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Abstract
We often rely on censuses of triangulations to guide our intuition in 3-manifold topology. However,
this can lead to misplaced faith in conjectures if the smallest counterexamples are too large to appear
in our census. Since the number of triangulations increases super-exponentially with size, there is no
way to expand a census beyond relatively small triangulations – the current census only goes up to 10
tetrahedra. Here, we show that it is feasible to search for large and hard-to-find counterexamples by
using heuristics to selectively (rather than exhaustively) enumerate triangulations. We use this idea
to find counterexamples to three conjectures which ask, for certain 3-manifolds, whether one-vertex
triangulations always have a “distinctive” edge that would allow us to recognise the 3-manifold.
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1 Introduction

Many conjectures in computational geometry and topology are true in small cases, but turn
out to have a relatively large counterexample. Perhaps the most notable example of this
is the Hirsch conjecture, which posited that in a d-dimensional polytope with n facets, any
two vertices can be connected by a path of at most n − d edges. This is true when the
dimension is small (specifically, when d ⩽ 3 [20]), as well as when the number of facets
is small (specifically, when n ⩽ d + 6 [2]). However, this is not indicative of the general
behaviour: Santos showed that there is a 43-dimensional counterexample with 86 facets [31].

For an example from 3-manifold topology, consider the Seifert fibre spaces (see Hatcher’s
notes [15] for a definition). There are 302 Seifert fibre spaces that can be triangulated with no
more than 7 tetrahedra; for all of these, at least one minimal triangulation (triangulation
with the smallest possible number of tetrahedra) uses a standard prism-and-layering construc-
tion. This pattern does not persist: there is a Seifert fibre space whose unique (8-tetrahedron)
minimal triangulation is given by the isomorphism signature iLLLPQcbcgffghhhtsmhgosof
(the software Regina [8] can convert this back into a triangulation), and this is instead
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constructed from a gadget (called the brick B5) that was first identified in Martelli and Pet-
ronio’s census of minimal triangulations up to 9 tetrahedra [22]; although the first author [3]
and Matveev [24] have since extended the census, no other gadgets like this have been found.

We present a technique for finding large counterexamples in a similar setting; we study
arbitrary one-vertex triangulations, not just minimal ones. The obvious source of counter-
examples is a census of all triangulations up to a given number of tetrahedra. However,
this only captures small counterexamples because the number of triangulations grows super-
exponentially as we increase the number of tetrahedra; to date, the census of all closed
3-manifold triangulations only goes up to 10 tetrahedra, and this already includes over
2 billion triangulations, constituting over 63 GB of data [3].

How can we find a counterexample that is too large to appear in our census? We showcase
a method of selectively (rather than exhaustively) enumerating triangulations, which yields
large counterexamples to three conjectures posed by Saul Schleimer at the 2022 Dagstuhl
workshop on Computation and Reconfiguration in Low-Dimensional Topological Spaces.

1.1 The conjectures
Each conjecture concerns edges of one-vertex triangulations. Since such edges realise embed-
ded closed curves, we can ask whether they are embedded in an interesting way.

For instance, in a lens space, consider an edge e that forms a core curve, meaning that
the complement of a regular neighbourhood of the curve is a solid torus; in this case, we call
e a core edge. Finding such an edge certifies that the 3-manifold is a lens space.

▶ Conjecture 1. Every one-vertex triangulation of a lens space has a core edge.

Since solid torus recognition can be solved efficiently in practice [11, 5], proving Conjec-
ture 1 would have provided a relatively efficient method for recognising lens spaces. Lens
space recognition can also be used to determine whether a 3-manifold is elliptic (i.e., admits
spherical geometry). Indeed, Lackenby and Schleimer [21] recently used the following variant
of Conjecture 1 to show that recognising elliptic manifolds is in NP:

▶ Theorem ([21], Theorem 9.4). Let M be a lens space that is neither RP 3 nor a prism
manifold, and let T be any triangulation of M. Then the 86th iterated barycentric subdivision
of T contains a sequence of edges that forms a core curve.

The other two conjectures have similar motivations: special edges can help us recognise
certain 3-manifolds, so we would like to know whether such edges always exist.

The second conjecture concerns tunnel number: the smallest number of arcs that we
need to add to a knot so that the complement becomes a handlebody. Let T be an ideal
triangulation of the complement of a knot K, so that each edge e in T forms an arc α that
meets K at its endpoints. We call e a tunnel edge if the complement of K ∪ α is a genus-2
handlebody. If K is not the unknot, then the existence of a tunnel edge implies that K has
tunnel number equal to one; Figure 1 shows three knots with tunnel number one.

▶ Conjecture 2. Let K be a knot with tunnel number equal to one. Then every one-vertex
ideal triangulation of the complement of K has a tunnel edge.

The third conjecture concerns Seifert fibre spaces, which are fibred by circles in a
particular way (again, see Hatcher’s notes [15]); we call each circle fibre a Seifert fibre.
Seifert fibre spaces play a central role in torus decompositions for irreducible 3-manifolds:

The JSJ decomposition (due to Jaco and Shalen [17], and Johannson [19]) cuts such
3-manifolds into pieces that are either atoroidal or Seifert fibred.
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(a) The trefoil knot. (b) The figure-eight knot. (c) The (5, 2) torus knot.

Figure 1 Three knots with tunnel number equal to one.

The geometric decomposition from Thurston’s geometrisation conjecture (famously proved
by Perelman [25, 27, 26]) cuts such 3-manifolds into pieces that are either hyperbolic or
graph manifolds; the graph manifolds can be further decomposed into Seifert fibre spaces.

The small Seifert fibre spaces do not contain any embedded two-sided incompressible surfaces,
which makes them relatively difficult to work with.

▶ Conjecture 3. Every one-vertex triangulation of a small Seifert fibre space has an edge
isotopic to a Seifert fibre.

1.2 Using a targeted search to find counterexamples
As mentioned earlier, we have found counterexamples to all three conjectures listed in
section 1.1. The key ingredient for finding these examples is a heuristic for measuring how
“far away” a triangulation is from having no “distinguished” edges (such as core edges).

To see why such a heuristic is necessary, we note that the census of triangulations up to
10 tetrahedra contains 422 533 279 one-vertex triangulations of the 3-sphere (the simplest
possible lens space). All of these have at least one core edge; verifying this required 22 hours
of wall time on 12 threads, but this does not include the time required to: (1) generate the
census, and (2) identify the 3-spheres in this census (which had been done previously [3, 4]).

The upshot is that this exhaustive search was both expensive and unsuccessful. In
contrast, our heuristic enabled a targeted search, which produced all of our counterexamples
in just minutes of wall time. See section 5 for detailed computational results, as well as an
explanation of how to turn our counterexamples into infinite families.

We introduce our heuristic and our targeted search algorithm in section 4. In section 3,
we discuss some auxiliary algorithms, which are of independent interest; in particular, we
present (and implement) an improved algorithm for handlebody recognition. We finish by
mentioning some unanswered questions in section 6.

2 Preliminaries

2.1 Triangulations
A (generalised) triangulation T is a finite collection of tetrahedra whose triangular faces
may be affinely identified in pairs; each equivalence class of such faces is a face of T . The
size of T , denoted |T |, is the number of tetrahedra in T . The boundary of T consists of all
the faces that are not identified with any other faces. We allow faces of the same tetrahedron
to be identified, so our triangulations need not be simplicial complexes.

SoCG 2023
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The face identifications also yield equivalence classes of vertices and edges of the tetrahedra;
we call these classes the vertices and edges of T , respectively. In this paper, we are
particularly interested in one-vertex triangulations, which have exactly one vertex. The
degree of an edge e of T is the number of tetrahedra that meet e, counted with multiplicity.
The 1-skeleton of T is the subcomplex consisting only of the vertices and edges of T .

If a point lies on the boundary of a triangulation, then we say that it is boundary;
otherwise, we say that it is internal. If a face, edge or vertex consists entirely of boundary
points, then we say that it is boundary; otherwise, we say that it is internal.

For a triangulation T to be a 3-manifold, every point p in T must be non-singular –
i.e., have a small neighbourhood bounded by either a disc (if p is boundary) or a 2-sphere
(if p is internal). This could fail for vertices and midpoints of edges. For this paper, we
insist that no edge is identified with itself in reverse; this ensures that midpoints of edges are
non-singular.

We call T a 3-manifold triangulation if all its vertices are non-singular, because in
this case T will genuinely be a 3-manifold. However, we also allow vertices to be ideal,
meaning that a small neighbourhood of the vertex is bounded by a closed surface other than
the 2-sphere. Ideal triangulations (which contain one or more ideal vertices) give a useful
representation of the 3-manifold obtained by truncating the ideal vertices; this idea originated
with Thurston’s ideal triangulation of the figure-eight knot complement [33, Example 1.4.8].

To concretely encode a triangulation, we give each tetrahedron both a label and an
ordering of its four vertices. Two triangulations are isomorphic if they are identical up
to relabelling tetrahedra and/or reordering tetrahedron vertices. We can uniquely identify
any isomorphism class of triangulations using an efficiently-computable string called an
isomorphism signature. There are many ways to formulate isomorphism signatures; we
use the implementation in Regina [5, 8], which is described in [4].

2.2 The 2-3 and 3-2 moves
Given any one-vertex triangulation T with at least two tetrahedra, we can produce a new one-
vertex triangulation of the same 3-manifold by performing a 2-3 move about a (triangular)
face that meets two distinct tetrahedra. This replaces these two tetrahedra with three
tetrahedra attached around a new edge e; see Figure 2. We call the inverse move a 3-2
move about e; it is possible to perform a 3-2 move about an edge if and only if this edge is
an internal degree-3 edge that actually meets three distinct tetrahedra.

2-3

3-2

Figure 2 The 2-3 and 3-2 moves.
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Consider a 3-manifold M. We can think of the one-vertex triangulations of M with at
least two tetrahedra as nodes of an infinite graph, with two nodes connected by an undirected
arc if and only if the corresponding triangulations are related by a 2-3 move. This graph,
called the Pachner graph of M, is known to be connected [1, 23, 28, 30].

2.3 Normal surfaces
We now outline the basics of normal surface theory; see [14] and [16] for more comprehensive
discussion. A properly embedded surface S in a triangulation T is a normal surface if:

S meets each simplex (i.e., vertex, edge, triangle, or tetrahedron) of T transversely; and
S meets each tetrahedron ∆ of T in a finite (and possibly empty) collection of discs – known
as elementary discs – where each such disc is a curvilinear triangle or quadrilateral
whose vertices lie on different edges of ∆.

Up to normal isotopy – an ambient isotopy that preserves every simplex of T – every
elementary disc has one of the seven types shown in Figure 3.

(a) The four triangle types. (b) The three quadrilateral types.

Figure 3 The seven elementary disc types in a tetrahedron.

The simplest example of a normal surface is a vertex-linking surface, which consists
entirely of triangles. Such surfaces always exist, so finding these surfaces never gives us any
new information about the underlying 3-manifold. For this reason, we consider a normal
surface to be non-trivial when it includes at least one quadrilateral.

If T has size n, then we can represent any normal surface in T as a normal coordinate
vector in R7n that counts the number of elementary discs of each type in each tetrahedron. It
is often sufficient to focus on a class of surfaces called the vertex normal surfaces; roughly,
these form a finite and algorithmically enumerable “basis” for the set of all normal surfaces.

3 Key tools

This section discusses some new algorithms and implementations that were crucial for our
work. These algorithms may be of independent interest.

3.1 Handlebody recognition
To find counterexamples to Conjectures 1 and 2, we need algorithms to recognise solid tori and
genus-2 handlebodies. Regina includes an implementation of solid torus recognition [13, 18]
that is remarkably efficient in practice [8, 5, 11]. We generalise this to recognise handlebodies
of arbitrary genus, improving the earlier algorithm of Jaco and Tollefson [18, Algorithm 9.3].

Handlebodies are irreducible and have compressible boundary (see Definitions 2.2.1
and 3.3.2 of [23]), so we can exploit the following consequence of Corollary 6.4 of [18]:

SoCG 2023
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▶ Theorem 4. Let T be a triangulation of a compact irreducible 3-manifold with compressible
boundary. Then T contains a vertex normal essential compressing disc.

The strategy of our algorithm is to repeatedly cut along vertex normal compressing
discs; a triangulation T is a handlebody if and only if T eventually gets decomposed into a
collection of 3-balls. For computational reasons, we modify this approach in two ways.

First, we expand our focus beyond discs, to include any vertex normal surface S whose
Euler characteristic χ(S) is positive. The rationale is that χ(S) can be expressed as a linear
function in normal coordinates, which allows us to exploit linear programming techniques.
This leads to an algorithm for detecting non-trivial normal spheres and discs that is fast in
practice (even though, in theory, this is actually the exponential-time bottleneck for both
solid torus recognition and handlebody recognition); see [11] for details.

Second, because cutting along a normal surface can increase the number of tetrahedra
exponentially, we use a technique called crushing. Crushing was introduced by Jaco and
Rubinstein [16] following earlier unpublished work of Casson, and was later refined by the
first author [6]. Crushing a non-trivial normal surface has the following crucial benefit: it
produces a new triangulation with strictly fewer tetrahedra than before. The trade-off is
that crushing could have topological side-effects, as detailed in the following theorem:

▶ Theorem 5 ([6], Theorem 2). Let T be a triangulation of a compact orientable 3-manifold
M, and let S be a normal sphere or disc in T . Crushing S yields a triangulation T ′ whose
underlying 3-manifold M′ is obtained from M by zero or more of the following operations:

undoing connected sums;
cutting along properly embedded discs;
filling boundary 2-spheres with 3-balls; or
deleting 3-ball, 3-sphere, RP 3, L3,1 or S2 × S1 components.

For the rest of this section, call a connected orientable 3-manifold interesting if it has
exactly one boundary component and its first homology is Zg, where g is the genus of the
boundary surface. Our handlebody recognition algorithm relies on the following result:

▶ Proposition 6. Let T be a triangulation of an interesting 3-manifold, and suppose that T
contains a non-trivial normal sphere or disc S. Let T ′ denote the triangulation obtained by
crushing S. Then each component of T ′ is either closed or interesting. Moreover, T is a
handlebody if and only if every component of T ′ is either a 3-sphere or a handlebody.

Proof Outline. To understand the effect of crushing the surface S, it suffices to consider
the operations listed in Theorem 5 one at a time. The most intricate part of the proof is
showing that if we perform one of these operations on an interesting 3-manifold, then the
components of the resulting 3-manifold must all be either closed or interesting. This mostly
involves some fairly routine homology arguments. See the full version [9] for details. ◀

The last thing we rely on is an algorithm to recognise the 3-ball; this is a well-known
variant of 3-sphere recognition [16, 29, 32], and an implementation is available in Regina [5, 8].

The following handlebody recognition algorithm is now also available in Regina [8]:

▶ Algorithm 7 (Handlebody recognition). To test whether a triangulation T is a handlebody:
(1) Check that T is connected, orientable, and has exactly one boundary component. If T

fails to satisfy any of these conditions, then terminate and return false.
(2) Compute the genus g of the boundary of T .

In the case that g = 0, check whether T is a 3-ball. If it is, terminate and return
true; otherwise, terminate and return false.
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In the case that g > 0, check whether the first homology of T is Zg. If it is not,
terminate and return false.

(3) Create a list L of triangulations to process, which initially contains T (and nothing else).
While L is non-empty:

(i) Let F be the first triangulation that appears in L. Remove F from L.
(ii) Find a non-trivial normal sphere or disc S in F . If no such surface exists, then

terminate and return false.
(iii) Crush S. For each component C of the triangulation R that results from crushing:

If C is closed, check whether C is a 3-sphere. If it is, discard C and move on to
the next component of R; otherwise, terminate and return false.
If C has sphere boundary, check whether C is a 3-ball. If it is, discard C and
move on to the next component of R; otherwise, terminate and return false.
In any other case, add C to the list L, and move on to the next component of R.

(4) Once there are no more triangulations in L, terminate and return true.

▶ Theorem 8. Algorithm 7 correctly determines whether a given triangulation is a handlebody.

Proof Outline. By Proposition 6, every time we make a full pass through the loop in step 3,
we preserve the following invariant: every triangulation in L is interesting, and T is a
handlebody if and only if every triangulation in L is actually a handlebody with positive
genus. See the full version [9] for details. ◀

3.2 Detecting edges isotopic to Seifert fibres
To find counterexamples to Conjecture 3, we need to be able to test whether an edge is “bad”
in the sense that it is isotopic to a Seifert fibre. This is difficult to test conclusively. We
resort to searching for normal surfaces that must occur if an edge is bad; if any such surface
fails to exist, then we can certify that the edge is not bad. See the full version [9] for details.

3.3 Tracking edges as we perform 2-3 and 3-2 moves
Suppose that in some triangulation T , we already know which edges are (for instance) core
edges. Observe that if we create a new triangulation T ′ using a 3-2 move about an edge e of
T , then the only change to the 1-skeleton is that we remove the edge e. Thus, in principle,
we do not need to recompute which edges of T ′ are core edges.

In the other direction, if we create a new triangulation using a 2-3 move, then the only
change to the 1-skeleton is that we introduce a new edge e. In this case, we need to check
whether e is a core edge, but there should be no need to recompute this for the other edges.

In practice, the situation is complicated by the fact that performing 2-3 and 3-2 moves
in Regina could arbitrarily renumber the edges. Our solution is to use a bespoke imple-
mentation of 2-3 and 3-2 moves that provides, as part of the output, a description of how
the edges are renumbered. The source code is available at https://github.com/AlexHe98/
triang-counterex. There may be other applications for this idea of tracking how edges (or
more generally, simplices) get renumbered as we perform moves.

4 Removing “unwanted” edges using a targeted search

This section discusses the algorithm for finding counterexamples to Conjectures 1, 2 and 3.
We give the main ideas in 4.1 and 4.2, and then some implementation details in 4.3 and 4.4.

SoCG 2023
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4.1 The degree defect and the multiplicity defect
▶ Definitions 9. Let e be an edge in a one-vertex triangulation. Let d(e) denote the degree
of e, and let n(e) denote the number of distinct tetrahedra that meet e.

The degree defect of e, denoted δ(e), is given by |d(e) − 3|.
The multiplicity defect of e, denoted µ(e), is given by d(e) − n(e).

Observe that we can perform a 3-2 move about an edge e, and hence remove this edge e,
if and only if both the degree and multiplicity defects of e are zero. Thus, a natural way
to remove all “unwanted” edges (such as core edges) from a triangulation is to minimise
these defects across all “unwanted” edges. More precisely, our goal will be to minimise the
following complexity with respect to the lexicographical ordering:

▶ Definition 10. Let T be a one-vertex triangulation with some “unwanted” edges e1, . . . , ek,
where k ⩾ 1. The complexity of T (with respect to the “unwanted” edges) is given by(

k, max
1⩽i⩽k

µ(ei), max
1⩽i⩽k

δ(ei), |T |
)

.

Depending on context, the “unwanted” edges may be the core edges, tunnel edges, or
edges isotopic to Seifert fibres. Our primary objective is to reduce the number of these
edges, which is why this quantity appears as the first entry of our complexity. The last
entry is the size of the triangulation because, all else being equal, it would be nice for our
counterexamples to be as small as possible.

We have already discussed the rationale for the other two entries: we would like to
reduce the degree and multiplicity defects across all “unwanted” edges. The reason for
placing a higher priority on reducing multiplicity defect is best illustrated by recounting our
initial approach to this problem. At first, our complexity did not involve the multiplicity
defect at all. With this naïve approach, the search tended to get stuck enumerating lots of
triangulations with small degree defect, but without ever actually reducing this defect to 0.
We eventually realised that the search was getting trapped in a region of the Pachner graph
where the “unwanted” edges had multiplicity defect equal to 2. Placing a high priority on
reducing the multiplicity defect gives the search some impetus to avoid such regions.

4.2 The targeted search algorithm
▶ Algorithm 11. In a one-vertex triangulation, let P be a property of edges that is invariant
under ambient isotopy. Call an edge bad if it satisfies property P , and good otherwise. This
algorithm takes the following inputs:

A one-vertex triangulation T with n bad edges, where n ⩾ 1.
A non-negative integer x (the number of extra bad edges that we are allowed to use).

To search for a new triangulation with n − 1 bad edges:
(1) For each bad edge in T , check whether it is possible to perform a 3-2 move about this

edge. If such a move is possible, terminate and return the triangulation that results from
performing this move.

(2) Create a set S. Also create a priority queue Q that stores triangulations in order of
increasing complexity (with respect to the bad edges). Add T to both S and Q.

(3) While Q is non-empty:
(i) Remove the first triangulation F (i.e., a triangulation with smallest complexity)

from Q, and let m denote the number of bad edges in F .
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(ii) Call a 3-2 move about an edge e eligible if e is a good edge; for a 2-3 move, let
e denote the new edge that is created by this move, and call this move eligible if
either e is a good edge, or e is a bad edge but m < n + x. For each eligible move on
F , check whether (up to isomorphism) the set S already contains the triangulation
G that we obtain after performing this move. If not:

Add G to both S and Q.
Perform all possible sequences of 3-2 moves about bad edges in G. For each
triangulation T ′ that we obtain from such moves, if T ′ does not already appear
in the set S (up to isomorphism), then add T ′ to both S and Q.
If we can find such a sequence consisting of m − n + 1 3-2 moves, then the final
triangulation T ∗ in this sequence has n − 1 bad edges. Terminate and return T ∗.

Visit https://github.com/AlexHe98/triang-counterex to see an implementation of
this algorithm. We discuss the major details of this implementation in sections 4.3 and 4.4.

4.3 Troublesome regions, concurrent computation, and instability

In section 4.1, we mentioned regions of the Pachner graph where the “unwanted” edges have
low degree defect, but multiplicity defect equal to 2 (such edges naturally occur, for instance,
at the hearts of layered solid tori). Although placing a high priority on reducing multiplicity
defect does help the search avoid such regions, if the search nevertheless gets trapped in such
a region then it can be difficult to escape because the only way out is to perform moves that
increase the degree defect of the “unwanted” edges.

This phenomenon occurs more generally: a locally optimal move can send the search into
a “troublesome” region (which could, a priori, be infinite) of the Pachner graph where none
of the subsequently available moves decrease the complexity. In the case above, we get stuck
enumerating lots of triangulations with similar complexity; in section 5.1, we describe a case
where we start enumerating lots of triangulations with rapidly increasing complexity.

Algorithm 11 is especially vulnerable to falling into such troublesome regions if we deal
with triangulations one at a time in step 3. However, when we instead use multiple processes
to deal with several triangulations concurrently, the search is sometimes able to either avoid or
escape these troublesome regions. There are probably two drivers for this: (1) using multiple
processes causes the search to explore with more “breadth” than a purely greedy approach,
and (2) the search gains some randomness because the order in which triangulations are
inserted into the priority queue Q could vary each time we run the search. There may be
more direct methods to achieve similar behaviour; our method was good enough, and had a
low cost (both in human effort and in computational complexity).

One drawback is that it is impossible to know in advance how many concurrent processes
we should use. We will see in section 5 that there is often a “sweet spot” where the search
successfully terminates, but if we significantly increase or decrease the number of processes,
then the search tends to get trapped in a troublesome region.

Our solution is to implement Algorithm 11 so that it periodically prints an update on the
complexity of the triangulations that it is currently dealing with. If we manually observe that
the search is not making satisfactory progress, then we simply restart the search, possibly with
a change to the number of processes. Although it is not ideal that some human intervention
is required, this is not unheard of for difficult problems in computational topology that only
need to be solved once (such as finding a counterexample). Another example of this is the
work done in [7] to extend the census of prime knots up to 19 crossings.

SoCG 2023

https://github.com/AlexHe98/triang-counterex


21:10 Finding Large Counterexamples by Selectively Exploring the Pachner Graph

The last thing that we mention in this section is that our implementation is quite unstable.
Indeed, we have already noted that the search can produce different results when we change
the number of processes, or when we simply rerun the search. We have encountered one
other manifestation of this instability: refactoring the source code can drastically change the
behaviour of the search. We have not found a way to make the algorithm more stable.

4.4 Other implementation details
We now mention some other important details of our implementation of Algorithm 11.

First, since Algorithm 11 always considers triangulations up to isomorphism, we actually
store isomorphism signatures in the set S and the priority queue Q. As described in [4],
isomorphism signatures are an indispensable tool when exploring the Pachner graph.

Second, when the priority queue Q contains multiple triangulations with the same
complexity, we choose to prioritise such triangulations by insertion order.

Finally, we usually set the input variable x to be 0, in which case Algorithm 11 discards
all triangulations with more bad edges than the input triangulation T . However, there are
occasions where taking x > 0 may be beneficial; we discuss one such case in section 5.3.

5 The counterexamples

We present our experimental results in sections 5.1, 5.2 and 5.3. We then show how to turn
our counterexamples into infinite families in section 5.4.

Our computations were run on a laptop with an Intel Core i5-7200U processor, which has
just two physical cores divided into four logical processors. It is therefore remarkable that
we obtained all of our counterexamples in just a few minutes of wall time. This is mostly
because our targeted search was able to home in on an extremely small portion of the search
space: in total, we only needed to enumerate on the order of thousands of triangulations.

5.1 Triangulations with no core edges
The 20-tetrahedron triangulation T with isomorphism signature

uLLvQQvLAPvPAQccdfeghhgmklnorsqssttthsaaggggaaaaaaanaaagb

is a one-vertex 3-sphere with no core edges (for the 3-sphere, this means that every edge is
non-trivially knotted). To find this, we arbitrarily selected a one-vertex 3-sphere T2, which
has isomorphism signature cMcabbgqs and complexity (2, 5, 4, 2). After running Algorithm 11
twice, we obtained a 22-tetrahedron one-vertex triangulation T0 of the 3-sphere with no core
edges; the results are summarised in Figure 4.

To turn T0 into the smaller triangulation T , we ran a breadth-first search through the
Pachner graph, but with the restriction that we ignored any 2-3 move that introduces a core
edge. This took approximately 367 seconds of wall time.

It is worth noting that to remove one core edge from T2, we tried running Algorithm 11
with different numbers of processes, but using 24 processes produces the best results. In
particular, we initially tried 12 processes, but this produced the isomorphism signature

sLvAAvLAzMMQQcdceflkmjmqonprqprrhvrqnkkkksqeekocksf,

which has complexity (1, 2, 1, 18). The core edge in this triangulation has multiplicity defect
2 but degree defect 1; this is exactly one of the troublesome cases that we mentioned in
section 4.3. We needed to increase the number of processes to 24 to avoid this.
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(2, 5, 4, 2) cMcabbgqs

(1, 0, 3, 19) tLvLvAPMLwPQQkcfhfikjlopqpqssrqsrrupjjvvvhaavkbhevkmff

(0, 0, 0, 22) wLvvvQvvAAMMQQQkalkjnmrlprpqvqvvtstsuuunaaaqqaxggggagaakkcwiti

∼ 51 seconds, 1716 triangulations enumerated, 24 processes

∼ 43 seconds, 540 triangulations enumerated, 12 processes

Figure 4 Removing core edges from cMcabbgqs (3-sphere); x = 0.

(1, 8, 7, 2) cMcbbbadu

(0, 0, 0, 11) lLLLzzQQcbcgeijgjikkktsltaurattgg

∼ 58 seconds, 307 triangulations enumerated

Figure 5 Removing tunnel edges from cPcbbbadu (trefoil knot); x = 0, 8 processes.

Surprisingly, increasing the number of processes significantly beyond 24 also has an
adverse affect on the effectiveness of Algorithm 11. For example, with 36 processes, although
the search is sometimes able to remove a core edge, it seems to do so less reliably. Instead, we
find that the search has a tendency to get trapped in a different type of troublesome region:

After about 10 seconds, the search reaches a triangulation with complexity (2, 4, 16, 15).
After about 20 seconds, the search reaches a triangulation with complexity (2, 4, 23, 22).
After about 30 seconds, the search reaches a triangulation with complexity (2, 4, 26, 25).

When this happens, the complexity only increases further if we allow the search to continue.

5.2 Triangulations with no tunnel edges
We found ideal triangulations with no tunnel edges for three knots with tunnel number one:

the trefoil knot (results summarised in Figure 5);
the figure-eight knot (results summarised in Figure 6); and
the (5, 2) torus knot (results summarised in Figure 7).

Although the triangulations here are relatively small, and although we only enumerated
relatively few triangulations, our running times are much longer than those in section 5.1.

(2, 4, 3, 2) cPcbbbiht

(1, 6, 7, 5) fLLQcacdedejbqqww

(0, 0, 0, 12) mLvzALAQQccefhijliklklhnipouapufbvv

∼ 6 seconds, 26 triangulations enumerated

∼ 224 seconds, 903 triangulations enumerated

Figure 6 Removing tunnel edges from cPcbbbiht (figure-eight knot); x = 0, 24 processes.

SoCG 2023
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(2, 6, 6, 3) dLQbcccaekv

(1, 0, 3, 10) kLvvAQQkbfihjgjgiijmaacsgkgnww

(0, 0, 0, 12) mLvvAQLQQbfigjhlkljklkpaagrwmmmrauu

∼ 174 seconds, 800 triangulations enumerated

∼ 563 seconds, 880 triangulations enumerated

Figure 7 Removing tunnel edges from dLQbcccaekv ((5, 2) torus knot); x = 0, 24 processes.

This is probably because genus-2 handlebodies are harder to recognise than solid tori.

5.3 Triangulations with no edges isotopic to Seifert fibres
We found the following 11-tetrahedron one-vertex triangulation T of a small Seifert fibre
space1 with no edges isotopic to Seifert fibres:

lLLLLPMQccddfjiihikkkpkrwaaacttvc.

To do this, we began with the isomorphism signature fLLQcaceeedjkuxkj. Running Al-
gorithm 11 four times with x = 1 and 12 processes produced a 13-tetrahedron triangulation
T ∗ with no edges isotopic to Seifert fibres; the results are summarised in Figure 8. We then
used a breadth-first search (similar to the one from section 5.1) to turn T ∗ into T .

(4, 2, 2, 5) fLLQcaceeedjkuxkj

(3, 2, 3, 6) gLLAQbdedfffendolgn

(2, 2, 4, 8) ivLLQQccehgfgfhhjsquaaagj

(1, 0, 2, 12) mLLwPvMQQacdhghklkjlklnkamamvirvlji

(0, 0, 0, 13) nLvPwLzQQkccgfiikjmklmlmhnahlupmtrsvgb

∼ 3 seconds, 25 triangulations enumerated

∼ 6 seconds, 344 triangulations enumerated

∼ 12 seconds, 664 triangulations enumerated

∼ 15 seconds, 251 triangulations enumerated

Figure 8 Removing edges isotopic to Seifert fibres from fLLQcaceeedjkuxkj; x = 1, 12 processes.

The reason for taking x = 1 instead of x = 0 comes from early versions of our algorithm
for detecting good edges (in this context, edges not isotopic to Seifert fibres): we initially
included fewer normal surfaces in the analysis, so the results were not particularly conclusive.

1 Specifically, this is fibred over the 2-sphere with three exceptional fibres with slopes 1
2 , 2

3 and − 1
3 .
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At the time, we encountered triangulations for which every 2-3 move would create an edge
that we could not certify as good, so our short-term solution was to allow extra bad edges if
required. In the current version of the code, taking x = 1 no longer seems strictly necessary.

5.4 From one counterexample to infinitely many
The following result allows us to turn our counterexamples into infinite families:

▶ Proposition 12. Let M be either a closed 3-manifold, or a 3-manifold with a single
boundary component of positive genus (and no other boundary components). In the closed
case, let T be a one-vertex triangulation of M; in the bounded case, let T be a one-vertex ideal
triangulation of M. Let P be a property of edges of T that is invariant under ambient isotopy.
Call T interesting if every edge in T satisfies P . If M has an interesting triangulation,
then M has infinitely many interesting triangulations.

Proof. Let T be an interesting triangulation of M. Fix a tetrahedron ∆ of T , and let e and
f denote a pair of opposite edges of ∆. We obtain a new triangulation T ′ of M by replacing
∆ with a three-tetrahedron gadget, as shown in Figure 9. In terms of 1-skeletons, observe
that all we have done is introduce two new edges e′ and f ′ such that e′ is isotopic to e and
f ′ is isotopic to f . Thus, T ′ is an interesting triangulation of M. Repeating this procedure
indefinitely gives the desired infinite family of interesting triangulations of M. ◀

e

f

e

f
e′

f ′

Figure 9 Building a new interesting triangulation.

▶ Corollary 13. The 3-sphere has infinitely many triangulations with no core edges.

▶ Corollary 14. Let K be the trefoil knot, figure-eight knot, or (5, 2) torus knot. Then K

has infinitely many ideal triangulations with no tunnel edges.

▶ Corollary 15. There exists a small Seifert fibre space that has infinitely many triangulations
with no edges isotopic to Seifert fibres.

6 Discussion

6.1 Unanswered questions
For knots with tunnel number one, we found triangulations with no tunnel edges for all
three knots that we considered. There are many other such knots in the census of knots [7] –
in particular, every torus knot has tunnel number one – so it would be interesting to see
whether such counterexamples exist for all of these knots. A key obstacle to a systematic
investigation is the requirement for human supervision when running Algorithm 11, as
discussed in section 4.3. In any case, we tentatively propose the following conjecture:

SoCG 2023
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▶ Conjecture 16. Every knot with tunnel number one admits infinitely many ideal triangu-
lations with no tunnel edges.

In contrast, we have only been able to find triangulations with no core edges for the
3-sphere; we have tried two other lens spaces – L3,1 and L5,1 – but without success. Similarly,
although we have considered several small Seifert fibre spaces, we currently only have
counterexamples for one case. We nevertheless suspect that the answer to the following two
questions is “yes”, but new insights may be required to verify this:2

▶ Question 17. Is there a lens space other than the 3-sphere that admits infinitely many
triangulations with no core edges?

▶ Question 18. Is there another small Seifert fibre space that admits infinitely many
triangulations with no edges isotopic to Seifert fibres?

6.2 Future applications

Elementary moves such as 2-3 and 3-2 moves have many computational applications beyond
how we used them in this paper. The two most common are:
(1) using moves to improve a triangulation, which is often critical for making exponential-time

computations feasible; and
(2) finding a sequence of moves that transforms a triangulation T into another triangulation

T ′, which gives a computational proof that T and T ′ are homeomorphic.
Finding the right sequence of moves can be difficult, so a targeted search could be useful. In
particular, increasing the number of tetrahedra is sometimes unavoidable [4]:
(1) There are many triangulations T of the 3-sphere such that to simplify T to a smallest-

possible triangulation via 2-3 and 3-2 moves, we must visit at least one intermediate
triangulation with two more tetrahedra than T . There is also a triangulation of a graph
manifold for which simplification requires three additional tetrahedra.

(2) In the census of minimal triangulations up to 9 tetrahedra, there are many 3-manifolds
for which two additional tetrahedra are required to connect all the minimal triangulations
using 2-3 and 3-2 moves. There is also one 3-manifold – the lens space L3,1 – for which
three additional tetrahedra are required to connect all the minimal triangulations.

There are also situations where we might actually want to increase the number of
tetrahedra, provided this improves the triangulation with respect to another quantity. For
example, some algorithms in 3-manifold topology are known to be fixed-parameter tractable
in a quantity called the treewidth [10, 12]; for such algorithms, minimising the treewidth is
more important than minimising the number of tetrahedra.

As mentioned in section 1, increasing the number of tetrahedra is accompanied by a
super-exponential increase in the number of triangulations; even if we fix a 3-manifold, this is
still at least exponential. This means that exhaustive searches quickly run into problems with
not only running time, but also (often more importantly) memory management. However, our
work suggests that, with the right heuristics, we may be able to circumvent these problems;
the challenge is to actually devise such heuristics in the settings mentioned above.

2 The full version [9] presents new results that answer these questions (but also raise new questions).
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