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Abstract
A geometric t-spanner for a set S of n point sites is an edge-weighted graph for which the (weighted)
distance between any two sites p, q ∈ S is at most t times the original distance between p and q.
We study geometric t-spanners for point sets in a constrained two-dimensional environment P . In
such cases, the edges of the spanner may have non-constant complexity. Hence, we introduce a
novel spanner property: the spanner complexity, that is, the total complexity of all edges in the
spanner. Let S be a set of n point sites in a simple polygon P with m vertices. We present an
algorithm to construct, for any constant ε > 0 and fixed integer k ≥ 1, a (2k + ε)-spanner with
complexity O(mn1/k + n log2 n) in O(n log2 n + m log n + K) time, where K denotes the output
complexity. When we consider sites in a polygonal domain P with holes, we can construct such a
(2k + ε)-spanner of similar complexity in O(n2 log m + nm log m + K) time. Additionally, for any
constant ε ∈ (0, 1) and integer constant t ≥ 2, we show a lower bound for the complexity of any
(t − ε)-spanner of Ω(mn1/(t−1) + n).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases spanner, simple polygon, polygonal domain, geodesic distance, complexity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.16

Related Version Full Version: https://arxiv.org/abs/2303.02997

1 Introduction

In the design of networks on a set of nodes, we often consider two criteria: few connections
between the nodes, and small distances. Spanners are geometric networks on point sites
that replace the small distance criterion by a small detour criterion. Formally, a geometric
t-spanner for a set S of n point sites is an edge-weighted graph G = (S, E) for which the
(weighted) distance dG(p, q) between any two sites p, q ∈ S is at most t · d(p, q), where d(p, q)
denotes the distance between p and q in the distance metric we consider [29]. The smallest
value t for which a graph G is a t-spanner is called the spanning ratio of G. The number of
edges in the spanner is called the size of the spanner.

In the real world, spanners are often constructed in some sort of environment. For
example, we might want to connect cities by a railway network, where the tracks should
avoid obstacles such as mountains or lakes. One way to model such an environment is by
a polygonal domain. In this paper, we study the case where the sites lie in a polygonal
domain P with m vertices and h holes, and we measure the distance between two points p, q

by their geodesic distance: the length of the shortest path between p and q fully contained
within P . An example of such a spanner is provided in Figure 1.

The spanning ratio and the size of spanners are not the only properties of interest. Many
different properties have been studied, such as total weight (or lightness), maximum degree,
(hop) diameter, and fault-tolerance [4, 9, 11, 14, 20, 27, 28, 30]. When we consider distance
metrics for which the edges in the spanner no longer have constant complexity, another
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16:2 The Complexity of Geodesic Spanners

Figure 1 A spanner on a set of point sites in a polygonal domain. Because of the orange edges,
the spanner has a relatively high complexity.

interesting property of spanners arises: the spanner complexity, i.e. the total complexity of
all edges in the spanner. In our railway example, this corresponds to the total number of
bends in the tracks. A spanner with a low number of bends may be desired, as trains can
drive faster on straight tracks, and it makes construction cheaper. In this paper, we study
this novel property for point sites in a polygonal domain, where the complexity of an edge
is simply the number of line segments in the path. In this setting, a single edge may have
complexity Θ(m). Naively, a spanner of size E could thus have complexity Θ(mE). Our goal
is to compute an O(1)-spanner of size O(n polylog n) with small complexity, preferably near
linear in both n and m.

When studying spanning trees of points, two variants exist: with or without Steiner
points. The same is true for spanners, where Steiner points can be used to obtain lighter
and sparser spanners [6, 27]. In this paper we focus on the variant where Steiner points are
not allowed, leaving the other variant to future research.

Related work. For the Euclidean distance in Rd, and any fixed ε > 0, there is a (1 + ε)-
spanner of size O(n/εd−1) [30]. For the more general case of metric spaces of bounded
doubling dimension we can also construct a (1 + ε)-spanner of size O(n/εO(d)) [13, 21, 24].
These results do not apply when the sites lie in a polygon, and we measure their distances
using the geodesic distance. Abam et al. [1] show there is a set of n sites in a simple
polygon P for which any geodesic (2 − ε)-spanner has Ω(n2) edges. They also construct a
geodesic (

√
10 + ε)-spanner of size O(n log2 n) for sites in a simple polygon, and a geodesic

(5 + ε)-spanner of size O(n
√

h log2 n) for sites in a polygonal domain. Recently, Abam et
al. [3] showed that a geodesic (2 + ε)-spanner with O(n log n) edges exists for points on a
polyhedral terrain, thereby almost closing the gap between the upper and lower bound on
the spanning ratio. However, they show only the existence of such a spanner, and leave
constructing one open. Moreover, all of these spanners can have high, Ω(nm), complexity.

Abam et al. [3] make use of spanners on an additively weighted point set in Rd. In this
setting, the distance between two sites p, q is w(p) + |pq| + w(q) for p ̸= q, where w(p) is
the non-negative weight of a site p ∈ S and |pq| denotes the Euclidean distance, and 0 for
p = q. Such additively weighted spanners were studied before by Abam et al. [2], who obtain
an O(5 + ε)-spanner of linear size, and an O(2 + ε)-spanner of size O(n log n). They also
provide a lower bound of Ω(n2) on the size of any (2 − ε)-spanner. Abam et al. [3] improve
these results and obtain a nearly optimal additively weighted (2 + ε)-spanner of size O(n).
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The other key ingredient for the geodesic (2 + ε)-spanner of Abam et al. [3] is a balanced
shortest-path separator. Such a separator consists of either a single shortest path between
two points on the boundary of the terrain, or three shortest paths that form a shortest-path
triangle. This separator partitions the terrain into two subterrains, and we call it balanced
when each of these terrains contains roughly half of the sites in S. In their constructive proof
for the existence of such a balanced separator, they assume that the three shortest paths in a
shortest-path triangle are disjoint, except for their mutual endpoints. However, during their
construction it can actually happen that these paths are not disjoint. When this happens, it
is unclear exactly how to proceed. Just like for the (2 + ε)-spanner, the computation of a
balanced separator is left for future research. We show how to get rid of the assumption that
the shortest paths are disjoint, and thereby confirm the result claimed by Abam et al. [3].

Next to spanners on the complete Euclidean geometric graph, spanners under line segment
constraints were studied [8, 10, 12, 16, 17]. Here, the goal is to construct a spanner on the
visibility graph of S with respect to a set of line segments between sites in S. If the segments
form a polygonal domain P , this setting is similar to ours, except that all vertices of P are
included as sites in S, and thus the complexity of each edge is constant.

Our results. We first consider the simple setting where the sites lie in a simple polygon, i.e.
a polygonal domain without holes. We show that in this setting any (3 − ε)-spanner may
have complexity Ω(nm), thus implying that the (2 + ε)-spanner of Abam et al. [3] may also
have complexity Ω(nm), despite having O(n log n) edges.

To improve this complexity, we first introduce a simple 2-spanner with O(n log n) edges
for an additively weighted point set in a 1-dimensional Euclidean space; see Section 2. In
Section 3, we use this result to obtain a geodesic 2

√
2-spanner with O(n log2 n) edges for a

point set in a simple polygon. We recursively split the polygon by a chord λ such that each
subpolygon contains roughly half of the sites, and build a 1-dimensional spanner on the sites
projected to λ. We then extend this spanner into one that also has bounded complexity. For
any constant ε > 0 and fixed integer k ≥ 1, we obtain a (2k + ε)-spanner with complexity
O(mn1/k + n log2 n). Furthermore, we provide an algorithm to compute such a spanner that
runs in O(n log2 n + m log n + K) time, where K denotes the output complexity. When we
output each edge explicitly, K is equal to the spanner complexity. However, as each edge is a
shortest path, we can also output an edge implicitly by only stating the two sites it connects.
In this case K is equal to the size of the spanner. Additionally, for any constant ε ∈ (0, 1) and
integer constant t ≥ 2, we show a lower bound for the complexity of any (t − ε)-spanner of
Ω(mn1/(t−1) +n). Therefore, the 2k +ε spanning ratio of our O(mn1/k +n log2 n) complexity
spanners is about a factor two off optimal.

In Section 4, we extend our results for a simple polygon to a polygonal domain. There
are two significant difficulties in this transition: (i) we can no longer partition the polygon
by a line segment such that each subpolygon contains roughly half of the sites, and (ii) the
shortest path between two sites p, q may not be homotopic to the path from p to q via another
site c. We solve problem (i) by using a shortest-path separator similar to Abam et al. [3].
To apply the shortest-path separator in a polygonal domain, we need new additional ideas.
In particular, we allow one additional type of separator in our version of a shortest-path
separator: two shortest paths from a point in P to the boundary of a single hole. We show that
this way there indeed always exists such a separator in a polygonal domain, and provide an
O(n2 log m + nm log m) time algorithm to compute one. To overcome problem (ii), we allow
an edge (p, q) to be any path from p to q. In networks, the connections between two nodes
are often not necessarily optimal paths, the only requirement being that the distance between
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Figure 2 Construction of the additively weighted 1-dimensional spanner. The green triangle
represents all points that are at distance at most dw(c, O) from O.

two hubs does not become too large. Thus allowing other paths between two sites seems a
reasonable relaxation. This way, we obtain in a geodesic (2k + ε)-spanner of size O(n log2 n)
and complexity O(mn1/k + n log2 n) that can be computed in O(n2 log m + nm log m + K)
time. Because our edges always consist of at most three shortest paths, we can again output
the edges implicitly in O(n log2 n) time. We also provide an alternative (2k + ε)-spanner of
size O(

√
hn log2 n) and complexity O(

√
h(mn1/k + n log2 n)) that can be constructed more

efficiently, i.e., in O(
√

hn log2 n + m log m + K) time.
Throughout the paper, we make the general position assumption that all vertices of P

and sites in S have distinct x- and y-coordinates. Symbolic perturbation, in particular a
shear transformation, can be used to remove this assumption [18].

2 A 1-dimensional additively weighted 2-spanner

We consider how to compute an additively weighted spanner G in 1-dimensional Euclidean
space, where each site p ∈ S has a non-negative weight w(p). The distance dw(p, q) between
two sites p, q ∈ S is given by dw(p, q) = w(p) + |pq| + w(q), where |pq| denotes the Euclidean
distance. Without loss of generality, we can map R1 to the x-axis, and the weights to the
y-axis, see Figure 2. This allows us to speak of the sites left (or right) of some site p.

To construct a spanner G, we first partition the sites into two sets Sℓ and Sr of roughly
equal size by a point O with w(O) = 0. The set Sℓ contains all sites left of O, and Sr all
sites right of O. Sites that lie on the vertical line through O are not included in either of the
sets. We then find a site c ∈ S for which dw(c, O) is minimal. For all p ∈ S, p ̸= c, we add
the edge (p, c) to G. Finally, we handle the sets Sℓ and Sr, excluding the site c, recursively.

▶ Lemma 1. The graph G is a 2-spanner of size O(n log n) and can be constructed in
O(n log n) time.

Proof sketch. For two sites p, q, consider the chosen center c at the level where p and q lie
on different sides of O. As the shortest path from p to q passes via O, we have

dG(p, q) ≤ dw(p, O) + 2dw(c, O) + dw(q, O) ≤ 2dw(p, O) + 2dw(q, O) = 2dw(p, q). ◀

3 Spanners in a simple polygon

3.1 A simple geodesic spanner
Just like Abam et al. [3], we use our 1-dimensional spanner to construct a geodesic spanner.
We are more interested in the simplicity of the spanner than its spanning ratio, as we base our
low complexity spanners, to be discussed in Section 3.2, on this simple geodesic spanner. Let
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Figure 3 The shortest path π(p, q) crosses λ at r. The difference in length between the direct
path from z to r and the path through pλ can be bounded by considering the triangle T = (z, z′, r).

P be a simple polygon, and let ∂P denote the polygon boundary. We denote by d(p, q) the
geodesic distance between p, q ∈ P , and by π(p, q) the shortest (geodesic) path from p to q.
We analyze the simple construction using any 1-dimensional additively weighted t-spanner
of size O(n log n). We show that restricting the domain to a simple polygon improves the
spanning ratio from 3t to

√
2t. The construction can be refined to achieve a spanning ratio

of t + ε, see Section 3.2.2 and Lemma 3 of the full version [19].
As in [1] and [3], we first partition P into two subpolygons Pℓ and Pr by a line segment

λ, such that each subpolygon contains at most two thirds of the sites in S [7]. We assume,
without loss of generality, that λ is a vertical line segment and Pℓ is left of λ. Let Sℓ be
the sites in the closed region Pℓ, and Sr := S \ Sℓ. For each site p ∈ S, we then find the
point pλ on λ closest to p. Note that this point is unique, because the shortest path to a line
segment is unique in a simple polygon. We denote by Sλ the set of all projected sites. As
λ is a line segment, we can define a weighted 1-dimensional Euclidean space on λ, where
w(pλ) := d(p, pλ) for each pλ ∈ Sλ. We compute a t-spanner Gλ = (Sλ, Eλ) for this set. For
each pair (pλ, qλ) ∈ Eλ, we add the edge (p, q), which is π(p, q), to our spanner G. Finally,
we recursively compute spanners for Sℓ and Sr, and add their edges to G as well.

▶ Lemma 2. The graph G is a geodesic
√

2t-spanner of size O(n log2 n).

Proof. As Gλ has O(n log n) edges (Lemma 1) that directly correspond to edges in G, and
the recursion has O(log n) levels, we have O(n log2 n) edges in total. Let p, q be two sites
in S. If both are in Sℓ (or Sr), then there is a path of length

√
2td(p, q) by induction. So,

we assume w.l.o.g. that p ∈ Sℓ and q ∈ Sr. Let r be the intersection point of π(p, q) and λ.
Observe that pλ and qλ must be on opposite sides of r, otherwise r cannot be on the shortest
path. We assume, without loss of generality, that pλ is above r and qλ below r. Because
Gλ is a t-spanner, we know that there is a weighted path from pλ to qλ of length at most
tdw(pλ, qλ). As w(pλ) = d(p, pλ), this directly corresponds to a path in the polygon. So,

dG(p, q) ≤ dGλ
(pλ, qλ) ≤ tdw(pλ, qλ) = t(d(p, pλ) + |pλr| + |rqλ| + d(qλ, q)). (1)

Let z be the point where the shortest paths from p to pλ and r separate. See Figure 3 for
an illustration. Consider the right triangle T = (z, z′, r), where z′ is the intersection point

SoCG 2023
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of the line perpendicular to λ through z and the line containing λ. Note that z′ does not
necessarily lie within P . For this triangle we have that

|zr| ≥
√

2
2 (|zz′| + |z′r|). (2)

Next, we show that the path from z to pλ is a y-monotone convex polygonal chain ending
at or below z′. Consider the vertical ray through z upwards to the polygon boundary. We
call the part of ∂P between where the ray hits ∂P and λ the top part of ∂P . Similarly, for a
downwards ray, we define the bottom part of ∂P . There are no vertices on π(z, pλ) from the
bottom part of ∂P , because such a vertex would then also occur on the shortest path to r.
This is in contradiction with the definition of z. If z sees z′, then pλ = z′, otherwise the chain
must bend at one or more vertices of the top part of ∂P , and thus lie below z′. It follows
that π(z, pλ) is contained within T . Similarly, we conclude that π(z, r) is contained within
T . Additionally, this gives us that d(z, pλ) ≤ |zz′| + |z′pλ|, and d(z, r) ≥ |zr|. Together with
Equation (2) this yields d(z, pλ) + |pλr| ≤ |zz′| + |z′r| ≤

√
2|zr| ≤

√
2d(z, r). And thus

d(p, pλ) + |pλr| = d(p, z) + d(z, pλ) + |pλr| ≤ d(p, z) +
√

2d(z, r) ≤
√

2d(p, r).

Symmetrically, we find for q that d(q, qλ) + |qλr| ≤
√

2d(q, r). From this, together with
Equation (1), we conclude that dG(p, q) ≤ t

(√
2d(p, r) +

√
2d(r, q)

)
=

√
2td(p, q). ◀

Applying Lemma 2 to the spanner of Section 2 yields a 2
√

2-spanner of size O(n log2 n).

3.2 Low complexity geodesic spanners
In general, a geodesic spanner G = (S, E) in a simple polygon with m vertices may have
complexity O(m|E|). It is easy to see that the 2

√
2-spanner of Section 3.1 can have complexity

Ω(nm), just like the spanners in [3]. As one of the sites, c, is connected to all other sites,
the polygon in Figure 4 provides this lower bound. The construction in Figure 4 even shows
that the same lower bound holds for the complexity of any (3 − ϵ)-spanner. Additionally, the
following theorem implies a trade-off between the spanning ratio and the spanner complexity.

▶ Theorem 3. For any constant ε ∈ (0, 1) and integer constant t ≥ 2, there exists a set
of n point sites in a simple polygon P with m = Ω(n) vertices for which any geodesic
(t − ε)-spanner has complexity Ω(mn1/(t−1)).

The proofs of these lower bounds are in the full version [19]. Next, we present a spanner
that almost matches this bound. We first present a 4

√
2-spanner of bounded complexity, and

then generalize the approach to obtain a (2k + ε)-spanner of complexity O(mn1/k + n log2 n),
for any integer k ≥ 2.

3.2.1 A 4
√

2-spanner of complexity O(m
√

n + n log2 n)
To improve the complexity of the geodesic spanner, we adapt our construction for the
additively weighted spanner Gλ as follows. After finding the site cλ ∈ Sλ for which dw(cλ, O)
is minimal, we do not add all edges (pλ, cλ), pλ ∈ Sλ, to Gλ. Instead, we form groups of sites
whose original sites (before projection) are “close” to each other in P . For each group Si, we
add all edges (pλ, ci,λ), pλ ∈ Si, to Gλ, where ci,λ is the site in Si for which dw(ci,λ, O) is
minimal. Finally, we add all edges (ci,λ, cλ) to Gλ.

To make sure the complexity of our spanner does not become too large, we must choose
the groups in such a way that the spanner edges do not cross “bad” parts of P too often.
The following lemma states the properties that we require of our groups to achieve this.
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Figure 4 Any (3 − ε)-spanner in a simple polygon with m vertices may have complexity Ω(nm).

▶ Lemma 4. If the groups adhere to the following properties, then G has O(m
√

n + n log2 n)
complexity:
1. each group contains Θ(

√
n) sites, and

2. each vertex of P is only used by shortest paths within O(1) groups.

Proof. We will first prove the complexity of the edges in one level of the 1-dimensional
spanner is O(m

√
n + n). Two types of edges are added to the spanner: (a) edges from some

ci to c, and (b) edges from some p ∈ Si to ci. According to property 1, there are Θ(
√

n)
groups, and thus Θ(

√
n) type (a) edges, that each have a complexity of O(m). Thus the total

complexity of these edges is O(m
√

n). Let ri be the maximum complexity of a shortest path
between any two sites in Si and let Vi be the set of vertices this path visits. Property 2 states
that for any v ∈ Vi it holds that |{j | v ∈ Vj}| = O(1), which implies that

∑
i ri = O(m).

The complexity of all type (b) edges is thus O(n) +
∑

i riO(
√

n) = O(m
√

n + n).
Next, we show that in both recursions, the 1-dimensional recursion and the recursion on

Pℓ and Pr, not only the number of sites, but also the complexity of the polygon is divided
over the two subproblems. Splitting the sites into left and right of O corresponds to splitting
the polygon horizontally at O: all sites left (right) of O in the 1-dimensional space lie in the
part of the polygon below (above) this horizontal line segment. Thus, shortest paths between
sites left of O use part of the polygon that is disjoint from the shortest paths between the
sites right of O. This means that for two subproblems we have that m1 + m2 = m, where
mi denotes the maximum complexity of a path in subproblem i. The recursion for the
complexity is now given by

T (n, m) = T (n/2, m1) + T (n/2, m2) + O(m
√

n + n), with m1 + m2 = m.

In the full version [19] we show this solves to T (n) = O(m
√

n + n log n).
Similarly, the split by λ divides the polygon into two subpolygons, while adding at most

two new vertices. As all vertices, except for the endpoints of λ, are in Pℓ or Pr (not both),
the total complexity of both subpolygons is at most m + 4. We obtain the following recursion

T (n, m) = T (n/2, m1) + T (n/2, m2) + O(m
√

n + n log n), with m1 + m2 = m + 4,

which solves to T (n) = O(m
√

n + n log2 n). ◀

To form groups that adhere to these two properties, we consider the shortest path tree
SPT c of c: the union of all shortest paths from c to the vertices of P . We include the sites
p ∈ S \ {c} as leaves in SPT c as children of their apex, i.e., the last vertex on π(c, p). This

SoCG 2023
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c

c
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ppλ

p

Figure 5 The shortest path tree of c. Each group Si has an associated polygonal region Ri in P .

gives rise to an ordering of the sites in S, and thus of the weighted sites in Sλ, based on the
in-order traversal of the tree. We assign the first ⌈

√
n⌉ sites to S1, the second ⌈

√
n⌉ to S2,

etc. See Figure 5.
Clearly these groups adhere to property 1. Proving that they also adhere to property 2 is

more involved. For each group Si, consider the minimal subtree Ti of SPT c containing all
p ∈ Si. Ti defines a polygonal region Ri in P as follows. Refer to Figure 5 for an illustration.
Let vi be the root of Ti. Consider the shortest path π(vi, a), where a is the first site of Si in
Ti by the ordering used before. Let πa be the path obtained from π(vi, a) by extending the
last segment of π(vi, a) to the boundary of P . Similarly, let πb be such a path for the last
site of Si in Ti. We take Ri to be the region in P rooted at vi and bounded by πa, πb, and
some part of the boundary of P , that contains the sites in Si. In case vi is c, we split Ri

into two regions Rj and Rk, such that the angle of each of these regions at c is at most π.
The set Si is then also split into two sets Sj and Sk accordingly. The following three lemmas
on Ri and Ti together imply that the groups adhere to property 2.

▶ Lemma 5. Only vertices of P that are in Ti can occur in Ri.

▶ Lemma 6. All shortest paths between sites in Si are contained within Ri.

▶ Lemma 7. Any vertex v ∈ SPT c occurs in at most two trees Ti and Tj as a non-root node.

Note that the root r of Ti is never used in a shortest path between sites in Si, because
r cannot be a reflex vertex of Ri. Consequently, Lemma 4 states that the spanner has
complexity O(m

√
n + n log2 n).

▶ Lemma 8. The graph G is a geodesic 4
√

2-spanner of size O(n log2 n).

Proof. We prove the 1-dimensional spanner Gλ is a 4-spanner with O(n log n) edges. Together
with Lemma 2, this directly implies G is a 4

√
2-spanner with O(n log2 n) edges.

In each level of the recursion, we still add only a single edge for each site. Thus, the total
number of edges is O(n log n). Again, consider two sites pλ, qλ ∈ Sλ, and let cλ be the chosen
center point at the level where pλ and qλ are separated by O. Let Si be the group of pλ and Sj

the group of qλ. Both the edges (pλ, ci,λ) and (ci,λ, cλ) are in Gλ, similarly for qλ. We thus have
a path pλ → ci,λ → cλ → cj,λ → qλ in Gλ. Using that dw(pλ, ci,λ) ≤ dw(pλ, O) + dw(ci,λ, O),
because of the triangle inequality, and dw(ci,λ, O) ≤ dw(pλ, O), we find:
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dGλ
(pλ, qλ) = dw(pλ, ci,λ) + dw(ci,λ, cλ) + dw(cλ, cj,λ) + dw(cj,λ, qλ)

≤ dw(pλ, O) + 2dw(ci,λ, O) + 2dw(cλ, O) + 2dw(cj,λ, O) + dw(qλ, O)
≤ 4dw(pλ, O) + 4dw(qλ, O)
= 4dw(pλ, qλ) ◀

3.2.2 A (2k + ε)-spanner of complexity O(mn1/k + n log2 n)
In this section we sketch how to generalize the approach of Section 3.2.1 to obtain a spanner
with a trade-off between the (constant) spanning ratio and complexity. Fix N = n1/k, for
some integer constant k ≥ 1. Instead of Θ(

√
n) groups, we create Θ(N) groups. For each

of these groups we select a center, and then partition the groups further recursively. By
connecting each center to its parent center, we obtain a tree of height k. This results in a
spanning ratio of k2

√
2.

Abam et al. [3] refine their spanner construction to obtain a (2+ε)-spanner. We generalize
this refinement in Lemma 3 of the full version [19]. The main idea is as follows. For each
point pλ, we additionally include a collection of O(t2/ε2) evenly spread points on λ close
to pλ in Sλ. For an edge in Gλ between a point in the collection of pλ and a point in the
collection of qλ, we add the edge (p, q) to G. This way, we even obtain a (2k + ε)-spanner.

▶ Lemma 9. For any constant ε > 0 and integer constant k ≥ 1, there exists a geodesic
(2k + ε)-spanner of size O(cε,kn log2 n) and complexity O(cε,k(mn1/k + n log2 n)), where cε,k

is a constant depending only on ε and k.

3.3 Construction algorithm
In this section we propose an algorithm to construct the spanners of Section 3.2. The
following gives a general overview of the algorithm, which computes a (2k + ε)-spanner in
O(n log2 n + m log n) time. In the rest of this section we will discuss the steps in more detail.
1. Preprocess P for efficient shortest path queries and build both the vertical decomposition

VD and horizontal decomposition HD of P .
2. For each p ∈ S, find the trapezoid in VD and HD that contains p. For each trapezoid

∇ ∈ VD, store the number of sites of S that lies in ∇ and sort these sites on their
x-coordinate.

3. Recursively compute a spanner on the sites S in P :
a. Find a vertical chord λ of P such that λ partitions P into two polygons Pℓ and Pr,

and each subpolygon contains at most 2n/3 sites using the algorithm of Lemma 10.
b. For each p ∈ S, find the point pλ on λ and its weight using the algorithm of Lemma 11,

and add this point to Sλ.
c. Compute an additively weighted 1-dimensional spanner Gλ on the set Sλ using the

algorithm of Lemma 12 or Lemma 13.
d. For every edge (pλ, qλ) ∈ Eλ add the edge (p, q) to G.
e. Recursively compute spanners for Sℓ in Pℓ and Sr in Pr.

In step 1, we preprocess the polygon in O(m) time such that the distance between any
two points p, q ∈ P can be computed in O(log m) time [15, 22]. We also build the horizontal
and vertical decompositions of P , and a corresponding point location data structure, as a
preprocessing step in O(m) time [15, 26]. We then perform a point location query for each
site p ∈ S in O(n log m) time in step 2 and sort the sites within each trapezoid in O(n log n)
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time in total. The following lemma describes the algorithm to compute a vertical chord
that partitions P into two subpolygons such that each of them contains roughly half of the
sites in S. It is based on the algorithm of Bose et al. [7] that finds such a chord without
the constraint that it should be vertical. Because of this constraint, we use the vertical
decomposition of P instead of a triangulation in our algorithm.

▶ Lemma 10. In O(n + m) time, we can find a vertical chord of P that partitions P into
two subpolygons Pℓ and Pr, such that each subpolygon contains at most 2n/3 sites of S.

The following lemma states that we can find the projections pλ efficiently. The algorithm
produces not only these projected sites, but also the shortest path tree SPTλ of λ.

▶ Lemma 11. We can compute the closest point pλ on λ and d(p, pλ) for all sites p ∈ S,
and the shortest path tree SPTλ, in O(m + n log m) time.

▶ Lemma 12. Given SPTλ, we can construct a 4-spanner Gλ on the additively weighted
points Sλ, where the groups adhere to the properties of Lemma 4, in O(n log n + m) time.

Proof. The 4-spanner of Section 3.2.1 requires an additional step at each level of the recursion,
namely the formation of Θ(

√
n) groups. We first discuss the running time to construct a

4-spanner when forming the groups as in Section 3.2.1, and then improve the running time
by introducing a more efficient way to form the groups.

In Section 3.2.1, the groups are formed based on the shortest path tree of the site c.
Building the shortest path tree, and a corresponding point location data structure, takes
O(m) time [23]. Then, we perform a point location query for each site to find its apex in the
shortest path tree, and add the sites to the tree. These queries take O(n log m) time in total.
We form groups based on the traversal of the tree. Note that we do not distinguish between
sites with the same parent in the tree, as the tree Ti (and thus the region Ri) obtained
contains the same vertices of P regardless of the order of these sites. After obtaining the
groups, we again add only O(n) edges to the spanner. The overall running time of the
algorithm is thus O((m + n log m) log n).

This running time can be improved by using another approach to form the groups. To
form groups that adhere to the properties of Lemma 4, and thus result in a spanner of the
same complexity, we can use any partition of P into regions Ri, as long Ri as contains Θ(

√
n)

sites and
∑

i ri = O(m). Next, we describe how to form such groups efficiently using SPTλ.
We first define an ordering on the sites. This is again based on the traversal of some

shortest path tree. Instead of considering the shortest path tree of a point site, we consider
the shortest path tree SPTλ of λ. Again, all sites in S are included in this shortest path tree.
Additionally, we split the node corresponding to λ into a node for each distinct projection
point on λ (of the vertices and the sites) and add an edge between each pair of adjacent
points, see Figure 6. We root the tree at the node corresponding to the bottom endpoint
of λ. Whenever a node t on λ has multiple children, in other words, when multiple sites are
projected to the same point t, our assumption that all y-coordinates are distinct ensures that
all these sites lie either in Pℓ or Pr.

The groups are formed based on the in-order traversal of this tree, which can be performed
in O(m + n) time. As before, the first ⌈

√
n⌉ are in S1, the second in S2, etc. The groups

thus adhere to the first property. Next, we show they also adhere to the second property.
For each group Si, we again consider the minimal subtree Ti of SPTλ containing all

p ∈ Si. Ti defines a region Ri in P as follows. Let a be the first site of Si in Ti by the ordering
used before. Assume that a lies in Pℓ. We distinguish two cases: aλ ∈ Ti, or aλ /∈ Ti. When
aλ ∈ Ti, then let πa be the path obtained from π(aλ, a) by extending the last segment to
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λ

ppλ
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λ

Figure 6 The shortest path tree SPTλ and associated polygonal region Ri for each group Si.

the boundary of P . Additionally, we extend πa into Pr horizontally until we hit the polygon
boundary. When aλ /∈ Ti, consider the root vi of Ti. Let πa be the path obtained from
π(vi, a) by extending the last segment of the path to the boundary of P . Similarly, let πb be
such a path for the rightmost site of Si in Ti. We take Ri to be the region in P bounded by
πa, πb, and some part of the boundary of P that contains the sites in Si. See Figure 6. Note
that, as before, only vertices of P that are in Ti can occur in Ri. All shortest paths between
sites in Si are contained within Ri. Just as for the shortest path tree of c, Lemma 7 implies
that any vertex v ∈ SPTλ occurs in at most two trees Ti and Tj as a non-root vertex. We
conclude that any vertex is used by shortest paths within at most two groups.

After splitting λ at a point O, the tree SPTλ is also split into two trees Tℓ and Tr that
contain exactly the sites in Sℓ and Sr. We can thus reuse the ordering to form groups at
each level of the recursion. This way, the total running time at a single level of the recursion
is reduced to O(n). The overall running time thus becomes O(n log n + m). ◀

▶ Lemma 13. Given SPTλ, we can construct a 2k-spanner Gλ on the additively weighted
points Sλ, where groups are formed as in Section 3.2.2, in O(n log n + m) time.

Proof. To construct the (2k + ε)-spanner of Section 3.2.2, we can use the shortest path tree
of λ to form the groups as before. Note that we can select a center for each group after
computing the groups, as including the center in the subgroups does not influence spanning
ratio or complexity. After ordering the sites based on the in-order traversal of SPTλ, we can
build the tree of groups in linear time using a bottom up approach. As before, fix N = n1/k.
We first form the Θ(Nk) lowest level groups, containing only a single site, and select a center
for each group. Each group at level i is created by merging Θ(N) groups at level i − 1, based
on the same ordering. We do not perform this merging explicitly, but for each group we
select the site closest to O of the merged level-(i − 1) centers as the center. Because our
center property, being the closest to O, is decomposable, this indeed gives us the center of
the entire group. This way, we can compute the edges added in one level of the recursion in
linear time, so the running time remains O(n log n + m). ◀

The total running time thus becomes O((n(log n + log m) + m) log n) = O(n log2 n +
m log n). By splitting the polygon alternately based on the sites and the polygon vertices,
we can replace the final O(log n) factor by O(min(log n, log m)). Using the refinement of
Section 3.2.2, step 3 is performed on cε,kn sites, where cε,k is a constant depending only on ε

and k, increasing the running time for this step by a factor O(cε,k). Together with Lemma 9,
we obtain the following theorem.
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Figure 7 No shortest path between two points on P can separate the sites into two groups. We
can separate the sites using three shortest paths, for example using the orange triangle.

▶ Theorem 14. Let S be a set of n point sites in a simple polygon P with m vertices, and let
k ≥ 1 be any integer constant. For any constant ε > 0, we can build a geodesic (2k+ε)-spanner
of size O(cε,kn log2 n) and complexity O(cε,k(mn1/k+n log2 n)) in O(cε,kn log2 n+m log n+K)
time, where cε,k is a constant depending only on ε and k, and K is the output complexity.

4 Spanners in a polygonal domain

We consider a set of point sites S that lie in a polygonal domain P with m vertices and h

holes. Let ∂P denote the boundary of the outer polygon. Suppose we would try the same
construction as we used for a simple polygon in Section 3. Then, in a polygonal domain, we
run into two problems. First, we cannot split the polygonal domain into two subpolygons by a
line segment λ that roughly splits the sites in S, because any line segment that appropriately
partitions S might intersect one or more holes. Second, the shortest path π(p, q) between
two sites p, q ∈ S is no longer homotopic to a path π(p, c) ∪ π(c, q), which means our bound
on the complexity is no longer valid. In the next section, we describe these problems and
how we overcome them in more detail.

4.1 Low complexity geodesic spanners
Subdividing the domain. To apply our 1-dimensional spanner, we require only that the
splitting curve λ is a shortest path in P . Instead of partitioning the domain by a line segment,
we can thus use one or more shortest paths to partition the domain. Allowing only a shortest
path between two points on ∂P as our separator is not sufficient, as it is not always possible
to split the sites roughly equally this way. See Figure 7 for an example. Therefore, we use
a balanced shortest-path separator (sp-separator), based on the balanced sp-separator of
Abam et al. [3].

We use three types of separator: a shortest path between two points on ∂P (1-separator),
two shortest paths starting at the same point and ending at the boundary of a single hole
(2-separator), and three shortest paths π(u, v), π(v, w), and π(u, w) with u, v, w ∈ P (3-
separator). Let Pℓ be the polygonal domain to the left of λ, when λ is a 1-separator, and
interior to λ, when λ is a 2- or 3-separator. Symmetrically, Pr is the domain to the right
of, or exterior to, λ. See Figure 8 for an illustration. In the full version [19], we prove the
existence of such a separator. In the proof, we correct for a missing case in the proof by
Abam et al. [3] for the existence of a separator on a polyhedral terrain, thereby confirming
their result. We also require an additional step in the constructive proof, because unlike
a terrain, a polygonal domain is not continuous. This is where a 2-separator is required,
which does not occur on a terrain. Finally, we provide an algorithm to construct a balanced
sp-separator in a polygonal domain. This results in the following theorem.
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Figure 8 The three types of separators: A 1-separator (blue), a 2-separator (orange), and a
3-separator (green). For each separator Pℓ is the colored region.

c

v

w

Figure 9 Assigning the sites to groups based on the shortest path tree of c, as described in
Section 3.2.1, forms these colored groups. The shortest path from each site to c is shown dashed.
Each shortest path between the two sites of a group visits both vertices v and w.

▶ Theorem 15. Let S be a set of n point sites in a polygonal domain P with m vertices. A
balanced sp-separator exists and it can be computed in O(n2 log m + nm log m) time.

The spanner edges. In Section 3.2.1 and 3.3, we form groups of sites such that the shortest
paths within a group are (almost) disjoint from the shortest paths within other groups. We
use the shortest path tree of c (or λ) to obtain these groups. In a polygonal domain, the
paths π(p, q) and π(p, c) ∪ π(c, q), with p, q, c ∈ P , are not necessarily homotopic. Figure 9
gives an example of how this can result in many groups that use the same vertex of P in
their shortest paths.

So far, we assumed that every edge (p, q) ∈ E is a shortest path between p and q. To
obtain a spanner of low complexity, we can also allow an edge between p and q to be any
path between the two sites, as long as we keep the desired spanning ratio. Note that our
complexity lower bounds still hold in this case. In particular, for an edge (pλ, qλ) in the
1-dimensional spanner, the edge (p, q) that we add to G is no longer π(p, q). Instead, let
(p, q) be the shortest path from p to q via pλ and qλ, excluding any overlap of the path. We
denote this path by πλ(p, q). Formally, πλ(p, q) is defined as follows.

▶ Definition 16. The path πλ(p, q) is given by:
π(p, pλ) ∪ π(pλ, qλ) ∪ π(qλ, q), where π(pλ, qλ) ⊆ λ, if π(p, pλ) and π(q, qλ) are disjoint,
π(p, r) ∪ π(r, q), where r denotes the closest point to p of π(p, pλ) ∩ π(q, qλ), otherwise.
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In the full version [19], we show that using these paths as edges does not increase the
spanning ratio, and prove a similar result to Lemma 4 for this new edge type. Additionally,
we prove that using the shortest path tree of λ for the formation of the groups ensures that
any vertex of P is used by paths πλ(p, q) within only O(1) groups.

4.2 Construction algorithm

As before, let Sℓ be the sites in the closed region Pℓ, and Sr := S \ Sℓ. The following gives an
overview of the algorithm that computes a (2k+ε)-spanner of complexity O(mn1/k +n log2 n)
in O(n2 log m + nm log m) time for a set of point sites S in a polygonal domain P .

1. Find an sp-separator such that P is partitioned into two polygons Pℓ and Pr, and Sℓ

contains at least 2n/9 and at most 2n/3 sites using the algorithm of Theorem 15.
2. For each shortest path λ of the separator:

a. For each p ∈ S find the weighted point pλ on λ and add this point to Sλ.
b. Compute an additively weighted 1-dimensional spanner Gλ on the set Sλ.
c. For every edge (pλ, qλ) ∈ Eλ add the edge (p, q) = πλ(p, q) to G.

3. Recursively compute spanners for Sℓ in Pℓ and Sr in Pr.

According to Theorem 15, step 1 takes O(n2 log m + nm log m) time. In step 2, we find
the projected sites using the shortest path map of λ in O((m + n) log m) time [25], and then
compute the 1-dimensional spanner in O(n log n + m) time as in Lemma 13. This means
that the construction of the sp-separator dominates the construction time of the spanner.

▶ Theorem 17. Let S be a set of n point sites in a polygonal domain P with m vertices, and
let k ≥ 1 be any integer constant. For any constant ε > 0, we can build a geodesic (2k + ε)-
spanner of size O(cε,kn log2 n) and complexity O(cε,k(mn1/k + n log2 n)) in O(cε,k(n2 log m +
nm log m) + K) time, where cε,k is a constant depending only on ε and k, and K is the
output complexity.

We can no longer output the edges implicitly by stating only the endpoints of the edges.
Instead, we output an edge πλ(p, q) implicitly by stating the points pλ and qλ, when π(p, pλ)
and π(q, qλ) are disjoint, or the point r from Definition 16 when they are not disjoint. The
point r is the lowest common ancestor of the nodes p and q in SPTλ. This can be computed
in O(1) time after preprocessing SPTλ in O((n + m) log(n + m)) [5].

4.3 A (2 + ε)-spanner with a dependence on
√

h

Because the computation of a balanced shortest-path separator is quite expensive, we consider
another method to partition the domain by Abam et al. [1] using

√
h simple polygons, where

h is the number of holes in P . In the full version [19], we show this indeed improves the
construction time, albeit at an increase in complexity.

▶ Theorem 18. Let S be a set of n point sites in a polygonal domain P with m vertices and h

holes, and let k ≥ 1 be any integer constant. For any constant ε > 0, we can build a geodesic
(2k + ε)-spanner of size O(cε,k

√
hn log2 n) and complexity O(cε,k

√
h(mn1/k + n log2 n)) in

O(cε,k

√
hn log2 n + m log m + K) time, where cε,k is a constant depending only on ε and k,

and K is the output complexity.
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