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Abstract
In Coordinated Motion Planning (CMP), we are given a rectangular-grid on which k robots occupy
k distinct starting gridpoints and need to reach k distinct destination gridpoints. In each time step,
any robot may move to a neighboring gridpoint or stay in its current gridpoint, provided that it does
not collide with other robots. The goal is to compute a schedule for moving the k robots to their
destinations which minimizes a certain objective target – prominently the number of time steps in
the schedule, i.e., the makespan, or the total length traveled by the robots. We refer to the problem
arising from minimizing the former objective target as CMP-M and the latter as CMP-L. Both
CMP-M and CMP-L are fundamental problems that were posed as the computational geometry
challenge of SoCG 2021, and CMP also embodies the famous (n2 − 1)-puzzle as a special case.

In this paper, we settle the parameterized complexity of CMP-M and CMP-L with respect to
their two most fundamental parameters: the number of robots, and the objective target. We develop
a new approach to establish the fixed-parameter tractability of both problems under the former
parameterization that relies on novel structural insights into optimal solutions to the problem. When
parameterized by the objective target, we show that CMP-L remains fixed-parameter tractable
while CMP-M becomes para-NP-hard. The latter result is noteworthy, not only because it improves
the previously-known boundaries of intractability for the problem, but also because the underlying
reduction allows us to establish – as a simpler case – the NP-hardness of the classical Vertex Disjoint
and Edge Disjoint Paths problems with constant path-lengths on grids.
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1 Introduction

Who among us has not struggled through solving the 15-puzzle? Given a small square board,
tiled with 15 tiles numbered 1, . . . , 15, and a single hole in the board, the goal of the puzzle
is to slide the tiles in order to reach the final configuration in which the tiles appear in
(sorted) order; see Figure 1 for an illustration. The 15-puzzle has been generalized to an
n × n square-board, with tiles numbered 1, . . . , n2 − 1. Unsurprisingly, this generalization
is called the (n2 − 1)-puzzle. Whereas deciding whether a solution to an instance of the
(n2 − 1)-puzzle exists (i.e., whether it is possible to sort the tiles starting from an initial
configuration) is in P [20], determining whether there is a solution that requires at most
ℓ ∈ N tile moves has been shown to be NP-hard [9, 26].
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28:2 The Parameterized Complexity of Coordinated Motion Planning

Figure 1 The left figure shows an initial configuration of the 15-puzzle and the right figure shows
the desirable final configuration. Source: https://en.wikipedia.org/wiki/15_puzzle.

Deciding whether an (n2 − 1)-puzzle admits a solution is a special case of Coordinated
Motion Planning (CMP), a prominent task originating from robotics which has been exten-
sively studied in the fields of Computational Geometry and Artificial Intelligence (where
it is often referred to as Multi-Agent Path Finding). In CMP, we are given an n × m

rectangular-grid on which k robots occupy k distinct starting gridpoints and need to reach k

distinct destination gridpoints. Robots may move simultaneously at each time step, and at
each time step, a robot may move to a neighboring gridpoint or stay in its current gridpoint
provided that (in either case) it does not collide with any other robots; two robots collide
if they are occupying the same gridpoint at the end of a time step, or if they are traveling
along the same grid-edge (in opposite directions) during the same time step. We are also
given an objective target, and the goal is to compute a schedule for moving the k robots to
their destination gridpoints which satisfies the specified target. The two objective targets we
consider here are (1) the number of time steps used by the schedule (i.e., the makespan),
and (2) the total length traveled by all the robots (also called the “total energy”, e.g., in the
SoCG 2021 Challenge [1]); the former gives rise to a problem that we refer to as CMP-M,
while we refer to the latter as CMP-L. An illustration is provided in Figure 2.

robots
Time Green Red Blue Purple Orange Yellow
0 (1,3) (2,2) (5,2) (4,2) (2,1) (3,1)
1 (2,3) (2,2) (5,3) (3,2) (2,1) (3,1)
2 (3,3) (2,3) (5,4) (2,2) (3,1) (3,2)
3 (4,3) (2,4) (5,5) (1,2) (4,1) (3,3)
4 (5,3) (1,4) (4,5) (1,1) (5,1) (3,4)

Figure 2 An illustration (left) of an instance of CMP-M with six robots, indicated using distinct
colors (blue, green, yellow, red, orange, purple), and a makespan ℓ = 4. The starting points are
marked using a disk shape (filled circle) and destination points using an annular shape. A schedule
indicating each of the robot’s position at each of the four time steps is shown in the table (right).

In this paper, we settle the parameterized complexity of CMP-M and CMP-L with respect
to their two most fundamental parameters: the number k of robots, and the objective target.
In particular, we obtain fixed-parameter algorithms for both problems when parameterized
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by k and for CMP-L when parameterized by the target, but show that CMP-M remains
NP-hard even for fixed values of the target. Given how extensively CMP has been studied in
the literature (see the related work below), we consider it rather surprising that fundamental
questions about the problem’s complexity have remained unresolved. We believe that one
aspect contributing to this gap in our knowledge was the fact that, even though the problems
seem deceptively easy, it was far from obvious how to obtain exact and provably optimal
algorithms in the parameterized setting. Furthermore, en route to the aforementioned
intractability result, we establish the NP-hardness of the classical Vertex Disjoint Paths
and Edge Disjoint Paths problems on grids when restricted to bounded-length paths.

1.1 Related Work
CMP has been extensively studied by researchers in the fields of computational geometry,
AI/Robotics, and theoretical computer science in general. In particular, CMP-M and CMP-L
were posed as the Third Computational Geometry Challenge of SoCG 2021, which took place
during the Computational Geometry Week in 2021 [1]. The CMP problem generalizes the
(n2 −1)-puzzle, which was shown to be NP-hard as early as 1990 by Ratner and Warmuth [26].
A simpler NP-hardness proof was given more recently by Demaine et al. [9]. Several recent
papers studied the complexity of CMP with respect to optimizing various objective targets,
such as: the makespan, the total length traveled, the maximum length traveled (over all
robots), and the total arrival time [2, 8, 15, 32]. The continuous geometric variants of CMP,
in which the robots are modeled as geometric shapes (e.g., disks) in a Euclidean environment,
have also been extensively studied [3, 8, 12, 25, 27]. Finally, we mention that there is a
plethora of works in the AI and Robotics communities dedicated to variants of the CMP
problem, for both the continuous and the discrete settings [4, 17, 28, 29, 31, 33, 34].

The fundamental vertex and edge disjoint paths problems have also been thoroughly
studied, among others due to their connections to graph minors theory. The complexity of
both problems on grids was studied as early as in the 1970’s motivated by its applications in
VLSI design [13, 21, 24, 30], with more recent results focusing on approximation [5, 6].

1.2 High-Level Overview of Our Results and Contributions
As our first set of results, we show that CMP-M and CMP-L are fixed-parameter tractable
(FPT) parameterized by the number k of robots, i.e., can be solved in time f(k) · nO(1) for
some computable function f and input size n. Both results follow a two-step approach for
solving each of these problems. In the first step, we obtain a structural result revealing that
every YES-instance of the problem has a canonical solution in which the number of “turns”
(i.e., changes in direction) made by any robot-route is upper bounded by a function of the
parameter k; this structural result is important in its own right, and we believe that its
applications extend beyond this paper. This first step of the proof is fairly involved and
revolves around introducing the notion of “slack” to partition the robots into two types,
and then exploiting this notion to reroute the robots so that their routes form a canonical
solution. In the second step, we show that it is possible to find such a canonical solution (or
determine that none exists) via a combination of delicate branching and solving subinstances
of Integer Linear Programming (ILP) in which the number of variables is upper bounded by
a function of the parameter k; fixed-parameter tractability then follows since the latter can
be solved in FPT-time thanks to Lenstra’s result [14, 16, 19].

Next, we consider the other natural parameterization of the problem: the objective target.
For CMP-L, this means parameterizing by the total length traveled, and there we establish
fixed-parameter tractability via exhaustive branching. The situation becomes much more
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intriguing for CMP-M, where we show that the problem remains NP-hard even when the
target makespan is a fixed constant. As a by-product of our reduction, we also establish
the NP-hardness of the classical Vertex and Edge Disjoint Paths problems on grids when
restricted to bounded-length paths.

The contribution of our intractability results are twofold. First, the NP-hardness of CMP
with constant makespan is the first result showing its NP-hardness in the case where one
of the parameters is a fixed constant. As such, it refines and strengthens several existing
NP-hardness results for CMP [2, 8, 15]. It also answers the open questions in [15] about the
complexity of the problem in restricted settings where the optimal path of each robot passes
through a constant number of starting/destination points, or where the overlap between any
two optimal paths is upper bounded by a constant, by directly implying their NP-hardness.
Second, the NP-hardness results for the bounded-length vertex and edge disjoint paths
problems on grids also refine and deepen several intractability results for these problems.
All previous NP-hardness (and APX-hardness) results for the vertex and edge disjoint paths
problems on grids [2, 6, 8, 9, 15, 21, 24, 26] yield instances in which the path length is
unbounded. Last but not least, we believe that the NP-hardness results we derive are of
independent interest, and have the potential of serving as a building block in NP-hardness
proofs for problems in geometric and topological settings, where it is very common to start
from a natural problem whose restriction to instances embedded on a grid remains NP-hard.

2 Preliminaries and Problem Definition

We use standard terminology for graph theory [10] and assume basic familiarity with the
parameterized complexity paradigm including, in particular, the notions of fixed-parameter
tractability and para-NP-hardness [7, 11]. For n ∈ N, we write [n] for the set {1, . . . , n}.

Let G be an n × m rectangular grid, where n, m ∈ N. Let {Ri | i ∈ [k]}, k ∈ N, be a set
of robots that will move on G. Each Ri, i ∈ [k], is associated with a starting gridpoint si

and a destination gridpoint ti in V (G), and hence can be specified as the pair Ri = (si, ti);
we assume that all the si’s are pairwise distinct and that all the ti’s are pairwise distinct,
and we denote by R = {(si, ti) | i ∈ [k]} the set of all robots. At each time step, a robot may
either stay at the gridpoint it is currently on, or move to an adjacent gridpoint, and robots
may move simultaneously. We reference the sequence of moves of the robots using a time
frame [0, t], t ∈ N, and where in time step x ∈ [0, t] each robot remains stationary or moves.

Let a route for Ri be a tuple Wi = (u0, . . . , ut) of vertices in G such that (i) u0 = si and
ut = ti and (ii) ∀j ∈ [t], either uj−1 = uj or uj−1uj ∈ E(G). Intuitively, Wi corresponds to a
“walk” in G, with the exception that consecutive vertices in Wi may be identical (representing
waiting time steps), in which Ri begins at its starting point at time step 0, and is at its
destination point at time step t. Two routes Wi = (u0, . . . , ut) and Wj = (v0, . . . , vt), where
i ̸= j ∈ [k], are non-conflicting if (i) ∀r ∈ {0, . . . , t}, ur ̸= vr, and (ii) ∄r ∈ {0, . . . , t − 1}
such that vr+1 = ur and ur+1 = vr. Otherwise, we say that Wi and Wj conflict. Intuitively,
two routes conflict if the corresponding robots are at the same vertex at the end of a time
step, or go through the same edge (in opposite directions) during the same time step.

A schedule S for R is a set of routes Wi, i ∈ [k], during a time interval [0, t], that are
pairwise non-conflicting. The integer t is called the makespan of S. The (traveled) length of
a route (or its associated robot) within S is the number of time steps j such that uj ̸= uj+1,
and the total traveled length of a schedule is the sum of the lengths of its routes.

We are now ready to define the problems under consideration.
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Coordinated Motion Planning with Makespan Minimization (CMP-M)
Given: An n × m rectangular grid G, where n, m ∈ N, and a set R = {(si, ti) | i ∈ [k]} of
pairs of gridpoints of G where the si’s are distinct and the ti’s are distinct; k, ℓ ∈ N.
Question: Is there a schedule for R of makespan at most ℓ?

The Coordinated Motion Planning with Length Minimization problem (CMP-L)
is defined analogously but with the distinction being that, instead of ℓ, we are given an
integer λ and are asked for a schedule of total traveled length at most λ. For an instance I
of CMP-M or CMP-L, we say that a schedule is valid if it has makespan at most ℓ or has
total traveled length at most λ, respectively. We remark that even though both CMP-M
and CMP-L are stated as decision problems, all the algorithms provided in this paper are
constructive and can output a valid schedule (when it exists) as a witness.

We will assume throughout the paper that k ≥ 2; otherwise, both problems can be solved
in linear time. Furthermore, we remark that the inputs can be specified in O(k · (log n +
log m) + log ℓ) (or + log λ) bits, and our fixed-parameter algorithms work seamlessly even if
the inputs are provided in such concise manner. On the other hand, the lower-bound result
establishes “strong” NP-hardness of the problem (i.e., also applies to cases where the input
contains a standard encoding of G as a graph).

For two gridpoints p = (xp, yp) and q = (xq, yq), the Manhattan distance between p and
q, denoted ∆(p, q), is ∆(p, q) = |xp − xq| + |yp − yq|. For two robots Ri, Rj ∈ R and a time
step x ∈ N, denote by ∆x(Ri, Rj) the Manhattan distance between the grid points at which
Ri and Rj are located at time step x. The following notion will be used in several of our
algorithms:

▶ Definition 1. Let (G, R, k, •) be an instance of CMP-M or CMP-L and let T = [t1, t2] for
t1, t2 ∈ N. For a robot Ri with corresponding route Wi, let up and uq be the gridpoints in
Wi at time steps t1 and t2, respectively. Define the slack of Ri w.r.t. T , denoted slackT (Ri),
as (t2 − t1) − ∆(up, uq) (alternatively, (q − p) − ∆(up, uq)).

Observe that the slack measures the amount of time (i.e., number of time steps) that robot
Ri “wastes” when going from up to uq relative to the shortest time needed to get from up

to uq. For a robot Ri with route Wi, for convenience we write slackT (Wi) for slackT (Ri).
When dealing with CMP-M, we write slack(Ri) as shorthand for slack[0,ℓ](Ri), and when
dealing with CMP-L, we write slack(Ri) as shorthand for slack[0,λ](Ri).

3 CMP Parameterized by the Number of Robots

In this section, we establish the fixed-parameter tractability of CMP-M and CMP-L parame-
terized by the number k of robots. Both results follow the two-step approach outlined in
Subsection 1.2: showing the existence of a canonical solution, and then reducing the problem
via branching to a tractable fragment of Integer Linear Programming. These two steps are
described for CMP-M in Subsections 3.1 and 3.2, while Subsection 3.3 shows how the same
technique is used to establish the fixed-parameter tractability of CMP-L.

3.1 Canonical Solutions for CMP-M
We begin with a few definitions that formalize some intuitive notions such as “turns”.

Let W = (u0, . . . , uℓ), where ℓ > 2, be a route in an n × m grid G, where n, m ∈ N. We
say that W makes a turn at ui = (xi, yi), where i ∈ {1, . . . , ℓ − 1}, if the two vectors −−−−→ui−1ui

and −−−−→uiui+1 have different orientations (i.e., either one is horizontal and the other is vertical,
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28:6 The Parameterized Complexity of Coordinated Motion Planning

or they are parallel but have opposite directions). We write ⟨ui−1, ui, ui+1⟩ for the turn at
ui. A turn ⟨ui−1, ui, ui+1⟩ is a U-turn if −−−−→ui−1ui = −−−−−→uiui+1; otherwise, it is a non U-turn.
The number of turns in W , denoted ν(W ), is the number of vertices in W at which it makes
turns. A sequence M = [ui, . . . , uj ] of consecutive turns is said to be monotone if all the
turns in each of the two alternating sequences [ui, ui+2, ui+4, . . .] and [ui+1, ui+3, ui+5, . . .],
in which M can be partitioned, have the same direction (see Figure 3).

ui

ui+1 ui+2

ui+3 ui+4

uj−1

uj

Figure 3 Illustration of a monotone sequence of consecutive turns.

Let T = [t1, t2] ⊆ [0, ℓ]. We say that a route Wi for Ri has no slack in T if slackT (Ri) = 0;
that is, robot Ri does not “waste” any time and always progresses towards its destination
during T . The following observation is straightforward:

▶ Observation 2. Let Wi be a route for Ri and T ⊆ [0, ℓ] be a time interval such that
slackT (Ri) = 0. The sequence of turns that Wi makes during T is a monotone sequence
(and in particular does not include any U-turns).

Let Wi = (si = u0, . . . , ut = ti) be a route for Ri in a valid schedule S of a YES-instance
of CMP-M or CMP-L, and let W = (uq, uq+1, . . . , ur) be the subroute of Wi during a time
interval T ⊆ [0, t]. We say that a route W ′ = (vq, . . . , vr) is equivalent to W if: (i) vq = uq

and vr = ur (i.e., both routes have the same starting and ending points); (ii) |W | = |W ′|;
and (iii) replacing Wi in S with the route (si = u0, . . . , uq−1, vq, . . . , vr, ur+1, . . . , ut = ti)
still yields a valid schedule of the instance.

▶ Definition 3. Let I = (G, R, k, •) be a YES-instance of CMP-M or CMP-L. A valid
schedule S for (G, R, k, •) is minimal if the sum of the number of turns made by all the
routes in S is minimum over all valid schedules of I.

The following lemma is the building block for the crucial Lemma 5, which will establish
the existence of a canonical solution (for a YES-instance) in which the number of turns made
by “small-slack” robots is upper bounded by a function of the parameter. This is achieved
by a careful application of a “cell flattening” operation depicted in Figure 4.

More specifically, we show that if in a solution a robot has no slack during a time interval
but its route makes a “large” number of turns, then there exists a “cell” corresponding to a
turn in its route that can be flattened, resulting in another (valid) solution with fewer turns.
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up

ur us

C

up−1 up

us

up−1

Figure 4 Illustration of a cell in a route (left) and its flattening (right).

▶ Lemma 4. Let S be a minimal (valid) schedule for a YES-instance of CMP-M. Let Wi

be a route in S and Ti ⊆ [0, ℓ] be a time interval during which Wi has no slack. Then there
is an equivalent route, W ′

i , to Wi such that the number of turns that W ′
i makes during Ti,

νTi
(W ′

i ), satisfies νTi
(W ′

i ) ≤ 3kk.

By carefully subdividing a time interval into roughly σ(k) subintervals, for a function σ(k)
that upper bounds the slack of a robot, and applying Lemma 4 to each of these subintervals,
we can extend the result in Lemma 4 to robots whose slack is upper bounded by σ(k):

▶ Lemma 5. Let (G, R, k, ℓ) be a YES-instance of CMP-M, and let Ti ⊆ [0, ℓ]. Then
(G, R, k, ℓ) has a minimal schedule such that, for each Ri, i ∈ [k], satisfying slackTi

(Wi) ≤
σ(k) for an arbitrary function σ, its route Wi satisfies νTi(Wi) ≤ τ(k), where τ(k) =
3kk(σ(k) + 1) + σ(k).

Lemma 5 already provides us with the property we need for “small-slack” robots: their
number of turns can be upper-bounded by a function of the parameter. We still need to deal
with the more complicated situation of “large-slack” robots. Our next course of action will
be establishing the existence of a sufficiently large time interval during which the “large-slack”
robots are far from the “small-slack” ones. We begin with an observation linking the slack of
two robots that “travel together”.

▶ Observation 6. Let R, R′ ∈ R and let T = [t1, t2] ⊆ [0, ℓ]. Let u, u′ be the gridpoints at
which R and R′ are located at time step t1, respectively, and v, v′ those at which R and R′

are located at time t2, respectively. Suppose that ∆(u, u′) ≤ d(k) and ∆(v, v′) ≤ d(k), for
some function d(k). Then slackT (R′) ≤ slackT (R) + 2d(k).

Intuitively speaking, the above observation implies that a robot with a large slack in some
time interval cannot be close to a robot with a small slack for the whole interval (otherwise,
both robots would be moving at “comparable speeds”, which would contradict that one of
them has a small slack and the other a large-slack).

Next, we observe that either the slack of all the robots can be upper-bounded by a
function h, or there is a sufficiently large multiplicative gap between the slack of some robots.
This will allow us to partition the set of robots into those with small or large slack. For any
function h, let h(j) = h ◦ · · · ◦ h︸ ︷︷ ︸

j times
denote the composition of h with itself j times.
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▶ Lemma 7. Let (G, R, k, ℓ) be an instance of CMP-M and let T ⊆ [0, ℓ]. Let h(k)
be any computable function satisfying h(p)(k) ≤ h(q)(k) for p ≤ q ∈ [k]. Then either
slackT (Ri) ≤ h(k)(k) for every i ∈ [k], or there exists j ∈ N with 2 ≤ j ≤ k, such that R
can be partitioned into (RS , RL) where RL ̸= ∅, slackT (R) ≤ h(j−1)(k) for every R ∈ RS,
and slackT (R′) > h(j)(k) for every R′ ∈ RL.

The next definition yields a time interval with the property that small-slack robots are
sufficiently far from large-slack ones during that interval. Such an interval will be useful,
since within it we will be able to re-route the large-slack robots (which are somewhat flexible)
to reduce the number of turns they make, while avoiding collision with small-slack robots.

▶ Definition 8. Let σ(k), γ(k), d(k) be functions such that σ(k) < γ(k). An interval
T = [t1, t2] ⊆ [0, ℓ] is a [σ, γ]-good interval w.r.t. d(k) if R can be partitioned into RS and
RL such that: (i) every R ∈ RS satisfies slackT (R) ≤ σ(k) and every R′ ∈ RL satisfies
slackT (R′) ≥ γ(k); (ii) for every time step t ∈ T , ∆t(R, R′) ≥ d(k) for every R ∈ RS and
every R′ ∈ RL; and (iii) there exists a robot Ri ∈ RL such that νT (Wi) > 3kk(σ(k)+1)+σ(k).
If the function d(k) is specified or clear from the context, we will simply say that T is a
[σ, γ]-good interval (and thus omit writing “w.r.t. d(k)”).

The following key lemma asserts the existence of a good interval assuming the solution
contains a robot that makes a large number of turns:

▶ Lemma 9. Let (G, R, k, ℓ) be a YES-instance of CMP-M and let S be a minimal schedule
for (G, R, k, ℓ). If there exists R′ ∈ R with route W ′ such that ν(W ′) > 3k3+1·(3kk ·(3132k2−2k ·
k132k2−2k + 1) + 3132k2−2k · k132k2−2k ), then there exists a [σ, γ]-good interval T ⊆ [0, ℓ] w.r.t. a
function d(k) such that k13k−1 ≤ σ(k) ≤ 3132k2−2k · k132k2−2k , and d(k) = γ(k) = σ13(k).

Once we fix a good interval T , we can finally formalize/specify what it means for a robot
to have small or large slack within T :

▶ Definition 10. Let T = [t1, t2] ⊆ [0, ℓ] be a [σ, γ]-good interval with respect to some
function d(k), where σ(k) < γ(k) are two functions, and let Ri ∈ R. We say that Ri is a
T -large slack robot if slackT (Ri) ≥ γ(k); otherwise, slackT (Ri) ≤ σ(k) and we say that Ri

is a T -small slack robot.

At this point, we are finally ready to prove Lemma 11, which is the core tool that
establishes the existence of a solution with a bounded number of turns (w.r.t. the parameter),
even in the presence of large-slack robots: for each solution with too many turns, we can
produce a different one with strictly less turns. Note that if one simply replaces the routes
of large-slack robots so as to reduce their number of turns, then the new routes may bring
the large-slack robots much closer to the small-sack robots and hence may lead to collisions.
Therefore, the desired rerouting scheme needs to be carefully designed, and it exploits the
properties of a good interval: property (i) is used to reorganize and properly reroute these
robots, while property (ii) is used to avoid collisions.

▶ Lemma 11. Let (G, R, k, ℓ) be a YES-instance of CMP-M and let S be a minimal schedule
for (G, R, k, ℓ). Let T = [t1, t2] ⊆ [0, ℓ] be a [σ, γ]-good interval with respect to d(k), where
k13k−1 ≤ σ(k) ≤ 3132k2−2k · k132k2−2k , and d(k) = γ(k) = σ13(k). For every T -large-slack
robot Ri, there is a route W ′

i that is equivalent to Wi and such that νT (W ′
i ) is at most 3k3

and W ′
i is identical to Wi in [0, ℓ] \ T .

We now establish the canonical-solution result that forms the culmination of this section.
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▶ Theorem 12. Let (G, R, k, ℓ) be an instance of CMP-M such that at least one dimension
of the grid G is lower bounded by 2k · (3kk(3132k2−2k ·k132k2−2k +1)+3132k2−2k ·k132k2−2k )+4k.
If (G, R, k, ℓ) is a YES-instance, then it has a valid schedule S in which each route makes at
most ρ(k) = 3k3+1 · (3kk(3132k2−2k · k132k2−2k + 1) + 3132k2−2k · k132k2−2k ) turns.

Proof. Suppose that (G, R, k, ℓ) is a YES-instance of CMP-M. We proceed by contradiction.
Let S be a minimal schedule for (G, R, k, ℓ) and assume that S has a route Wi for Ri that
makes more than ρ(k) turns. By Lemma 9, there exists a [σ, γ]-good interval T ⊆ [0, ℓ] such
that νT (Wi) > 3kk(σ(k) + 1) + σ(k), where σ and γ are the function specified in Lemma 9.
By Lemma 11, there is an equivalent route W ′

i to Wi that agrees with Wi outside of T and
such that νT (W ′

i ) ≤ 3k3 < 3kk(σ(k) + 1) + σ(k), which contradicts the minimality of S. ◀

3.2 Finding Canonical Solutions
Having established the existence of canonical solutions with a bounded number of turns, we
can proceed to describe the proof of the FPT result. In the proof, we identify a “combinatorial
snapshot” of a solution whose size is upper-bounded by a function of the parameter k. We
then branch over all possible combinatorial snapshots and, for each such snapshot, we reduce
the problem of determining whether there exists a corresponding solution to an instance of
Integer Linear Programming in which the number of variables is upper-bounded by a function
of the parameter, which can be solved in FPT-time by existing algorithms [14, 16, 19].

In particular, the aforementioned combinatorial snapshot will be a tuple (Gsnap, Rsnap,

Wsnap, ι) where Gsnap is a bounded-size subgrid, Rsnap is a tuple of k pairs of starting and
ending vertices in Gsnap, Wsnap specifies a set of routes connecting the individual starting
and ending vertices, and ι contains information about the order in which vertices are visited
by the routes in Wsnap. For each snapshot, we construct an ILP instance with variables that
capture (1) the amount of “expansion” necessary to go from the snapshot to the full input
grid, and (2) the amount of waiting a robot performs at certain “critical” junctions in the
route. Constraints are then used to ensure that each robot arrives in time, that the routes
correspond to the information in ι and do not lead to conflicts, and finally that the amount
of expansion needed matches the size of the input grid.

▶ Theorem 13. CMP-M is FPT parameterized by the number of robots.

3.3 Minimizing the Total Traveled Length
In this subsection, we discuss how the strategy for establishing the fixed-parameter tractability
of CMP-M parameterized by the number k of robots can be used for CMP-L.

The main difference between the two problems can be intuitively stated as follows: for
CMP-M “time matters” but travel length could be lax, whereas for CMP-L “travel length
matters” but time can be lax. The key tool we use to handle the complications arising in
CMP-L when showing the existence of a canonical solution is a result that exhibits a schedule
for any instance of CMP-L whose travel length is within a quadratic additive factor in k from
any length-optimal solution. Denote by distmin the sum of the Manhattan distances, over
all the robots, between the starting point of the robot and its destination point. We have:

▶ Theorem 14. Let I = (G, R, k, λ) be a YES-instance of CMP-L. There is a schedule S
for I satisfying that the total travel length of S is at most distmin +c(k), where c(k) = O(k2)
is a computable function, and in which the number of turns made by each robot is O(k).
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The above theorem is then exploited for showing that if a robot makes a large number of
turns, then we can find a time interval and a large rectangle of the grid such that, during
that time interval, all the robots that are present in that rectangle behave “nicely”. We
formalize these notions in the following definitions:

Let M = [ui, . . . , uj ] be a monotone sequence of turns made by a robot R ∈ R during
some time interval. The rectangle of M , denoted rectangle(M), is the rectangle with
diagonally-opposite vertices ui and uj . We refer to Figure 5 for illustration.

ui

ui+1 ui+2

ui+3 ui+4

uj−1

uj

Figure 5 rectangle(M) (the green-shaded area) for a monotone sequence M = [u1, . . . , uj ].

▶ Definition 15. Let W be a subroute of a robot R ∈ R during some time interval T such
that the sequence M of turns in W is monotone. Let σ(k) be a function to be specified later.
We say that rectangle(M) is good w.r.t. σ(k) and a time subinterval T ′ ⊆ T if: (i) the set of
robots present in rectangle(M) is the same during each time step of T ′; (ii) each robot Ri

present in rectangle(M) during T ′ satisfies slackT ′(Ri) ≥ σ(k); (iii) each robot Ri present
in rectangle(M) during T ′ is traveling in the same direction as (the directions of the turns
in) M ; and (iv) each robot Ri present in rectangle(M) during T ′ satisfies νT ′(Wi) ≥ σ(k).

Next, we show that if a robot makes a large number of turns, then a good rectangle exists:

▶ Lemma 16. Let I = (G, R, k, λ) be a YES-instance of CMP-L, let S be a valid schedule
for I, and assume that λ < distmin + c(k), where c(k) = O(k2) is the computable function
in Theorem 14. Let σ(k) = 4k2 and τ(k) = 3kk(σ(k) + 1) + σ(k). Let R be a robot such that
the walk W of R during the time interval T spanning S satisfies ν(W ) = Ω(τ(k)2k+1). Then
there exists a subwalk W ′ for R and a time interval T ′ ⊆ T such that the sequence of turns
M ′ in W ′ corresponding to T ′ is monotone and rectangle(M ′) is good w.r.t. σ(k) and T ′.

Using Theorem 14 and Lemma 16, we can prove that, given a good rectangle, we can
reroute the robots that are present in that rectangle during a certain time interval so as to
reduce the number of turns they make, which leads to the existence of a canonical solution:

▶ Theorem 17. If I = (G, R, k, λ) is a YES-instance of CMP-L, then I has a valid schedule
S in which each route makes at most O(τ(k)2k+1) turns, where τ(k) = 3kk(σ(k) + 1) + σ(k),
and σ(k) = 4k2.
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At this point, we can turn to the second step of our approach, notably checking whether
an instance of CMP-L admits a solution in which the number of turns is upper-bounded by
a function of the parameter. Luckily, here the proof of Theorem 13 can be reused almost
as-is, with only a single change in the ILP encoding at the end.

▶ Theorem 18. CMP-L is FPT parameterized by the number of robots.

4 CMP Parameterized by the Objective Target

Having resolved the parameterization by the number k of robots, we now turn our attention to
the second fundamental measure in CMP problems, notably the objective target. Unlike the
case where we parameterize by the number k of robots, here the complexity of the problem
strongly depends on the considered variant. We begin by establishing the fixed-parameter
tractability of CMP-L parameterized by λ via an exhaustive branching algorithm. The rest
of this section then deals with the significantly more complicated task of establishing the
intractability of CMP-L parameterized by ℓ.

▶ Theorem 19. CMP-L is FPT parameterized by the objective target λ.

4.1 Intractability of CMP-M with Small Makespans
The aim of this subsection is to establish that CMP-M is NP-hard even when the makespan
ℓ is upper bounded by a constant. Before we proceed to show this NP-hardness result for
CMP-M, we will establish the NP-hardness of d-Bounded Length Vertex Disjoint
Paths on grids, as well as its edge variant d-Bounded Length Edge Disjoint Paths,
which can be seen as a stepping stone for the para-NP-hardness proof for CMP-M. In fact,
the NP-hardness result for these two classical disjoint paths problems on grids with constant
path lengths is significant in its own right, as discussed earlier in the paper.

All our reductions start from 4-Bounded Planar 3-SAT, a problem which is known to
be NP-complete [18, 22]. The incidence graph of a CNF formula is the graph whose vertices
are the variables and clauses of the formula, and in which two vertices are adjacent if and
only if one is a variable, the other is a clause, and the variable-vertex occurs either as a
positive or a negative literal in the clause-vertex. In 4-Bounded Planar 3-SAT, we are
asked to evaluate a CNF formula whose incidence graph is planar and in which each clause
contains exactly 3 distinct literals and each variable occurs in at most 4 clauses. On the
other hand, in the aforementioned d-Bounded Length Vertex (resp. Edge) Disjoint
Paths problems, we are given a graph with a set of vertex-pairs (called requests), and are
asked to determine if there is a set of vertex (resp. edge) disjoint paths containing an s-t
path of length at most d ∈ N for every (s, t) ∈ R.

For all three reductions, consider an instance φ of 4-Bounded Planar 3-SAT and let Gφ

be its incidence graph. We start with an orthogonal drawing Ω of Gφ in a polynomial-size grid.
Our first goal is to show how to encode the satisfiability of φ as an instance of d-Bounded
Length Vertex Disjoint Paths on grids; the reduction for d-Bounded Length Edge
Disjoint Paths is almost the same, and both can be seen as a stepping stone towards
CMP-M. We encode variable assignment and clause satisfaction using bounded-length path
requests that conform to the drawing Ω. To model a variable-assignment, we create a variable
gadget with a single request between two vertices, s and t, on this gadget such that this
request can be fulfilled by selecting one of the two s-t paths in this gadget, each of length
27. Selecting one of the two paths corresponds to assigning the variable a truth value; an
illustration is provided in Figure 6. We model clause-satisfaction by creating, for each clause,
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a clause-gadget, where a clause-gadget for a clause C contains two vertices, sC and tC , with
a request between them that can be fulfilled in one of three ways, each corresponding to
choosing a length-27 path between sC and tC in the gadget (see Figure 7).

sx

tx

sx tx

Figure 6 Variable Gadget examples. In both cases, there is a request (sx, tx). Each of the full
black circles is a request (v, v) forcing only two different paths of length at most 27 between sx and
tx. Examples of a left-right variable gadget (left) and a top-bottom variable gadget (right).

1719

810

sC

tC

Figure 7 Clause gadget example. There is a request (sC , tC). Each of the full black circles is a
request (v, v). There are three possible ways to leave sC . Choosing to go left forces us to take the
green path of length 27. The orange path going down reaches the intersection point with the purple
path (going up) after 19 steps on the orange path, but only 17 on the purple. Hence, the purple can
choose between going down and taking 10 steps to reach tC , or going right and taking 8 more steps,
but the orange is forced to go right and reach tC in 8 steps from the intersection point.

To implement the above idea, we needed to overcome several issues. First, the position of a
variable in the embedding could be very far from the position of the clauses that it is incident
to, hence prohibiting us from using bounded-length requests to encode the variable-clause
incidences. Second, due to planarity constraints, embedding the three paths corresponding to
a clause-gadget such that each intersects a different variable gadget, is only possible if two of
the clause-paths intersect, which could create shortcuts (i.e., paths that do not intersect the
variable gadgets). Third, requests may use grid paths that are not part of the embedding.

To handle the first issue, instead of using a single variable-gadget per variable, we use a
“cycle” of copies of variable gadgets such that a variable assignment in any gadget of this
cycle forces the same variable assignment in all copies, thus ensuring assignment consistency.
The clause gadget for C is placed around the position of the vertex corresponding to C in Ω,
whereas the cycle corresponding to a variable x is placed around the edges of Ω joining the
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position of x in Ω to that of C; see Figure 8. To fit all the variable cycles around a clause
gadget in the embedding, we use a connection gadget, which is a path of copies of variable
gadgets propagating the same variable assignment as in the corresponding variable cycle.

C

y

z

x

C1

C2

Figure 8 Part of an orthogonal drawing of Gφ. Clause C contains variables x, y, z. The variable
x is also in clauses C1 and C2. The dashed lines represent the variable cycles.

To model clause-satisfaction for a clause C, each of the three sC-tC paths in the clause
gadget of C overlaps with a copy of a variable gadget corresponding to one of the variables
whose literal occurs in C. If an assignment to variable x whose literal occurs in C does
not satisfy C, then the path corresponding to this assignment in the copies of the variable
gadgets for x intersects the sC-tC path corresponding to x in the clause-gadget of C, thus
prohibiting the simultaneous choice of these clause-path and variable path.

To handle the second issue, we prevent any shortcuts from being taken by making each
created shortcut longer than the prescribed upper bound on the path length (i.e., 27).

Finally, to handle the third issue, when dealing with vertex disjoint paths we can artificially
place an obstacle on a vertex v in the grid to “block” that vertex (i.e., to prevent it from
being used by any path other than (v, v)) by adding the request (v, v), thus forcing the set
of possible paths between s and t for every request (s, t), where s ̸= t, to be chosen from the
paths prescribed by the encoding of the instance of 4-Bounded Planar 3-SAT. A slight
extension of this idea also works for edge disjoint paths. This allows us to establish:

▶ Theorem 20. d-Bounded Length Vertex Disjoint Paths and d-Bounded Length
Edge Disjoint Paths are NP-hard even when restricted to instances where d = 27 and G

is a grid-graph.

These high-level ideas are then used to obtain the targeted NP-hardness proof of CMP-M
for a fixed makespan of 26, by having an (s, t) path request correspond to routing some robot
from its starting gridpoint s to its destination gridpoint t. However, the way we force robots
to follow the prescribed paths here is completely different and presents the main difficulty
when going from d-Bounded Length Vertex Disjoint Paths on grids to CMP-M; in
particular, it is no longer possible to block certain points on the grid by creating “dummy
requests”. To ensure that the prescribed paths are followed, we block certain regions of the
embedding by adding a large number of auxiliary non-stationary robots, and coordinating
their motion so that they block the desired regions while still allowing the original robots to
follow the set of paths prescribed by the encoding; this task turns out to be highly technical.
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We introduce a set of new gadgets whose role is to force the main robots in the reduction
to follow the paths prescribed by the embedding. Those gadgets are dynamic, as opposed to
the “static blocker gridpoints” used in the d-Bounded Length Vertex Disjoint Paths
on grids reduction. The two main new gadgets employed are a gadget simulating a “stream”
of robots and a gadget simulating an “arrow” of robots.

The stream gadget consists of a relatively large number of robots, all moving along the
same line, such that each needs to move precisely the makespan many steps in the same
direction, and hence cannot afford to waste a single time step. The robots in the stream
gadget will be used to either push the main robots in a certain direction, or to prevent them
from taking shorter paths than the prescribed ones. See Figure 9 for an illustration. In the
figure, the main red robot is pushed right by the green stream and forced to move right along
the same horizontal line by the two blue streams sandwiching it.

Figure 10 shows an example of an arrow gadget. In this gadget, there is an orange
robot whose destination is 26 steps somewhere down and to the left. The gadget is again a
“stream” of robots that force the orange robot to select one of the two directions towards its
destination in the first step, and then to stick to this selection for a number of steps that
depends on the size of the arrow. For example, in Figure 10, there is a “right arrow” of green
robots that all want to go 26 steps right. Since the orange robot has a slack of 0, the right
arrow forces it to either take the first 5 steps all to the left, or the first 7 steps all down.

Figure 9 Example of streams.

Figure 10 An example of an arrow.

Other gadgets are needed to ensure that robots in the stream and arrow gadgets do
not collide with anything. Using such enforcement gadgets, we can simulate the gadgets
constructed in the reduction for d-Bounded Length Vertex Disjoint Paths on grids,
thus encoding the instance of 4-Bounded Planar 3-SAT as an instance of CMP-M.

▶ Theorem 21. CMP-M is NP-hard even when restricted to instances where ℓ = 26.

5 Conclusion

In this work, we settled the parameterized complexity of both CMP-M and CMP-L with
respect to their two most fundamental parameters: the number of robots, and the objective
target. Along the way, we established the NP-hardness of the classical Vertex Disjoint Paths
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and the Edge Disjoint Paths problem with constant path-lengths on grids, strengthening the
existing lower bounds for these problems as well. Our results reveal structural insights into
the properties of optimal solutions that may also prove useful in contexts that lie outside of
this work. We conclude by stating two open questions that arise from our work.

1. What is the parameterized complexity of other variants of CMP, such as the ones where
the objective is to minimize the maximum length traveled or the total arrival time?

2. Can the fixed-parameter tractability of CMP-M or CMP-L parameterized by the number
k of robots be lifted to grids with obstacles/holes, or more generally to planar graphs?
It is worth noting that neither the structural results developed in this paper, nor other
known techniques [23], seem to be applicable to these more general settings.
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