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Abstract
Consider a weighted, undirected graph cellularly embedded on a topological surface. The function
assigning to each free homotopy class of closed curves the length of a shortest cycle within this
homotopy class is called the marked length spectrum. The (unmarked) length spectrum is obtained
by just listing the length values of the marked length spectrum in increasing order.

In this paper, we describe algorithms for computing the (un)marked length spectra of graphs
embedded on the torus. More specifically, we preprocess a weighted graph of complexity n in time
O(n2 log log n) so that, given a cycle with ℓ edges representing a free homotopy class, the length
of a shortest homotopic cycle can be computed in O(ℓ + log n) time. Moreover, given any positive
integer k, the first k values of its unmarked length spectrum can be computed in time O(k log n).

Our algorithms are based on a correspondence between weighted graphs on the torus and
polyhedral norms. In particular, we give a weight independent bound on the complexity of the unit
ball of such norms. As an immediate consequence we can decide if two embedded weighted graphs
have the same marked spectrum in polynomial time. We also consider the problem of comparing the
unmarked spectra and provide a polynomial time algorithm in the unweighted case and a randomized
polynomial time algorithm otherwise.
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1 Introduction

Combinatorial surfaces are well-studied in computational topology and are usually represented
as graphs cellularly embedded on a topological surface. Given a combinatorial surface S

with underlying graph G, many algorithms exist for computing the length of its shortest
homotopically non-trivial closed walk [23, 10, 13, 4, 3, 9, 2]. Here, the length of a walk is
the sum of the weights of its edges if the edges are weighted, or the number of edges if not.
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26:2 Algorithms for Length Spectra of Combinatorial Tori

However, relatively little is known about how to compute the second shortest non-trivial
closed walk, the third shortest, etc. More precisely, for every closed walk c in G, we can
compute the length of the shortest closed walk freely homotopic to c on S. Obviously, this
length only depends on the free homotopy class of c. The ordered sequence of lengths of all
free homotopy classes of closed walks is called the length spectrum of S with respect to its
(weighted) graph G, while the mapping between free homotopy classes of curves and their
lengths is called the marked length spectrum. The marked length spectrum thus records for
every length in the sequence from which free homotopy class it comes from. These notions
are well studied in the realm of hyperbolic or Riemannian surfaces [15, 1, 16]. A striking
result in that respect is that the marked length spectrum of a non-positively curved surface
entirely determines the geometry of the surface [15]. In other words, one may learn the
geometry of a surface by just looking at the length of its curves. However, the unmarked
length spectrum does not determine the surface even in constant curvature [25].

Analogously, Schrijver [19, Th. 1] proved that embedded graphs that are minor-minimal
among graphs with the same marked length spectrum, which he calls kernels, are determined
by their marked length spectrum up to simple transformations. In [20] Schrijver restricts
to unweighted graphs on the torus and notices that the marked length spectrum extends
to an integer norm in R2, i.e. a norm taking integer values at integer vectors. See figure 1.
Moreover, its dual unit ball is a finite polygon with integer vertices (see [17, 18]). This allows

Figure 1 Left, an unweighted graph on the torus. Right, four dilates of the unit ball of the
associated norm. Note that the vertical and horizontal generators of the torus have length four as
can be seen from the right diagram.

him to reconstruct for every integer norm a graph whose marked length spectrum is given by
this norm.

The aim of our paper is threefold. We first extend the results of Schrijver [20] to weighted
graphs on the torus. There are good reasons to focus on the torus. For instance, the marked
length spectrum of a graph embedded on the torus being a norm is due to the equivalence
between homotopy and homology, which is not true for higher genus surfaces. For weighted
graphs, the marked length spectrum function still extends to a norm on R2, that we denote
by NG,w, but not necessarily to an integer norm. However, we show that it is a polyhedral
norm for any choice of weights w, i.e. that the unit ball BG,w := {α ∈ R2 | NG,w(α) ≤ 1}
is always a polygon. We also prove that the number of extremal points of this polygon is
bounded by a linear function of the number of vertices of G, independent of the weights w.

▶ Theorem 1. Let (G, w) be a weighted graph with |V | vertices cellularly embedded on the
torus. Then NG,w is a polyhedral norm. Moreover, its unit ball BG,w is a polygon with no
more than 4|V | + 5 extremal points, and the ratio of the coordinates of each extremal point is
rational.
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We also extend Schrijver’s reconstruction of a toroidal graph from an integer norm [20] to
the weighted case for non-integer polyhedral norms. See Theorem 7 in Section 3.

Our second goal is to provide algorithms to compute the unit ball BG,w and to compute the
length spectrum. Our complexity estimates assume the standard RAM model of computation
or the standard real-RAM model for non-integer weights supporting constant time arithmetic
operations. We denote by n the complexity of G, i.e. its total number of edges and vertices.

▶ Theorem 2. The unit ball BG,w can be computed in O(n2 log log n) time.

This allows us to compute the length of the shortest closed walk freely homotopic to an input
closed walk of ℓ edges in O(ℓ + log n) time. It is a priori not obvious to sort the values of the
length spectrum from their homotopy classes. However, by decomposing the unit ball into
unimodular sectors, i.e., sectors generated by the columns of unimodular matrices, we are
able to compute efficiently the first k values of the length spectrum.

▶ Theorem 3. Let (G, w) be a weighted graph of complexity n cellularly embedded on the
torus and let k be a positive integer. After O(n2 log log n) preprocessing time, the first k

values of the length spectrum of (G, w) can be computed in O(k log n) time.

Recently, Ebbens and Lazarus [7] used shortest path computations in the universal cover
of the torus to determine the length spectrum. They compute the first k values of the length
spectrum in time O(kn2 log(kn)). This is to be compared to O(k log n) in our submission.

Finally, we provide algorithms to check whether two weighted graphs have the same
(un)marked length spectrum. In the unweighted case it takes the following simple form.

▶ Theorem 4. The equality of marked and unmarked spectra of two unweighted graphs G

and G′ embedded on tori can be tested in time O(n2) and O
(
n3)

, respectively.

Our algorithm for the marked length spectrum is also polynomial in the weighted case
(Theorem 18). However, to compute the unmarked length spectrum we reduce the equality of
length spectra to polynomial identity testing (PIT). See Theorem 19. It becomes deterministic
polynomial in the unweighted case as stated in Theorem 4 above.

In contrast with [19], we provide in the full version an example of isospectral toroidal
graphs whose associated unit balls are not related by any linear transformation. Hence, they
cannot have the same marked spectrum even after applying a homeomorphism on the torus.
Also, in the full version on arXiv, we show that in Theorems 2 and 3 the log log n factor can
be omitted if G is unweighted.

Organization of the paper

We start by discussing some preliminaries in Section 2. We next prove Theorem 1 in Section 3.
Theorem 2 is the object of Sections 4 and 5, while Theorem 3 is proved in Section 6. The
equality of length spectra is finally discussed in Section 7.

2 Preliminaries

Let G = (V, E) be an undirected graph with vertex set V and edge set E. We allow G to
have loop and multiple edges. We denote by n := |V | + |E| the complexity of G. A weight
function for G is a map w : E → R+. The positive value w(e) is the weight (or length) of
the edge e ∈ E. We write (G, w) for a graph G with weight function w. A walk is a finite
alternating sequence of vertices and edges, starting and ending with a vertex, such that any
two successive elements in the sequence are incident. We also use path as a synonym for walk.

SoCG 2023
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The length w(c) of a walk c is the sum of the weights of its edges, counted with multiplicity.
A walk is closed when its first and last vertices coincide. This vertex is the basepoint of the
closed walk. A closed walk without repeated vertices is also called a simple cycle.

Throughout this paper, we will use S to denote a topological surface and T to denote the
topological orientable surface of genus 1, i.e., a torus. In this paper we assume that G is
cellularly embedded on S, which means that the complement S \ G is a collection of open
disks. This embedding can be represented using one of the standard representations, e.g.,
the incidence graph of flags [8] or rotation systems [14]. A surface together with a cellular
embedding of a weighted graph is called a combinatorial surface.

Homotopy

Two walks of G are said homotopic if they are homotopic as curves in S, i.e., one can be
continuously deformed into the other on S while keeping the endpoints fixed. Similarly, two
closed walks are freely homotopic if they are so as curves in S. Here, we do not require
the basepoint to stay fixed during the homotopy. Closed walks (freely) homotopic to a
walk reduced to a vertex are said trivial. Homotopy is an equivalence relation between
walks. The set of homotopy classes of closed walks with fixed basepoint v defines a group
under concatenation. It is called the fundamental group of S, and denoted by π1(S, v). The
fundamental group of the torus is Abelian and isomorphic to Z2. See e.g. [22]. π1(T, v) is
thus in bijection with its set of conjugacy classes, hence with the set of free homotopy classes.

A closed walk is tight if it is shortest in its free homotopy class. Note that a homotopy
class may contain more than one tight closed walk. Let C denotes the set of free homotopy
classes of S. The map C → R+ that associates to every free homotopy class the length of
a tight closed walk in the class is the marked length spectrum of S with respect to (G, w).
The unmarked length spectrum is the list containing in increasing order the lengths of the
non-trivial free homotopy classes of G, counted with multiplicity: if two homotopy classes
have the same length, then this length will appear twice in the list.

Homology

Let F be the set of faces of the cellular embedding of G in S. We also call a face, an edge or a
vertex, a k-cell for k = 2, 1, 0, respectively. The group of 2-chains, C2, is the group of formal
linear combinations of faces with integer coefficients with the obvious addition as group
operation. A typical element of C2 has the form Σf∈F nf f with nf ∈ Z. Likewise, the group
C1 of 1-chains and the group C0 of 0-chains are the groups of formal linear combinations of
edges and vertices, respectively. Cells are assumed to be oriented and a cell multiplied by −1
represents the same cell with opposite orientation.

For k = 1, 2, the boundary operator ∂k : Ck → Ck−1 is the linear extension of the map
that sends a k-cell to the formal sum of its boundary facets, where the coefficient of a facet
in the sum is 1 if its orientation is induced by the orientation of the k-cell and −1 otherwise.
The kernel of ∂k is denoted by Zk. Its elements are called k-cycles, not to be confused
with cycles in the graph theoretical sense. The image of ∂k is denoted by Bk−1. The first
homology group of S with respect to the coefficients Z is the group H1(S;Z) := ker ∂1/ Im ∂2.
From homology theory, H1(S;Z) does not depend on the specific cell decomposition induced
by the cellular embedding of G. We can similarly define the first homology group with real
coefficients H1(S;R). Since the 1-chains only depend on the graph G, we also write Z1(G;Z)
for the group of 1-cycles. The Hurewicz theorem states that the map π1(S, v) → H1(S;Z)
that sends (the homotopy class of ) a closed walk to the (homology class of the) formal sum
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of its oriented edges is onto with kernel the commutator subgroup of π1(S, v). In the case of
the torus, π1(T, v) is commutative, so that the above map is an isomorphism. From now on
we will identify homotopy and first homology classes on the torus. We will denote by the
same letter a closed walk on G and the corresponding 1-cycle in Z1(G;Z). The homotopy or
homology class of a closed walk or 1-cycle c will be indifferently denoted by [c].

Intersection numbers

Given two closed oriented curves c, d on S (endowed with an orientation) with transverse
intersections, we may assign a sign to each intersection according to whether the tangents
of c and d at the intersection form a positively oriented basis. The sum of the signs over
all intersections is called the algebraic intersection number. It is a classical result that this
number only depends on the homology classes [c] and [d] and that it defines an antisymmetric,
nondegenerate bilinear form on H1(S;Z), denoted by the pairing ⟨[c], [d]⟩. Of course the
total number of intersections of c and d is at least |⟨[c], [d]⟩|.

The universal cover of the torus

We can form a torus by identifying the opposite sides of a square. Equivalently, we can see a
torus as the quotient of the plane R2 by the action of the group of translations generated by
(1, 0) and (0, 1), which we identify with the lattice Z2. Hence, T is identified with R2/Z2 and
we have a quotient map q : R2 → T . The plane R2, with the map q, is called the universal
cover of T . Given a curve c with source point v on T , and a point ṽ ∈ q−1(v), there is a
unique curve c̃ in the plane with source ṽ that projects to c, i.e., such that q(c̃) = c. The
curve c̃ is a lift of c. If c is a closed curve, then the vector from the source to the target
of c̃ has integer coordinates and only depends on [c]. Hence, each homotopy class can be
identified with a lattice translation. Such translations are called covering transformations
(or translations). A curve is freely homotopic to a simple curve if and only if the coordinates
of the corresponding covering translation are coprime [22, Sec. 6.2.2]. By the identification
between Z2, π1(T, v) and H1(T ;Z), any pair (α, β) of homology classes that generates
H1(T ;Z) must correspond to an invertible integer transformation, hence to a unimodular
matrix. Equivalently, ⟨α, β⟩ = ±1. (α, β) is a positively oriented basis when ⟨α, β⟩ = 1.

Integer and intersection norms

Let N : Zd → R≥0 satisfy the norm axioms:
N(α + β) ≤ N(α) + N(β) (subadditivity)
N(kα) = |k|N(α) (absolute homogeneity)
N(α) = 0 =⇒ α = 0 (separation)

Then N extends to Qd using homogeneity, and can be extended to Rd so that it is continuous.
It can be shown that this indeed provides a well-defined norm over Rd [24]. Such a function N ,
or its real extension, is called an integer norm if N(Zd) ⊆ Z≥0. Integer norms are polyhedral,
i.e. their unit ball is a centrally symmetric polytope, and their dual unit ball is a centrally
symmetric polytope with integer vertices [24, 20, 17]. See also [5, Sec. 6.0.4]. Integer norms
naturally arise as length functions defined over homology classes of curves on surfaces. There
are several ways to define curves and their lengths with respect to a graph G embedded on a
surface S. One can consider continuous curves on S and define their length as the number of
crossings with G. Schrijver [20] applies this framework when S is a torus and shows that
this indeed defines a norm. He also considers a framework where the curves are in general
position with respect to G, thus avoiding its vertices, and G is required to be 4-regular.

SoCG 2023
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In [19] Schrijver shows that the first framework reduces to the second by considering the
medial graph of G. In turn, the second framework reduces to our framework by duality, in
the special case where the faces are quadrilaterals and the edges are unweighted.

3 Length spectrum and polyhedral norms on homology

In this section, given a weighted graph (G, w) embedded on a torus T , we introduce a
norm on the first homology group of the torus that will be used throughout the article. A
correspondence between graphs on the torus and polyhedral norms has been known for some
time [20]. But, as far as we know, it has been studied only in the unweighted case and
furthermore never analyzed from a computational point of view. For α ∈ H1(T ;Z) let

NG,w(α) := inf

 ∑
e∈E(G)

|xe|w(e) :
∑

e∈E(G)

xee ∈ Z1(G;Z) and [
∑

e∈E(G)

xee] = α

 . (1)

In the full version we show that NG,w satisfies the norm axioms. Hence, as explained in
the subsection “Integer and intersection norms” of Section 2, NG,w extends to a norm on
H1(T ;R) (because H1(T ;Z) is naturally a lattice in H1(T ;R)). The next lemma asserts that
NG,w is indeed the marked length spectrum of T with respect to (G, w).

▶ Lemma 5. For every α ∈ H1(T ;Z) we have

NG,w(α) = inf
{∑

i∈I

xi · w(ci) : [
∑
i∈I

xi · ci] = α and xi ∈ Z≥0 for i ∈ I

}
, (2)

where {ci}i∈I is the (finite) set of all simple cycles in G. The infimum in (2) is attained.
Furthermore, for every α ∈ H1(T ;Z), NG,w(α) is the length of a shortest closed walk c in G

with [c] = α. In other words, NG,w is the marked length spectrum of T with respect to (G, w).

In the proof of Theorem 1 below we show that the extremal points of the unit ball
BG,w = {α ∈ H1(T ;R) | NG,w(α) ≤ 1} of NG,w correspond to homology classes that can be
represented by simple cycles in G. The next lemma gives a bound on their number.

For a subset X of a real vector space let conv(X) denote the convex hull of X. Note that
H1(T ;Z) is naturally a subset of the real vector space H1(T ;R).

▶ Lemma 6. Let G be a graph with |V | vertices cellularly embedded on the torus T , and let
SCG ⊂ H1(T ;Z) be the set of homology classes of curves that can be represented as simple
cycles in G. Then, in H1(T ;R) we have | conv(SCG) ∩ H1(T ;Z)| ≤ 4|V | + 5.

Proof. Identify H1(T ;Z) with Z2 via an arbitrary positively oriented basis. H1(T ;R) is then
identified with R2, and the algebraic intersection pairing is given by ⟨(x, y), (x′, y′)⟩ = xy′−x′y,
whose absolute value is the Euclidean area of the parallelogram generated by these vectors.

Let α, β ∈ SCG be represented by simple cycles cα, cβ in G. On the one hand, the number
of intersections between cα and cβ is bounded by |V |, since each intersection corresponds to
at least one vertex of G, and all these vertices must be different. On the other hand, it is
bounded below by the algebraic intersection number |⟨α, β⟩|. Hence, |⟨α, β⟩| ≤ |V |.

Denote by ∥·∥ the Euclidean norm on R2 and by dist(·, ·) the Euclidean distance, and
consider α, β ∈ SCG such that |⟨α, β⟩| is maximal. Then for any γ ∈ SCG, we have
|⟨γ, α⟩| ≤ |⟨α, β⟩| and |⟨γ, β⟩| ≤ |⟨α, β⟩|. Note that, since these numbers are the areas of the
corresponding parallelograms, |⟨γ, α⟩| = ∥α∥ · dist(γ,Rα), |⟨γ, β⟩| = ∥β∥ · dist(γ,Rβ) and
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|⟨α, β⟩| = ∥α∥ · dist(β,Rα) = ∥β∥ · dist(α,Rβ), where Rα,Rβ denote the one-dimensional
R-subspaces generated by α, β respectively. It follows that dist(γ,Rα) ≤ dist(β,Rα) and
dist(γ,Rβ) ≤ dist(α,Rβ), and so SCG is contained in the parallelogram P with vertices
±α ± β, see Figure 2. Clearly, the area A(P ) of P is 4|⟨α, β⟩|. At the same time, by Pick’s

α

P

β

SCG

conv(SCG)

Figure 2 The elements of SCG are contained in a parallelogram P of area at most 4|V |.

theorem A(P ) = I + B/2 − 1, where I is the number of integer points strictly inside P and
B is the number of integer points on its boundary. Since α and β are homology classes
represented by simple cycles, their corresponding vectors in Z2 have coprime coordinates, i.e.
the only integer points on the vectors α and β are their endpoints. It follows that the only
integer points on the boundary of P are ±α, ±β, ±α ± β and so B = 8.

Finally, since SCG ⊂ P , we have conv(SCG) ⊂ P as well, and so

| conv(SCG) ∩ Z2| ≤ I + B = A(P ) + B/2 + 1 = 4|⟨α, β⟩| + 5 ≤ 4|V | + 5. ◀

In the full version, it is shown that the order of the bound in Lemma 6 is optimal. We now
pass to the proof of Theorem 1. In the unweighted case, the polyhedrality of the norm follows
from its integrality [20]. However, this argument does not apply in the weighted case.

Proof of Theorem 1. We refer to the full version for a proof that NG,w satisfies the norm
axioms. Hence, as explained in Section 2, NG,w extends to a norm on H1(T ;R). To prove
the polyhedrality of this norm, we show that

BG,w = conv
({

[ci]
w(ci)

| i ∈ I

})
, (3)

where {ci}i∈I is the (finite) set of all oriented simple cycles in G, as in Lemma 5.
Denote the right-hand side of (3) by B′

G,w. Clearly, for every i ∈ I we have NG,w([ci]) ≤
w(ci), so B′

G,w ⊂ BG,w. Conversely, take any homology class α ∈ H1(T ;Z). By Lemma 5,
we have NG,w(α) =

∑
i∈I xi · w(ci) for some xi ∈ Z≥0 such that α = [

∑
i∈I xi · ci]. Then

α

NG,w(α) =
∑

i∈I xi · [ci]∑
i∈I xi · w(ci)

=
∑
i∈I

xiw(ci)∑
j∈I xj · w(cj) · [ci]

w(ci)

is a representation of α
NG,w(α) as a convex combination of [ci]

w(ci) , i ∈ I. Hence BG,w ⊂ B′
G,w

and we get (3). By definition, the [ci] can be represented by simple cycles in G. By Lemma
6 their number is at most 4|V | + 5, and so the number of extremal points of BG,w is also at
most 4|V | + 5. The slopes of [ci]/w(ci) are rational since the [ci] belong to H1(T ;Z). ◀

SoCG 2023
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Finally, we show how to reconstruct a weighted graph (G, w) embedded on the torus T

from a polyhedral norm on R2.

▶ Theorem 7. Let N : R2 → R be a polyhedral norm all of whose extremal points have
rational slopes. Let {±(pi, qi)}i=1,...,n be the set of non-zero integral vectors closest to the
origin on the rays issued from the origin in the direction of the extremal points of the unit
ball {v ∈ R2 : N(v) ≤ 1}. Then there exists a weighted 4-valent graph (G, w) embedded on
the torus T with

∑
1≤i<j≤n

|piqj − pjqi| vertices so that N(G,w) = N .

4 Good short basis

Our computation of the length spectrum and of its unit ball relies on the initial computation
of a good short basis. By a short basis we mean a pair of tight simple cycles (a, b) in G

such that a is a shortest non-trivial closed walk and b is a shortest non-trivial closed walk
satisfying ⟨[a], [b]⟩ = 1. We say that (a, b) is a good basis if ([a], [b]) is a positively oriented
basis of H1(T ;Z) and a and b intersect along a connected path, possibly reduced to a vertex.

▶ Lemma 8. Let (G, w) be a weighted graph of complexity n cellularly embedded on the torus.
A good short basis can be computed in O(n log n) time.

Sketch of proof. We first compute a shortest non-trivial closed walk a in O(n log n) time
following Kutz [13, Th. 1]. This closed walk must be a tight simple cycle as otherwise
it could be decomposed into shorter non-trivial closed walks. We claim that among all
shortest non-trivial closed walks b satisfying ⟨[a], [b]⟩ = 1 there is one that intersects a along
a connected path. See full version. Cutting T along a yields an annulus A with two copies
a′ and a′′ of a as boundary components. By the above claim, b intersects A in a shortest
path connecting two copies of the same vertex respectively on a′ and a′′. We find this
shortest path using the multiple-source shortest path algorithm of Klein; see [12] and [2,
Th. 3.8]. This algorithm builds a data structure in O(n log n) time that allows to query
for the distance between any vertex on a′ and any other vertex in A in O(log n) time. We
need to query for the O(n) pairs of copies of vertices of a and retain a pair (u′, u′′) that
minimizes the distance. In order to find an explicit representative of b, we can in a second
step run Dijkstra’s algorithm with source u′ in A. Finally, to ensure that b intersects a along
a connected path, we can replace the subpath between u′ and the last occurrence of a vertex
on a′ by a subpath of a′ with the same length and do similarly on a′′. The total running
time is O(n log n). We obtain b by gluing back the two copies of a. ◀

We shall always express a homology class in the basis (a, b) and identify the class with a
vector in Z2. Hence, [a] and [b] are identified with (1, 0) and (0, 1), respectively.

5 Computing the unit ball

Here, we provide an algorithm for computing the unit ball BG,w of NG,w corresponding to the
weighted graph (G, w). Let T SCG,w ⊂ H1(T ;Z) be the set of homology classes that admit a
tight and simple representative in G. Of course, T SCG,w ⊆ SCG, and the homology classes
of a and b computed in Section 4 are in T SCG,w by construction. In Section 3, we proved
that BG,w is the convex hull of a set {α/NG,w(α)}α∈SCG

containing O(|V |) classes. We shall
compute a subset H of T SCG,w whose normalized vectors, {α/NG,w(α)}α∈H , include all
the extremal points of BG,w. Since the coordinates of each element of T SCG,w must be
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coprime, the set of directions defined by the elements of T SCG,w are pairwise distinct and
naturally ordered angularly. We search for H by exploring the whole set of directions using
dichotomy together with a simple pruning strategy. Suppose we need to explore the angular
sector ∠(α, β), where (α, β) forms a basis of H1(T ;Z). The dichotomy consists in splitting
the sector into the sectors ∠(α, γ) and ∠(γ, β) with γ := α + β. Note that (α, γ) and (γ, β)
are again bases of H1(T ;Z). In particular, the coordinates of γ are coprime. Since for any
nonzero η ∈ H1(T ;Z), the vector η/NG,w(η) lies on the boundary of the unit ball, it follows
by convexity of BG,w that the segment [ α

NG,w(α) , β
NG,w(β) ] is a subset of a supporting line of

BG,w whenever γ/NG,w(γ) lies on this segment. This last condition has a simple certificate.

▷ Claim 9. γ
NG,w(γ) lies on the segment [ α

NG,w(α) , β
NG,w(β) ] if and only if

NG,w(α + β) = NG,w(α) + NG,w(β).

It follows from the previous discussion that if NG,w(α + β) = NG,w(α) + NG,w(β), then the
interior of the sector ∠(α, β) cannot contain any extremal point and we can prune this whole
sector in our search. This leads to the pseudo-code of Algorithm 1 for computing H. In the
sequel, we say that a pair of closed walks in G is good if they are simple and tight cycles,
if their homology classes form a basis of H1(T ;Z), and if they moreover intersect along a
connected path, possibly reduced to a vertex.

Algorithm 1 Compute H.

Require: A weighted graph (G, w) cellularly embedded on the torus
Ensure: A short basis (a, b) and a sorted list H = [((xi, yi), ci, w(ci))] where ci is a simple

tight cycle in G, (xi, yi) ∈ Z2 represents its homology class [ci] = xi[a] + yi[b], and
w(ci) = NG,w([ci]). Also, the extremal points of BG,w are contained in the set of vectors
{[ci]/w(ci) : i ∈ {0, . . . , size(H) − 1}}.

1: Compute a good short basis (a, b) as explained in Section 4
2: h1 := ((1, 0), a, w(a)) {Note that NG,w([a]) = w(a)}
3: h2 := ((0, 1), b, w(b)) {and that NG,w([b]) = w(b).}
4: h1 := ((−1, 0), a, w(a))
5: H := {h1, h2} {Initialise H.}
6: S := {∠(h1, h2),∠(h2, h1)} {Initialise a set of sectors to explore with the upper quadrants.}
7: while S ̸= ∅ do
8: Extract and remove from S a sector ∠(h, h′)
9: (x, y), c, ℓ := h {Note that NG,w([c]) = ℓ.}

10: (x′, y′), c′, ℓ′ := h′ {Similarly NG,w([c′]) = ℓ′.}
Require: (c, c′) is a good pair
11: Compute a tight representative c′′ of γ′′ := [c] + [c′] with its norm ℓ′′ := NG,w(γ′′) = w(c′′)
12: if ℓ′′ < ℓ + ℓ′ then
13: h′′ := ((x + x′, y + y′), c′′, ℓ′′)
14: Insert h′′ in H between h and h′

15: S := S ∪ {∠(h, h′′),∠(h′′, h′)}
16: end if
17: end while
18: H := H ∪ H {Add the symmetric of H w.r.t. the origin.}

By subadditivity of the norm, the test in Line 12 of Algorithm 1 may only fail when
NG,w([c′′]) = NG,w([c])+NG,w([c′]). It then follows from Claim 9 and the preceding discussion
on our pruning strategy that we are not missing any direction of extremal points in the upper
plane when adding homology classes in Line 14. Moreover, Line 18 and the central symmetry
of the unit ball ensure that the above algorithm indeed computes a set of homology classes

SoCG 2023



26:10 Algorithms for Length Spectra of Combinatorial Tori

whose normalized vectors contains the extremal points of BG,w. It remains to explain how
to perform the computation in Line 11 and to analyse the complexity of Algorithm 1.

▶ Lemma 10. Let (α, β) be a homology basis such that α and β have representatives,
respectively cα and cβ, forming a good pair. We can compute a tight representative cα+β for
α + β in O(n log log n) time.

Sketch of proof. By hypothesis, cα and cβ intersect along a connected path pαβ . The path
pαβ may be oriented the same way or not in cα and cβ . We consider the case where it is
oriented the same way (see the full version for the other case). Then cα = pα · pαβ and
cβ = pβ · pαβ for some paths pα, pβ in G. We cut T along cα ∪ cβ , viewed as a subgraph of G.
We obtain a hexagonal plane domain D with sides pβ , pαβ , pα, pβ , pαβ , pα in the clockwise
order around the boundary of D. See Figure 3. The universal cover of T is tessellated by

pαβ

pα

pβ

D

pβ

pα

pαβ

G

Figure 3 Cutting T along cα ∪ cβ .

translated copies of D glued along their sides so that the side p of a domain is glued to the
side p of the adjacent domain. See Figure 4. As before, let γ = α + β. Since (α, γ) is a
positively oriented basis, we know that ⟨α, γ⟩ = 1. Hence, any representative of γ must cross
cα. Let cγ be a tight representative of γ with a lift c̃γ in the universal cover starting from a
vertex ṽ on the side pα or pαβ of a domain D0 and ending at the vertex w̃ := ṽ + τα + τβ ,
where τα and τβ are the covering translations corresponding to α and β respectively. There
are two situations according to whether ṽ lies on the side pα or pαβ of D0. See Figure 5.

If ṽ lies on the side pα of D0 then w̃ belongs to the side pα of D1 := D0 + τα. We claim
that D0 ∪ D1 is convex, i.e., any two vertices in D0 ∪ D1 can be joined by a shortest path
contained in D0 ∪ D1. Indeed, since cα is tight, any bi-infinite concatenation of its lifts
is a geodesic line in the weighted lift of G in the universal cover of T . Similarly, any
bi-infinite concatenation of lifts of cβ is a geodesic line and thus delimits two convex
half-planes. See the dotted and broken lines in Figure 5. It follows that D0 ∪ D1 is the
intersection of four half-planes, hence is convex. We can thus assume that cγ has a lift
in D0 ∪ D1 with endpoints ṽ and w̃ on the boundary of D0 ∪ D1. We can glue the pα

side of D0 with the pα side of D1 and search for the shortest generating cycle of the
resulting annulus in O(n log n) time as in [6, Prop. 2.7(e)], or, more efficiently, in time
O(n log log n) as in [11, Theorem 7].
If ṽ lies on the side pαβ of D0 we can compute c̃γ in linear time. See the full version.

In all cases we may compute a tight representative of γ in O(n log log n) time. ◀

▶ Lemma 11. The tight representative cα+β computed in Lemma 10 can be modified in O(n)
time in order to satisfy the additional following property (P): The intersection of any lift of
cα+β in the universal cover with any line is either empty or a common connected subpath.



V. Delecroix, M. Ebbens, F. Lazarus, and I. Yakovlev 26:11

pαβ

pα

pβ pαβ

pα

pβ

D

D

τβ

τα

τα + τβ
τα + τβ

τα

τβ

Figure 4 The universal cover of T . Left: pαβ is oriented consistently with both cα and cβ . Right:
pαβ has opposite orientation in cα and cβ .

▶ Lemma 12. Let (α, β) be a homology basis such that α and β have representatives,
respectively cα and cβ, forming a good pair. If NG,w(α + β) < NG,w(α) + NG,w(β), then the
tight representative cα+β computed in Lemma 11 is such that (cα, cα+β) and (cα+β , cβ) are
good pairs.

Since in Algorithm 1 we only add α + β to H at line 14 when α, β are already in H with
NG,w(α + β) < NG,w(α) + NG,w(β), Lemma 12 immediately implies

▶ Corollary 13. H ⊂ T SCG,w ⊂ SCG

▶ Corollary 14. The number of iterations in the while loop of Algorithm 1, from Line 7
to 17, is bounded by twice the size of T SCG,w.

▶ Proposition 15. Algorithm 1 runs in O(n2 log log n) time.

Proof. From Corollary 14, Algorithm 1 enters at most 2|T SCG,w| times the while loop be-
tween Lines 7 and 17. This is O(n) iterations by Lemma 6. Each iteration takes O(n log log n)
time for executing Line 11 by Lemmas 10 and 11. Lemma 12 ensures that only good pairs are
stored at Line 15, so that the requirement for executing Line 11 is always satisfied. Line 18
moreover takes time O(|H|) = O(n). Since every other line takes constant time to execute,
the total time for running Algorithm 1 is O(n · n log log n + n) = O(n2 log log n). ◀

We are now ready to prove that BG,w can be computed in O(n2 log log n) time.

Proof of Theorem 2. Proposition 15 states that we can compute in O(n2 log log n) time a
list H of O(n) vectors, with their norms, that contains the directions of the extremal points of
the unit ball BG,w. After normalising the vectors we compute their convex hull in O(n log n)
time with any classical convex hull algorithm. Overall, this leads to an O(n2 log log n) time
algorithm for computing BG,w. ◀
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pα

D0 D1

ṽ

pαβ

D1

ṽ

w̃

c̃γ

c̃γ

w̃

pαβ

D1

ṽ0

w̃0

c̃γ

Figure 5 Top: if cγ crosses pα, then cγ has a lift in D0 ∪ D1. The dotted and broken lines are
supporting geodesics for the considered regions. Bottom: when cγ crosses pαβ it has a lift contained
in the union of D1 with two lifts of pαβ . We can shift the origin of the lift to ṽ0.

For further reference, we establish a useful property of the ordered set of elements in H.
Namely, two consecutive cycles in H define a unimodular cone.

▶ Lemma 16. The sorted list H = [((xi, yi), ci, w(ci))] computed by Algorithm 1 is such that
the rays R≥0ci are ordered cyclically by angle, and ⟨[ci], [ci+1]⟩ = 1 for all i. In particular,
the half-open cones Ci = Z≥0[ci] + Z>0[ci+1] constitute a partition of H1(T ;Z).

6 Computing the length spectrum

We now give a proof of Theorem 3.

Proof. First, as described in Sections 4 and 5, we compute in time O(n2 log log n) a short
basis (a, b) and a list H of triples ((xi, yi), ci, w(ci)), where ci is a simple tight cycle in G,
(xi, yi) ∈ Z2 represents its homology class [ci] = xi[a] + yi[b] and w(ci) = NG,w([ci]). From
Lemma 16, this provides a partition of H1(T ;Z) into half-open cones Ci = Z≥0[ci]+Z>0[ci+1].
Note that by construction NG,w is linear over each Ci.

We then compute the values of the length spectrum iteratively, in increasing order, storing
them into a list Λ, initially empty. Intuitively, the algorithm consists in sweeping H1(T ;Z)
by increasing the radius of the λ-ball λBG,w from λ = 0. Each time a lattice point is swept,
its norm λ is added to Λ. We actually sweep the cones Ci in parallel.

By Lemma 16, the half-open cones Ci decompose the ball λBG,w into sectors Cλ
i :=

λBG,w ∩ Ci. For each sweeping value λ and each i we store two ordered subsets of Cλ
i into

dequeues (double-ended queues) F h
i and F v

i corresponding to the horizontal and vertical
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sweeping front, respectively. Formally F h
i = ((xh

1 , yh
1 ), . . . , (xh

ih
, yh

ih
)), where each (xh

j , yh
j ) ∈

Z≥0 ×Z>0 is such that xh
j [ci] + yh

j [ci+1] ∈ Cλ
i and (xh

j + 1)[ci] + yh
j [ci+1] ̸∈ λBG,w. Moreover,

the homology classes in F h
i are ordered by their norms in increasing order. Similarly,

F v
i = ((xv

1, yv
1), . . . , (xv

iv
, yv

iv
)) contains the list (ordered by norm in increasing order) of

coordinates of the homology classes contained in λBG,w but whose translates by [ci+1] have
norms larger than λ. Initially F h

i is the empty dequeue and F v
i contains the coordinates

(0, 0) of the zero class. See Figure 6

Figure 6 Here, the point (x, y) represents the class x[ci] + y[ci+1]. The solid red line represents
the points whose norm is λ. The dashed lines correspond to the norms of (xh

1 , yh
1 ) and (xv

1 , yv
1 ).

▷ Claim 17. The coordinates in the ([ci], [ci+1]) basis of the homology class in Ci \ Cλ
i with

the smallest norm is either (xh
1 + 1, yh

1 ) or (xv
1, yv

1 + 1).

We are now ready to describe the sweeping algorithm. We store the indices i of the sectors
Cλ

i in a (balanced) binary search tree S allowing minimum extraction, deletion and insertion
in logarithmic time. The key of sector Cλ

i used for comparisons in the tree is the minimum
norm of a homology class in Ci \Cλ

i . From the previous claim it can be computed in constant
time from F h

i and F v
i as

key[i] = min(NG,w([(xh
1 + 1)ci + yh

1 ci+1]), NG,w([xv
1ci + (yv

1 + 1)ci+1]))
= min((xh

1 + 1)w(ci) + yh
1 w(ci+1), xv

1w(ci) + (yv
1 + 1)w(ci+1))

Suppose we have computed the m first values of the length spectrum, i.e., Λ = (λ1, λ2, . . . , λm),
and we want to compute λm+1. We extract and remove from S the sector Cλm

i , with
i = S. min(), i.e., with a non-swept homology class α of minimal norm. Hence, we have
λm+1 = key[i]. We update F h

i and F v
i as follows. If α = (xh

1 + 1)[ci] + yh
1 [ci+1], then

we remove (xh
1 , yh

1 ) from the bottom of F h
i and push (xh

1 + 1, yh
1 ) on its top. Likewise, if

α = xv
1[ci] + (yv

1 + 1)[ci+1], we remove (xv
1, yv

1) from the bottom of F v
i and push (xv

1, yv
1 + 1)

on its top. We do both if α = (xh
1 + 1)[ci] + yh

1 [ci+1] = xv
1[ci] + (yv

1 + 1)[ci+1]. Clearly, the
updated dequeues contain the required lattice points with respect to the sweeping value
λ = λm+1. We then update S by inserting i with its new key resulting from the updates of
F h

i and F v
i . We finally add λm+1 to Λ. By Corollary 13 and Theorem 1, S contains O(n)

items. The running time for a sweeping step is thus O(log n) time for interacting with S
plus constant time for updating F h

i , F v
i and Λ. We can thus compute the first k values of

the length spectrum in O(n2 log log n + k log n) time. ◀
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7 Deciding equality of length spectra

We now present an application of Algorithm 1 to the following decision problem: given
two weighted graphs (G, w) and (G′, w′) embedded on tori do they have the same length
spectra? This question actually covers two problems: the equality of the marked and of
the unmarked length spectrum. As we show, the former reduces to the linear equivalence
of polyhedral norms which has a straightforward quadratic time solution. In contrast the
latter reduces to the problem of polynomial identity testing which is only known to be in the
co-RP complexity class [21]. In particular, this problem is in co-NP. For unweighted graphs
however, the complexity is deterministic polynomial.

We first aim to compare the length spectrum as maps from H1(T ;Z) → R. We are given
two weighted graphs (G, w) and (G′, w′) embedded on tori T and T ′ respectively. We say
that (G, w) and (G′, w′) have the same marked spectrum if there exists a homeomorphism
ϕ : T → T ′ such that for all γ ∈ H1(T ;Z) we have NG′,w′(ϕ∗(γ)) = NG,w where ϕ∗(γ)
denotes the class [ϕ(c)] where c is a curve representative of γ.

▶ Theorem 18. Let (G, w) and (G′, w′) be two weighted graphs cellularly embedded on tori T

and T ′, each with complexity bounded by n. Then there is an algorithm that answers whether
(G, w) and (G′, w′) have the same marked spectrum in time O(n2 log log n).

Now we consider the more delicate question of comparing unmarked spectra. That is, we
want to decide whether the list of values {NG,w(α) : α ∈ H1(T ;Z)} and {NG′,w′(α′) : α′ ∈
H1(T ′;Z)} coincide where each value comes with multiplicity according to the number of
homology classes that realize this length. This equality of unmarked length spectra is always
decidable and we show that it belongs to the co-RP complexity class, i.e. our algorithm can
detect if the unmarked spectra of (G, w) and (G′, w′) are different in random polynomial
time. For this specific test, we need to have access to all integral linear relations between
the weights at once. That is, our algorithm needs to have access to the Q-vector space
{(xe)e∈E(G) ∈ QE(G) :

∑
e xewe = 0}. We assume that the weights are given in the following

form : we are given r real numbers o = (o1, o2, . . . , or) that do not satisfy any integral linear
relations, and for each edge e ∈ E(G) its weight is given as a linear combination of these real
numbers with integral coefficients we = we,1o1 + . . . + we,ror. We call complexity of these
weights the sum ∥w∥o :=

∑
e∈E(G)

∑r
i=1 |we,i|. Note that this complexity depends on the

choice of the numbers o1, . . . , or and not only on the values we as real numbers.

▶ Theorem 19. Let (G, w) and (G′, w′) be two weighted graphs cellularly embedded on
tori T and T ′, each with complexity bounded by n, where each weight is specified as we =
we,1o1 + . . . + we,ror with we,i ∈ Z and o1, . . . , or are r given real numbers. There is an
algorithm to decide whether (G, w) and (G′, w′) have different (unmarked) spectra that runs
in random polynomial time in the total input size n + log (∥w∥o + ∥w′∥o). Moreover, for fixed
r, there is a deterministic algorithm that runs in time O(n2 · (∥w∥o + ∥w′∥o)r).

Let us explain how to deduce Theorem 4 from Theorems 18 and 19. We emphasize that
Theorem 19 allows us to deduce deterministic polynomial time only in the unweighted case.
Even with rational weights we are not aware of a deterministic polynomial time algorithm.

Proof of Theorem 4. The case of marked spectrum is simply a particular case of Theorem 18,
where we use the fact that the unit ball can be computed in quadratic time in the unweighted
case. For the equality of unmarked spectrum, we have r = 1 and o1 = 1. The second part of
Theorem 19 hence gives deterministic polynomial time in O(n2·(

∑
e∈E(G)∪E(G′)

1)) = O(n3). ◀
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