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Abstract
For a finite set of balls of radius r, the k-fold cover is the space covered by at least k balls. Fixing the
ball centers and varying the radius, we obtain a nested sequence of spaces that is called the k-fold
filtration of the centers. For k = 1, the construction is the union-of-balls filtration that is popular in
topological data analysis. For larger k, it yields a cleaner shape reconstruction in the presence of
outliers. We contribute a sparsification algorithm to approximate the topology of the k-fold filtration.
Our method is a combination and adaptation of several techniques from the well-studied case k = 1,
resulting in a sparsification of linear size that can be computed in expected near-linear time with
respect to the number of input points.
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1 Introduction

Persistent homology [10,22,23] is a major branch of topological data analysis with applications,
for instance, in shape recognition [5], material science [34] and biology [29,35]. It studies the
homological properties of sequences of topological spaces. A standard construction is to take
the homogeneous union of balls, with increasing radius, centered at finitely many points of
Rd. We call these points sites and refer to that filtration as the union-of-balls filtration. For
computational purposes, one considers the homologically equivalent Čech filtration, which is
a sequence of simplicial complexes that captures the intersection patterns of the balls in the
union-of-balls filtration [22, Chap.3; 30].

The drawback of the Čech filtration (as well as of the closely-related Vietoris-Rips
filtration) is that for n sites, it consists of up to

(
n

m+1
)

m-simplices because every (m + 1)-
subset of balls intersects at a sufficiently large radius. A technique to overcome this large
size is to approximate the Čech (or Vietoris-Rips) filtration with another, much smaller
simplicial filtration with similar topological properties. Technically, that means that the
persistence modules induced by the homology of the Čech filtration and its approximation
are ϵ-interleaved for an arbitrary ϵ > 0 [12]. Several strategies have been devised to construct
such approximations with total size linear in n for any fixed ϵ (see related work). Many of
these approaches work by selecting only a subset of the simplices of the Čech filtration, in
which case we refer to the approximation as a sparsification.
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20:2 Sparse Higher Order Čech Filtrations

The union-of-balls filtration is a special case of the k-fold filtration built upon the k-fold
cover. For n sites in Rd and k ≥ 1 fixed, the k-fold cover is the subset of Rd consisting of
points contained in at least k balls of radius r centered at the sites. Besides being a natural
extension, k-fold filtrations are tightly related with the kth neighbor distance that arises in the
context of outlier removal and processing of non-homogeneous data densities [13,25,42,44].
For that reason, they have received increased attention recently, both with regards to
computational [17,24] and structural aspects [4].

For fixed k, the k-fold filtration can be equivalently expressed by its nerve, which is a
simplicial filtration called the kth order Čech filtration. It captures the intersection patterns
of all k-wise intersections of balls, which we call lenses. The aforementioned size issue for
Čech filtrations is even more important in the kth order case: the filtration is defined over(

n
k

)
vertices (one for each k-subset of sites) and consequently consists of

( (n
k)

m+1

)
m-simplices,

making it unrealistic to compute even for small values of n. Therefore we need to reduce its
size considerably while maintaining a good approximation quality.

Contributions. We propose the first sparsification of the k-fold filtration for a fixed k. It is
a simplicial filtration that, for n sites in Rd (with constant d) and a given parameter ϵ > 0,
is (multiplicatively) (1 + ϵ)-interleaved with the k-fold filtration. Moreover, the number of
m-simplices in our sparsification is

O

(
nkk(m+1)

(
96
ϵ

)δk(m+1)
)

, (1)

where δ is the doubling dimension of Rd. We point out that for constant k and ϵ, the size of
the filtration is linear in the number of sites. This is remarkable because the kth order Čech
filtration, which captures the k-fold filtration exactly, already contains

(
n
k

)
vertices. Hence

our construction avoids including the vast majority of lenses into the sparsification.
We give an output-sensitive algorithm to compute our sparsification up to dimension

mmax in

O

(
nk log n log Φ + Xkk+1

(
96
ϵ

)kδ

· mmax

)

expected time. Here Φ is the spread of the point set (i.e., the ratio of diameter and smallest
distance of two distinct points) and X is the size of the output complex, upper bounded
by (1) with m replaced by mmax. Again considering everything but n as constant, we get a
running time of O(n log n).

Techniques and related work. The seminal work by Sheehy [45] was the first one to
introduce a sparsification technique for Vietoris-Rips filtrations yielding linear size and
O(n log n) running time (assuming all other parameters as constant). His technique extends
to Čech complexes as well with minor adaptations. Subsequent work [6,8,11,19,46] introduces
several extensions, variations, and simplifications of Sheehy’s original sparsification; all these
works share essentially the same size and complexity bounds.

Our results are achieved by combining several of these techniques used for approximating
in the case k = 1, which required non-trivial adaptation for larger values of k. The main
idea is that for every site p, we define a removal radius such that, for radii larger than this
removal radius, all lenses involving p are ignored. That means, for larger and larger radii, we
construct simplicial complexes with fewer and fewer sites to keep the size small. To determine



M. Buchet, B. B. Dornelas, and M. Kerber 20:3

the removal radii of sites, we introduce the k-distance permutation which is an ordering of
the sites based on the distance to the kth closest neighbor. The k-distance permutation is a
generalization of the farthest point sampling [31] used in some sparsification schemes [19, 46]
and induces covering and packing properties analogous to those of nets.

Although we opted to extend sparsification techniques, there is an alternative line of
research by Choudhary et al. [14–16] that defines approximations of Čech complexes which
are not sparsifications. They arrive at slightly improved bounds than the sparsification for
k = 1. Approximate filtrations are also actively researched in practice [3, 7, 20,37,41].

The k-fold cover and the higher order Čech complexes are also studied with relation
to multiparameter persistence: considering the order k as a second varying parameter, we
obtain the multicover bifiltration. Blumberg and Lesnick [4] survey different multiparameter
persistence approaches and show a particularly strong stability result for multicovers.
Sheehy [44] introduces the barycentric bifiltrations, which is equivalent to the multicover but
whose size is prohibitively large. The question of computing the multicover bifiltration exactly
has been studied by Edelsbrunner and Osang [25], whose results have been refined by Corbet
et al. [17]. The latter authors obtain an equivalent bifiltration to the multicover one but has
total size (over all choices of k) O(nd+1) for n points in Rd [17, Prop. 5]. Their construction
rely on using higher order Voronoi diagrams and Delaunay complexes [26]. That reduces the
size of Čech complexes, but cannot lead to linear size without further improvements: the
Delaunay filtration’s d-skeleton is of size O(n⌈d/2⌉) [43], which is a substantial improvement
over the O(nd) size of the Čech d-skeleton, but still super-linear for d ≥ 3. Our approximation
foregoes those constructions to reduce the size dependency on n further, with the trade-off
that we get an exponential dependency on k.

The size reduction in our construction is a consequence of ignoring lenses after their
removal radius. The idea of removing a lens beyond a certain radius is justified geometrically
by the fact that the remaining lenses cover its entire area after a certain radius. This is
only true, however, if we freeze a lens before removing it, that is, keep it unchanged for a
short time while the surrounding lenses keep growing. This concept was already introduced
in [11], from where we also adapt the elegant technique of lifting the lenses to convex cones
in Rd × R. The additional dimension, which is the radius r, is needed because removing
simplices is not possible in filtrations.

The major geometric predicate for our computation is whether a set of balls is intersecting,
which can be dualized to computing the radius of the minimal enclosing ball of the ball’s
centers [21,27,28,38]. However, the aforementioned freezing of lenses makes this problem
technically more challenging. This question seems to be unaddressed in previous work, and
we give an efficient solution in the Euclidean setting.

Outline. Section 2 provides background definitions and results. Section 3 defines a k-
distance and uses it to construct the k-distance permutation of a point set P . In Section 4
the permutation is used to define a sparse lens filtration that approximates the k-fold cover.
That results in a nerve filtration that approximates the kth order Čech complex, as shown
in Section 5. The size bound of that filtration is given in Section 6. Section 7 provides an
algorithm for computing the discrete sparse Čech filtration. We conclude with Section 8.

2 Background

Lenses and k-fold covers. Given a point set P ⊆ Rd and a fixed k ∈ N, an element p ∈ P

is called a site and a k-subset of P is a subset with k sites. Let
(

P
k

)
be the collection of all

k-subsets of P and A ∈
(

P
k

)
. Let also Br(a) denote the closed ball centered at a of radius r.
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20:4 Sparse Higher Order Čech Filtrations

Figure 1 Example of 2- (left) and 3-fold (right) covers for a fixed radius.

The lens corresponding to the k-subset A at scale r is

Lr(A) :=
⋂

a∈A

Br(a).

The k-fold cover of P at scale r is the union of lenses at scale r over all k-subsets:

L(r, P ) :=
⋃

A∈( P
k )

Lr(A).

See Figure 1 for an example. Note the omission of k, which we consider fixed, in the notation.
When P is clear from context, we drop it from the notation as well and write Lr instead.

Nerves. We assume that the reader is familiar with (abstract) simplicial complexes [22,
Chap. 3]. For a finite collection C of subsets of Rd, we can define a simplicial complex with
vertex set C, called the nerve of C, as the set of all subsets of C that have a non-empty
mutual intersection. Note that the nerve can contain simplices of larger dimension than d.
The nerve of the set of all lenses of k-subsets of P at scale r is called the kth order Čech
complex with radius r over P , denoted by Čechr (P, k).

Filtrations and equivalence. A collection of topological spaces (e.g., subsets of Rd) C =
{Cr}r≥0 is called a filtration if for all r ≤ r′, it holds that Cr ⊆ Cr′ . The letter r denotes the
scale parameter of the filtration. For P and k fixed, the previous concepts yield two different
ways of obtaining filtrations. On the one hand, since Lr ⊆ Lr′ for r ≤ r′, we get the k-fold
filtration L := {Lr}r≥0. On the other hand, we observe that Čechr (P, k) is a subcomplex of
Čechr′ (P, k) for r ≤ r′ and hence we get the kth order Čech filtration {Čechr (P, k)}r≥0.

Let C and D be two filtrations. We say that C is (homotopy) equivalent [40, Chap. 9]
to D if there exists a family of maps {fr : Cr → Dr}r≥0 that are homotopy equivalences of
spaces and additionally commute with the inclusion maps of C and D.

Interleaving and approximations. Let ϵ ≥ 0. Two filtrations C and D are (multiplicatively)
(1 + ϵ)-interleaved if there exist families of linear maps f·, g· such that the diagram

Cr Cr(1+ϵ)2 Cr(1+ϵ)4

Dr(1+ϵ) Dr(1+ϵ)3

fr fr(1+ϵ)2

gr(1+ϵ) gr(1+ϵ)3
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commutes for all r. Informally, interleaved filtrations with small ϵ are good approximations of
each other because every Dr sits in between two instances of C with close-by scale parameters.

If {Cr}r≥0, {Dr}r≥0 are (1+ϵ1)-interleaved and {Dr}r≥0, {Er}r≥0 are (1+ϵ2)-interleaved,
then {Cr}r≥0 and {Er}r≥0 are (1 + ϵ1)(1 + ϵ2)-interleaved. Moreover, if Cr ⊆ Dr ⊆ Cr(1+ϵ)
for all r ≥ 0, then C and D are (1 + ϵ)-interleaved.

A filtration C is a (1 + ϵ)-approximation of another filtration D if there exist filtrations C′

and D′ such that C′ is equivalent to C, D′ is equivalent to D and C′ and D′ are (1+ϵ)-interleaved.
This is a symmetric relationship, so we can say that C and D are (1 + ϵ)-approximate. If
additionally Cr ⊆ Dr for all r ≥ 0 we call C a (1 + ϵ)-sparsification of D. We point
out that an approximation between two filtrations implies interleaved persistence modules
(see [22, Chap. 7]) in the sense of [12].

The Persistent Nerve Theorem. Consider a finite index set I and a family of filtrations
{U

(i)
r }r≥0 over Rd, one for each i ∈ I. The union filtration is {Ur}r≥0, where Ur :=

⋃
i∈I U

(i)
r ,

and the nerve filtration is {Nr}r≥0, where Nr is the nerve of Ur. The Persistent Nerve
Theorem [2, Thm. 3.9] states that if every U

(i)
r is closed and convex, then {Ur}r≥0 and

{Nr}r≥0 are equivalent. As a consequence, the Persistent Nerve Theorem implies that the
k-fold and the kth order Čech filtrations are equivalent: choose I as the set of all k-subsets
of P and U

(i)
r as the lens indexed by i at radius r, which is a closed and convex set.

Doubling dimension. The doubling constant ∆ of Rd is such that any ball of radius r can
be covered with at most ∆ balls of radius r/2, for all r ≥ 0. The doubling dimension of Rd

is δ := log2 ∆, which is of order Θ(d) and hence constant for this paper. Note that for finite
point sets in Rd the doubling dimension can be significantly smaller than d, for instance if
the points all lie close to a low-dimensional subspace.

To cover a ball B of radius r with balls of radius r/4, one needs at most ∆2 balls;
with balls of radius r/8 one needs ∆3 balls and so on. Thus, to cover B with balls of
radius r′, we have to find the smallest t such that r/2t ≤ r′. That is t = ⌈log2 r/r′⌉. Then,
∆t ≤ ∆log2 r/r′+1 = 2δ (r/r′)δ and (2r/r′)δ balls of radius r′ are sufficient to cover B.

Quadtreaps. A quadtreap [39] is a dynamic data structure for spherical range search. We
summarize its properties in a simplified form suitable for us: for a set X of n points in Rd

(with d constant), it can be built in O(n log n) expected time. It supports deletions of points
in X in expected O(log n) time. Moreover, given a query point q and a radius r, it returns
a list S ⊆ X which is guaranteed to contain all points in X of distance ≤ r from q, and is
guaranteed not to contain any point in X of distance ≥ 2r from q. The running time for
such a query is O(log n + |S|).

3 k-distance permutation

Given some integer k ≥ 1 and a finite data set P ⊆ Rd of n ≥ k sites, we define an order
on the points in P in which the sites are denoted by p1, . . . , pn. Writing Pi := {p1, . . . , pi},
our order ensures that the k-fold cover over Pi approximates the k-fold cover over P , with
increasing approximation quality when i increases.

The k-distance of x ∈ Rd to P , denoted by dk(x, P ), is the distance from x to its kth
closest neighbor in P . We define the k-distance permutation incrementally as follows: we
choose p1, . . . , pk as arbitrary, pairwise distinct sites from P . If p1, . . . , pi−1 are chosen for

SoCG 2023



20:6 Sparse Higher Order Čech Filtrations

k < i ≤ n, we set

pi := argmax
q∈P \Pi−1

dk(q, Pi−1).

Note that for k = 1, we obtain the well-known farthest point sampling. We also define

λi := dk(pi, Pi−1)

for k + 1 ≤ i ≤ n and set λ1, . . . , λk to ∞, so that the sequence (λ1, λ2, · · · , λn) is non-
increasing. The next two properties of the k-distance permutation are reminiscent of the
packing and covering properties of ϵ-nets [47, Chap. 14].

▶ Lemma 1 (Covering). For all k ≤ i ≤ n − 1, we have L(r, Pi) ⊆ L(r, P ) ⊆ L(r + λi+1, Pi).

Proof. Recall the notation Lr = L(r, P ). Pi ⊆ P immediately implies L(r, Pi) ⊆ Lr.

Consider x ∈ Lr. Then, x ∈ Lr(A) for some A = {a1, a2, . . . , ak} ⊆ P . If A ⊆ Pi, the
result follows. Otherwise, without loss of generality let a1 /∈ Pi. By definition of λi+1,
dk(a1, Pi) ≤ λi+1 and hence there are sites b1, b2, . . . , bk ∈ Pi with d(a1, bj) ≤ λi+1 for all
1 ≤ j ≤ k. Consequently, d(x, bj) ≤ d(x, a1) + d(a1, bj) ≤ r + λi+1 and the k closest sites to
x in Pi are within distance r + λi+1 of x, implying x ∈ L(r + λi+1, Pi). ◀

▶ Lemma 2 (Packing). For all k + 1 ≤ i ≤ n, each p ∈ Pi has dk(p, Pi \ {p}) ≥ λi/2.

Proof. We do induction on i. For i = k + 1, let q be the kth closest neighbor of pk+1 in Pk.
We have dk(pk+1, Pk+1 \ {pk+1}) = λk+1 ≥ λk+1/2 and, for any p ∈ Pk+1 \ {pk+1},

dk(p, Pk+1 \ {p}) = max
p′∈Pk+1\{p}

d(p, p′) ≥ d(p, q) + d(p, pk+1)
2 ≥ d(q, pk+1)

2 = λk+1

2 .

Hence the statement is true for i = k + 1. Next we assume, for some i ≥ k + 1, that for
every p ∈ Pi, dk(p, Pi \ {p}) ≥ λi/2, and show the statement for i + 1.

For pi+1, we have dk(pi+1, Pi+1 \ {pi+1}) = λi+1 ≥ λi+1/2 and the statement follows.
Consider p ∈ Pi+1 \ {pi+1}. If pi+1 is not among the k nearest neighbors of p in Pi+1, then

dk(p, Pi+1 \ {p}) = dk(p, Pi \ {p}) ≥ λi

2 ≥ λi+1

2

by the induction hypothesis and because the λ-values are non-increasing. Otherwise, pi+1 is
among the k nearest neighbors of p in Pi+1 \ {p} and dk(p, Pi+1 \ {p}) ≥ d(p, pi+1).

If d(p, pi+1) ≥ λi+1/2, the claim follows. Otherwise, every site at distance smaller than
λi+1/2 of p is at distance smaller than λi+1 of pi+1. Since λi+1 = dk(pi+1, Pi), there can be
at most k − 2 sites of Pi \ {p} at distance smaller than λi+1 of pi+1. Thus, counting pi+1 as
well, there can be at most k − 1 sites of Pi+1 \ {p} at distance smaller than λi+1/2 of p and
it follows that dk(p, Pi+1 \ {p}) ≥ λi+1/2. ◀

Computation. We give a simple algorithm for computing the k-distance permutation that
has quadratic running time in the number of input points and discuss an approach for
improving it. We call a site ordered if it has already been assigned its index in the k-distance
permutation and unordered otherwise.

The simple approach is the following. Pick k sites p1, . . . , pk and compute, for each
y ∈ P \ Pk, the distances from y to pi, 1 ≤ i ≤ k. Store them in a max-heap Ty that also
has a fixed entry identifying y. Up until this point we need O(nk) time. The next steps
are repeated iteratively. For all unordered y, group the Ty in a list L. When p1, . . . , pi−1
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are chosen, the algorithm picks pi by scanning over L and choosing the point with largest
distance to its kth nearest ordered neighbor, which takes O(n) time. When pi is picked and
becomes ordered, remove its entry from L. Then, by traversing all remaining elements in
L, identify each unordered y with pi among y’s k nearest neighbors in Pi and insert d(pi, y)
to Ty. The (k + 1)-distance from y to the ordered sites, which was a previous entry in Ty,
is removed. This takes O(log k) time per element of L and hence O(n log k) per iteration.
Since there are n iterations, the total running time is of O(n2 log k).

This simple algorithm can be improved with the main insight that when pi is determined,
the kth nearest ordered neighbor of all remaining unordered sites is at most λi away. Hence,
unordered sites further than λi away from pi do not have to be updated. Whenever a site pi

is ordered, we can employ a quadtreap (Section 2) to only update the unordered sites within
distance λi. This last step can also be done in general metric spaces with elementary but
rather tedious techniques; see [33, Sec. 3.1]. Using the packing property, the total number of
updates reduces to O(nk log Φ) (with a constant that depends exponentially on the doubling
dimension of the point set). Finally, we replace the list L by a max-heap to avoid the linear
scan to search for the next ordered points. Appendix A of [9] provides further details on how
to achieve this improvement, which results in the next theorem.

▶ Theorem 3. The k-distance permutation can be computed in expected time O(nk log n log Φ)
with Φ the spread of the point set.

4 A sparse union of lenses

We define several spaces in this section and the following. Figure 2 has an overview.
Recall that the k-fold cover is defined as the union of all lenses at radius r, where every

lens is given by k sites. For large values of r, most of these lenses intersect, yielding a size
explosion in its nerve, the kth order Čech complex. At the same time, many lenses are
eventually covered by the union of other lenses and so may be removed from consideration.

To define the precise threshold for removal of a lens, recall that in Section 3 we ordered the
sites as p1, . . . , pn and obtained values λ1, λ2, . . . , λk = ∞, λk+1 ≥ . . . ≥ λn. Fix ϵ ∈ (0, 1].
Since it is fixed, we drop ϵ from the upcoming notation. The freezing radius of a site pi is

frz (pi) := (1 + ϵ)λi

ϵ
.

We extend the definition to lenses by setting frz (A) = min
p∈A

frz (p) . Then at radius r we only
consider lenses whose freezing radius is at least r and set

Ur :=
⋃

frz(A)≥r

Lr(A).

Notice that U := {Ur}r≥0 is not a filtration: Figure 3 illustrates that Ur might not be a
subset of Ur′ for r < r′. Even so, some useful inclusions hold as we see on the next lemma.

▶ Lemma 4. Ur ⊆ Lr ⊆ U(1+ϵ)r.

Proof. The first inclusion is clear. For the second inclusion, consider x ∈ Lr and let i be the
maximal index such that

r ≤ λi

ϵ
. (∗)
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a
b

c

d

Lr

a
b

c

d

Ur

{Ur}r≥0 is not a filtration

a
b

c

d

L̃r

r

a

b
c

d

Cr

ab
ac

cd

bc
bd

Sr

ab
ac

cd

bc
bd

Dr

(1 + ϵ)-interleaved

equivalent

(1 + ϵ)-interleaved

equivalent

Figure 2 Schematical view of the different filtrations introduced in Sections 4 and 5. We consider
k = 2, r > (1 + ϵ) frz (a) and r ∈ (frz (d) , (1 + ϵ) frz (d)].

c

b

a

c

a

b

Figure 3 Example in R2 with k = 2. Left: Ur at radius r = frz (c) . Right: Ur′ at radius
immediately after frz (c). Even though r < r′, Ur ⊈ Ur′ .

If i = n, then there is A ⊆ Pn with x ∈ Lr(A) because x ∈ Lr and P = Pn. By definition of
the freezing radius and inequality (∗), frz (A) ≥ frz (pi) = (1 + ϵ)λi/ϵ ≥ r(1 + ϵ) and thus
Lr(1+ϵ)(A) ⊆ U(1+ϵ)r. Since Lr(A) ⊆ L(1+ϵ)r(A), the result follows.

For i < n, notice that the Covering Property (Lemma 1) guarantees that x is contained
in a lens Lr+λi+1(A) for some A ⊆ Pi. Since i is maximal, λi+1/ϵ < r and so Lr+λi+1(A) ⊆
L(1+ϵ)r(A). Moreover, A ⊆ Pi and inequality (∗) imply frz (A) ≥ frz (pi) ≥ (1 + ϵ)r. Hence
the lens of A contributes to U(1+ϵ)r and as it contains x, the statement follows. ◀
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This lemma suggests that a (1 + ϵ)-interleaving with the filtration L = {Lr}r≥0 consisting
of all lenses should be possible if we adjust U to obtain an actual filtration. To do that we
slightly delay the removal of lenses. More precisely, we define

L̃r(A) :=


Lr(A) r < frz (A)

Lfrz(A)(A) frz (A) ≤ r ≤ (1 + ϵ) frz (A)

∅ (1 + ϵ) frz (A) < r.

One can visualize the evolution of a lens as a continuous process for increasing r: the lens
L̃r grows until it reaches its freezing radius and remains unchanged (it is “frozen”) for the
interval [frz (A) , (1 + ϵ) frz (A)]. Afterwards it completely disappears. We call (1 + ϵ) frz (A)
the removal radius of A. The construction is an adaptation of a similar one by Sheehy [45].

We write L̃r for the union of L̃r(A) over all A ∈
(

P
k

)
and L̃ := {L̃r}r≥0. We show next

that L̃ is a filtration.

▶ Lemma 5. L̃ is a filtration, i.e., for any r ≤ r′, L̃r ⊆ L̃r′ .

Proof. If the interval (r, r′] does not contain any removal radius, L̃r ⊆ L̃r′ because the
inclusions hold lens-wise. Since the number of different removal radii is bounded by the
number of sites and hence finite, it suffices to show that at a removal radius s, any lens that
is removed is already covered by lenses that are not being removed at s. In fact, we show
that such a lens is covered by lenses that are not yet frozen at s.

Let A be the k-subset associated with a lens being removed at s and x ∈ L̃s(A). By
definition, s = (1 + ϵ)t with t = frz (A). This implies that x ∈ L̃t(A) = Lt(A) ⊆ Lt because
the lens is frozen from radius t on. By Lemma 4, it follows that x ∈ U(1+ϵ)t = Us, and
therefore x is contained in a lens Ls(B) with frz (B) ≥ s. Thus L̃s(A) is covered by lenses
Ls(B) with frz (B) ≥ s and L̃ is a filtration. ◀

▶ Lemma 6. L̃ and L are (1 + ϵ)-interleaved.

Proof. We show that L̃r ⊆ Lr ⊆ L̃(1+ϵ)r. Note that by definition, L̃r ⊆ Lr. For the second
inclusion, observe that Ur ⊆ L̃r follows directly from their definition. Then, Lemma 4 yields
Lr ⊆ U(1+ϵ)r ⊆ L̃(1+ϵ)r. ◀

5 A sparse simplicial filtration

Since L̃r(A) is closed and convex for every r, the nerve of all (non-empty) L̃r(A) yields a
simplicial complex with the same homotopy type as the k-fold cover at radius r. However,
the collection of simplicial complexes obtained when varying r does not form a filtration
because simplices disappear from the nerve when passing a removal radius. To overcome this
problem, we adapt a construction of Cavanna et al. [11] that is similar to a function’s graph.

Cones. The idea is to “stack-up” the lenses L̃r(A) for all radii: the cone of A at radius r is

Cr(A) :=
⋃

α∈[0,r]

(
L̃α(A) × {α}

)
⊆ Rd × R.

We write Cr for the union of Cr(A) over all A ∈
(

P
k

)
. Figure 4 shows one cone.

▶ Lemma 7. The filtrations C = {Cr}r≥0 and L̃ are equivalent.

SoCG 2023
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r

Figure 4 A cone representing the evolution of a lens for k = 2. At first the lens grows, until it is
frozen. Then, the lens has static size and afterwards it disappears. At the radius where the lens
disappears, it is completely covered by other lenses (which are not displayed in the figure).

Proof. In the same sense as above Cr is a stacked-up version of L̃α for all α ≤ r, and we can
consider L̃r as a subspace of Cr via the map x 7→ (x, r) for x ∈ L̃r. Since L̃ is a filtration, there
is a strong deformation retraction R from Cr to L̃r, given by R((x, α), t) = (x, (1 − t)α + tr),
which naturally commutes with the canonical inclusions. The result follows. ◀

We define the nerve of the cones as the sparse kth order Čech complex,

Sr := Nrv
{

Cr(A) | A ∈
(

P

k

)}
.

Sr is a subcomplex of the kth order Čech complex for every r because L̃r ⊆ Lr. Moreover, if
r ≤ r′, Cr(A) ⊆ Cr′(A) for all A. Hence S = {Sr}r≥0 is a filtration. By the Persistent Nerve
Theorem [2, Thm. 3.9] and Lemmas 6 and 7 we obtain:

▶ Lemma 8. The filtrations S and C are equivalent. As a consequence, S is a (1 + ϵ)-
approximation of the k-fold filtration.

Discretization of the radius. The filtration S is challenging to compute, due to the freezing
of lenses. We elaborate on these issues in Section 7. We now define a variant of S which is
easier to compute and also is (1 + ϵ)-interleaved with the k-fold filtration.

Recall that the filtrations L̃, C and S are defined based on the freezing radii of sites,
which depend on a parameter ϵ > 0. To obtain a (1 + ϵ)-approximation for ϵ ∈ (0, 1]
in the end, we consider the above construction of S with parameter ϵ′ = ϵ

3 , obtaining a
(1 + ϵ

3 )-approximation of the k-fold filtration.
Next, for every r ≥ 0, let z ∈ Z be such that (1 + ϵ

3 )z ≤ r < (1 + ϵ
3 )z+1 and define

Dr := S(1+ϵ/3)z .

We call D := {Dr}r≥0 the discrete sparse kth order Čech filtration. It is formed by a discrete
set of snapshots of S and kept unchanged except when passing over a snapshot radius (this
is also referred to as the Left Kan extension of a discrete filtration [36, Chap. 10]).

▶ Theorem 9. D is a (1 + ϵ)-approximation of the k-fold filtration.

Proof. From the definition, Dr ⊆ Sr ⊆ D(1+ϵ/3)r. This interleaving implies that D is a
(1 + ϵ

3 )-approximation of S. Since S is a (1 + ϵ
3 )-approximation of the k-fold filtration, by

transitivity, we get that Dr is a (1 + ϵ
3 )2-approximation of the k-fold filtration. The result

follows by noting that (1 + ϵ
3 )2 ≤ 1 + ϵ for all ϵ ∈ (0, 1]. ◀
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6 Size analysis

We bound the size of D, i.e., the number of simplices it contains. Since Dr ⊆ Sr for all r ≥ 0,

it is enough to bound the size of S with parameter ϵ′ = ϵ/3. Let

C∞(A) :=
⋃
r≥0

Cr(A)

be the cone of A (without dependence on a radius). Then, the size of S equals the size of the
nerve of the cones C∞(A), where A ranges over all k-subsets of sites. However, the number
of vertices is not necessarily

(
n
k

)
because many cones are empty: this happens in particular

when the smallest radius for which the balls around the sites of A intersect is larger than
the removal radius of the lens. In fact, our argument shows that this is the case for the vast
majority of cones. The proof for vertices extends readily to the case of m-wise intersections of
cones, i.e. for (m − 1)-simplices, without change and thus we treat the general case directly.

For fixed m ≥ 1, we derive an upper bound for the number of sets {A1, . . . , Am} such
that the cones C∞(A1), . . . , C∞(Am) intersect. Such sets are in one-to-one correspondence
to the (m − 1)-simplices of the sparse kth order Čech filtration, hence we refer to these sets
as (m − 1)-simplices. Let σ = {C∞(A1), . . . , C∞(Am)} be a (m − 1)-simplex and the set of
sites P be ordered according to the k-distance permutation. We call a site pi involved in σ if
pi belongs to one of the sets A1, . . . , Am. Note that there are at most km sites involved in
σ. We say that σ is associated to a site pi if pi is involved in σ and all other involved sites
have index smaller than i. Our strategy is to upper bound the number of (m − 1)-simplices
associated to an arbitrary pi. We only need to consider simplices associated to pi that appear
in the filtration, i.e., simplices whose defining cones intersect.

Fix pi and ωi := (1 + ϵ′) frz (pi). Let B denote the ball of radius 2ωi centered at pi.

▶ Lemma 10. If σ := {C∞(A1), . . . , C∞(Am)} is an (m − 1)-simplex associated to pi whose
cones intersect, then all sites involved in σ are contained in B.

Proof. Let α denote the minimal radius such that all the balls around sites involved in σ

intersect. This is the radius of the minimum enclosing ball of the involved sites. Any common
intersection of the cones must happen at scale r ≥ α.

On the other hand, assume wlog that pi ∈ A1. Since pi has maximal index in A1, we have
that frz (A1) = frz (pi). Hence the removal radius of A1 is equal to ωi and it follows that the
cone of A1 is empty for all radii greater than ωi. Therefore any common intersection of the
cones of σ must happen at scale r ≤ ωi. Hence, as we assume that the cones do intersect, we
must have that α ≤ ωi.

Then, since d(q, pi) ≤ 2α, any involved site q lies within distance 2ωi from pi. ◀

Hence the involved sites of σ are close to pi in the sense of the lemma. We can furthermore
guarantee that the points of Pi are not too densely packed in B using the packing property
of the k-distance permutation.

▶ Lemma 11. The ball B contains at most Γ := k

(
96
ϵ

)δ

sites of Pi = {p1, . . . , pi}, where

δ is the doubling dimension of Rd.

Proof. We cover B by balls of radius λi/4. That can be done with at most ζ =
(

16(1 + ϵ′)2

ϵ′

)δ

balls (see Doubling Dimension in Section 2). By the Packing Lemma 2, each open ball of
radius λi/4 contains at most k sites of Pi, thus the total number of sites in B is at most kζ.
The bound follows because ϵ′ = ϵ

3 and ϵ ≤ 1, hence (1 + ϵ′)2 ≤ 16
9 < 2. ◀
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Bounding the number of non-empty m-intersections of cones is now a matter of simple
combinatorics. Recall the Γ notation from Lemma 11.

▶ Theorem 12. The number of (m − 1)-simplices of the sparse kth order Čech complex with
non-empty cone intersection is at most

n · Γkm = nkkm

(
96
ϵ

)δkm

.

Proof. Fix pi. Every (m − 1)-simplex associated to pi with non-empty cone intersection has
up to km involved sites, which all lie in B by Lemma 10. Moreover, all involved sites are in
Pi and, by Lemma 11, there are at most Γ of those sites in B to choose from. It follows that
there are at most Γkm different choices possible. This upper bound holds for every pi, so
multiplying by the number of sites n yields the result. ◀

We remark that the bounds on this section are not tight and slightly better ones could
be easily achieved, by keeping binomials in place or avoiding some approximations. However
the improvements would be minor.

7 Computation

We now present an algorithm to construct the discrete sparse Čech filtration. As in the
previous sections, let us fix a finite set P ⊆ Rd, an integer k > 0 and ϵ ∈ (0, 1]. Assume that
P = {p1, . . . , pn} has the indices ordered with respect to the k-distance permutation, and
that we have computed the corresponding values λ1, . . . , λn as discussed in Section 3. The
algorithm outputs the discrete sparse kth order Čech filtration {Dr}r≥0 as a list of simplices
with their corresponding critical value, i.e., the smallest parameter value r for which the
simplex is part of the filtration. Note that by definition of the discrete sparse Čech filtration,
every critical value is of the form (1 + ϵ/3)z for some integer z.

Friends. Our algorithm follows the approach and notation of Section 6. For every pi, we
compute all simplices associated to pi in the filtration together with their critical value. To
do so, we first find, among p1, . . . , pi−1, all sites of distance at most 2ωi from pi, where
ωi = (1 + ϵ′) frz (pi) (compare Lemma 10). We call these points friends of pi. We compute
friends using a quadtreap data structure, as introduced in Section 3, which we query for every
pi at 2ωi. pi is added to the quadtreap after the ith iteration (adding an element costs O(log n)
in expectation as well). Hence the expected running time for this loop is O(n log n + Σ),
where Σ is the number of reported points. These reported points have distance at most 4ωi

from the respective pi (since the queries are approximate), and by the same argument as

in Lemma 11, the number of sites reported for pi is at most k

(
192
ϵ

)δ

= O(k(1/ϵ)δ). We

traverse the list and remove all “false friends” of distance more than 2ωi. Thus we get the
friends of pi for all sites pi in expected time

O(n log n + nk(1/ϵ)δ). (2)

Note that the number of friends is bounded by Γ as defined in Lemma 11.

Vertices. Next, we compute the vertices of the filtration associated to pi, for each i ≥ k.
We proceed by brute-force, just enumerating all k-tuples formed by pi and k − 1 of its friends
and checking for every k-tuple whether their cone is non-empty. The last condition is simple
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to check, as the cone is non-empty if and only if the radius α of the minimum enclosing
ball of the k sites is at most frz (pi). In this case, the critical radius of the vertex is set to
(1 + ϵ/3)z, where z is the smallest integer such that (1 + ϵ/3)z ≥ α. Computing α and z per
vertex requires O(k) in expectation [18]. Hence we calculate all vertices in O((n − k)kΓk−1)
time.

Simplices. For higher-dimensional simplices associated to pi, we proceed inductively by
dimension, up to a maximal dimension mmax. Fix a (m − 1)-simplex σ = {A1, . . . , Am}
associated to pi. We compute all cofacets of σ in the filtration, that is, all m-simplices that
contain σ and one further vertex Am+1. Notice that one could order the k-subsets and avoid
computing all cofacets, computing instead only cofacets with larger index in the ordering.
This would remove a k factor from the computation expected time locally, but does not
change the final bound in Theorem 13, which has a kk factor. We compute all cofacets for
simplicity. Since each element of Am+1 is either a friend of pi or pi itself, we enumerate all
k-tuples consisting of these sites and check whether they form a vertex of the filtration. This
takes O(k) time per vertex, just by re-doing the check from the previous step, except that
k-tuples associated to pj must be checked at radius min{frz (pj) , ωi}. That is because if the
k-tuple cone becomes non empty only after ωi, then it cannot contribute to a coface of σ.

For a vertex Am+1 of the filtration, check whether the cones of A1, . . . , Am+1 intersect
is technically challenging because the cones might intersect for a radius where one or
several cones are frozen. One cannot resolve this question by a simple minimal enclosing
ball computation. In fact, we are not aware of an efficient way to compute the smallest
intersection radius of such cones in general. However, as demonstrated in [9, App. B], given
a collection of cones A1, . . . , Am+1 and a fixed radius r, we can decide whether the cones
(or rather, the corresponding lenses L̃r) intersect at radius r by a reduction to a minimum
enclosing ball of balls instance [28] in expected O(k(m + 1)) time. We use this predicate
and query whether the cones intersect at the smallest removal radius of A1, . . . , Am+1. That
decides whether the m-simplex is in the filtration, and its critical radius can be computed
by two more minimal enclosing ball computations. This is only possible because we have
discretized the filtration, as discussed in [9, App. B]. It follows that the expected running time
spent per (m − 1)-simplex of the filtration is O(mkΓk), and doing this over all simplices of
the filtration up to dimension mmax yields a total expected complexity of O(X · mmax · k · Γk)
for this step, where X is the total number of simplices in the filtration.

This concludes the description of the algorithm. Recalling (2) we obtain a complexity of

O
(

n log n + nk

ϵδ
+ (n − k)kΓk−1 + X · mmax · k · Γk

)
,

where the second and third terms are dominated by the last one because X ≥ n − k (see [9,
App. C]). Together with the algorithm from Section 3, we arrive at the result

▶ Theorem 13. Given a set P of n points, k ≥ 0 and ϵ ∈ (0, 1], the discrete sparse kth order
Čech filtration up to dimension mmax can be computed in time

O

(
nk log n log Φ + Xkk+1mmax

(
96
ϵ

)kδ
)

,

where Φ is the spread of P and X is the total number of simplices in the filtration.
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8 Conclusions

We introduced the first (1 + ϵ)-approximate filtration of the higher order k-fold filtration and
provided an algorithm for computing it. If k and ϵ are considered as constants and the input
point set has constant spread, the algorithm runs in time O(n log n) and yields a filtration of
size O(n), which are the same favorable properties of the well-studied case k = 1.

There are various avenues to strengthen and generalize our results. First of all, our method
has concentrated on the Euclidean case, but our approach mostly generalizes to point sets in
arbitrary metric spaces – the algorithm cannot use the quadtreap data structure anymore,
but there is no need for it, since the algorithm by Har-Peled and Mendel [33, Sec. 3.1] can
be adapted to the k-distance case with little effort. Also, the friends of pi (Section 7) can
be computed with a slight adaptation of their techniques; we used quadtreaps mostly for
the ease of presentation. However, the computation of critical values of simplices described
in [9, App. B] is for the Euclidean case only, and the complexity of this step remains unspecified
for a general metric space. This is common in related work; see, for instance [11, Sec. 5].

Another natural goal is to remove the dependence on the spread. This dependence is
caused by the computation of the k-distance permutation which is inspired by the algorithm
of [33, Sec. 3.1]. In the same paper [33, Sec. 3.2–3.3], they describe an approach to remove the
spread from the bound (for k = 1) using an approximate version of the greedy permutation.
While our construction of the sparsified filtration can be easily adapted to work with an
approximate version of the k-distance permutation, it seems less straight-forward to generalize
the computation to the k-distance, even in the Euclidean case. We leave this for future work.

The k-distance permutation relates to the Distance to Measure (DTM) [13], which is the
square average of the distances to the k nearest neighbors. The DTM has the advantage of
being robust, in terms of the Wasserstein distance, to perturbations on the sample [13, Sec. 3].
However, most of the existing methods for sparsifying filtrations obtained via the DTM [1,8,32]
require a preliminary approximation by weighted distances. Our approach might be adaptable
to directly sparsify DTM filtrations.

While we concentrate on the case of a single value of k, we pose the question whether
our methods can be used to approximate the multi-cover bifiltration, as studied in [17]. The
extension is not straight-forward because there is no direct relation between the approximate
filtrations on level k and k +1. We speculate that the technique of double-nerve constructions
of [17] could be useful in this context. The presence of an exponential factor on k in our size
bounds suggests a restriction of our approach’s usability to small portions of the bifiltration,
for small k. The exponential factor on k also carries over to the expected computation time.
Reducing that dependency on k is another possible line of future work. Note that [17, Prop. 5]
gives a size bound of O

(
nd+1) for the exact version, but we ask whether a polynomial bound

on k could be achieved without such a blow-up in the dependency on n.

Finally, a natural question is the practicality of our algorithm. We remark that even for
k = 1, while some work has been devoted to practical aspects of computing sparsifications [3,
7, 20, 37, 41], the actual practical computation is still an unresolved problem. We think that
the natural order for a practically efficient solution would be to first identify best practices
in the simpler k = 1 case and subsequently try to adapt them to larger values of k. So, while
we would be curious about the performance of our algorithm, such an evaluation seems to be
premature at the moment.
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