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Abstract
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1 Introduction

Disk graphs have received much attention due to their ability to model graphs appearing in
practice and their interesting structural properties. In a disk graph, each vertex corresponds
to a (circular) disk, and there is an edge between two vertices if and only if the two
corresponding disks intersect. Disk graphs appear naturally in problems related to radio and
sensor networks. For instance, the region reached by the signal from each transmitter in
a radio network can be modeled as a disk, and when two disks intersect, the interference
of the signals may be an issue if the transmitters use the same frequency. The problem
of avoiding interference while minimizing the number of used frequencies thus corresponds
to finding the chromatic number of the disk graph. Applications like these are part of the
motivation for various papers on algorithms or computational hardness for problems taking
disk graphs in the input [2, 3, 7, 10, 13, 14, 16, 25] as well as papers studying disk graphs
from a mathematical angle [21, 22].

Combinatorial analysis of problems such as chromatic number and minimum hitting set
size has often been performed in greater generality, for intersection graphs of translated copies
or homothetic (i.e., translated and scaled) copies of a fixed convex shape [11, 17, 18, 23],
and recently also for translated, scaled, and rotated squares [6]. Algorithmic considerations
have also been generalized in a similar way – Bonnet, Grelier, and Miltzow [4] studied the
maximum clique problem and extended classic algorithms for disk graphs and unit disk
graphs to intersection graphs of homothetic or translated copies of a fixed convex set.
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2:2 Distinguishing Intersection Graphs of Homothets or Similarities of Two Convex Disks

A A1 A2 A3

Figure 1 Here, A1 is a homothet of A, A2 is a similarity but not a homothet of A, and A3 is
affine equivalent to A, but not similar to A. By Theorem 1, A and A3 induce the same intersection
graphs of homothets, but Theorem 2 implies that the intersection graphs of similarities are different.

A well-established line of research in discrete and computational geometry has been aiming
at understanding the relationships between classes of geometric intersection graphs such as
whether two classes are equal or whether one class is a subclass of another [5, 8, 9, 15, 20]. In
view of the above-mentioned research, it is natural to investigate the relationships between
the classes of intersection graphs of translated copies, homothetic copies, and copies by
similarity (translation, scaling, and rotation) of a fixed convex shape.

To be precise, consider an arbitrary convex disk A, that is, a convex and compact set
in the plane with non-empty interior. A translate of A is a translated copy of A (with no
scaling or rotation allowed). A homothet of A is a positively scaled and translated copy
of A (with no rotation allowed). A similarity is a homothet rotated by an arbitrary angle.
An affine equivalent of A is the image of A under an invertible affine transformation. See
Figure 1. The intersection graph of a family F of sets in the plane is the graph with vertex
set F and edge set {uv : u, v ∈ F , u ∩ v ̸= ∅}.

In a recent paper, Aamand, Abrahamsen, Knudsen, and Rasmussen [1] studied the
question of when the translates of two convex disks induce the same intersection or contact
graphs, where a contact graph is an intersection graph that can be realized by pairwise
interior-disjoint disks. They proved for a large class of convex disks, including all strictly
convex ones, that two disks A and B yield the same classes of contact and intersection graphs
if and only if the central symmetrals of A and B are affine equivalent, where the central
symmetral of a disk A is the centrally symmetric disk 1

2 (A − A).
In this paper, we study the question of when the homothets or the similarities of two

convex disks induce the same intersection graphs. We make the additional assumption that
the convex disk A be smooth, that is, there is a unique tangent containing any point on the
boundary of A. We let hom A and sim A denote the sets of homothets and similarities of A,
respectively. We let Ghom(A) and Gsim(A) denote the classes of (finite) intersection graphs
of homothets and similarities of A, respectively. For two smooth convex disks A and B, we
are able to say exactly when Ghom(A) = Ghom(B) and Gsim(A) = Gsim(B), as follows.

▶ Theorem 1. Let A and B be smooth convex disks. Then Ghom(A) = Ghom(B) if and
only if A and B are affine equivalent. Moreover, if A and B are not affine equivalent, then
neither Ghom(A) ⊆ Ghom(B) nor Ghom(B) ⊆ Ghom(A).

▶ Theorem 2. Let A and B be smooth convex disks. Then Gsim(A) = Gsim(B) if and only
if B is similar to A or to the reflection Ar = {(−x, y) : (x, y) ∈ A}.

If A and B are affine equivalent, then Ghom(A) = Ghom(B), because the affine transforma-
tion that maps A to B transforms every realization in hom A to a realization of the same graph
in hom B, and vice versa. Likewise, if B is similar to A or to Ar, then Gsim(A) = Gsim(B),
because the similarity transformation (possibly with reflection) that maps A to B transforms
every realization in sim A to a realization of the same graph in sim B, and vice versa. The
difficult part is the necessity of these conditions.
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Figure 2 To the left is shown the grid of small copies of A and one large copy of A on top.
The disks in the grid that are intersected (dark gray) define the shape of A to an arbitrarily high
precision, if we make the grid sufficiently fine. To the right is shown the same graph realized by
another disk B. As we will show, the arrangement must again form a grid of small disks with one
large copy of B on top. An affine map that makes the two grids coincide then also maps B to A to
within a small error, since the two disks intersect the same “pixels” in the grids.

When A and B are not affine equivalent, we point out graphs GA ∈ Ghom(A) and
GB ∈ Ghom(B) such that GA /∈ Ghom(B) and GB /∈ Ghom(A), which yields the second part
of Theorem 1. By contrast, when B is dissimilar to both A and Ar, then Gsim(A) and
Gsim(B) may be properly nested. Indeed, if A is a circular disk and B is a non-circular filled
ellipse, then Gsim(A) ⊂ Gsim(B), because the affine stretch that maps A to B transforms
every realization in hom A = sim A to a realization of the same graph in hom B ⊆ sim B,
while in the proof of Theorem 2, we construct a graph in Gsim(B) that is not in Gsim(A).

One may or may not allow scaling by negative numbers when defining the homothets of
A, which corresponds to rotating A by 180◦. We remark that Theorem 1 holds in either case
(with the same proof). Likewise, one may or may not allow reflection along the y-axis when
defining the similarities of A, and Theorem 2 holds in either case (with the same proof).

We note that although we establish results for more general families of graphs, our
results are not generalizations of the ones in [1]. We also remark that the contact graphs
of homothets or similarities of a smooth convex disk have already been characterized. The
Koebe-Andreev-Thurston Circle Packing Theorem, first proved by Koebe in 1936 [19], asserts
that every planar graph is the contact graph of some set of pairwise interior-disjoint circular
disks. Since every contact graph is planar, the contact graphs are exactly the planar graphs.
The Monster Packing Theorem by Schramm [24] generalizes the result in the following way.
Suppose that a planar graph is given, together with a correspondence which assigns to each
vertex of the graph a smooth convex disk. Then there exists a contact representation of the
graph where each vertex is represented by a homothet of the associated disk. Hence the
contact graphs of homothets or similarities of any smooth convex disk are the planar graphs.

Outline of the paper
In Section 2, we set our notation and define the central concepts. In Section 3, we introduce
a notion of convergence of sequences of compact subsets of R2. The usual definition of
convergence based on the Hausdorff distance between sets only allows us to talk about
convergence towards a compact set, but in our case, we also need to be able to express, for
instance, that a sequence of (growing) convex disks converges to a half-plane.

SoCG 2023



2:4 Distinguishing Intersection Graphs of Homothets or Similarities of Two Convex Disks

In Sections 4 and 5, we introduce the constructions that enable us to distinguish the graph
classes. At an overall level, the idea behind our constructions is to define a graph G such
that however G is realized as an intersection graph of homothets or similarities of a smooth
convex disk A, then a subset of the disks in the realization will form a large and almost
regular grid of small copies of A; see Figure 2. We use this grid in a somewhat similar manner
as the grid of pixels in television: We put one large disk A on top of the grid. The disks in
the grid that intersect A will then with high precision define the shape of A. If now another
disk B is able to realize the same graph, then we can consider an affine transformation that
makes the two grids “match”, and it follows that A and B must be nearly identical under
this transformation, since the same “pixels” in the two grids are intersected by the large
disks on top. If B can realize the graph for an arbitrarily fine resolution of the grid, then we
get in the limit a transformation f⋆ that maps A to B.

In the case of homothets (Section 6), the transformation f⋆ is an arbitrary affine trans-
formation, which leads to Theorem 1. In the case of similarities (Section 7), we can further
prove that the grid must be square-shaped. It then follows that the limit transformation f⋆

is angle preserving, so B must be similar to A or Ar.
The construction of this grid is rather delicate and relies on a careful analysis of various

building blocks described in Section 4. Our first basic tool (Lemma 9) is that if the complete
bipartite graph K2,n is realized as an intersection graph of similarities of a convex disk A,
then the distance between the two disks U1 and U2 in the first vertex class can be made
arbitrarily much smaller than the size of U1 and U2 by choosing n large enough. In other
words, in the limit where n → ∞, the two disks U1 and U2 behave as if they were in contact.

We are then able to define a larger graph Ln where a realization has two disks U1, U2
and n disks V1, . . . , Vn, such that by choosing n large enough, we know that all of the latter
disks are arbitrarily small compared to both of U1 and U2 (Lemma 11), and they must
furthermore be “squeezed in” between these disks. The disks in each row and each column of
the aforementioned grid in the final construction will be a subset of the disks V1, . . . , Vn in a
realization of this graph Ln. Here, it is necessary to place chains of overlapping disks on top
of each row and each column of the grid to ensure that when the grid becomes arbitrarily
fine, it does not degenerate into a segment.

In the case of similarities, we introduce the concept of the stretch of a convex disk A,
denoted ρA. We consider two parallel lines of distance 1 and a chain of n consecutively
overlapping similarities of A, contained in the strip bounded by these lines. The stretch is
the ratio between the (geometric) length of a longest such chain and n, as n → ∞. Now if
ρB < ρA, then it will be impossible for similarities of B to realize the graph that we construct
for A, as there is no chain of similarities of B that can “reach far enough”. If ρB = ρA, then
for both A and B the graph can be realized only so that the grid is square-shaped, since
otherwise some chains in the realizations will not be able to reach far enough.

We conclude the paper in Section 8 by mentioning some open questions.

2 Preliminaries

Let int X and ∂X denote the interior and the boundary of a set X ⊆ R2, respectively. A
convex disk is a convex compact subset of R2 with non-empty interior. Every convex disk
is the closure of its interior. Two non-empty subsets of R2 touch if they intersect but the
interior of either one is disjoint from the other. A tangent to a convex disk A is a line that
touches A (whence it follows that A lies in one of the two half-planes bounded by the line).
For every convex disk A and every point p ∈ ∂A, there is at least one tangent to A containing
p. A convex disk A is smooth if for every point p ∈ ∂A, there is exactly one tangent to A

containing p. All convex disks that we consider are implicitly assumed to be smooth.
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A similarity of a convex disk A is a rotated, scaled, and translated copy of A, that is, a
set of the form

A′ =
{

r ·
[
cos θ − sin θ

sin θ cos θ

]
a + z : a ∈ A

}
,

where r > 0, z ∈ R2, and θ ∈ [0, 2π). We call r the radius of A′ and denote it by rA(A′). When
A is clear from the context, we simplify the notation to r(A′). A similarity A′ is a homothet
of A if θ = 0, that is, A′ is a scaled and translated copy of A. We let sim A and hom A denote
the set of similarities and the set of homothets of A, and we let simr A = sim A ∪ sim Ar,
where Ar is the reflection of A about the y axis: Ar = {(−x, y) : (x, y) ∈ A}.

A realization of a graph G = (V, E) in a family F of subsets of R2 is a mapping R : V → F
such that R(u) ∩ R(v) ̸= ∅ if and only if uv ∈ E. We consider only finite graphs and their
realizations with F = sim A or F = hom A for some convex disk A.

The Euclidean norm of a vector a ∈ R2 is denoted by ∥a∥. The Euclidean distance
between points p, q ∈ R2 is denoted by dist(p, q). This notation extends to the distance
between a point p ∈ R2 and a set X ⊆ R2 or between two sets X, Y ⊆ R2:

dist(p, X) = inf
x∈X

dist(p, x), dist(X, Y ) = inf
x∈X

inf
y∈Y

dist(x, y).

For a point q ∈ R2 and δ > 0, let ball(q, δ) = {p ∈ R2 : dist(p, q) ⩽ δ}. For a compact
set X ⊆ R2 and δ > 0, let ball(X, δ) = {p ∈ R2 : dist(p, X) ⩽ δ}. The diameter of a set
X ⊆ R2, which is supx,y∈X dist(x, y), is denoted by diam X. The bounding box of a compact
set X ⊂ R2 is the unique minimal box of the form [x1, x2] × [y1, y2] containing X. Let
N = {1, 2, . . .} and [n] = {1, . . . , n} for n ∈ N.

3 Convergence and limits

Recall the notion of Hausdorff distance between non-empty subsets X and Y of a metric space:

dH(X, Y ) = max
{

sup
x∈X

dist(x, Y ), sup
y∈Y

dist(y, X)
}

.

It is well known that the family of non-empty compact subsets of a (compact) metric space
equipped with this notion of distance forms a (compact) metric space. This leads to a notion
of convergence of a sequence of non-empty compact subsets of R2 to a non-empty compact
subset of R2 in Hausdorff distance. If a sequence of non-empty compact convex subsets of
R2 converges in Hausdorff distance, then its limit is also convex. We need to extend the
notion of convergence in Hausdorff distance by allowing the limit object to be an unbounded
closed subset of R2 while assuming convexity of the members of the sequence.

A pair (p, r) ∈ R2 × R+ is an anchor for a sequence (Xn)∞
n=1 of non-empty compact

convex subsets of R2 if dist(p, Xn) ⩽ r for every n ∈ N. A sequence of non-empty compact
convex subsets of R2 is anchored if it has an anchor. We say that an anchored sequence
(Xn)∞

n=1 of non-empty compact convex subsets of R2 converges to a set X⋆ ⊆ R2 (and write
Xn → X⋆), and we call X⋆ the limit of (Xn)∞

n=1, if for every anchor (p, r) for it, the sequence
(Xn ∩ ball(p, r))∞

n=1 converges to X⋆ ∩ ball(p, r) in Hausdorff distance. Since the latter limit
is unique, so is the limit X⋆ =

⋃
(p,r)(X⋆ ∩ ball(p, r)), where the union is taken over all

anchors (p, r) for (Xn)∞
n=1. It is easy to see that the limit X⋆ is a closed convex set.

The following lemmas assert basic properties of this extended notion of convergence. See
the full version of the paper for the proofs that are missing from the current version.

SoCG 2023



2:6 Distinguishing Intersection Graphs of Homothets or Similarities of Two Convex Disks

▶ Lemma 3. If (Xn)∞
n=1 is a sequence of non-empty compact convex subsets of R2 with

anchor (p, r) that converges to a set X⋆ ⊆ R2 in Hausdorff distance, then the sequence
(Xn ∩ ball(p, r))∞

n=1 converges to X⋆ ∩ ball(p, r) in Hausdorff distance.

▶ Lemma 4. Every anchored sequence of non-empty compact convex subsets of R2 has a
convergent subsequence.

▶ Lemma 5. Let A be a convex disk and F = hom A or F = sim A. Let (Xn)∞
n=1 be a

sequence of members of F that converges to a set X⋆ ⊆ R2. Then the sequence (r(Xn))∞
n=1

converges or diverges to ∞. Furthermore,
if r(Xn) → r⋆ ∈ R, where r⋆ > 0, then X⋆ ∈ F ,
if r(Xn) → 0, then X⋆ = {z⋆} for some point z⋆ ∈ R2,
if r(Xn) → ∞, then X⋆ is a half-plane or X⋆ = R2.

▶ Lemma 6. Let A be a convex disk and F = hom A or F = sim A. For every set X⋆

that is a member of F or a half-plane, there is a sequence (Xn)∞
n=1 of members of F that

converges to X⋆ and satisfies Xn ⊂ int X⋆ for every n ∈ N.

An interior-realization of a graph G = (V, E) in a family F̄ of subsets of R2 is a mapping
R̄ : V → F̄ such that int R̄(u) ∩ int R̄(v) ̸= ∅ if and only if uv ∈ E. Our main construction in
Section 5 is easier to present in terms of interior-realizations rather than realizations, and
the following lemma turns an interior-realization into a realization.

▶ Lemma 7. Let A be a convex disk, F = hom A or F = sim A, and H be the family of all
half-planes. If a graph G has an interior-realization in F ∪ H, then G has a realization in F .

Proof. Let G = (V, E), and let R̄ be an interior-realization of G in F ∪ H. Let puv ∈
int R̄(u) ∩ int R̄(v) for every edge uv ∈ E. Let mappings Rn : V → F for n ∈ N be such
that the sequence (Rn(v))∞

n=1 converges to R̄(v) for every v ∈ V and Rn(v) ⊂ int R̄(v) for
all v ∈ V and n ∈ N; they exist by Lemma 6. It follows that Rn(u) ∩ Rn(v) ̸= ∅ implies
int R̄(u) ∩ int R̄(v) ̸= ∅ and thus uv ∈ E, for all n ∈ N. If n ∈ N is sufficiently large that
puv ∈ Rn(u) ∩ Rn(v) for every edge uv ∈ E, then Rn is a realization of G in F . ◀

4 Basic configurations

Let Km,n denote the complete bipartite graph with vertices u1, . . . , um on one side and
v1, . . . , vn on the other side, so that uivj is an edge of Km,n for all i ∈ [m] and j ∈ [n]. The
following lemma is proved by a simple area argument.

▶ Lemma 8. For every convex disk A and every ε > 0, if n is sufficiently large, then every
realization R of K1,n in sim A satisfies mini∈[n] r(R(vi)) < εr(R(u1)).

▶ Lemma 9. Let A be a convex disk and N be an infinite subset of N. For every sequence
(Rn)n∈N such that Rn is a realization of K2,n in sim A and Rn(u1) converges to a convex
disk or singleton set U⋆

1 , the sequence (Rn(u2))n∈N is anchored and for all of its convergent
subsequences, the limit touches U⋆

1 .

Proof. When n → ∞, since r(Rn(u1)) → r(U⋆
1 ), Lemma 8 yields dist(Rn(u1), Rn(u2)) ⩽

mini∈[n] diam Rn(vi) = mini∈[n] r(Rn(vi)) · diam A → 0, which implies dist(U⋆
1 , Rn(u2)) ⩽

dist(Rn(u1), Rn(u2)) + dH(Rn(u1), U⋆
1 ) → 0, and the lemma follows. ◀
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ℓ1

ℓ2

û1

û2

u1

u2

v1 v5

Figure 3 The graph L5. Here, û1 has an edge to all vertices above the line ℓ2, and û2 has an
edge to all vertices below ℓ1.

▶ Construction 10 (the graph Ln). The graph Ln has vertices u1, u2, v1, . . . , vn, vertices
wijk and edges uiwijk, wijkvj for all i ∈ [2] and j, k ∈ [n] (so that ui, vj , wij1, . . . , wijn form
a copy of K2,n), and two additional vertices û1, û2 such that û1 has an edge to every vertex
except u2 and û2 has an edge to every vertex except u1. See Figure 3.

When considering a specific realization R of Ln (possibly with a superscript), we write Vi,
Ui, and Ûi (with the same superscript) as shorthand for R(vi), R(ui), and R(ûi), respectively.
The following lemma makes essential use of the assumption that A is smooth.

▶ Lemma 11. For every convex disk A and every ε > 0, if n is sufficiently large, then every
realization of Ln in sim A satisfies maxj∈[n] r(Vj) ⩽ ε min{r(U1), r(U2)}.

Proof. Suppose for the sake of contradiction that there is ε > 0 such that for every n, there
is a realization Rn of Ln in sim A such that maxj∈[n] r(V n

j ) > ε min{r(Un
1 ), r(Un

2 )}. Assume
without loss of generality that r(Un

1 ) ⩽ r(Un
2 ) for all n. Furthermore, assume that Un

1 is
constant (equal to U1) while the other disks may change size and placement as a function of n.

Suppose there is ρ > 0 such that mini∈[n] r(V n
i ) ⩾ ρ for every n. Let k ∈ N. By Lemma 9,

we can pass to a subsequence of (Rn)∞
n=k in which V n

i → V ⋆
i and V ⋆

i touches U1 for every
i ∈ [k]. At least k − 2 of these limits, say V ⋆

1 , . . . , V ⋆
k−2, are not half-planes. Along with U1,

they form a realization of K1,k−2 in sim A. When k is sufficiently large, Lemma 8 yields
mini∈[k−2] r(V ⋆

i ) < ρ. This contradiction shows that mini∈[n] r(V n
i ) → 0 as n → ∞.

For each n, let V n
min and V n

max be disks among V n
1 , . . . , V n

n with minimum and maximum
radii, respectively, so that r(V n

max) > εr(U1) and r(V n
min) → 0 as n → ∞. See Figure 4.

Considering n → ∞ and passing to a subsequence, by Lemmas 5 and 9, we can assume that
V n

min converges to a singleton set {p}, where p ∈ ∂U1,
Un

2 converges to a member of sim A or half-plane U⋆
2 that touches U1 at p,

Ûn
1 converges to a limit Û⋆

1 that touches U⋆
2 at p, as p ∈ Û⋆

1 and int(Û⋆
1 ∩ U⋆

2 ) = ∅,
Ûn

2 converges to a limit Û⋆
2 that touches U1 at p, as p ∈ Û⋆

2 and int(U1 ∩ Û⋆
2 ) = ∅,

V n
max converges to a member of sim A or half-plane V ⋆

max that touches both U1 and U⋆
2 .

It follows that the unique line tangent to both U1 and U⋆
2 at p splits the plane into two

half-planes H1 and H2 such that U1, Û⋆
1 ⊆ H1 and U⋆

2 , Û⋆
2 ⊆ H2.

Suppose that at least one of U⋆
2 , V ⋆

max is a member of sim A. By Lemma 8, there are
disks W n

1 and W n
2 (members of sim A) such that

W n
1 intersects V n

max, U1, and Ûn
2 ,

W n
2 intersects V n

max, Un
2 , and Ûn

1 ,
r(W n

1 ) → 0 and r(W n
2 ) → 0 as n → ∞.

SoCG 2023
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pU1

Û⋆
1

U⋆
2

Û⋆
2V ⋆

max

H1 H2

Figure 4 Situation from the proof of Lemma 11.

Considering n → ∞ and passing to a subsequence, we can assume that W n
1 → {q1} and

W n
2 → {q2}, where q1 ∈ V ⋆

max ∩ U1 ∩ Û⋆
2 and q2 ∈ V ⋆

max ∩ Û⋆
1 ∩ U⋆

2 . It follows that V ⋆
max

touches U1 at q1 and U⋆
2 at q2, whereas both q1 and q2 lie on the boundary line between H1

and H2. This is possible only when V ⋆
max = {q1} = {q2}, which is a contradiction.

Now, suppose that both U⋆
2 and V ⋆

max are half-planes (in particular U⋆
2 = H2). It follows

that they are disjoint half-planes (as they must have disjoint interiors), while Û⋆
2 ⊆ H2 = U⋆

2 ,
so V ⋆

max and Û⋆
2 are disjoint, which is again a contradiction. ◀

▶ Lemma 12. Let A be a convex disk and N be an infinite subset of N. For each n ∈ N ,
let L′

n be a graph which contains, as induced subgraphs, Ln and a fixed connected graph H

containing v1 such that u1 and u2 have no edges to any vertex of H. Let (Rn)n∈N be a
sequence such that Rn is a realization of L′

n in sim A for n ∈ N and V n
1 converges to a

convex disk V ⋆
1 . Then (Rn)n∈N has a subsequence in which

Un
1 and Un

2 converge to disjoint half-planes U⋆
1 and U⋆

2 ,
Ûn

1 and Ûn
2 converge to limits that touch U⋆

2 and U⋆
1 , respectively,

for every vertex w of H, Rn(w) converges to a convex disk or singleton set.

Proof sketch. By Lemma 9, the sequences (Un
1 )n∈N and (Un

2 )n∈N are anchored, and so
are the sequences (Ûn

1 )n∈N and (Ûn
2 )n∈N , so we can pass to a subsequence in which they

converge to limits U⋆
1 , U⋆

2 , Û⋆
1 , and Û⋆

2 , respectively. Moreover, by Lemma 9, U⋆
1 touches V ⋆

1
and Û⋆

2 at a common point, and U⋆
2 touches V ⋆

1 and Û⋆
1 at a common point. By Lemma 11,

r(Un
1 ) → ∞ and r(Un

2 ) → ∞, so U⋆
1 and U⋆

2 are disjoint half-planes. Simple induction shows
that we can further pass to a subsequence in which Rn(w) converges to a convex disk or
singleton set for every vertex w of H. ◀

5 Main construction

An n-chain aligned to parallel lines ℓ1, ℓ2 is an n-tuple A1, . . . , An of convex disks all touching
ℓ1 and ℓ2 and such that Ai ∩ Ai+1 ̸= ∅ for all i ∈ [n − 1]. The length of such an n-chain is
the length of the orthogonal projection of A1 ∪ · · · ∪ An on ℓ1 (or ℓ2) divided by dist(ℓ1, ℓ2).
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A

ε
2

ε
2

⩾ (n + 1)ε

ε
2

ε
2

Figure 5 Lemma 13 asserts that for every n ∈ N, if ε > 0 is sufficiently small, then the lengths of
the four green segments are at least (n + 1)ε.

Such an n-chain is strict if int(Ai ∩ Ai+1) ̸= ∅ for all i ∈ [n − 1]. A horizontal or vertical
n-chain is an n-chain aligned to horizontal or vertical lines, respectively. Before using the
n-chains to construct the key graph of our proof, we need the following lemma, which relies
on the assumption that A is smooth; see Figure 5 for an illustration.

▶ Lemma 13. For every convex disk A with bounding box [0, 1]2 and every n ∈ N, there
is ε0 > 0 such that for every ε ∈ (0, ε0), the lengths of the four segments A ∩ (R × { ε

2 }),
A ∩ (R × {1 − ε

2 }), A ∩ ({ ε
2 } × R), and A ∩ ({1 − ε

2 } × R) are at least (n + 1)ε.

For an illustration of the following construction, see Figure 6.

▶ Construction 14 (the graph GA,F
mn ). Let A be a convex disk with bounding box [0, 1]2. Let

F = hom A or F = sim A. Let m, n ∈ N with m ⩽ n. Let k ∈ N be minimal such that there
exist a strict horizontal k-chain and a strict vertical k-chain in F of length greater than m.
Let ε > 0 be as in Lemma 13 for A and n. The graph GA,F

mn has the following vertices and
the following interior-realization R̄ by members of F and half-planes:

R̄(vij) = 1
m A + ( i−1

m , j−1
m ) for (i, j) ∈ ([n] × [m]) ∪ ([m] × [n]),

R̄(u1j) = R× (−∞, j−1
m ] for j = 1, . . . , m+1 and R̄(u2j) = R× [ j

m , +∞) for j = 0, . . . , m,
R̄(ūi1) = (−∞, i−1

m ] ×R for i = 1, . . . , m + 1 and R̄(ūi2) = [ i
m , +∞) ×R for i = 0, . . . , m,

R̄(z1j), . . . , R̄(zkj) that form a strict horizontal k-chain in F with bounding box [−δ, 1 +
δ] × [ j−1

m , j
m ] for j = 1, . . . , m and some sufficiently small δ > 0,

R̄(z̄i1), . . . , R̄(z̄ik) that form a strict vertical k-chain in F with bounding box [ i−1
m , i

m ] ×
[−δ, 1 + δ] for i = 1, . . . , m and some sufficiently small δ > 0,
R̄(w) = A,
R̄(xij) = ε

m A + ( εi
m , j

m − ε
2m ) for i = 0, . . . , ⌈ n

ε ⌉ − 1 and j = 0, . . . , m,
R̄(x̄ij) = ε

m A + ( i
m − ε

2m , εj
m ) for i = 0, . . . , m and j = 0, . . . , ⌈ n

ε ⌉ − 1.

By Lemma 7, GA,F
mn has a realization in F . When considering a specific realization R of

GA,F
mn (possibly with a superscript), we write Vij , Uij , Ūij , Zij , Z̄ij , and W (with the same

superscript) as shorthand for R(vij), R(uij), R(ūij), R(zij), R(z̄ij), and R(w), respectively.
For m ∈ N and i, j ∈ [m], let Sm

ij = [ i−1
m , i

m ] × [ j−1
m , j

m ]. The following lemma asserts
basic properties of Construction 14.
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R̄(v64)

R̄(u14)

R̄(u24)

R̄(ū31) R̄(ū32)

R̄(z13), . . . , R̄(zk3)

R̄(z̄21), . . . , R̄(z̄2k)

R̄(xi0)

R̄(x̄4j)

R̄(w)

Figure 6 The interior-realization of the graph GA,sim
48 . The figure is not to scale; in reality, the

pink disks R̄(xij) and R̄(x̄ij) would be much smaller (and thus more numerous).

▶ Lemma 15. Let A, F , m, n, k be as in Construction 14. The following hold for GA,F
mn :

1. For every j ∈ [m], there is an induced subgraph isomorphic to Ln in which the vertices
u1j , u2j , u1(j+1), u2(j−1), and v1j , . . . , vnj play the roles of u1, u2, û1, û2, and v1, . . . , vn,
respectively; for every i ∈ [m], there is an induced subgraph isomorphic to Ln in which
the vertices ūi1, ūi2, ū(i+1)1, ū(i−1)2, and vi1, . . . , vin play the roles of u1, u2, û1, û2, and
v1, . . . , vn, respectively.

2. For every j ∈ [m], the subgraph induced on v1j , . . . , vmj , z1j , . . . , zkj is connected and con-
tains a path z1j · · · zkj ; for every i ∈ [m], the subgraph induced on vi1, . . . , vim, z̄i1, . . . , z̄ik

is connected and contains a path z̄i1 · · · z̄ik.
3. The vertices z11, . . . , z1m are adjacent to ū11, the vertices zk1, . . . , zkm are adjacent to

ūm2, the vertices z̄11, . . . , z̄m1 are adjacent to u11, and the vertices z̄1k, . . . , z̄mk are
adjacent to u2m.

4. The vertex w is adjacent to at least one of z1j , . . . , zkj for every j ∈ [m] and at least one
of z̄i1, . . . , z̄ik for every i ∈ [m]; for every u ∈ {u11, u2j , ū11, ūi2}, there is an induced
subgraph isomorphic to K2,n in which the vertices u and w form one of the parts of the
bipartition.

5. For all i, j ∈ [m], if Sm
ij ⊆ A, then vijw is an edge, and if vijw is an edge, then

Sm
ij ∩ A ̸= ∅.

An m-grid is a collection of two (m + 1)-tuples of parallel lines ℓ0, ℓ1, . . . , ℓm and
ℓ̄0, ℓ̄1, . . . , ℓ̄m that are images of horizontal lines at coordinates 0 = y0 < y1 < · · · < ym = 1
and m + 1 vertical lines at coordinates 0 = x0 < x1 < · · · < xm = 1, respectively, under an
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zℓ0

ℓ4

ℓ̄0

ℓ̄4

b

a

V32

Ū31
Ū32

U12

U22

Figure 7 An example of a 4-grid with aligned disks and half-planes.

affine transformation f : R2 ∋ (x, y) 7→ z + xa + yb ∈ R2 for some point z ∈ R2 called the
origin of the m-grid and some linearly independent vectors a, b ∈ R2 that form the basis of the
m-grid; see Figure 7. The differences x1 − x0, . . . , xm − xm−1 and y1 − y0, . . . , ym − ym−1 are
the horizontal and vertical distances of the m-grid, respectively. A configuration of convex
disks Vij with i, j ∈ [m] and half-planes U11, U21 . . . , U1m, U2m, Ū11, Ū12, . . . , Ūm1, Ūm2 is
aligned to such an m-grid if the following holds:

U1j = f(R × (−∞, yj−1]) and U2j = f(R × [yj , +∞)) for j ∈ [m],
Ūi1 = f((−∞, xi−1] × R) and Ūi2 = f([xi, +∞) × R) for i ∈ [m],
Vij touches the four half-planes U1j , U2j , Ūi1, Ūi2 for i, j ∈ [m].

The following lemma is at the heart of our argument. Among other things, it asserts that
in realizations of the graph GA,F

mn , the disks V n
ij , for i, j ∈ [m], are indeed forced to form an

aligned m-grid as n → ∞. This will be the foundation for the proofs of Theorems 1 and 2.

▶ Lemma 16. Let A and B be convex disks such that A has bounding box [0, 1]2. Let
F = hom A or F = sim A. Let m ∈ N. Let k ∈ N be minimal such that there exist a
strict horizontal k-chain and a strict vertical k-chain in F of length greater than m. Every
sequence (Rn)∞

n=m such that Rn is a realization of GA,F
mn in sim B and V n

11 is constant has a
subsequence in which the disks V n

ij with i, j ∈ [m], Un
1j , Un

2j with j ∈ [m], and Ūn
i1, Ūn

i2 with
i ∈ [m] converge to convex disks V ⋆

ij and half-planes U⋆
1j , U⋆

2j and Ū⋆
i1, Ū⋆

i2, respectively, that
are aligned to an m-grid, and the disks Zn

1j , . . . , Zn
kj with j ∈ [m], Z̄n

i1, . . . , Z̄n
ik with i ∈ [m],

and W n converge to convex disks Z⋆
1j , . . . , Z⋆

kj, Z̄⋆
i1, . . . , Z̄⋆

ik, and W ⋆, respectively, where
W ⋆ touches U⋆

11, U⋆
2m, Ū⋆

11, Ū⋆
m2.

Proof. Let (Rn)∞
n=m be a sequence of realizations Rn of GA,F

mn in sim B such that V n
11 is

constant. By Lemma 15 (1 and 2), we can apply Lemma 12 repeatedly as follows, in order:
with vertices u11, u21, u12, u20, and v11, . . . , vn1 playing the roles of u1, u2, û1, û2, and
v1, . . . , vn (respectively) in Ln, and with the graph H formed by v11, . . . , vm1, z11, . . . , zk1,
for each i ∈ [m], with vertices ūi1, ūi2, ū(i+1)1, ū(i−1)2, and vi1, . . . , vin playing the roles
of u1, u2, û1, û2, and v1, . . . , vn (respectively) in Ln, and with the graph H formed by
vi1, . . . , vim, z̄i1, . . . , z̄ik,
for each j ∈ [m]∖ {1}, with vertices u1j , u2j , u1(j+1), u2(j−1), and v1j , . . . , vnj playing the
roles of u1, u2, û1, û2, and v1, . . . , vn (respectively) in Ln, and with the graph H formed
by v1j , . . . , vmj , z1j , . . . , zkj .
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This yields a subsequence in which the disks V n
ij with i, j ∈ [m], Un

1j , Un
2j , Zn

1j , . . . , Zn
kj with

j ∈ [m], and Ūn
i1, Ūn

i2, Z̄n
i1, . . . , Z̄n

ik with i ∈ [m] converge to limits V ⋆
ij , U⋆

1j , U⋆
2j , Z⋆

1j , . . . , Z⋆
kj ,

and Ū⋆
i1, Ū⋆

i2, Z̄⋆
i1, . . . , Z̄⋆

ik, respectively, where
V ⋆

ij is a convex disk for i, j ∈ [m],
U⋆

1j and U⋆
2j are disjoint half-planes for j ∈ [m],

U⋆
1(j+1) and U⋆

2j touch and therefore share the boundary line, for j ∈ [m − 1],
Ū⋆

i1 and Ū⋆
i2 are disjoint half-planes for i ∈ [m],

Ū⋆
(i+1)1 and Ū⋆

i2 touch and therefore share the boundary line, for i ∈ [m − 1].
Let

ℓ0 = ∂U⋆
11, ℓj = ∂U⋆

1(j+1) = ∂U⋆
2j for j ∈ [m − 1], and ℓm = ∂U⋆

2m,
ℓ̄0 = ∂Ū⋆

11, ℓ̄i = ∂Ū⋆
(i+1)1 = ∂Ū⋆

i2 for i ∈ [m − 1], and ℓ̄m = ∂Ū⋆
m2.

It follows that the lines ℓ0, . . . , ℓm are parallel and occur in this order, and so do the lines
ℓ̄0, . . . , ℓ̄m. Consequently, they form an m-grid, the origin of which is the intersection point
of ℓ0 and ℓ̄0, and the basis vectors of which are the vectors from the origin to the intersection
point of ℓ0 and ℓ̄m and from the origin to the intersection point of ℓm and ℓ̄0. Furthermore,
Lemma 9 implies that V ⋆

ij touches U⋆
1j , U⋆

2j , Ū⋆
i1, Ū⋆

i2 for i, j ∈ [m]. This shows that the disks
V ⋆

ij with i, j ∈ [m], U⋆
1j , U⋆

2j with j ∈ [m], and Ū⋆
i1, Ū⋆

i2 with i ∈ [m] are aligned to the m-grid.
By Lemma 15 (4), for every n, the vertex w has an edge to at least one of the vertices

zij in GA,F
mn and therefore W n ∩ Zn

ij ̸= ∅. It follows that the sequence (W n)n∈N (where N

comprises the indices of the considered subsequence) is anchored and therefore, passing yet
to a subsequence, W n converges to a limit W ⋆. Moreover, by Lemma 15 (4) and Lemma 9,
W ⋆ touches U⋆

11, U⋆
2m, Ū⋆

11, Ū⋆
m2; in particular, it is a convex disk. ◀

6 Classifying intersection graphs of homothets

The proof of Theorem 1 is based on the following lemma.

▶ Lemma 17. Let A and B be convex disks such that A has bounding box [0, 1]2. If for all
m, n ∈ N with m ⩽ n, there is a realization of GA,hom A

mn in hom B, then there is an affine
transformation that maps A to B.

Before proving Lemma 17, let us see how Theorem 1 follows.

Proof of Theorem 1. Let A and B be convex disks. As we already observed, if A and B are
affine equivalent, then Ghom(A) = Ghom(B), because the affine transformation that maps A

to B transforms every realization in hom A to a realization of the same graph in hom B, and
vice versa. Now, suppose Ghom(A) = Ghom(B). We can assume without loss of generality
that the bounding box of A is [0, 1]2, otherwise we can apply an affine transformation to A

to obtain a convex disk with that bounding box; as observed before, such a transformation
does not change the intersection graphs realized in hom A. Now, since GA,hom A

mn ∈ Ghom(B)
for all m, n ∈ N with m ⩽ n, the lemma asserts that A and B are affine equivalent.

The last statement of the theorem asserts that when A and B are not affine equivalent,
then the classes of intersection graphs are not nested. Under this assumption, the lemma yields
GA,hom A

mn /∈ Ghom(B) for some m and n. Using the lemma with A and B interchanged, we
also have GB,hom B

mn /∈ Ghom(A) for m and n. Therefore, the graph classes are not nested. ◀

Proof of Lemma 17. For all m, n ∈ N with m ⩽ n, let Rmn be a realization of GA,hom A
mn in

hom B. We first fix m and consider the sequence of realizations (Rmn)∞
n=m. Without loss of

generality, V mn
11 is constant in this sequence. By Lemma 16, we can pass to a subsequence

such that the disks V mn
ij with i, j ∈ [m], Umn

1j , Umn
2j with j ∈ [m], and Ūmn

i1 , Ūmn
i2 with i ∈ [m]



M. Abrahamsen and B. Walczak 2:13

converge to disks V m⋆
ij ∈ hom B and half-planes Um⋆

1j , Um⋆
21 and Ūm⋆

i1 , Ūm⋆
i2 , respectively,

that are aligned to an m-grid, and the disks W mn converge to a disk W m⋆ ∈ hom B. It
follows that all V m⋆

ij with i, j ∈ [m] have the same radius, so the horizontal and vertical
distances of the m-grid are all equal to 1

m . Without loss of generality, the origin of the
m-grid is (0, 0) and r(W m⋆) = 1. Let am, bm ∈ R2 be the basis vectors of the m-grid, and
let fm : R2 ∋ (x, y) 7→ xam + ybm ∈ R2. It follows that V m⋆

ij ⊆ fm(Sm
ij ) for i, j ∈ [m] and

W m⋆ ⊆ fm([0, 1]2).
Recall that in Construction 14, the edges between w and the vertices vij with i, j ∈ [m]

are meant to “encode” the shape of A. The following two claims are implied by the existence
and non-existence of these edges in the realizations Rmn.

▷ Claim 17.1. There is a constant η > 0 such that ∥am∥ + ∥bm∥ ⩽ η for all m.

▷ Claim 17.2. For every ε > 0, if m is sufficiently large, then dH(W m⋆, fm(A)) ⩽ ε, where
dH denotes the Hausdorff distance.

Since ∥am∥ + ∥bm∥ ⩽ η (by Claim 17.1), we can find an infinite set of indices m such that
am and bm converge to vectors a⋆, b⋆ ∈ R2, respectively, as m → ∞ over that set of indices.
Let f⋆ : R2 ∋ (x, y) 7→ xa⋆+yb⋆ ∈ R2. We show that W m⋆ → f⋆(A) in Hausdorff distance. To
this end, let ε > 0, and let m be sufficiently large that dH(W m⋆, fm(A)) ⩽ ε

2 (by Claim 17.2)
and ∥am − a⋆∥ + ∥bm − b⋆∥ ⩽ ε

2 . Since A ⊆ [0, 1]2, we have dist(fm((x, y)), f⋆((x, y))) =
∥(am − a⋆)x + (bm − b⋆)y∥ ⩽ ∥am − a⋆∥ + ∥bm − b⋆∥ ⩽ ε

2 for every point (x, y) ∈ A, whence
it follows that dH(fm(A), f⋆(A)) ⩽ ε

2 . This yields dH(W m⋆, f⋆(A)) ⩽ dH(W m⋆, fm(A)) +
dH(fm(A), f⋆(A)) ⩽ ε. Since W m⋆ → f⋆(A), Lemma 5 yields f⋆(A) ∈ hom B, that is,
there is a homothetic transformation h : R2 → R2 that maps B to f⋆(A). We conclude that
h−1 ◦ f⋆ is an affine transformation that maps A to B. ◀

7 Classifying intersection graphs of similarities

For a convex disk A and n ∈ N, we define σA(n) as the maximum length of an n-chain in
sim A. The sequence (σA(n))∞

n=1 is subadditive, that is, σA(n1 + n2) ⩽ σA(n1) + σA(n2) for
all n1, n2 ∈ N. Indeed, in an (n1 +n2)-chain realizing the value σA(n1 +n2), the first n1 disks
form an n1-chain of length x1 ⩽ σA(n1), and the last n2 disks form an n2-chain of length
x2 ⩽ σA(n2), whence it follows that σA(n1 + n2) ⩽ x1 + x2 ⩽ σA(n1) + σA(n2). By Fekete’s
Subadditive Lemma [12], the limit limn→∞ σA(n)/n exists and is equal to infn∈N σA(n)/n.
We call this limit the stretch of A and denote it by ρA.

▶ Lemma 18. For every k ∈ N, ρAk ⩽ σA(k) ⩽ ρAk + σA(1).

The proof of Theorem 2 is based on the following lemma.

▶ Lemma 19. Let A and B be convex disks such that A has bounding box [0, 1]2 and ρA ⩾ ρB.
If for all m, n ∈ N with m ⩽ n, there is a realization of GA,sim A

mn in sim B, then B ∈ simr A.

Before proving the lemma, let us see how Theorem 2 follows.

Proof of Theorem 2. Let A and B be convex disks. As we have already observed, if B

is similar to A or to Ar, then Gsim(A) = Gsim(B), because the similarity transformation
(possibly with reflection) that maps A to B transforms every realization in sim A to a
realization of the same graph in sim B, and vice versa. Now, suppose Gsim(A) = Gsim(B).
We can assume without loss of generality that ρA ⩾ ρB. We can further assume that the
bounding box of A is [0, 1]2, otherwise we can rotate, scale, and translate A to obtain a disk
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βjy sin ϕ

L

ϕ

am

bm

Zm⋆
1j Zm⋆

kj

βjyσB(k) sin ϕ

βjy(σB(k) sin ϕ + |cos ϕ|)

Figure 8 To the left is shown the definition of the length L. To the right is shown a maximum k-
chain between two lines of distance βjy sin ϕ. It holds that x = ∥am∥ ⩽ L ⩽ βjy(σB(k) sin ϕ+|cos ϕ|).

with this bounding box, and that transformation does not change the intersection graphs
realized in sim A. Since GA,sim A

mn ∈ Gsim(B) for all m, n ∈ N with m ⩽ n, we get from the
lemma that B ∈ simr A, as claimed. ◀

Proof of Lemma 19. For all m, n ∈ N with m ⩽ n, let Rmn be a realization of GA,sim A
mn in

sim B. We first fix m and consider the sequence of realizations (Rmn)∞
n=m. Without loss of

generality, V mn
11 is constant in this sequence. By Lemma 16, we can pass to a subsequence

such that the disks V mn
ij with i, j ∈ [m], Umn

1j , Umn
2j with j ∈ [m], and Ūmn

i1 , Ūmn
i2 with i ∈ [m]

converge to disks V m⋆
ij ∈ hom B and half-planes Um⋆

1j , Um⋆
21 and Ūm⋆

i1 , Ūm⋆
i2 , respectively,

that are aligned to an m-grid, the disks Zmn
ij and Z̄mn

ij converge to disks Zm⋆
ij ∈ sim B

and Z̄m⋆
ij ∈ sim B, respectively, and the disks W mn converge to a disk W m⋆ ∈ sim B

that touches U⋆
11, U⋆

2m, Ū⋆
11, Ū⋆

m2. Without loss of generality, the origin of the m-grid is
(0, 0) and r(W m⋆) = 1. Let am, bm ∈ R2 be the basis vectors of the m-grid, and let
fm : R2 ∋ (x, y) 7→ xam + ybm ∈ R2. Let αm

1 , . . . , αm
m and βm

1 , . . . , βm
m be the horizontal and

vertical distances of the m-grid, respectively, where
∑m

i=1 αi =
∑m

j=1 βj = 1.

▷ Claim 19.1. There is a constant c > 0 (which depends only on B) such that for every m,
if x = ∥am∥, y = ∥bm∥, and ϕ ∈ (0, π) is the angle between am and bm, then

x
y ⩽ 1 + c

m , y
x ⩽ 1 + c

m , sin ϕ ⩽ 1 − c
m ,

i
m − 2c

m < α1 + · · · + αi < i
m + 2c

m for every i ∈ [m − 1],
j
m − 2c

m < β1 + · · · + βj < j
m + 2c

m for every j ∈ [m − 1].

The following claims are analogous to Claims 17.1 and 17.2.

▷ Claim 19.2. There is a constant η > 0 such that ∥am∥ + ∥bm∥ ⩽ η for all m.

▷ Claim 19.3. For every ε > 0, if m is sufficiently large, then dH(W m⋆, fm(A)) ⩽ ε.

Since ∥am∥ + ∥bm∥ ⩽ η (by Claim 19.2), we can find an infinite set of indices m such
that am and bm converge to vectors a⋆, b⋆ ∈ R2, respectively, as m → ∞ over that set of
indices. Let f⋆ : R2 ∋ (x, y) 7→ xa⋆ + yb⋆ ∈ R2. It follows from Claim 19.1 that ∥a⋆∥ = ∥b⋆∥
and the vectors a⋆ and b⋆ are orthogonal, so f⋆ is a similarity transformation or similarity
transformation with reflection. The same argument as in the proof of Lemma 17, using
Claim 19.3, shows that W m⋆ → f⋆(A) in Hausdorff distance. Since W m⋆ → f⋆(A), Lemma 5
yields f⋆(A) ∈ sim B, and we have f⋆(A) ∈ simr A, so B ∈ simr A. ◀
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8 Open problems

For our row construction to work, we need the disks to be smooth. In particular, Lemmas 5,
11, and 13 do not hold if A is not smooth. Distinguishing the classes of intersection graphs
for non-smooth convex disks remains an interesting question.

One may also consider the even larger class Gaff(A) of intersection graphs of disks that
are affine equivalent to a convex disk A and ask when Gaff(A) = Gaff(B) for two convex
disks A and B. Other classes that have so far not been investigated are the contact and
intersection graphs that can be obtained from rotated translations of a disk A, i.e., with no
scaling allowed.

References
1 Anders Aamand, Mikkel Abrahamsen, Jakob Bæk Tejs Knudsen, and Peter Michael Reichstein

Rasmussen. Classifying convex bodies by their contact and intersection graphs. In 37th
International Symposium on Computational Geometry (SoCG 2021), pages 3:1–3:16, 2021.
doi:10.4230/LIPIcs.SoCG.2021.3.

2 Jochen Alber and Jiří Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. Journal of Algorithms, 52(2):134–151, 2004. doi:
10.1016/j.jalgor.2003.10.001.

3 Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Panos Giannopoulos,
Eun Jung Kim, Paweł Rzążewski, Florian Sikora, and Stéphan Thomassé. EPTAS and
subexponential algorithm for maximum clique on disk and unit ball graphs. Journal of the
ACM, 68(2):9:1–9:38, 2021. doi:10.1145/3433160.

4 Édouard Bonnet, Nicolas Grelier, and Nicolas Miltzow. Maximum clique in disk-like intersection
graphs. In 40th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2020), pages 17:1–17:18, 2020. doi:10.4230/LIPIcs.
FSTTCS.2020.17.

5 Sergio Cabello and Miha Jejčič. Refining the hierarchies of classes of geometric intersection
craphs. Electronic Journal of Combinatorics, 24(1):P1.33, 19 pp., 2017. doi:10.37236/6040.

6 Marco Caoduro and András Sebő. Packing, hitting and coloring squares, 2022. arXiv:
2206.02185.

7 Ioannis Caragiannis, Aleksei V. Fishkin, Christos Kaklamanis, and Evi Papaioannou. A tight
bound for online colouring of disk graphs. Theoretical Computer Science, 384(2–3):152–160,
2007. doi:10.1016/j.tcs.2007.04.025.

8 Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhu-
ber. Intersection graphs of rays and grounded segments. Journal of Graph Algorithms and
Applications, 22(2):273–295, 2018. doi:10.7155/jgaa.00470.

9 Steven Chaplick, Stefan Felsner, Udo Hoffmann, and Veit Wiechert. Grid intersection graphs
and order dimension. Order, 35(2):363–391, 2018. doi:10.1007/s11083-017-9437-0.

10 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1–3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

11 Adrian Dumitrescu and Minghui Jiang. Piercing translates and homothets of a convex body.
Algorithmica, 61:94–115, 2011. doi:10.1007/s00453-010-9410-4.

12 Mihály Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen
mit ganzzahligen Koeffizienten. Mathematische Zeitschrift, 17:228–249, 1923. doi:10.1007/
BF01504345.

13 Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: breaking
the log n barrier. In 18th Annual European Symposium on Algorithms (ESA 2010), pages
243–254, 2010. doi:10.1007/978-3-642-15775-2_21.

14 Albert Gräf, Martin Stumpf, and Gerhard Weißenfels. On coloring unit disk graphs. Algorith-
mica, 20:277–293, 1998. doi:10.1007/PL00009196.

SoCG 2023

https://doi.org/10.4230/LIPIcs.SoCG.2021.3
https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1145/3433160
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.17
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.17
https://doi.org/10.37236/6040
https://arxiv.org/abs/2206.02185
https://arxiv.org/abs/2206.02185
https://doi.org/10.1016/j.tcs.2007.04.025
https://doi.org/10.7155/jgaa.00470
https://doi.org/10.1007/s11083-017-9437-0
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1007/s00453-010-9410-4
https://doi.org/10.1007/BF01504345
https://doi.org/10.1007/BF01504345
https://doi.org/10.1007/978-3-642-15775-2_21
https://doi.org/10.1007/PL00009196


2:16 Distinguishing Intersection Graphs of Homothets or Similarities of Two Convex Disks

15 Svante Janson and Jan Kratochvíl. Thresholds for classes of intersection graphs. Discrete
Mathematics, 108(1–3):307–326, 1992. doi:10.1016/0012-365X(92)90684-8.

16 Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam
Roditty, and Paul Seiferth. Dynamic connectivity in disk graphs, 2021. arXiv:2106.14935.

17 Seog-Jin Kim, Alexandr Kostochka, and Kittikorn Nakprasit. On the chromatic number of
intersection graphs of convex sets in the plane. Electronic Journal of Combinatorics, 11:R52,
12 pp., 2004. doi:10.37236/1805.

18 Seog-Jin Kim, Kittikorn Nakprasit, Michael J. Pelsmajer, and Jozef Skokan. Transversal
numbers of translates of a convex body. Discrete Mathematics, 306(18):2166–2173, 2006.
doi:10.1016/j.disc.2006.05.014.

19 Paul Koebe. Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen
der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse,
88:141–164, 1936.

20 Jan Kratochvíl and Jiří Matoušek. Intersection graphs of segments. Journal of Combinatorial
Theory, Series B, 62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.

21 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. Journal
of Combinatorial Theory, Series B, 103(1):114–143, 2013. doi:10.1016/j.jctb.2012.09.004.

22 Colin McDiarmid and Tobias Müller. The number of disk graphs. European Journal of
Combinatorics, 35:413–431, 2014. doi:10.1016/j.ejc.2013.06.037.

23 Irina G. Perepelitsa. Bounds on the chromatic number of intersection graphs of sets in the
plane. Discrete Mathematics, 262(1–3):221–227, 2003. doi:10.1016/S0012-365X(02)00501-0.

24 Oded Schramm. Combinatorically prescribed packings and applications to conformal and
quasiconformal maps, 2007. arXiv:0709.0710.

25 My T. Thai, Ning Zhang, Ravi Tiwari, and Xiaochun Xu. On approximation algorithms of
k-connected m-dominating sets in disk graphs. Theoretical Computer Science, 385(1–3):49–59,
2007. doi:10.1016/j.tcs.2007.05.025.

https://doi.org/10.1016/0012-365X(92)90684-8
https://arxiv.org/abs/2106.14935
https://doi.org/10.37236/1805
https://doi.org/10.1016/j.disc.2006.05.014
https://doi.org/10.1006/jctb.1994.1071
https://doi.org/10.1016/j.jctb.2012.09.004
https://doi.org/10.1016/j.ejc.2013.06.037
https://doi.org/10.1016/S0012-365X(02)00501-0
https://arxiv.org/abs/0709.0710
https://doi.org/10.1016/j.tcs.2007.05.025

	1 Introduction
	2 Preliminaries
	3 Convergence and limits
	4 Basic configurations
	5 Main construction
	6 Classifying intersection graphs of homothets
	7 Classifying intersection graphs of similarities
	8 Open problems

