge, 2006.

4 Ulrich Bauer. Ripser: efficient computation of Vietoris–Rips persistence barcodes. J. Appl.
Comput. Topol., 5(3):391–423, 2021. doi:10.1007/s41468-021-00071-5.

5 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and Compress: Computing
Persistent Homology in Chunks. In Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and
Ronald Peikert, editors, Topological Methods in Data Analysis and Visualization III, pages 103–
117. Springer International Publishing, Cham, 2014. doi:10.1007/978-3-319-04099-8_7.

6 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Distributed Computation of Persistent
Homology. In Catherine C. McGeoch and Ulrich Meyer, editors, 2014 Proceedings of the
Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 31–38.
Society for Industrial and Applied Mathematics, Philadelphia, PA, May 2014. doi:10.1137/
1.9781611973198.4.

7 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat—persistent
homology algorithms toolbox. J. Symbolic Comput., 78:76–90, 2017. doi:10.1016/j.jsc.
2016.03.008.

8 Ulrich Bauer, Fabian Lenzen, and Michael Lesnick. Efficient two-parameter persistence
computation via cohomology, March 2023. arXiv:2303.11193.

9 Ulrich Bauer and Michael Lesnick. Induced matchings and the algebraic stability of persistence
barcodes. Journal of Computational Geometry, 6(2):162–191, March 2015. doi:10.20382/
jocg.v6i2a9.

10 Ulrich Bauer and Maximilian Schmahl. Lifespan Functors and Natural Dualities in Persistent
Homology, October 2021. To appear in Homology, Homotopy and Applications. arXiv:
2012.12881.

11 Katherine Benjamin, Aneesha Bhandari, Zhouchun Shang, Yanan Xing, Yanru An, Nannan
Zhang, Yong Hou, Ulrike Tillmann, Katherine R Bull, and Heather A Harrington. Multiscale
topology classifies and quantifies cell types in subcellular spatial transcriptomics. arXiv
preprint arXiv:2212.06505, 2022.

12 Andrew J. Blumberg and Michael Lesnick. Stability of 2-Parameter Persistent Homology. Foun-
dations of Computational Mathematics, October 2022. doi:10.1007/s10208-022-09576-6.

13 Magnus Bakke Botnan and Michael Lesnick. An Introduction to Multiparameter Persistence,
March 2022. arXiv:2203.14289.

14 Gunnar Carlsson and Afra Zomorodian. The Theory of Multidimensional Persistence. Discrete
& Computational Geometry, 42(1):71–93, July 2009. doi:10.1007/s00454-009-9176-0.

15 Chao Chen and Michael Kerber. Persistent Homology Computation with a Twist. In 27th
European Workshop on Computational Geometry, 2011. URL: https://eurocg11.inf.ethz.
ch/abstracts/22.pdf.

16 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence di-
agrams. Discrete & Computational Geometry, 37:103–120, January 2007. doi:10.1007/
s00454-006-1276-5.

17 René Corbet, Michael Kerber, Michael Lesnick, and Georg Osang. Computing the multicover
bifiltration. In Kevin Buchin and Éric Colin de Verdière, editors, 37th International Symposium
on Computational Geometry (SoCG 2021), volume 189 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 27:1–27:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2021.27.

18 Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27(12):124003, December 2011. doi:10.1088/0266-5611/
27/12/124003.

19 Edelsbrunner, Letscher, and Zomorodian. Topological Persistence and Simplification.
Discrete & Computational Geometry, 28(4):511–533, November 2002. doi:10.1007/
s00454-002-2885-2.

SoCG 2023

https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1007/978-3-319-04099-8_7
https://doi.org/10.1137/1.9781611973198.4
https://doi.org/10.1137/1.9781611973198.4
https://doi.org/10.1016/j.jsc.2016.03.008
https://doi.org/10.1016/j.jsc.2016.03.008
https://arxiv.org/abs/2303.11193
https://doi.org/10.20382/jocg.v6i2a9
https://doi.org/10.20382/jocg.v6i2a9
https://arxiv.org/abs/2012.12881
https://arxiv.org/abs/2012.12881
https://doi.org/10.1007/s10208-022-09576-6
https://arxiv.org/abs/2203.14289
https://doi.org/10.1007/s00454-009-9176-0
https://eurocg11.inf.ethz.ch/abstracts/22.pdf
https://eurocg11.inf.ethz.ch/abstracts/22.pdf
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.4230/LIPIcs.SoCG.2021.27
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/s00454-002-2885-2

15:16 Efficient Two-Parameter Persistence Computation via Cohomology

20 Herbert Edelsbrunner and John Harer. Persistent homology—a survey. In Jacob E. Goodman,
János Pach, and Richard Pollack, editors, Contemporary Mathematics, volume 453, pages
257–282. American Mathematical Society, Providence, Rhode Island, 2008. doi:10.1090/
conm/453/08802.

21 David Eisenbud. Commutative Algebra, volume 150 of Graduate Texts in Mathematics. Springer
New York, New York, NY, 1995. doi:10.1007/978-1-4612-5350-1.

22 Ulderico Fugacci and Michael Kerber. Chunk reduction for multi-parameter persistent homology.
In Gill Barequet and Yusu Wang, editors, 35th International Symposium on Computational
Geometry (SoCG 2019), volume 129 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 37:1–37:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.SoCG.2019.37.

23 Ulderico Fugacci, Michael Kerber, and Alexander Rolle. Compression for 2-parameter persistent
homology. Computational Geometry, 109:101940, February 2023. doi:10.1016/j.comgeo.
2022.101940.

24 Victor Ginzburg. Calabi–Yau algebras, 2007. arXiv:math/0612139.
25 Barbara Giunti and Jānis Lazovskis. TDA-Applications (An online database of papers

on applications of TDA outside of math), 2021. URL: https://www.zotero.org/groups/
2425412/tda-applications.

26 Gregory Henselman and Robert Ghrist. Matroid Filtrations and Computational Persistent
Homology, October 2017. arXiv:1606.00199.

27 Gregory Henselman-Petrusek. Eirene, 2021. URL: https://github.com/Eetion/Eirene.jl.
28 Michael Höppner and Helmut Lenzing. Projective diagrams over partially ordered sets are free.

Journal of Pure and Applied Algebra, 20(1):7–12, January 1981. doi:10.1016/0022-4049(81)
90045-1.

29 Bernhard Keller. Calabi–Yau triangulated categories. In Andrzej Skowroński, editor, Trends
in Representation Theory of Algebras and Related Topics, EMS Series of Congress Reports,
pages 467–489. EMS Press, first edition, September 2008. doi:10.4171/062-1/11.

30 Michael Kerber. Multi-parameter persistent homology is practical. In NeurIPS 2020 Workshop
on Topological Data Analysis and Beyond, 2020. URL: https://openreview.net/pdf?id=
TDU6UycGYxR.

31 Michael Kerber. mpfree, 2021. URL: https://bitbucket.org/mkerber/mpfree.
32 Michael Kerber and Alexander Rolle. Fast Minimal Presentations of Bi-graded Persistence Mod-

ules. In Martin Farach-Colton and Sabine Storandt, editors, 2021 Proceedings of the Symposium
on Algorithm Engineering and Experiments (ALENEX), Proceedings, pages 207–220. Society
for Industrial and Applied Mathematics, January 2021. doi:10.1137/1.9781611976472.16.

33 Fabian Lenzen. 2-parameter persistent cohomology, 2023. URL: https://gitlab.com/
flenzen/2-parameter-persistent-cohomology.

34 Michael Lesnick and Matthew Wright. Interactive Visualization of 2-D Persistence Modules,
December 2015. arXiv:1512.00180.

35 Michael Lesnick and Matthew Wright. Computing Minimal Presentations and Bigraded
Betti Numbers of 2-Parameter Persistent Homology. SIAM Journal on Applied Algebra and
Geometry, 6(2):267–298, June 2022. doi:10.1137/20M1388425.

36 Dmitriy Morozov and Arnur Nigmetov. Towards Lockfree Persistent Homology. In Proceedings
of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, pages 555–557,
Virtual Event USA, July 2020. ACM. doi:10.1145/3350755.3400244.

37 Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6(1):17, December
2017. doi:10.1140/epjds/s13688-017-0109-5.

38 Irena Peeva. Graded Syzygies. Springer London, London, 2011. doi:10.1007/
978-0-85729-177-6.

https://doi.org/10.1090/conm/453/08802
https://doi.org/10.1090/conm/453/08802
https://doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.4230/LIPIcs.SoCG.2019.37
https://doi.org/10.1016/j.comgeo.2022.101940
https://doi.org/10.1016/j.comgeo.2022.101940
https://arxiv.org/abs/math/0612139
https://www.zotero.org/groups/2425412/tda-applications
https://www.zotero.org/groups/2425412/tda-applications
https://arxiv.org/abs/1606.00199
https://github.com/Eetion/Eirene.jl
https://doi.org/10.1016/0022-4049(81)90045-1
https://doi.org/10.1016/0022-4049(81)90045-1
https://doi.org/10.4171/062-1/11
https://openreview.net/pdf?id=TDU6UycGYxR
https://openreview.net/pdf?id=TDU6UycGYxR
https://bitbucket.org/mkerber/mpfree
https://doi.org/10.1137/1.9781611976472.16
https://gitlab.com/flenzen/2-parameter-persistent-cohomology
https://gitlab.com/flenzen/2-parameter-persistent-cohomology
https://arxiv.org/abs/1512.00180
https://doi.org/10.1137/20M1388425
https://doi.org/10.1145/3350755.3400244
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1007/978-0-85729-177-6
https://doi.org/10.1007/978-0-85729-177-6

U. Bauer, F. Lenzen, and M. Lesnick 15:17

39 Julián Burella Pérez, Sydney Hauke, Umberto Lupo, Matteo Caorsi, and Alberto Dassatti.
giotto-ph: A Python Library for High-Performance Computation of Persistent Homology of
Vietoris-Rips Filtrations, August 2021. arXiv:2107.05412.

40 Daniel Quillen. Projective modules over polynomial rings. Inventiones Mathematicae, 36(1):167–
171, December 1976. doi:10.1007/BF01390008.

41 Alexander Rolle. Multi-parameter hierarchical clustering and beyond. In NeurIPS 2020
Workshop on Topological Data Analysis and Beyond, 2020. URL: https://openreview.net/
pdf?id=g0-tBxQTPRy.

42 Sara Scaramuccia, Federico Iuricich, Leila De Floriani, and Claudia Landi. Computing
multiparameter persistent homology through a discrete Morse-based approach. Computational
Geometry, 89:101623, August 2020. doi:10.1016/j.comgeo.2020.101623.

43 Donald R. Sheehy. A multicover nerve for geometric inference. In Proceedings of the 24th
Canadian Conference on Computational Geometry, CCCG 2012, Charlottetown, Prince Edward
Island, Canada, August 8-10, 2012, pages 309–314, 2012. URL: http://2012.cccg.ca/papers/
paper52.pdf.

44 Andrei Suslin. Projective modules over polynomial rings are free. Soviet Mathematics,
17(4):1160–1164, 1976.

45 The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 3.6.0
edition, 2022. URL: https://gudhi.inria.fr/doc/3.6.0/.

46 Oliver Vipond, Joshua A Bull, Philip S Macklin, Ulrike Tillmann, Christopher W Pugh,
Helen M Byrne, and Heather A Harrington. Multiparameter persistent homology landscapes
identify immune cell spatial patterns in tumors. Proceedings of the National Academy of
Sciences, 118(41):e2102166118, 2021.

47 Cary Webb. Decomposition of Graded Modules. Proceedings of the American Mathematical
Society, 94(4):565–571, 1985. doi:10.2307/2044864.

48 Charles A. Weibel. An Introduction to Homological Algebra. Number 38 in Cambridge Studies
in Advanced Mathematics. Cambridge Univ. Press, Cambridge, reprint. 1997, transf. to digital
print edition, 2003.

49 Simon Zhang, Mengbai Xiao, and Hao Wang. GPU-Accelerated Computation of Vietoris-Rips
Persistence Barcodes. In Sergio Cabello and Danny Z. Chen, editors, 36th International
Symposium on Computational Geometry (SoCG 2020), volume 164 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 70:1–70:17, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2020.70.

50 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Compu-
tational Geometry, 33:249–274, February 2005. doi:10.1007/s00454-004-1146-y.

SoCG 2023

https://arxiv.org/abs/2107.05412
https://doi.org/10.1007/BF01390008
https://openreview.net/pdf?id=g0-tBxQTPRy
https://openreview.net/pdf?id=g0-tBxQTPRy
https://doi.org/10.1016/j.comgeo.2020.101623
http://2012.cccg.ca/papers/paper52.pdf
http://2012.cccg.ca/papers/paper52.pdf
https://gudhi.inria.fr/doc/3.6.0/
https://doi.org/10.2307/2044864
https://doi.org/10.4230/LIPIcs.SoCG.2020.70
https://doi.org/10.1007/s00454-004-1146-y

	1 Introduction
	2 Background
	2.1 Persistence modules
	2.2 Filtrations
	2.3 One-parameter persistence and clearing
	2.4 Computation of 2-parameter persistence

	3 Cohomology computation
	3.1 The free cochain complex C*(K⁎)
	3.2 The Calabi–Yau-property of persistence modules
	3.3 Pulling back modules from the colimit
	3.4 The free resolution of cohomology

	4 Experiments
	4.1 Setup
	4.2 Results

