
Lower Bounds for Intersection Reporting Among
Flat Objects
Peyman Afshani #

Aarhus University, Denmark

Pingan Cheng #

Aarhus University, Denmark

Abstract

Recently, Ezra and Sharir [20] showed an O(n3/2+σ) space and O(n1/2+σ) query time data structure
for ray shooting among triangles in R3. This improves the upper bound given by the classical
S(n)Q(n)4 = O(n4+σ) space-time tradeoff for the first time in almost 25 years and in fact lies on
the tradeoff curve of S(n)Q(n)3 = O(n3+σ). However, it seems difficult to apply their techniques
beyond this specific space and time combination. This pheonomenon appears persistently in almost
all recent advances of flat object intersection searching, e.g., line-tetrahedron intersection in R4 [19],
triangle-triangle intersection in R4 [19], or even among flat semialgebraic objects [5].

We give a timely explanation to this phenomenon from a lower bound perspective. We prove
that given a set S of (d − 1)-dimensional simplicies in Rd, any data structure that can report all
intersections with a query line in small (no(1)) query time must use Ω(n2(d−1)−o(1)) space. This
dashes the hope of any significant improvement to the tradeoff curves for small query time and
almost matches the classical upper bound. We also obtain an almost matching space lower bound of
Ω(n6−o(1)) for triangle-triangle intersection reporting in R4 when the query time is small. Along the
way, we further develop the previous lower bound techniques by Afshani and Cheng [2, 3].

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational Geometry, Intersection Searching, Data Structure Lower
Bounds

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.3

Related Version Full Version: https://arxiv.org/abs/2302.11433

Funding Supported by DFF (Det Frie Forskningsråd) of Danish Council for Independent Research
under grant ID DFF–7014–00404.

1 Introduction

Given a set S of triangles in R3, how to preprocess S such that given any query ray γ, we can
efficiently determine the first triangle intersecting γ or report no such triangle exists? This
problem, known as ray shooting, is one of the most important problems in computational
geometry with countless papers published over the last three decades [27, 8, 25, 26, 17, 10,
29, 30, 11, 18, 20, 5]. For a comprehensive overview of this problem, we refer the readers to
an excellent recent survey [28].

Recently, there have been considerable and significant advances on ray shooting and a
number of problems related to intersection searching on the upper bound side. We complement
these attempts by giving lower bounds for a number of intersection searching problems; these
also settle a recent open question asked by Ezra and Sharir [20].

© Peyman Afshani and Pingan Cheng;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peyman@cs.au.dk
mailto:pingancheng@cs.au.dk
https://doi.org/10.4230/LIPIcs.SoCG.2023.3
https://arxiv.org/abs/2302.11433
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Lower Bounds for Intersection Reporting Among Flat Objects

1.1 Background and Previous Results

In geometric intersection searching, the input is a set S of geometric objects and the goal is
to preprocess S into a data structure such that given a geometric object γ at the query time,
one can find all the objects in S that intersect γ. In the reporting variant of such a query,
the output should be the list of all the intersecting objects in S. Intersection searching is a
generalization of range searching, a fundamental and core area of computational geometry [4].
This captures many natural classic problems e.g., simplex range reporting where the inputs
are points (0-flats) and the queries are simplices (subsets of d-flats), ray shooting reporting
among triangles in R3 where the inputs are triangles (subsets of 2-flats) and the queries are
rays (subsets of 1-flats) and so on. See [4, 28] for more information.

Without going too much in-depth, it suffices to say that by now, the simplex range
searching problem is more or less well-understood. There are classical solutions that offer the
space and query time trade-off of S(n)Qd(n) = Õ(nd) where S(n) and Q(n) are the space
and query time of the data structure [15, 23, 12] and there are a number of almost matching
lower bounds that show these are essentially tight [1, 13, 16].

However, intersection searching in higher dimensions is less well-understood. The classical
technique is to lift the problem to the parametric space of the input or the query, reducing the
problem to semialgebraic range searching, a generalized version of simplex range searching,
where queries are semialgebraic sets of constant description complexity. In mid-1990s,
semialgebraic range searching could only be solved efficiently in four and lower dimensions by
classical tools developed for simplex range searching [7], resulting in a space-time trade-off
bound of S(n)Q(n)4 = O(n4+σ) for line-triangle intersection searching in R3, where σ > 0
can be any small constant.

Recently, using polynomial techniques [22, 21], several major advances have been made
on semialgebraic range searching. For example, near optimal small linear space and fast
query data structure were developed [9, 24, 6]. These almost match the newly discovered
lower bound bounds [2, 3]. However, these polynomial techniques also have led to significant
advances in intersection searching. For ray-triangle intersection reporting in R3, Ezra and
Sharir [20] showed that using algebraic techniques, it is possible to build a data structure of
space S(n) = O(n3/2+σ) and query time Q(n) = O(n1/2+σ) for ray shooting among triangles.
The significance of this result is that it improves the upper bound given by the trade-off
curve of S(n)Q(n)4 = O(n4+σ) for the first time in almost 25 years and in fact it lies on the
trade-off curve of S(n)Q(n)3 = O(n3+σ). This leads to the following very interesting question
asked by Ezra and Sharir. To quote them directly: “There are several open questions that our
work raises. First, can we improve our trade-off for all values of storage, beyond the special
values of O(n3/2+ε) storage and O(n1/2+ε) query time? Ideally, can we obtain query time of
O(n1+ε/s1/3), with s storage, as in the case of ray shooting amid planes? Alternatively, can
one establish a lower-bound argument that shows the limitations of our technique?”

Inspired by [20], additional results for flat intersection searching were discovered during
the last two years, e.g., triangle-triangle intersection searching in R4 [19], line-tetrahedron
intersection searching in R4 [19], curve-disk intersection searching in R3 [5], and even more
general semialgebraic flat intersection searching [5]. Similar to the result in [20], the improved
results are only observed for a special space-time combination and the improvement to the
entire trade-off curve is limited. This once again raises the question of whether it is possible
to obtain the trade-off curve of S(n)Q(n)d = O(nd+σ) for intersection searching in Rd.

P. Afshani and P. Cheng 3:3

1.2 Our Results
We give a negative answer to this question. We show that answering intersection searching
queries in polylogarithmic time when the queries are lines in Rd and input objects are subsets
of (d− 1)-flats (that we call hyperslabs) requires

o

Ω(n2(d−1)) space1. Our lower bound in fact
applies to “thin” (d − 1)-dimensional slabs (e.g., in 3D, that would be the intersection of
the region between two parallel hyperplanes with another hyperplane). This almost matches
the current upper bound for the problem and shows that the improvement in [20] cannot
significantly improve the trade-off curve when the query time is small. To be specific, we
obtain a lower bound of

S(n) =
o

Ω
(

n2(d−1)

Q(n)4(3d−1)(d−1)−1

)
for line-hyperslab intersection reporting in Rd and a lower bound of

S(n) =
o

Ω
(

n6

Q(n)125

)
for triangle-triangle intersection reporting in R4. Here, S(n) and Q(n) are the space and
query time of the data structure. Similar to the other semialgebraic range reporting lower
bounds [2, 3], these lower bounds have a much larger exponent on Q(n) than on n which does
allow for substantial improvements when Q(n) is no longer too small; we have not opted for
optimizing the exponent of Q(n) in our bounds and using tighter arguments, these exponents
can be improved but they cannot match the exponent of n.

We believe our results are timely as flat intersection searching is a hotly investigated field
recently, and as mentioned, with many open questions that need to be answered from a lower
bound point of view.

1.3 Technical Contributions
From a technical point of view, our results require going beyond the previous attempts [2, 3].
To elaborate, the previous general technique assumed a particular form for the polynomials
involved in defining the query semialgebraic ranges, namely, of the form X1 = X∆

2 +
P (X1, · · · , Xd) where the coefficients of P had to be independent and thus could be set
arbitrarily small. Unfortunately, the problems in intersection searching cannot fit this
framework and there seems to be no easy fix for the following reason. The previous technique
relies heavily on the fact that if the coefficients of P is small enough, then one can approximate
X1 with X∆

2 and for the technique to work both conditions must hold (i.e., small coefficients
for P and having degree ∆ on X2).

Generally speaking, the previous techniques do not say anything about problems in which
the polynomials involved have a specific form; the only exception is the lower bound for
annuli [2] where specific approaches had to be created that could only be applied to the
specific algebraic form of circles.

The issue is very prominent in intersection searching where we are dealing with polynomials
where the coefficients of the monomials are no longer independent and the polynomials
involved have specific forms; for instance, the coefficient of X∆

2 is zero. We introduce
techniques that allows us circumvent these limitations and obtain lower bounds for some
broader class of problems that involve polynomials with some specific forms.

1 In this paper,
o

Ω(·),
o

Θ(·),
o

O(·) hides no(1) factors; Ω̃(·), Θ̃(·), Õ(·) hides logO(1) n factors.

SoCG 2023

3:4 Lower Bounds for Intersection Reporting Among Flat Objects

2 Preliminaries

2.1 The Geometric Range Reporting Lower Bound Framework in the
Pointer Machine

We use the pointer machine lower bound framework that was also used in the latest proofs [3].
This is a streamlined version of the one originally proposed by Chazelle [14] and Chazelle
and Rosenberg [16]. In the pointer machine model, the memory is represented as a directed
graph where each node stores one point as well as two pointers pointing to two other nodes
in the graph. Given a query, the algorithms starts from a special “root” node, and then
explores a subgraph which contains all the input points to report. The size of the directed
graph is then a lower bound for the space usage and then minimum subgraph needed to
explore to answer any query is a lower bound for the query time.

Intuitively, to answer a range reporting query efficiently, we need to store the output
points to the query close to each other. If the answer to any query contains many points and
two queries share very few points in common, many points must be stored multiple times,
leading to a big space usage.

The streamlined version of the framework is the following [3].

▶ Theorem 1. Suppose a d-dimensional geometric range reporting problem admits an S(n)
space and Q(n) + O(k) query time data structure, where n is the input size and k is the
output size. Let Vol(·) denote the d-dimensional Lebesgue measure. Assume we can find
m = nc, for a positive constant c, ranges R1,R2, · · · ,Rm in a d-dimensional hyperrectangle
R such that
1. ∀i = 1, 2, · · · ,m,Vol(Ri ∩ R) ≥ 4cVol(R)Q(n)/n;
2. Vol(Ri ∩ Rj) = O(Vol(R)/(n2

√
logn)) for all i ̸= j .

Then, we have S(n) =
o

Ω(mQ(n)).

2.2 Notations and Definitions for Polynomials
In this paper, we only consider polynomials on the reals. Let P (X1, · · · , Xd) be a polynomial
on d indeterminates of degree ∆. Sometimes we will use the notation X to denote the set
of d interminates X1, · · · , Xd and so we can write P as P (X). We denote by Id,∆ a set of
d-tuples of non-negative integers (i1, · · · , id) whose sum is at most ∆. We might omit the
subscripts d and ∆ if they are clear from the context. For an i ∈ I, we use the notation X i

to represent the monomial Πd
j=1X

ij
j where i = (i1, · · · , id). Thus, given real coefficients Ai,

for i ∈ I, we can write P as
∑

i∈I AiX
i.

2.3 Geometric Lemmas
We introduce and generalize some geometric lemmas about the intersection of polynomials
used in [2]. We first generalize the core Lemma in [2] for univariate polynomials, using a
proof similar to [3]. We refer the readers to the full version of the paper for the proof.

▶ Lemma 2. Let P (x) =
∑∆
i=0 aix

i and Q(x) =
∑∆
i=0 bix

i be two univariate (constant)
degree-∆ polynomials in R[x] and |ai − bi| ≥ η for some 0 ≤ i ≤ ∆.

Suppose there is an interval I of x such that for every x0 ∈ I we have |P (x0)−Q(x0)| ≤
w, then the length of I is upper bounded by O((w/η)1/U), where U =

(∆+1
2
)

and the O(·)
notation hides constant factors that depend on ∆.

Using Lemma 2, we can show the following. The proof is given in the full version.

P. Afshani and P. Cheng 3:5

▶ Lemma 3. Let P1(X) =
∑

i∈Id,∆
AiX

i and P2(X) =
∑

i∈Id,∆
BiX

i be two d-variate
degree-∆ polynomials in R[X] and |Ai −Bi| ≥ ηd for some i ∈ Id,∆.

Suppose for each assignment Xd ∈ Id to P1, P2, where Id is an interval for Xd, all the
coefficients of the resulting (d− 1)-variate polynomial Q1(X1, · · ·Xd−1) and Q2(X1, · · ·Xd−1)
differ by at most ηd−1, then |Id| = O((ηd−1/ηd)1/U).

We can use Lemma 3 d− 2 times, and obtain the following corollary.

▶ Corollary 4. Let P1(X) =
∑

i∈Id,∆
AiX

i and P2(X) =
∑

i∈Id,∆
BiX

i be two d-variate
degree-∆ polynomials in R[X] and |Ai −Bi| ≥ ηd for some i ∈ Id,∆ for d ≥ 3.

Suppose for each assignment Xi ∈ Ii to P1, P2, where Ii is an interval for Xi, for
i = 3, 4, · · · , d, all the coefficients of the resulting bivariate polynomial Q1(X1, X2) and
Q2(X1, X2) differ by at most η2, then |Ii| = O((ηi−1/ηi)1/U) for all i = 3, 4, · · · , d.

To get the final corollary, we would like the set each ηi such that the length of all each
interval Ii is bounded by some parameter ϑ for i = 3, · · · , d. We thus set ηd−i = ηd−i+1ϑ

U .

▶ Corollary 5. Let P1(X) =
∑

i∈Id,∆
AiX

i and P2(X) =
∑

i∈Id,∆
BiX

i be two d-variate
degree-∆ polynomials in R[X] and |Ai −Bi| ≥ ηd for some i ∈ Id,∆ for d ≥ 3.

Suppose for each assignment Xi ∈ Ii to P1, P2, where Ii is an interval for Xi, for
i = 3, 4, · · · , d, all the coefficients of the resulting bivariate polynomial Q1(X1, X2) and
Q2(X1, X2) differ by at most ηdϑU(d−2), then |Ii| = O(ϑ) for all i = 3, 4, · · · , d.

2.4 Algebra Preliminaries

In this section, we review some tools from algebra. The first tool we will use is the linearity
of determinants from linear algebra.

▶ Theorem 6 (Linearity of Determinants). Let A =
[
a1 · · · an

]
be an n× n matrix where

each ai ∈ Rn is a vector. Suppose aj = r · w + v for some r ∈ R and w,v ∈ Rn, then the
determinant of A, denoted by det(A), is

det(A)

= det(
[
a1 · · · aj−1 aj aj+1 · · · an

]
)

= r · det(
[
a1 · · · aj−1 w aj+1 · · · an

]
) + det(

[
a1 · · · aj−1 v aj+1 · · · an

]
).

We will use two types of special matrices in the paper. The first is Vandermonde matrices.

▶ Definition 7 (Vandermonde Matrices). An n × n Vandermonde matrix is defined by n

values x1, · · · , xn such that each entry eij = xj−1
i for 1 ≤ i, j ≤ n.

We can compute the determinant of Vandermonde matrices easily.

▶ Theorem 8 (Determinant of Vandermonde Matrices). Let V be a Vandermonde matrix
defined by parameters x1, · · · , xn. Then det(V) =

∏
1≤i<j≤n(xj − xi).

We also need Sylvester matrices.

▶ Definition 9 (Sylvester Matrices). Let P =
∑∆1
i=0 aix

i and Q =
∑∆2
i=0 bix

i be two univariate
polynomials over R[x] of degrees ∆1,∆2 respectively . Then the Sylvester matrix of P and Q,
denoted by Syl(P,Q), is a (∆1 + ∆2) × (∆1 + ∆2) matrix of the following form

SoCG 2023

3:6 Lower Bounds for Intersection Reporting Among Flat Objects

a∆1 a∆1−1 · · · a0 0 · · · 0 0
0 a∆1 a∆1−1 · · · a0 · · · 0 0
...

...
...

. . .
...

. . .
...

...
0 0 · · · a∆1 a∆1−1 · · · a1 a0
b∆2 b∆2−1 · · · b0 0 · · · 0 0
0 b∆2 b∆2−1 · · · b0 · · · 0 0
...

...
...

. . .
...

. . .
...

...
0 0 · · · b∆2 b∆2−1 · · · b1 b0

.

The Sylvester matrix has ∆2 rows with entries from P and ∆1 rows with entries from Q.
For example, the Sylvester matrx of two polynomials P = p1x+ p2 and Q = q1x+ q2 is

Syl(P,Q) =
[
p1 p2
q1 q2.

]
One application of Sylvester matrices is to compute the resultant, which is one of the

important tools in algebraic geometry. One significance of the resultant is that it equals zero
if and only if P and Q have a common factor.

▶ Definition 10. Let P,Q be two univariate polynomials over R. The resultant of P and Q,
denoted by Res(P,Q), is defined to be the determinant of the Sylvester matrix of P and Q,
i.e., Res(P,Q) = det(Syl(P,Q)).

3 An Algebraic Geometry Lemma

In this section, we prove an important algebraic geometry lemma that will later be used in
our lower bound proof.

▶ Lemma 11. Let F and G be two univariate polynomials on x of degree ∆F and ∆G

respectively and the leading coefficient of G is 1. Let P (x, y) ≡ yG(x) − F (x).
Let L be a set of ℓ = ∆1 + ∆G + 1 points (xk, yk) where ∆1 ≥ ∆F − 1 and each xk = Θ(1)

such that |P (xk, yk)| ≤ ε < 1 for a parameter ε, and G(xk) = Θ(1).
Let V be a vector of ℓ monomials consisting of monomials xi for 0 ≤ i ≤ ∆1 and

monomials yxi for 0 ≤ i ≤ ∆G − 1.
If A is an ℓ× ℓ matrix where the k-th row of A is the evaluation of the vector V on point

(xk, yk), then | det(A)| ≥ Ω(Res(G,F)λℓ2) −O(ε) where λ = min1≤k1<k2≤ℓ |xk1 − xk2 |.

Proof. Note that if Res(G,F) = 0, then there is nothing to prove and thus we can assume
this is not the case. Now observe that since G(xk) = Θ(1), we can write yk = F (xk)

G(xk) + γk
where |γk| = O(ε).

Now consider the matrix A and plug in this value of yk. An entry of A is in the form of a
monomial yxi being evaluated on a point (xk, yk) and thus we have:

ykx
i
k =

(
F (xk)
G(xk) + γk

)
xik = F (xk)

G(xk)x
i
k + γi,k (1)

where |γi,k| = O(ε). We use the linearity of determinants (see Theorem 6) in a similar fashion
that was also used in [3]. In particular, consider a column of the matrix A; it consists of
the evaluations of a monomial yxi on all the points (x1, y1), · · · , (xℓ, yℓ). Using Eq. (1), we

P. Afshani and P. Cheng 3:7

can write this column as the addition of a column Ci that consists of the evaluation of the
rational function F (x)

G(x)x
i on the points x1, · · · , xℓ and a column Γi that consists of all the

values γi,k for 1 ≤ k ≤ ℓ. By the linearity of determinants, we can write the determinant
of A as the sum of determinants of two matrices where one matrix includes the column Ci
and the other has Γi; observe that the magnitude of the determinant of the latter matrix
can be upper bounded by O(ε), with hidden constants that depend on ∆. By performing
this operation on all the columns, we can separate all the entries involving γi,k into separate
matrices and the magnitude of sum of the determinants can be bounded by O(ε).

Let B be the matrix that remains after removing all the γi,k terms. We bound | det(B)|.
Note that B consists of row vectors

U = (1 x · · · x∆1 y yx · · · yx∆G−1).

evaluated at some value x = xk and y = F (xk)
G(xk) at its k-th row. This is equivalent to the

evaluation of the following vector:

(1 x · · · x∆1 F
G

F
Gx · · · F

Gx
∆G−1).

Observe that row k of matrix B will be evaluating U on the point xk. Since G(xk) = Θ(1) ̸= 0,
we can multiply row k by G(xk) and this will only change the determinant by a constant
factor. With a slight abuse of the notation, let B denote the matrix after this multiplication
step. Thus, the columns of B now correspond to the evaluation of the following vector.

(G Gx · · · Gx∆1 F Fx · · · Fx∆G−1).

Note that we can exchange columns and it will only flip the signs of the determinant of a
matrix. We will focus on bounding the determinant of

(Gx∆1 Gx∆1−2 · · · G Fx∆G−1 Fx∆G−2 · · · F).

The key observation is that there is a strong connection between the Sylvester matrix of
G,F and matrix B. Recall that the Sylvester matrix of G and F is of the form

Syl(G,F) =

G∆G
G∆G−1 · · · G0 0 · · · 0 0

0 G∆G
G∆G−1 · · · G0 · · · 0 0

...
...

...
. . .

...
. . .

...
...

0 0 · · · G∆G
G∆G−1 · · · G1 G0

F∆F
F∆F −1 · · · F0 0 · · · 0 0

0 F∆F
F∆F −1 · · · F0 · · · 0 0

...
...

...
. . .

...
. . .

...
...

0 0 · · · F∆F
F∆F −1 · · · F1 F0

,

where Gi (resp. Fi) is the coefficient of xi in G (resp. F). Observe that

(Gx∆F −1 Gx∆F −2 · · · G Fx∆G−1 Fx∆G−2 · · · F) =
Syl(G,F) · (x∆F +∆G−1 x∆F +∆G−2 · · · x 1)T ,

which means that by the linear transformation described by Syl(G,F)−1, which exists as
Res(G,F) = det(Syl(G,F)) ̸= 0, we can turn the last ∆F + ∆G columns in B to

(x∆F +∆G−1 x∆F +∆G−2 · · · x 1).

SoCG 2023

3:8 Lower Bounds for Intersection Reporting Among Flat Objects

Since the remaining columns are all polynomials in x and the highest degree in column i is
∆G + ∆1 − i for i = 0, 1, · · · ,∆F , by using column operations, we can eliminate all lower
degree terms for each column and the only term left for column i is G∆G

x∆G+∆1−i. Note
that column operations do not change the determinant.

By assumption, the leading coefficients of G is 1, i.e., G∆G
= 1. Thus, this transforms

B into a Vandermonde matrix VB of size ℓ× ℓ. By Theorem 8, | det(VB)| = Ω(λℓ2). Since
multiplying the inverse of Syl(G,F) scales det(B) by a factor of Θ(| det(Syl(G,F)−1)|) =
Θ(|Res(G,F)−1|), we bound | det(B)| = | det(VB)|/(1/|Res(G,F)|) = Ω(|Res(G,F)|λℓ2).
The claim then follows from this. ◀

4 Lower Bounds for Flat Intersection Reporting

We are now ready to show lower bounds for flat intersection reporting. We first establish a
reduction from special polynomial slab reporting problems to flat intersection reporting.

4.1 A Reduction from Polynomial Slab Range Reporting to
Flat-hyperslab Intersection Reporting

We study the following flat intersection reporting problem.

▶ Definition 12 (Flat-hyperslab Intersection Reporting). In the t-flat-hyperslab intersection
reporting problem, we are given a set S of n (d− t)-dimensional hyperslabs in Rd, i.e., regions
created by a linear translation of (d− t− 1)-flats, where 0 ≤ t < d, as the input, and the goal
is to preprocess S into a data structure such that given any query t-flat γ, we can output
S ∩ γ, i.e., the set of (d− t)-hyperslabs intersecting the query t-flat, efficiently.

First, observe that any t-flat that is not parallel to any of the axes can be formulated as

a0,1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
a1,1 a1,2 · · · a1,t a1,t+1

...
...

. . .
...

...
ad−t,1 ad−t,2 · · · ad−1,t ad−t,t+1

·

τ1
...
τt
1

 =

x1
...
xd

 ,

where ai,j ’s are the parameters defining the t-flat, and τ1, · · · , τt are the free variables that
generate points in the t-flat. Note that we only need (d − t)(t + 1) independent ai,j ’s to
define a t-flat.

On the other hand, we consider (d− t)-hyperslabs of form
1 0 · · · 0 b1,1 b1,2 · · · b1,d−t
0 1 · · · 0 b2,1 b2,2 · · · b2,d−t
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 bt,1 bt,2 · · · bt,d−t
0 0 · · · 0 bt+1,1 bt+1,2 · · · bt+1,d−t

 ·

x1
x2
...

xd−1
xd

 =

0
0
...
0

−1 + w

 ,

where bi,j ’s are the parameters defining a (d− t− 1)-flat, and parameter w ∈ [0, w0] adds one
extra dimension to the flat to make it (d− t)-dimensional; in essence, we will be considering
all the (d− t− 1)-flats for all w ∈ [0, w0] which will turn it into a (d− t)-hyperslab.

P. Afshani and P. Cheng 3:9

Therefore, the intersection of a t-flat and a (d − t)-hyperslab must be a solution to

1 0 · · · 0 b1,1 b1,2 · · · b1,d−t
0 1 · · · 0 b2,1 b2,2 · · · b2,d−t
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 bt,1 bt,2 · · · bt,d−t
0 0 · · · 0 bt+1,1 bt+1,2 · · · bt+1,d−t

·

a0,1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
a1,1 a1,2 · · · a1,t a1,t+1

...
...

. . .
...

...
ad−t,1 ad−t,2 · · · ad−1,t ad−t,t+1

·

τ1
τ2
τ3
...
τt
1

=

0
0
...
0

−1 + w

 .

Multiplying the two matrices, we obtain the following system
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · ·

∑d−t
i=1 ai,t+1b1,i∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · ·

∑d−t
i=1 ai,t+1b2,i

...
...

. . .
...∑d−t

i=1 ai,1bt+1,i
∑d−t
i=1 ai,2bt+1,i · · ·

∑d−t
i=1 ai,t+1bt+1,i

 ·

τ1
...
τt
1

 =

0
...
0

−1 + w

 .
We denote this linear system by Aτ = s and assume

det(A) ̸= 0 (2)

which is the case when the t-flat and the (d− t)-hyperslab properly intersect, and this system
has a solution iff the last entry of the solution vector is 1. So by Cramer’s rule, we have

1 =

∣∣∣∣∣∣∣∣∣∣
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · · 0∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · · 0

...
...

. . .
...∑d−t

i=1 ai,1bt+1,i
∑d−t
i=1 ai,2bt+1,i · · · −1 + w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · ·

∑d−t
i=1 ai,t+1b1,i∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · ·

∑d−t
i=1 ai,t+1b2,i

...
...

. . .
...∑d−t

i=1 ai,1bt+1,i
∑d−t
i=1 ai,2bt+1,i · · ·

∑d−t
i=1 ai,t+1bt+1,i

∣∣∣∣∣∣∣∣∣∣

.

By the linearity of determinants, we have

0 =

∣∣∣∣∣∣∣∣∣∣
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · ·

∑d−t
i=1 ai,t+1b1,i∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · ·

∑d−t
i=1 ai,t+1b2,i

...
...

. . .
...∑d−t

i=1 ai,1bt+1,i
∑d−t
i=1 ai,2bt+1,i · · · 1 +

∑d−t
i=1 ai,t+1bt+1,i − w

∣∣∣∣∣∣∣∣∣∣
. (3)

Consider the value of the above determinant using Leibniz formula for determinants,
which is the sum of (t+ 1)! terms. Consider the terms that have at most 1 factor of bi,j ; these
can only come from the diagonals. Thus, any t-flat parameterized by a = (ai,j) intersects a
query (d− t)-hyperslab parameterized by b = (bi,j) if and only if

0 = a0,1 + a0,1

t+1∑
j=2

d−1∑
i=1

ai,jbj,i +
d−1∑
i=1

ai,1b1,i + E(a, b) + f(a, b, w) = P (a, b) + f(a, b, w),

where E(a,b) contains the sum of products of at least two distinct ai1,i2bi3,i1 and f(a,b, w)
is a polynomial with factor w.

SoCG 2023

3:10 Lower Bounds for Intersection Reporting Among Flat Objects

Note that after fixing a,b, f(a,b, w) is a polynomial in w and we assume that

∂f(a,b, w)
∂w

= −

∣∣∣∣∣∣∣∣∣∣
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · ·

∑d−t
i=1 ai,tb1,i∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · ·

∑d−t
i=1 ai,tb2,i

...
...

. . .
...∑d−t

i=1 ai,1bt,i
∑d−t
i=1 ai,2bt,i · · · 1 +

∑d−t
i=1 ai,tbt,i

∣∣∣∣∣∣∣∣∣∣
< 0.

(4)

This implies the following lemma.

▶ Lemma 13. Assuming a,b satisfying Assumptions (2) and (4), for any fixed a, there is
a b such that 0 ≤ P (a,b) ≤ −f(a,b, w0) if and only if there is some w ∈ [0, w0] such that
P (a,b) + f(a,b, w) = 0.

Proof. Since f(a,b, w) is a polynomial in w and ∂f
∂w < 0, f(a,b, w) is continuous and

decreasing in [0, w0]. Furthermore f(a,b, 0) = 0 as w is a factor of f . The lemma follows. ◀

Fixing a in P (a,b), we obtain a polynomial in b. Let (P (a,b), f(a,b, w0)) = {b :
0 ≤ P (a,b) ≤ −f(a,b, w0)} be a polynomial slab. This essentially establishes a reduction
between polynomial slab reporting and flat intersection reporting.

▶ Corollary 14. Assuming a,b satisfying Assumptions (2) and (4), for any fixed a, there is
a b such that b ∈ (P (a,b), f(a,b, w0)) if and only if a t-flat parameterized by a intersects a
(d− t)-hyperslab of width w0 parameterized by b.

4.2 Lower Bounds for Flat-hyperslab Intersection Reporting
We are now ready to prove the lower bounds. We show lower bounds for 1-flat-hyperslab
intersection reporting in Rd and 2-flat-hyperslab intersection reporting in R4.

First observe that by setting t = 1 in Eq. (3) and using Corollary 14 a polynomial slab
reporting problem with polynomial

P1(a,b) = a0,1 + a0,1

d−1∑
i=1

ai,2b2,i +
d−1∑
i=1

ai,1b1,i +
d−1∑

i,j=1∧i ̸=j
(ai,1aj,2 − aj,1ai,2)b1,ib2,j

= b1,1G1(b2,2) + F1(b2,2), (5)

reduces to a line-hyperslab intersection reporting problem, where to get G1, we have collected
all the monomials that have b1,1 in them and then we have factored b1,1 out and we are
considering it as a polynomial of b2,2 (all the other variables are considered “constant”).
F1 is defined similarly by considering the remaining terms as a function of b2,2. Observe
that the polynomial does not have any term with degree 3. Let G1 = g1,1b2,2 + g1,0 and
F1 = f1,1b2,2 + f1,0.

Similarly, polynomial slab reporting with

P2(a, b) = a0,1 + a0,1

2∑
j=1

3∑
i=2

aj,ibi,j +
2∑

j=1

aj,1b1,j

+ a0,1

2∑
j,l=1∧j ̸=l

(aj,2al,3 − aj,3al,2)b2,jb3,l +
2∑

j,l=1∧j ̸=l

3∑
k=2

(aj,1al,k − aj,kal,1)b1,jbk,l

= b1,1G2(b2,2) + F2(b2,2) (6)

reduces to 2-flat-hyperslab intersection reporting in R4 where G2, F2 are defined similarly as
G1, F1.

P. Afshani and P. Cheng 3:11

For the moment, we focus on the case of line-hyperslab intersection reporting but the
same applies also to 2-flat-hyperslab intersection reporting in R4 since the polynomials F2
and G2 involved in the definition of Eq. (6) are quite similar to Eq. (5).

Here, we will use our techniques from Section 3. The general idea is that we will use
Corollary 5, to reduce the 2(d− 1)-variate polynomials P1 and P2 into bivariate polynomials
on b1,1 and b2,2. Then, the variable b1,1 will be our y variable and b2,2 will be the x variable
in Section 3, and G1 and F1 here will play the same role as in that section. We will set

a1,1 = 1 + a1,2a2,1

a2,2
(7)

which will ensure that the leading coefficient of G1 is 1. This is our normalization step, since
we can divide the equations defining the intersection (and thus polynomials P1 and P2) by
any constant. Eventually, the resultant of the polynomials F1 and G1 will play an important
role. Observe that the resultant is

Res(G1, F1) =
∣∣∣∣ 1 g0
f1 f0

∣∣∣∣ = f0 − g0f1. (8)

4.3 Construction of Input Points and Queries
Now we are ready to describe our input and query construction. Assume we have a data
structure that uses S(n) space and has the query time Q(n) +O(k) where k is the output
size; for brevity we use Q = Q(n).

We will start with a fixed line and a fixed hyperslab and then build the queries and
inputs very close to these two fixed objects. However, we require a certain “general position”
property with respect to these two fixed objects.

Recall that Eq. (5) refers to the condition of whether a (query) line described by a
variables intersects a (d− 2)-dimensional flat described by the b variables (which corresponds
to setting the variable w to zero). Consider a fixed flat and a fixed line. To avoid future
confusion, let A and B refer to this fixed line and flat. We require the following.

A and B must intersect properly (i.e., the line is not contained in the flat). Observe that
it implies that when we consider P1(A,b) as a polynomial in b variables, B does not
belong to the zero set of P1(A,b). Note that this satisfies Assumption (2).
The polynomial P1(A,b) (as a polynomial in b) is irreducible. This is true as long as A
is chosen so that no coefficient in P1 is zero. To see this, note that P1 is a polynomial
in b and any variable bi,j has degree 1. Suppose for the sake of contradiction that P1 is
reducible, then the factorization must be of the form

P1(A,b) =
(
c10 +

d−1∑
i=1

c1ib1i

)
·

(
c20 +

d−1∑
i=1

c2ib2i

)
,

for nonzero coefficients c10, c20, c1i, c2i. Then by Eq. (5),
1. a0,1 = c10c20,
2. ∀i = 1, · · · , d− 1 : a0,1ai,2 = c10c2i,
3. ∀i = 1, · · · , d− 1 : ai,1 = c1ic20,
4. ∀i, j = 1, 2, · · · , d− 1 : ai,1aj,2 − aj,1ai,2 = c1ic2i.
However, for these conditions to hold, all coefficients of P1 must be zero, a contradiction.
Observe that the irreducibility of P1(A,b) as a polynomial in b implies that it has only
finitely many points where the tangent hyperplane at those points is parallel to some axis.
We assume B is not one of those points.

SoCG 2023

3:12 Lower Bounds for Intersection Reporting Among Flat Objects

The irreducibility of P1(A,b) as a polynomial in b can be used to satisfy Assumption (4)
since the corresponding polynomial of the determinant involved in Assumption (4) can
only have Θ(1) many common roots with P1(A,b).
Finally, since the polynomial P1(A,b) is irreducible and since Res(G1, F1) is also of degree
2 in b variables, it follows that Res(G1, F1) is algebraically independent of P1(A,b). This
means that there are only finitely many places where both polynomials are zero, meaning,
we can additionally assume that Eq. (8) is non-zero (when evaluated at B).

Consider two parameters εp and εq = εp/C where C is a large enough constant and εp
is a parameter to be set later. Consider the parametric space of the input objects, where
the variable b defines a single point. In such a space, B defines a single point. Place an
axis-aligned cube R of side-length εp centered around B. The input slabs are defined by
placing a set of n random points inside R. Each point in R defines a (d− 2)-dimensional
flat. We set w = Θ(Qn) which in turn defines a “narrow (d− 1)-hyperslab”.

We now define the set of queries. Notice that P1 has exactly 2(d − 1) algebraically
independent coefficients; these are the coefficients of linear terms involved plus a0,1; recall
that by Eq. (7), a1,1 was fixed as a function of a1,2a2,1 and a2,2 but we still have a0,1 as a
free parameter. These 2(d− 1) coefficients define another parametric space, where A denotes
a single point. Place a 2(d− 1)-dimensional hypercube of side length εq and then subdivide
it into a grid where the side-length of every cell is τ . Every grid point now defines a different
query. Let Q be the set of all the queries we have constructed.

Notice that a query defined by a point a ∈ Q defines a line in the primal space, but when
considered in the parametric space R, it corresponds to a manifold (zeroes of a degree two
multilinear polynomial) that includes the set of points that correspond to (d− 2)-dimensional
flats that pass through the line in the primal space. The variable w allows us to turn it to a
range reporting problem where we need to output any (d− 2)-dimensional flat that passes
within w vertical distance of the query line. The following observations and lemmas are the
important geometric properties that we require out of our construction.

▶ Observation 15. For two different queries a1 and a2, the polynomials P1(a1,b) and
P1(a2,b) differ by at least τ in at least one of their coefficients.

▶ Observation 16. Consider a line f parallel to an axis. For small enough εp, and any
a ∈ Q, the function P1(a,b) evaluated on the line f is such that the magnitude of its
derivative is bounded by Ω(1).

Proof. Recall that B was chosen such that the manifold corresponding to A does not have a
tangent parallel to any of the axes at point B and thus the derivate of the function P1(A,B)
is non-zero at B. The lemma then follows since εp and εq are small enough and P1(A,B) is
a continuous function w.r.t any of its variables. ◀

Let Vol′(R) be the (d− 1)-dimensional volume of R, i.e., the volume of the projection of
R to any of its (d− 1)-dimensional subspace.

▶ Observation 17. The intersection volume of the range defined by a query a and R is
Θ(wVol′(R)) if C in the definition of εq is large enough, for w ≤ εp.

Proof. Observe that the query manifold defined by A passes through the center, B, of R by
construction. Since each coordinate of a differs from A by at most εq, it thus follows that by
setting C large enough, we can ensure that the distance between B and a is less than εp/2.
Also observe that the width of the range along any axis will be Θ(w). The claim now follows
by integrating the volume over vertical lines using Observation 16. ◀

P. Afshani and P. Cheng 3:13

▶ Lemma 18. Consider a query a ∈ Q and let r be the range that represents a in the
parametric space defined by R. Consider an interval I on the i-th side of R, for some i.
Let rI be the subset of r whose projection on the i-th side of R falls inside I . Then, the
volume of rI is O(Vol′(R)w|I |/εp).

Proof. Both claims follow through Observation 16 by integrating the corresponding volumes
over lines parallel to axes. ◀

4.4 Using the Framework
Observe that by the above Observation 17, setting w = Θ(Qn εp) satisfies Condition 1 of the
lower bound framework in Theorem 1.

Satisfying Condition 2 requires a bit more work however. To do that, consider two queries
defined by points a1 and a2. Let r1 and r2 be the two corresponding ranges in the parametric
space of R.

To satisfy Condition 2, assume for contradiction that the volume of r1 ∩ r2 is large, i.e.,
ω(Vol(R)/(nψ)) where ψ = 2

√
logn. We now combine Observation 15, and Corollary 5 with

parameter ϑ set to ε0
εp

Qψ where ε0 is a small enough constant and where X1 represents b1,1,
X2 represents b2,2 and the remaining indeterminates represent the rest of variables in b; note
that the value of d in Corollary 5 is β = 2(d − 1) and U =

(2+1
2
)

= 3. Observe that each
interval Ii determined by Corollary 5 defines a slab parallel to the i-th axis in R; let Rbad
be the union of these slabs. By Lemma 18, and choice of small enough ε0, a positive fraction
of the intersection volume of r1 and r2 must lie outside Rbad. In addition, Corollary 5 allows
us to pick some fixed values for all variables in b, except for b1,1 and b2,2 with the property
the final polynomials H1 and H2 (on indeterminates b1,1 and b2,2) that we obtain have the
property that they have at least one coefficient which differs by

Ω
(
τ

(
ε0

εp
Qψ

)3(β−2)
)

(9)

between them; we call this operation of plugging values for all b except for b1,1 and b2,2
slicing. After slicing, we are reduced to the bivariate case; consider the set of points on which
both H1 and H2 have value O(w). If the 1D interval length of such points is O(εp/(Qψ), we
call this a good slice, otherwise a bad slice. By Lemma 18, there must be bad slices since if all
the slices are good, by integration of the intersection area of r1 and r2 over all the remaining
variables in b, r1 and r2 intersect with volume O(Vol(R)/(nψ)), a contradiction.

We now show that we can arrive at a contradiction, assuming the existence of a bad slice.
Given a bad slice, and any constant ℓ, we can find ℓ points (x1, y1), . . . , (xℓ, yℓ) such that
|xk1 − xk2 | = ω(εp/(Qψ)) for all 1 ≤ k1 < k2 ≤ ℓ and that H1(xk, yk), H2(xk, yk) = O(w)
for all k ∈ {1, 2 · · · , ℓ}. Observe that Hi(x, y) has only monomials y, x, xy and a constant
term. The critical observation here is that the coefficient of the monomial xy is always 1
since the coefficient of the monomial b1,1b2,2 was 1 and there was no monomial of degree
three in P1, meaning, after slicing this coefficient will not change. We pick ℓ = 3 and thus we
tweak all the three other coefficients of H1. Tweaking H1 such that H̃1(xk, yk) = H2(xk, yk)
corresponds to solving a linear system of equations that come from evalutions of monomials
X, Y , and a constant term at points (xk, yk). We can thus use Lemma 11 with ∆1 = ∆F = 1,
λ = ω(εp/(Qψ)). Observe that Res(G,F) here is a constant by the properties of our
construction. Also observe that by Lemma 11, the magnitude of the determinant of matrix
A defined in Lemma 11 is

ω
(

(εp/(Qψ)))9
)
.

SoCG 2023

3:14 Lower Bounds for Intersection Reporting Among Flat Objects

By the same argument in [3], this means that the tweaking operation can be done such that
each coefficient of H1 is changed by

o
(

(εp/(Qψ)))−9
w
)
. (10)

We observe that after tweaking, H̃1 and H2 must coincide since by Lemma 11, the determinant
of the relevant monomials is non-zero and thus there’s a unique polynomial that passes
through points (x1, y1), · · · , (xℓ, yℓ). Finally, to get a contradiction, we simply need to ensure
that Eq. (10) is asymptotically smaller than Eq. (9). This yields a bound for the value of τ ,

τ = Θ
(
w(Qψ)3(β−2)+9

)
= Θ

(
w(Qψ)3β+3) (11)

where we have assumed that εp, and ε0 are small enough constants that have been absorbed in
the Θ(·) notation. Thus, this choice of τ will make sure that Condition 2 of the framework is
also satisfied. It remains to calculate the number of queries that have been generated. Observe
that τ was the side-length of a small enough grid around the point A in a β-dimensional
space. Thus, the number of queries we generated is

m =
o

Ω
((

1
τ

)β)
=

o

Ω
(

nβ

Qβ(3β+4)

)
. (12)

Applying Theorem 1 yields a space lower bound of

S(n) =
o

Ω(mQ) =
o

Ω
(

n2(d−1)

Q4(3d−1)(d−1)−1

)
(13)

for line-hyperslab intersection reporting since β = 2(d− 1). One can verify that the same
argument works for triangle-triangle intersection reporting in R4, since P2 is also a multilinear
polynomial of degree two. In this case, β = 6 which yields a space lower bound of

S(n) =
o

Ω
(

n6

Q125

)
. (14)

To sum up, we obtain the following results:

▶ Theorem 19. Any data structure that solves line-hyperslab intersection reporting in Rd

must satisfy a space-time tradeoff of S(n) =
o

Ω
(

n2(d−1)

Q(n)(4(3d−1)(d−1)−1

)
.

▶ Theorem 20. Any data structure that solves triangle-triangle intersection reporting in R4

must satisfy a space-time tradeoff of S(n) =
o

Ω
(

n6

Q(n)125

)
.

5 Conclusion and Open Problems

We study line-hyperslab intersecting reporting in Rd and triangle-triangle intersecting report-
ing in R4. We show that any data structure with no(1) +O(k) query time must use space
o

Ω(n2(d−1)) and
o

Ω(n6) for the two problems respectively. This matches the classical upper
bounds for the small no(1) query time case for the two problems and answer an open problem
for lower bounds asked by Ezra and Sharir [20]. Along the way, we generalize and develop
the lower bound technique used in [2, 3].

The major open problem is how to show a lower bound for general intersection reporting
between objects of t and (d − t) dimensions or for flat semialgebraic objects as studied
recently in [5]. Many of our techniques work, however, one big challenge is that after applying
Corollary 5, the leading coefficient changes and thus we can no longer guarantee big gaps
between coefficients.

P. Afshani and P. Cheng 3:15

References
1 Peyman Afshani. Improved pointer machine and I/O lower bounds for simplex range reporting

and related problems. In Proceedings of the Twenty-Eighth Annual Symposium on Compu-
tational Geometry, SoCG ’12, pages 339–346, New York, NY, USA, 2012. Association for
Computing Machinery. doi:10.1145/2261250.2261301.

2 Peyman Afshani and Pingan Cheng. Lower bounds for semialgebraic range searching and
stabbing problems. In 37th International Symposium on Computational Geometry, volume 189
of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 8, 15. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2021.

3 Peyman Afshani and Pingan Cheng. On semialgebraic range reporting. In 38th International
Symposium on Computational Geometry, volume 224 of LIPIcs. Leibniz Int. Proc. Inform.,
pages Paper No. 3, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2022. doi:10.4230/
lipics.socg.2022.3.

4 Pankaj K. Agarwal. Simplex range searching and its variants: a review. In A journey through
discrete mathematics, pages 1–30. Springer, Cham, 2017.

5 Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir. Inter-
section queries for flat semi-algebraic objects in three dimensions and related problems. In
38th International Symposium on Computational Geometry, volume 224 of LIPIcs. Leibniz Int.
Proc. Inform., pages Paper No. 4, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2022.
doi:10.4230/lipics.socg.2022.4.

6 Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl. Efficient algorithm for
generalized polynomial partitioning and its applications. SIAM J. Comput., 50(2):760–787,
2021. doi:10.1137/19M1268550.

7 Pankaj K. Agarwal and Jirí Matousek. On range searching with semialgebraic sets. Discret.
Comput. Geom., 11:393–418, 1994. doi:10.1007/BF02574015.

8 Pankaj K. Agarwal and Jiří Matoušek. Ray shooting and parametric search. SIAM J. Comput.,
22(4):794–806, 1993. doi:10.1137/0222051.

9 Pankaj K. Agarwal, Jiří Matoušek, and Micha Sharir. On range searching with semialgebraic
sets. II. SIAM J. Comput., 42(6):2039–2062, 2013. doi:10.1137/120890855.

10 Pankaj K. Agarwal and Micha Sharir. Ray shooting amidst convex polyhedra and polyhe-
dral terrains in three dimensions. SIAM J. Comput., 25(1):100–116, 1996. doi:10.1137/
S0097539793244368.

11 Boris Aronov, Mark de Berg, and Chris Gray. Ray shooting and intersection searching amidst
fat convex polyhedra in 3-space. Comput. Geom., 41(1-2):68–76, 2008. doi:10.1016/j.comgeo.
2007.10.006.

12 Timothy M. Chan. Optimal partition trees. Discrete Comput. Geom., 47(4):661–690, 2012.
doi:10.1007/s00454-012-9410-z.

13 Bernard Chazelle. Lower bounds on the complexity of polytope range searching. J. Amer.
Math. Soc., 2(4):637–666, 1989. doi:10.2307/1990891.

14 Bernard Chazelle. Lower bounds for orthogonal range searching. I. The reporting case. J.
Assoc. Comput. Mach., 37(2):200–212, 1990. doi:10.1145/77600.77614.

15 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom.,
9(2):145–158, December 1993. doi:10.1007/BF02189314.

16 Bernard Chazelle and Burton Rosenberg. Simplex range reporting on a pointer machine.
Comput. Geom., 5(5):237–247, 1996. doi:10.1016/0925-7721(95)00002-X.

17 M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld. Efficient ray shooting
and hidden surface removal. Algorithmica, 12(1):30–53, 1994. doi:10.1007/BF01377182.

18 Mark de Berg and Chris Gray. Vertical ray shooting and computing depth orders for fat
objects. SIAM J. Comput., 38(1):257–275, 2008. doi:10.1137/060672261.

19 Esther Ezra and Micha Sharir. Intersection searching amid tetrahedra in four dimensions.
CoRR, abs/2208.06703, 2022. doi:10.48550/arXiv.2208.06703.

SoCG 2023

https://doi.org/10.1145/2261250.2261301
https://doi.org/10.4230/lipics.socg.2022.3
https://doi.org/10.4230/lipics.socg.2022.3
https://doi.org/10.4230/lipics.socg.2022.4
https://doi.org/10.1137/19M1268550
https://doi.org/10.1007/BF02574015
https://doi.org/10.1137/0222051
https://doi.org/10.1137/120890855
https://doi.org/10.1137/S0097539793244368
https://doi.org/10.1137/S0097539793244368
https://doi.org/10.1016/j.comgeo.2007.10.006
https://doi.org/10.1016/j.comgeo.2007.10.006
https://doi.org/10.1007/s00454-012-9410-z
https://doi.org/10.2307/1990891
https://doi.org/10.1145/77600.77614
https://doi.org/10.1007/BF02189314
https://doi.org/10.1016/0925-7721(95)00002-X
https://doi.org/10.1007/BF01377182
https://doi.org/10.1137/060672261
https://doi.org/10.48550/arXiv.2208.06703

3:16 Lower Bounds for Intersection Reporting Among Flat Objects

20 Esther Ezra and Micha Sharir. On ray shooting for triangles in 3-space and related problems.
SIAM J. Comput., 51(4):1065–1095, 2022. doi:10.1137/21M1408245.

21 Larry Guth. Polynomial partitioning for a set of varieties. Math. Proc. Cambridge Philos.
Soc., 159(3):459–469, 2015. doi:10.1017/S0305004115000468.

22 Larry Guth and Nets Hawk Katz. On the Erdős distinct distances problem in the plane. Ann.
of Math. (2), 181(1):155–190, 2015. doi:10.4007/annals.2015.181.1.2.

23 Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,
10(2):157–182, 1993. doi:10.1007/BF02573972.

24 Jiří Matoušek and Zuzana Patáková. Multilevel polynomial partitions and simplified range
searching. Discrete Comput. Geom., 54(1):22–41, 2015. doi:10.1007/s00454-015-9701-2.

25 Jiří Matoušek and Otfried Schwarzkopf. On ray shooting in convex polytopes. Discrete
Comput. Geom., 10(2):215–232, 1993. doi:10.1007/BF02573975.

26 M. Pellegrini. Ray shooting on triangles in 3-space. Algorithmica, 9(5):471–494, 1993.
doi:10.1007/BF01187036.

27 Marco Pellegrini. Stabbing and ray shooting in 3 dimensional space. In Raimund Seidel, editor,
Proceedings of the Sixth Annual Symposium on Computational Geometry, Berkeley, CA, USA,
June 6-8, 1990, pages 177–186. ACM, 1990. doi:10.1145/98524.98563.

28 Marco Pellegrini. Ray shooting and lines in space. In Handbook of discrete and computational
geometry (3rd Edition), CRC Press Ser. Discrete Math. Appl., pages 1093–1112. CRC, Boca
Raton, FL, 2017.

29 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proceedings
of the Fifteenth Annual Symposium on Computational Geometry (Miami Beach, FL, 1999),
pages 390–399. ACM, New York, 1999. doi:10.1145/304893.304993.

30 Micha Sharir and Hayim Shaul. Ray shooting and stone throwing with near-linear storage.
Comput. Geom., 30(3):239–252, 2005. doi:10.1016/j.comgeo.2004.10.001.

https://doi.org/10.1137/21M1408245
https://doi.org/10.1017/S0305004115000468
https://doi.org/10.4007/annals.2015.181.1.2
https://doi.org/10.1007/BF02573972
https://doi.org/10.1007/s00454-015-9701-2
https://doi.org/10.1007/BF02573975
https://doi.org/10.1007/BF01187036
https://doi.org/10.1145/98524.98563
https://doi.org/10.1145/304893.304993
https://doi.org/10.1016/j.comgeo.2004.10.001

	1 Introduction
	1.1 Background and Previous Results
	1.2 Our Results
	1.3 Technical Contributions

	2 Preliminaries
	2.1 The Geometric Range Reporting Lower Bound Framework in the Pointer Machine
	2.2 Notations and Definitions for Polynomials
	2.3 Geometric Lemmas
	2.4 Algebra Preliminaries

	3 An Algebraic Geometry Lemma
	4 Lower Bounds for Flat Intersection Reporting
	4.1 A Reduction from Polynomial Slab Range Reporting to Flat-hyperslab Intersection Reporting
	4.2 Lower Bounds for Flat-hyperslab Intersection Reporting
	4.3 Construction of Input Points and Queries
	4.4 Using the Framework

	5 Conclusion and Open Problems

