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Abstract
We present a (combinatorial) algorithm with running time close to O(nd) for computing the minimum
directed L∞ Hausdorff distance between two sets of n points under translations in any constant
dimension d. This substantially improves the best previous time bound near O(n5d/4) by Chew, Dor,
Efrat, and Kedem from more than twenty years ago. Our solution is obtained by a new generalization
of Chan’s algorithm [FOCS’13] for Klee’s measure problem.

To complement this algorithmic result, we also prove a nearly matching conditional lower bound
close to Ω(nd) for combinatorial algorithms, under the Combinatorial k-Clique Hypothesis.
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1 Introduction

This paper is about the following problem:

▶ Problem 1. (L∞ Translational Hausdorff) Given a set P of n points and a set Q of m

points in Rd, compute the minimum directed L∞ Hausdorff distance from P to Q under
translation, i.e., compute minv∈Rd h⃗∞(P +v, Q) where h⃗∞(P, Q) := maxp∈P minq∈Q ∥p−q∥∞.

The problem has been extensively studied in computational geometry in the 1990s. The
analogous problem for undirected Hausdorff distance (defined as h∞(P, Q) = max{h⃗∞(P, Q),
h⃗∞(Q, P )}) is reducible [27] to the directed version if m = Θ(n). The motivation lies
in measuring the resemblance between two geometric objects represented as point clouds;
furthermore, a connection with an even more fundamental problem, Klee’s measure problem
(see next page), provides added theoretical interest (and is what attracted this author’s
attention in the first place). Huttenlocher and Kedem [22] introduced the problem and
presented the first algorithms for d = 2 (a subsequent paper [23] also examined variants in
L2). Chew and Kedem [17] gave an improved algorithm with running time O(mn log2(mn))
for d = 2 (in L∞), and generalized the algorithm to any constant dimension d with running
time O((mn)d−1 log2(mn)). Chew, Dor, Efrat, and Kedem [15] described further improved
algorithms in higher dimensions: in the main case m = n, their time bounds were O(n3 log2 n)
for d = 3, O(n(4d−2)/3 log2 n) for 4 ≤ d ≤ 7, and O(n5d/4 log2 n) for any constant d ≥ 8.
The exponent 5d/4 looks peculiar, and naturally raises the question of whether further
improvements are still possible, but none has been found in the intervening two decades
(except in the logarithmic factors [12, 14]).

Many other variants of Problem 1 have also been considered, for example, using other
metrics such as L2 (as already mentioned above), allowing rotation and/or scaling besides
translation, handling other objects besides points, allowing approximations, etc. (e.g., see
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24:2 Minimum L∞ Hausdorff Distance of Point Sets Under Translation

Table 1 Previous upper bounds [15] and new upper bounds for Problem 1 in the m = n case,
ignoring polylogarithmic factors.

dimension 2 3 4 5 6 7 8 9 10 11 12 · · ·

prev. bound n2 n3 n4.66··· n6 n7.33··· n8.66··· n10 n11.25 n12.5 n13.75 n15 · · ·
new bound n4 n5 n6 n7 n8 n9 n10 n11 n12 · · ·

[16, 4, 21, 24, 19, 18, 3]). Several other alternatives to the Hausdorff distance have also been
popularly studied in computational geometry, such as the Earth mover distance and the
Fréchet distance. We will ignore all these variants in the present paper, focusing only on
exact directed L∞ Hausdorff distance for point sets under translation.

Our new result is an algorithm for Problem 1 running in O(nd(log log n)O(1)) time (using
randomization) for any constant d ≥ 3 in the main m = n case (or with one extra logarithmic
factor if randomization is not allowed). The exponent d is thus a substantial improvement
over Chew et al.’s previous exponents for every d ≥ 4; see Table 1. In the general case, the
running time of our algorithm is O((mn)d/2(log log(mn))O(1)).

Connection to a generalized Klee’s measure problem. It suffices to focus on the decision
problem: deciding whether the minimum is at most a given value r. The original problem
reduces to the decision problem, at the expense of one extra logarithmic factor in the running
time by a well-known technique of Frederickson and Johnson [20] (in fact, when d ≥ 4, a
standard binary search suffices, since the optimal value lies in a universe of O((mn)2) possible
values which we can explicitly enumerate). In some cases, the extra logarithmic factor can
even be eliminated by a randomized optimization technique [12].

Equivalently, we want to decide whether there exists a vector v ∈ Rd with P + v ⊆
Q+[−r, r]d (where “+” denotes the Minkowski sum when it is clear from the context). Assume
(by rescaling) that r = 1/2. Let Q be the set of unit hypercubes {q + [−1/2, 1/2]d : q ∈ Q},
and let S∗ :=

⋃
B∈Q B. The condition is equivalent to P + v ⊆ S∗, i.e., v ∈

⋂
p∈P (S∗ − p).

Thus, the decision problem is equivalent to the following:

▶ Problem 2. (L∞ Translational Hausdorff Decision) Given a set P of n points and a set
Q of m unit hypercubes1 in Rd, decide whether

⋂
p∈P (S∗ − p) = ∅, where S∗ :=

⋃
B∈Q B.

For each B ∈ Q and p ∈ P , create a new unit hypercube B − p and give this hypercube
the color p. Problem 2 then immediately reduces to the following problem on N = mn

colored unit hypercubes: decide whether
⋂

χ Sχ = ∅, where Sχ :=
⋃

B ∈ B with color χ B. (In
other words, we want to decide whether there exists a “colorful” point that lies in hypercubes
of all colors.)

The unit hypercube case in turn reduces to the case of orthants (i.e., d-sided boxes which
are unbounded in one direction along each axis): we can build a uniform grid of unit-side
length and solve the subproblem inside each grid cell, but inside a grid cell, a unit hypercube
is identical to an orthant. (We can ignore grid cells that do not intersect hypercubes of all
colors.) Since a unit hypercube intersects only O(1) grid cells, these subproblems have total
input size O(N). All this motivates the definition of the following problem(s) on colored
orthants:

1 Throughout this paper, all hypercubes and boxes are axis-aligned.
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▶ Problem 3 (Generalized Klee’s Measure Problem). Given a set B of N colored orthants in
Rd,
(a) decide whether

⋂
χ Sχ = ∅,

(b) or more generally, compute a point of maximum or minimum depth among the Sχ’s (i.e.,
a point in the most or least number of regions Sχ),

(c) or alternatively, compute the volume of
⋂

χ Sχ,
where Sχ :=

⋃
B ∈ B with color χ B.

To recap, if Problem 3(a) can be solved in T (N) time, then Problem 2 can automatically
be solved in O(T (N)) = O(T (mn)) time (assuming superadditivity of T (·)).

Problem 3(a) is a generalization of the box coverage problem: determine whether the
union of a set of N boxes in Rd covers the entire space. This is because

⋂
χ Sχ = ∅ iff⋃

χ Sχ = Rd, and a box can be expressed as the complement of a union of at most 2d orthants
(we use S to denote the complement of a set S). Similarly, Problem 3(b) is a generalization
of the box depth problem: determine the minimum or maximum depth among N boxes in Rd.
Problem 3(c) is a generalization of Klee’s measure problem: compute the volume of the union
of a set of N boxes in Rd. This generalization allows us to compute the volume of the union
of more general shapes, so long as each shape can be expressed as the complement of a union
of orthants. (Note that we can clip to a bounding box to ensure that the volume is finite.)

The original Klee’s measure problem has been extensively studied in computational
geometry [2, 8, 13, 14, 28, 30]. The best known algorithm by Chan [14] for Klee’s measure
problem runs in O(Nd/2) time, based on a clever but simple divide-and-conquer. The box
coverage and box depth problem can be solved by similar algorithms, and in fact with slightly
lower time bounds by polylogarithmic factors using table lookup and bit packing tricks [14].

For d ≤ 3, a union of orthants has linear combinatorial complexity [7] and can be
constructed in near linear time. Thus, a straightforward way to solve Problem 3 is to first
construct all the regions Sχ explicitly, decompose each Sχ as a union of disjoint boxes,
and then run a known algorithm for Klee’s measure problem on the resulting O(N) boxes.
With this approach, Problem 3 can be solved in O(N log N) time for d = 2, and O(N3/2)
time for d = 3; consequently, Problem 2 can be solved in O((mn) log(mn)) time for d = 2,
and O((mn)3/2) time for d = 3. This was essentially how the previous known 2D and 3D
algorithms by Chew and Kedem [17] and Chew et al. [15] were designed.

However, for d ≥ 4, a union of N orthants may have Θ(N⌊d/2⌋) combinatorial complexity
in the worst case [7]. So, a two-stage approach that explicitly constructs all the regions
Sχ and then invokes an algorithm for Klee’s measure problem would be too slow! Chew
et al. [15] adapted Overmars and Yap’s algorithm for Klee’s measure problem [28] in a
nontrivial way to obtain an O(N5d/8 log N)-time algorithm for Problem 3, and consequently
an O(n5d/4 log n)-time algorithm for Problem 2 when m = n.

We present a new algorithm that solves Problem 3(c) in O(Nd/2 logd/2 N) time, matching
the known time bound for the original Klee’s measure problem up to logarithmic factors. In
fact, for Problem 3(a,b), the polylogarithmic factor can be lowered to poly-log log N factors
using table lookup and bit packing tricks. Consequently, we obtain an O(nd(log log n)O(1))
time bound for Problem 2 when m = n, or O((mn)d/2(log log(mn))O(1)) in general. Our
result is obtained by directly modifying Chan’s divide-and-conquer algorithm for Klee’s
measure problem [14]. The adaptation is not straightforward and uses interesting new ideas.
As mentioned, we cannot afford to separate into two stages. Instead, within a single recursive
process, we will handle two types of objects simultaneously, (i) the input orthants, and
(ii) features of the regions Sχ that have been found during the process. The analysis of the
recurrence is more delicate (though the overall algorithm remains simple).

SoCG 2023
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Conditional lower bounds. In the other direction, recently in SoCG’21, Bringmann and
Nusser [10] proved an Ω((mn)1−δ) conditional lower bound for Problem 1–2 for d = 2 for
an arbitrarily small constant δ > 0, under the Orthogonal Vectors (OV) Hypothesis [29]
(in particular, it holds under the Strong Exponential-Time Hypothesis (SETH) [29]). This
showed that Chew and Kedem’s upper bound for d = 2 is likely near optimal [17]. However,
Bringmann and Nusser did not obtain any lower bound in higher dimensions.

As observed by Chan [13], Klee’s measure problem and the box coverage problem have
an Ω(Nd/2−δ) lower bound for combinatorial algorithms under the Combinatorial k-Clique
Hypothesis, which states that there is no O(nk−δ

0 )-time combinatorial algorithm for detecting
a k-clique in a graph with n0 vertices, for any constant k ≥ 3. The notion of “combinatorial”
algorithms is not mathematically well-defined, but intuitively it refers to algorithms that
avoid the use of fast matrix multiplication (such as Strassen’s algorithm); all algorithms in
this paper and in Chew et al.’s previous paper fulfill this criterion. (Recently, Künnemann [26]
obtained new lower bounds for arbitrary, noncombinatorial algorithms for Klee’s measure
problem under the “k-Hyperclique Hypothesis”, but his bounds are not tight for d ≥ 4. See
also [11, 6, 5] for conditional lower bounds for other related geometric problems. See [25] for
a recent example of the usage of the Combinatorial k-Clique Hypothesis in computational
geometry, and [1, 9] for other examples involving the Combinatorial k-Clique Hypothesis
outside of geometry.)

Since our algorithms for Problem 3 have near Nd/2 running time, they are near optimal
for combinatorial algorithms under the Combinatorial k-Clique Hypothesis. However, this
does not necessarily imply optimality of our algorithms for Problem 1 or 2.

In the second part of this paper, we prove that Problems 1–2 have a conditional lower
bound of Ω(nd−δ) for m = n, or Ω((mn)d/2−δ) for m = nγ for any fixed γ ≤ 1, for
combinatorial algorithms under the Combinatorial k-Clique Hypothesis. This shows that
our combinatorial algorithm for Problem 1 is also conditionally near optimal. While the
previous conditional lower bound for Klee’s measure problem by Chan [13] was obtained by
reduction from d-clique, we will reduce from clique of arbitrarily large constant size. Our
new reduction is more challenging and more interesting, but still simple.

2 Algorithm

In this section, we present our new algorithm for the generalized Klee’s measure problem
(Problem 3) for any constant dimension d ≥ 4. From this result, new algorithms for
Problems 1–2 will immediately follow.

To solve Problem 3(c), we solve a generalization, where we are given a box “cell” γ and an
extra set E of boxes, and we want to compute the volume of

⋂
χ Sχ ∩

⋂
E∈E E ∩ γ. Initially,

γ = Rd and E = ∅. We assume that the coordinates of the input have been pre-sorted (this
requires only an initial O(N log N) cost).

Call an orthant or a box short if some of its (d − 2)-faces intersect γ’s interior, long if it
intersects γ’s interior but is not short, and trivial if it does not intersect γ’s interior or it
completely contains γ.

Our algorithm is inspired by Chan’s divide-and-conquer algorithm [14] for the original
Klee’s measure problem, with many similarities (for example, in how we use weighted medians
to divide a cell) but also major new innovation (in how we reduce the number of long objects,
and how we “convert” some objects of B into new objects in E during recursion). The
analysis of our algorithm requires a new charging argument and recurrence, causing some
extra logarithmic factors.
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=⇒

Figure 1 Shrinking the width of the shaded slabs to 0, to eliminate long boxes in E .

Defining weights. Consider a (d − 2)-face f of a short orthant of B such that f intersects
γ’s interior. If f is orthogonal to the i-th and the j-th axes, assign f a weight of 2(i+j)/d.
Note that this weight is Θ(1), and so each short orthant of B contributes a total weight of
Θ(1).

Similarly, consider a (d − 2)-face f of a box of E such that f intersects γ’s interior. If
f is orthogonal to the i-th and the j-th axes, assign f a weight of 2(i+j)/d/t, where t ≥ 1
is a parameter to be set later. Note that this weight is Θ(1/t), and so each short box of E
contributes a total weight of Θ(1/t).

Let T (Nlong, Wshort) denote the time complexity of the problem, where Nlong denotes the
total number of long and trivial orthants in B and long and trivial boxes in E , and Wshort
denotes the total weight of all short orthants in B and short boxes in E . Note that the total
number of orthants in B and boxes in E is upper-bounded by O(Nlong + tWshort).

Reducing the number of long objects. First, the trivial orthants and boxes can be easily
eliminated: We can remove all orthants of B and boxes of E that do not intersect γ’s interior.
If an entire color class of B does not intersect γ’s interior, or if some box of E completely
contains γ, we can return 0 as the answer. If there is an orthant of B completely containing
γ, we can remove its color class from B.

For each color χ, consider the long orthants of B with color χ; the union of these long
orthants are defined by at most 2d orthants (since it is the complement of a box with at most
2d sides). Keep these O(1) long orthants per color, and remove the rest. If there is a long
orthant with color χ but no short orthant with that color, then Sχ ∩ γ is a box – add this
box to E and remove the color class from B (in other words, we have “converted” an entire
color class in B into a single box in E). This step increases Wshort by at most Nlong/t. After
this step, each remaining long orthant can be “charged” to a short orthant of the same color,
and so the number of remaining long orthants of B is bounded by O(1) times the number of
short orthants, which is O(Wshort).

Next, for each i ∈ {1, . . . , d}, consider the long boxes of E having (d−1)-faces intersecting
γ that are orthogonal to the i-th axis. Compute the union of these boxes by a linear scan
after sorting, since this corresponds to computing the union of 1D intervals when projected to
the i-th axis. The union forms a disjoint collection of slabs. Readjust all the i-th coordinates
to shrink the width of these slabs to 0, without altering the volume of

⋂
χ Sχ ∩

⋂
E∈E E ∩ γ,

as illustrated in Figure 1. After doing this successively for every i ∈ {1, . . . , d}, all long boxes
of E are eliminated.

After this process, there are O(Wshort) remaining long orthants of B and zero long boxes
of E . Thus, Nlong is reduced to O(Wshort). The weight of the short orthants of B may
increase to at most Wshort + Nlong/t. We then have the following, for some constant c:

T (Nlong, Wshort) ≤ T (cWshort, Wshort + Nlong/t) + O(Nlong + tWshort). (1)

SoCG 2023
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Divide-and-conquer. Next, compute the weighted median m of the first coordinates of the
(d − 2)-faces of B and E intersecting γ’s interior that are orthogonal to the first axis. Divide
γ into two subcells γL and γR by the hyperplane {(x1, . . . , xd) : x1 = m}. Renumber the
coordinate axes 1, 2, . . . , d to 2, . . . , d, 1, and recursively solve the problem for γL and for γR.

To analyze the algorithm, consider a (d − 2)-face f of B (resp. E) orthogonal to the i-th
and j-th axes with i, j ̸= 1. After the axis renumbering, its weight changes from 2(i+j)/d to
2(i−1+j−1)/d (resp. from 2(i+j)/d/t to 2(i−1+j−1)/d/t), i.e., the weight decreases by a factor
of 22/d.

Next consider a (d − 2)-face f of B (resp. E) orthogonal to the first and the j-th axes
with j ≠ 1. After the axis renumbering, its weight changes from 2(1+j)/d to 2(d+j−1)/d (resp.
from 2(1+j)/d/t to 2(d+j−1)/d/t), i.e., the weight increases by a factor of 2(d−2)/d. But when
γ is divided into subcells γL and γR, the weight within each subcell decreases by a factor of
2; the net decrease in weight is thus a factor of 22/d.

Hence, Wshort decreases by a factor of 22/d in either subcell. (On the other hand, Nlong
may not necessarily decrease.) We then have

T (Nlong, Wshort) ≤ 2 T (Nlong, Wshort/22/d) + O(Nlong + tWshort). (2)

Putting it together. By combining (2) and (1) and letting T (N) := T (cN, N), we obtain

T (N) ≤ 2 T (cN, N/22/d) + O(tN) ≤ 2 T (cN/22/d, N/22/d + cN/t) + O(tN)

≤ 2 T
(

1+2c/t
22/d N

)
+ O(tN).

For the base case, we have T (O(1)) = O(td/2): when Wshort = O(1), there are O(1) orthants
of B and O(t) boxes of E , and so the problem can be solved by running a known algorithm
for Klee’s measure problem on O(t) boxes [14].

By the master theorem, the solution to the recurrence is

T (N) = O(td/2N1/ log2(22/d/(1+2c/t))) = O(td/2Nd/2+O(1/t)).

Choosing t = log N yields T (N) = O(Nd/2 logd/2 N). This completes the description and
analysis of the main algorithm.

Shaving logs by bit packing. For Problem 3(a), we can obtain a minor (but not-very-
practical) improvement in the polylogarithmic factors by using more technical but standard
bit-packing tricks, as we now briefly explain (see [14] for more details on these kinds of tricks):
The main observation is that actual coordinate values do not matter here, only their relative
order, so we can replace them with their ranks in the sorted list. Thus, the O(Nlong + tWshort)
input objects can be represented by O((Nlong + tWshort) log(Nlong + tWshort)) bits and packed
in O(((Nlong + tWshort) log(Nlong + tWshort))/w) words, assuming a w-bit word RAM model
of computation. The O(Nlong + tWshort) cost for various linear scans during recursion can
be reduced to O(((Nlong + tWshort) log2(Nlong + tWshort))/w), since sorting k b-bit numbers
can be done in O((kb log k)/w) time by a packed version of mergesort. Thus, the recurrence
changes to T (N) ≤ 2 T ( 1+2c/t

22/d N) + O(1 + (tN log2(tN))/w).
For the base case, we can use a bit-packed version of Chan’s algorithm for the box

coverage problem on O(t) boxes, which runs in T (O(1)) = O(1 + (t/w)d/2 logO(1) w) time [14,
Section 3.1]. The recurrence solves to T (N) = O(Nd/2+O(1/t) · (1 + (t/w)d/2 logO(1) w)).
Choosing t = log N yields T (N) = O(Nd/2 · (1 + ((log N)/w)d/2 logO(1) w)).
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The above may require nonstandard operations on w-bit words. By choosing w = δ log N

for a sufficiently small constant δ > 0, such operations can be simulated in constant time
via table lookup after preprocessing in 2O(w) = NO(δ) time. Hence, we obtain the final time
bound of O(Nd/2(log log N)O(1)).

Problem 3(b) can be solved similarly, with some modification to the steps to reduce the
number of long boxes in E , but this is identical to the modification of Chan’s algorithm
for the original box depth problem [14, Section 3.1]. To summarize, we have obtained the
following theorem:

▶ Theorem 1. For any constant d ≥ 4, Problem 3(c) can be solved in O(Nd/2 logd/2 N)
time, and Problems 3(a,b) can be solved in O(Nd/2(log log N)O(1)) time.

▶ Corollary 2. For any constant d ≥ 4, Problem 2 can be
solved in O((mn)d/2(log log(mn))O(1)) time. Problem 1 can be solved
in O((mn)d/2 log(mn)(log log(mn))O(1)) time deterministically, or in
O((mn)d/2(log log(mn))O(1)) expected time with randomization.

Proof. As mentioned in Section 1, Problem 1 reduces to Problem 2 by Frederickson and
Johnson’s technique [20] or by ordinary binary search, with an extra logarithmic factor.

Chan [12, Section 4.2] has described how to apply his randomized optimization technique
to reduce the following problem to its decision problem without losing a logarithmic factor:

Given N colored points in Rd, find the smallest hypercube that contains points of all
colors.

As noted in [12], Problem 1 reduces to this problem. On the other hand, as noted in
Section 1, the decision version of this problem (equivalent to finding a point that is inside
unit hypercubes of all colors) reduces to Problem 3(a), which we have just solved. ◀

3 Conditional Lower Bound

In this section, we prove a nearly matching conditional lower bound for Problems 1–2 for
combinatorial algorithms under the Combinatorial k-Clique Hypothesis. We first introduce an
intermediate problem which is more convenient to work with. Roughly speaking, Problem 2
considers the intersection of translates of a single shape (the shape being a union of unit
hypercubes), whereas the problem below considers the intersection of translates of multiple
shapes (each shape being a union of orthants).

▶ Problem 4. Let Z be a set of shapes, where each shape is a union of orthants in Rd. Let
m be the total number of orthants over all shapes of Z. Given a set S of n objects where
each object is a translate of some shape in Z, decide whether

⋂
S∈S S = ∅.

▶ Lemma 3. Problem 4 reduces to Problem 2 on O(n) points and O(m) unit hypercubes.

Proof. Assume (by rescaling) that the coordinates of all orthants of Z and all translation
vectors used in S are in [0, 1/2]. In particular, if

⋂
S∈S S is nonempty, it must contain a point

in [0, 1]d. Inside [0, 1]d, each orthant of Z may be replaced by an equivalent unit hypercube.
Let Z1, . . . , Zℓ be the shapes of Z. Let Bi be the unit hypercubes corresponding to the

orthants defining Zi (so that (Zi + t) ∩ [0, 1]d =
⋃

B∈Bi
(B + t) ∩ [0, 1]d for any t ∈ [0, 1/2]d).

We construct an instance of Problem 2 as follows: For each B ∈ Bi, add the shifted unit
hypercube B + ui to Q where ui := (4i, 0, . . . , 0) ∈ Rd. (This operation distributes objects in
different classes Bi to different parts of space, since the vectors ui are at least 4 units apart

SoCG 2023
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from each other along the first axis.) For each object S ∈ S, if S is the translate Zi + t, add
the point ui − t to P . Lastly, add two auxiliary unit hypercubes [0, 1]d and uℓ+1 + [0, 1]d to
Q, and two auxiliary points u0 and uℓ+1 to P .

We solve Problem 2 on these points of P and these unit hypercubes of Q, to determine
whether

⋂
p∈P (S∗ − p) = ∅, where S∗ :=

⋃
B∈Q B. For correctness, we just observe that⋂

p∈P (S∗ − p) is identical to
⋂

S∈S S inside [0, 1]d. This is because for each B ∈ Bi, (B +
ui) − (ui′ − t) may intersect [0, 1]d only if i = i′ (since ui and ui′ are far apart if i ̸= i′),
assuming t ∈ [0, 1/2]d. ◀

We now prove hardness of Problem 4 by reduction from the clique problem for graphs. We
first warm up with two simpler reductions yielding weaker lower bounds, before presenting
the final reduction in Lemma 6. (Readers who do not need intuition building may go straight
to Lemma 6’s proof.)

First attempt. First observe that the box coverage problem (deciding whether n boxes in
Rd cover the entire space, i.e., deciding whether the intersection of the complements of n

boxes is empty) easily reduces to Problem 4 with n orthants and n objects in Rd, since the
complement of a box is the union of O(1) orthants. By Lemma 3, we immediately obtain an
Ω(nd/2−δ) conditional lower bound for Problem 4, since the box coverage problem has an
Ω(nd/2−δ) lower bound under the Combinatorial k-Clique Hypothesis [13].

In the following lemma, we directly modify the (very simple) known reduction from clique
to the box coverage problem [13], to show the same lower bound even when the number of
orthants m is O(1):

▶ Lemma 4. Detecting a d-clique in a graph with n0 vertices reduces to Problem 4 with
m = O(1) orthants and n = O(n2

0) objects in Rd.

Proof. Let G = (V, E) be the given graph, with V = [n0] = {0, . . . , n0 −1}. We will construct
a set S of objects whose intersection is

{(x1, . . . , xd) ∈ [0, n0)d : {⌊x1⌋ , . . . , ⌊xd⌋} is a d-clique of G}. (3)

It would then follow that the intersection is nonempty iff a d-clique exists.
The construction is very simple: for each α, β ∈ {1, . . . , d} with α ̸= β and for each

u, v ∈ [n0] with uv ̸∈ E, add the complement of the box

Bα,β,u,v := {(x1, . . . , xd) : ⌊xα⌋ = u, ⌊xβ⌋ = v}

to S. (Note that if u = v, we consider uv ̸∈ E.) These boxes are unit squares when projected
to the α-th and β-th axes, and are thus translates of O(1) fixed boxes, and the complement
of each such fixed box can obviously be expressed as a union of O(1) orthants and can be
added to Z. Lastly, add the O(1) halfspaces bounding [0, n0)d to S. Then S has a total of
O(n2

0) translates and clearly satisfies the desired property (3). ◀

In combination with Lemma 3, the above lemma indeed implies an Ω(nd/2−δ) conditional
lower bound for Problem 2: if Problem 2 for m = O(1) has an O(nd/2−δ)-time combinatorial
algorithm, then the d-clique detection problem for a graph with n0 vertices has a combinatorial
algorithm with running time O((n2

0)d/2−δ) = O(nd−2δ
0 ), contradicting the Combinatorial

k-Clique Hypothesis.
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Figure 2 (left) A region Yα,β,a,b,u,v for (a, b) = (0, 1). (middle) A region Yα,β,a,b,u,v for (a, b) =
(0, 0). (right) A diagonal Dα,β (whose complement can be expressed as a union of the red and the
green orthants).

Second attempt. We now improve the lower bound by reducing from clique of a large size
2d. We use the following key idea: encode a pair of vertices in a single coordinate value.

▶ Lemma 5. Detecting a (2d)-clique in a graph G with n0 vertices reduces to Problem 4 with
m = O(n0) orthants and n = O(n3

0) objects in Rd.

Proof. Let G = (V, E) be the given graph, with V = [n0]. For any x ∈ [0, n2
0), let

ϕ0(x) = ⌊x⌋ mod n0 and ϕ1(x) = ⌊x/n0⌋. We will construct a set S of objects whose
intersection is

{(x1, . . . , xd) ∈ [0, n2
0)d : {ϕ0(x1), ϕ1(x1), . . . , ϕ0(xd), ϕ1(xd)} is a (2d)-clique in G}. (4)

It would then follow that the intersection is nonempty iff a (2d)-clique exists.
For each α, β ∈ {1, . . . , d} and a, b ∈ {0, 1} with (α, a) ̸= (β, b), and for each u, v ∈ [n0]

with uv ̸∈ E, define the region

Yα,β,a,b,u,v := {(x1, . . . , xd) ∈ [0, n2
0)d : ϕa(xα) = u, ϕb(xβ) = v}.

If α = β, then Yα,β,a,b,u,v is just a unit interval when projected to the α-th axis, and is
thus a translate of one of O(1) fixed boxes, and the complement of each such fixed box can
be expressed as a union of O(1) orthants and can be added to Z. From now on, assume
α ̸= β.

If (a, b) = (1, 1), then Yα,β,a,b,u,v is just an n0 × n0 square when projected to the α-th
and β-th axes, and is thus a translate of one of O(1) fixed boxes, and the complement of
each such fixed box can be expressed as a union of O(1) orthants and can be added to Z.

If (a, b) = (0, 1) (or (a, b) = (1, 0)), then Yα,β,a,b,u,v is a union of n0 rectangles of dimension
1 × n0 (or n0 × 1) when projected to the α-th and β-th axes (see Figure 2(left)), and is thus
a union of n0 translates of one of O(1) fixed boxes, and the complement of each fixed box
can be expressed as a union of O(1) orthants and can be added to Z.

If (a, b) = (0, 0), then Yα,β,a,b,u,v forms a n0 × n0 grid pattern when projected to the
α-th and β-th axes (see Figure 2(middle)). Although the complement of this region can’t be
expressed as a union of orthants, we can decompose the grid into subregions that can. The
most obvious approach is to decompose into rows or columns, but this still doesn’t work.
Instead, we will decompose into “diagonals”. More precisely, define

Dα,β := {(x1, . . . , xd) : ⌊xα⌋ mod n0 = 0, ⌊xβ⌋ mod n0 = 0,

⌊xα/n0⌋ + ⌊xβ/n0⌋ = n0, xα, xβ ≥ 0}.

Since Dα,β,a,b can be viewed as the region sandwiched between two staircases when pro-
jected to 2D, its complement Dα,β,a,b can be expressed as a union of O(n0) orthants (see
Figure 2(right)). Add the shape Dα,β,a,b to Z. The region Yα,β,a,b,u,v can be expressed as a
union of O(n0) translates of Dα,β when clipped to [0, n2

0)d.
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In any case, Yα,β,a,b,u,v ∩ [0, n2
0)d can be expressed as the intersection of [0, n2

0)d with
O(n0) translates of shapes from Z. Add these translates to S, for each α, β ∈ {1, . . . , d} and
a, b ∈ [g] with (α, a) ̸= (β, b), and for each u, v ∈ [n0] with uv ̸∈ E. Lastly, add the O(1)
halfspaces bounding [0, n2

0)d to S. Then S has a total of O(n3
0) translates and satisfies the

desired property (4). ◀

The above lemma implies a larger Ω(n2d/3−δ) conditional lower bound: if Problem 2 for
m = n1/3 has an O(n2d/3−δ)-time combinatorial algorithm, then the (2d)-clique detection
problem for a graph with n0 vertices has a combinatorial algorithm with running time
O((n3

0)2d/3−δ) = O(n2d−3δ
0 ), contradicting the Combinatorial k-Clique Hypothesis.

Final reduction. We obtain our final lower bound by generalizing the idea further. We reduce
from clique of still larger size and now encode g-tuples of vertices instead of pairs (incidentally,
the idea of encoding tuples has also appeared recently in Künnemann’s conditional lower
bound proofs for Klee’s measure problem [26]):

▶ Lemma 6. Let g be any integer constant. Detecting a (dg)-clique in a graph G with n0
vertices reduces to Problem 4 with m = O(ng−1

0 ) orthants and n = O(ng+1
0 ) objects in Rd.

More generally, for any given m ≤ ng−1
0 , detecting a (dg)-clique in a graph G with n0

vertices reduces to Problem 4 with m orthants and n = O(n2g
0 /m) objects in Rd.

Proof. Let G = (V, E) be the given graph, with V = [n0]. For any x ∈ [0, ng
0) and a ∈ [g],

let ϕa(x) be the (a + 1)-th least significant digit of ⌊x⌋ in base n. We will construct a set S
of objects whose intersection is

{(x1, . . . , xd) ∈ [0, ng
0)d : {ϕ0(x1), . . . , ϕg−1(x1), . . . , ϕ0(xd), . . . , ϕg−1(xd)}

is a (dg)-clique in G}. (5)

It would then follow that the intersection is nonempty iff a (dg)-clique exists.
For each α, β ∈ {1, . . . , d} and a, b ∈ [g] with (α, a) ̸= (β, b), and for each u, v ∈ [n0] with

uv ̸∈ E, define the region

Yα,β,a,b,u,v := {(x1, . . . , xd) ∈ [0, nd
0)d : ϕa(xα) = u, ϕb(xβ) = v}

= {(x1, . . . , xd) : xα ∈ [ina+1
0 + una

0 , ina+1
0 + (u + 1)na

0),
xβ ∈ [jnb+1

0 + vnb
0, jnb+1 + (v + 1)nb

0)
for some i ∈ [ng−a−1

0 ], j ∈ [ng−b−1
0 ]}.

If α = β, then Yα,β,a,b,u,v is a union of at most O(ng−1
0 ) unit intervals when projected

to the α-th axis, and is thus a union of O(ng−1
0 ) translates of O(1) fixed boxes, and the

complement of each fixed box can be expressed as a union of O(1) orthants and can be added
to Z.

If α ̸= β, then Yα,β,a,b,u,v forms a O(ng−1
0 ) × O(ng−1

0 ) grid pattern when projected to the
α-th and β-th axes. Define the “diagonal”

Dα,β,a,b = {(x1, . . . , xd) : xα ∈ [ina+1
0 , ina+1

0 + na
0), xβ ∈ [jnb+1

0 , jnb+1
0 + nb

0)
for some i, j ∈ [m] with i + j = m}.

Since Dα,β,a,b can be viewed as the region sandwiched between two staircases when projected
to 2D, its complement Dα,β,a,b can be expressed as a union of O(m) orthants. Add the shape
Dα,β,a,b to Z. The region Yα,β,a,b,u,v can be expressed as a union of O(n2(g−1)

0 /m) translates
of Dα,β,a,b when clipped to [0, ng

0)d.
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In any case, Yα,β,a,b,u,v ∩ [0, ng
0)d can be expressed as an intersection of [0, ng

0)d with
O(n2(g−1)

0 /m) translates of shapes from Z. Add all these translates to S, for each α, β ∈
{1, . . . , d} and a, b ∈ [g] with (α, a) ̸= (β, b), and for each u, v ∈ [n0] with uv ̸∈ E. Lastly,
add the O(1) halfspaces bounding [0, ng

0)d to S. Then S has a total of O(n2
0 · n

2(g−1)
0 /m) =

O(n2g
0 /m) translates and satisfies the desired property (5). ◀

The above lemma implies an Ω(ngd/(g+1)−δ) conditional lower bound for any integer
constant g: if Problem 2 for m = n(g−1)/(g+1) has an O(ngd/(g+1)−δ)-time combinatorial
algorithm, then the (dg)-clique detection problem for a graph with n0 vertices has a combi-
natorial algorithm with running time O((ng+1

0 )gd/(g+1)−δ) = O(ndg−(g+1)δ
0 ), contradicting

the Combinatorial k-Clique Hypothesis. The exponent gd/(g + 1) − δ exceeds d − 2δ, by
picking a sufficiently large g ≥ d/δ.

More generally, for any constant γ ≤ (g − 1)/(g + 1), if Problem 2 for m = nγ has an
O((mn)d/2−δ)-time combinatorial algorithm, then the (dg)-clique detection problem for a
graph with n0 vertices has a combinatorial algorithm with running time O(((n2g

0 /m)·m)d/2−δ)
= O(ndg−2gδ

0 ), contradicting the Combinatorial k-Clique Hypothesis.

▶ Theorem 7. Under the Combinatorial k-Clique Hypothesis, Problem 1 or 2 for n points
and n unit hypercubes in Rd does not have an O(nd−δ)-time combinatorial algorithm for any
constant δ > 0.

More generally, under the same hypothesis, for any fixed constant γ ≤ 1, Problem 1
or 2 for m = nγ points and n unit hypercubes in Rd does not have an O((mn)d/2−δ)-time
combinatorial algorithm for any constant δ > 0.

4 Final Remarks

To summarize, we have studied the L∞ translational Hausdorff distance problem for point
sets, a fundamental problem with a long history in computational geometry. We have
obtained a substantially improved upper bound for this problem, and the first conditional
lower bound in dimension 3 and higher, which nearly match the upper bound. Our technique
for the upper bound is interesting, in that it implies a natural colored generalization of
Klee’s measure problem can be solved in roughly the same time bound as the original Klee’s
problem. Our lower bound proof is interesting, in that it adds to a growing body of recent
work on fine-grained complexity in computational geometry, and more specifically illustrates
the power of the Combinatorial Clique Hypothesis.

Our near-O((mn)d/2) upper bound also applies to the variant of the problem for undirected
Hausdorff distance, since the undirected version of Problem 1 can also be reduced to
Problem 3(a) with N = O(mn). However, more effort might be needed to adapt our lower
bounds to the undirected problem (although we have not tried seriously).

For noncombinatorial algorithms, our reduction implies a lower bound of Ω((mn)dω/6−δ),
under the standard hypothesis that the k-clique problem for graphs with n0 vertices requires
Ω(ndω/3−δ′

0 ) time, where ω ∈ [2, 2.373) denotes the matrix multiplication exponent. Proving
better conditional lower bounds for noncombinatorial algorithms remains open. This might
require further new techniques, as we currently do not have tight conditional lower bounds
for the original Klee’s measure problem for noncombinatorial algorithms for d ≥ 4 [26].

As mentioned, Bringmann and Nusser [10] proved a near-mn lower bound for d = 2 under
the OV Hypothesis; their result is in some sense more robust (it holds for noncombinatorial
algorithms) and applies also to the L2 case (and Lp for any 1 ≤ p ≤ ∞). However, the
problem for L2 probably has higher complexity than for L∞: the best upper bounds are near
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n3 for d = 2 and near n5 for d = 3 [23], and near n⌈3d/2⌉+1 for d ≥ 4 [15], in the m = n case.
(See Bringmann and Nusser’s paper for a 3SUM-based lower bound for the L2 problem for
d = 2 in the “unbalanced” case when m is constant.)
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