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Abstract
We investigate a relaxation of the notion of treewidth-fragility, namely tree-independence-number-
fragility. In particular, we obtain polynomial-time approximation schemes for independent packing
problems on fractionally tree-independence-number-fragile graph classes. Our approach unifies and
extends several known polynomial-time approximation schemes on seemingly unrelated graph classes,
such as classes of intersection graphs of fat objects in a fixed dimension or proper minor-closed
classes. We also study the related notion of layered tree-independence number, a relaxation of
layered treewidth.
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1 Introduction

Many optimization problems involving collections of geometric objects in the d-dimensional
space are known to admit a polynomial-time approximation scheme (PTAS). Arguably the
earliest example of such behavior is the problem of finding the maximum number of pairwise
non-intersecting disks or squares in a collection of unit disks or unit squares, respectively [38].
Such subcollection is usually called an independent packing. This result was later extended
to collections of arbitrary disks and squares and, more generally, fat objects [11, 30]. The
reason for the abundance of approximation schemes for geometric problems is that shifting
and layering techniques can be used to reduce the problem to small subproblems that can be
solved by dynamic programming. In fact, the same phenomenon occurs for graph problems,
as evidenced by the seminal work of Baker [4] on approximation schemes for local problems,
such as Independent Set, on planar graphs and its generalizations first to apex-minor-free
graphs [29] and further to graphs embeddable on a surface of bounded genus with a bounded
number of crossings per edge [37]. The notion of intersection graph allows to jump from the
geometric world to the graph-theoretic one. Given a collection O of geometric objects in
Rd, we can consider its intersection graph, the graph whose vertices are the objects in O
and where two vertices Oi, Oj ∈ O are adjacent if and only if Oi ∩ Oj ̸= ∅. An independent
packing in O is then nothing but an independent set in the corresponding intersection graph.
Notice that intersection graphs of unit disks or squares are not minor-closed, as they contain
arbitrarily large cliques. Our motivating question is the following:
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34:2 PTASes for Independent Packing Problems on Fractionally tree-α-Fragile Graphs

Is there any underlying graph-theoretical reason for the existence of the seemingly unrelated
PTASes for Independent Set mentioned above?

We provide a positive answer to this question that also allows us to further generalize to a
family of independent packing problems. The similar question of whether there is a general
notion under which PTASes using Baker’s technique can be obtained was asked in [37].

Baker’s layering technique relies on a form of decomposition theorem for planar graphs
that can be roughly summarized as follows. Given a planar graph G and k ∈ N, the vertex
set of G can be partitioned into k + 1 possibly empty sets in such a way that deleting any
part induces a graph of treewidth at most O(k) in G. Moreover, such a partition together
with tree decompositions of width at most O(k) of the respective graphs can be found in
polynomial time. A statement of this form is typically referred to as a Vertex Decomposition
Theorem (VDT) [48]. VDTs are known to exist in planar graphs [4], graphs of bounded-genus
and apex-minor-free graphs [29], and H-minor-free graphs [17, 19]. However, their existence
is in general something too strong to ask for, as is the case of intersection graphs of unit
disks or squares and hence fat objects in general. There are then two natural ways in which
one can try to relax the notion of VDT. First, we can consider an approximate partition of
the vertex set, where a vertex can belong to some constant number of sets. Second, we can
look for a width parameter less restrictive than treewidth.

Dvořák [24] pursued the first direction and introduced the notion of efficient fractional
treewidth-fragility. We state here an equivalent formulation from [28]. A class of graphs
G is efficiently fractionally treewidth-fragile if there exists a function f : N → N and an
algorithm that, for every k ∈ N and G ∈ G, returns in time poly(|V (G)|) a collection of
subsets X1, X2, . . . , Xm ⊆ V (G) such that each vertex of G belongs to at most m/k of the
subsets and moreover, for i = 1, . . . , m, the algorithm also returns a tree decomposition of
G − Xi of width at most f(k). Several graph classes are known to be efficiently fractionally
treewidth-fragile. In fact, a hereditary class G is efficiently fractionally treewidth-fragile in
each of the following cases (see, e.g., [28]): G has sublinear separators and bounded maximum
degree, G is proper minor-closed, or G consists of intersection graphs of convex objects with
bounded aspect ratio in Rd (for fixed d) and the graphs in G have bounded clique number.
Dvořák [24] showed that Independent Set admits a PTAS on every efficiently fractionally
treewidth-fragile graph class. This result was later extended [26, 28] to a framework of
maximization problems including, for example, Max Weight Distance-d Independent
Set, Max Weight Induced Forest and Max Weight Induced Matching. However,
the notion of fractional treewidth-fragility falls short of capturing classes such as unit disk
graphs, as it implies the existence of sublinear separators [24].

One can then try to pursue the second direction mentioned above and further relax the
notion of efficient fractional fragility by considering width parameters more powerful than
treewidth (i.e., bounded on a larger class of graphs) and algorithmically useful. A natural
candidate is the recently introduced tree-independence number [15], a width parameter defined
in terms of tree decompositions which is more powerful than treewidth (see Section 3). Several
algorithmic applications of boundedness of tree-independence number have been provided,
most notably polynomial-time solvability of Max Weight Independent Packing [15]
(see Section 5 for the definition), a common generalization of Max Weight Independent
Set and Max Weight Induced Matching, and of its distance-d version, for d even [45].
Investigating the notion of efficient fractional tree-independence-number-fragility (tree-α-
fragility for short) was recently suggested in a talk by Dvořák [25], where it was stated that,
using an argument from [27], it is possible to show that intersection graphs of balls and cubes
in Rd are fractionally tree-α-fragile.
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A successful notion related to fractional treewidth-fragility is the layered treewidth of
a graph [21]. Despite currently lacking any direct algorithmic application, it proved useful
especially in the context of coloring problems (we refer to [22] for additional references). We
just mention that classes of bounded layered treewidth include planar graphs and, more
generally, apex-minor-free graphs and graphs embeddable on a surface of bounded genus
with a bounded number of crossings per edge, amongst others [20]. It can be shown that
bounded layered treewidth implies fractional treewidth-fragility (see Section 4). Layered
treewidth is also related to local treewidth, a notion first introduced by Eppstein [29], and in
fact, on proper minor-closed classes, having bounded layered treewidth coincides with having
bounded local treewidth (see, e.g., [20]).

1.1 Our results
In this paper, we investigate the notion of efficient fractional tree-α-fragility and show that
it answers our motivating question in the positive, thus allowing to unify and extend several
known results. Our main result can be summarized as follows and will be proved in Section 4
and Section 5.

▶ Theorem 1. Max Weight Independent Packing admits a PTAS on every efficiently
fractionally tree-α-fragile class. Moreover, the class of intersection graphs of fat objects in
Rd, for fixed d, is efficiently fractionally tree-α-fragile1.

The message of Theorem 1 is that a doubly-relaxed version of a VDT suffices for algorithmic
applications and is general enough to hold for several interesting graph classes. Theorem 1
cannot be improved to guarantee an EPTAS, unless FPT = W[1]. Indeed, Marx [42] showed
that Independent Set remains W[1]-complete on intersection graphs of unit disks and
unit squares. The natural trade-off in extending the tractable families with respect to
approximation is that fewer problems will admit a PTAS. In our case this is exemplified by
the minimization problem Feedback Vertex Set, which admits no PTAS, unless P = NP,
on unit ball graphs in R3 [32] but admits an EPTAS on disk graphs in R2 [41].

In Section 4, we also show that fractionally tree-α-fragile classes have bounded biclique
number, where the biclique number of a graph G is the maximum n ∈ N such that the
complete bipartite graph Kn,n is an induced subgraph of G. This shows in particular that,
unsurprisingly, the notion of fractional tree-α-fragility falls short of capturing intersection
graphs of rectangles in the plane. Whether Independent Set admits a PTAS on these
graphs remains one of the major open problems in the area (see, e.g., [34]). We also show
that the absence of large bicliques is not sufficient for guaranteeing fractional tree-α-fragility:
n-dimensional grids of width n are K2,3-free but not fractionally tree-α-fragile.

We begin our study of fractional tree-α-fragility by introducing, in Section 3, a subclass
of fractionally tree-α-fragile graphs, namely the class of graphs with bounded layered tree-
independence number. We obtain the notion of layered tree-independence number by relaxing
the successful notion of layered treewidth and show that, besides graphs of bounded layered
treewidth, classes of intersection graphs of unit disks in R2 and of paths with bounded
horizontal part2 on a grid have bounded layered tree-independence number. Moreover, we
observe that, for minor-closed classes, having bounded layered tree-independence number
is equivalent to having bounded layered treewidth, thus extending a characterization of
bounded layered treewidth from [20].

1 Here we use a definition of fatness slightly generalizing that of Chan [11] (see Section 4.1).
2 The horizontal part of a path is the interval corresponding to the projection of the path onto the x-axis.
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34:4 PTASes for Independent Packing Problems on Fractionally tree-α-Fragile Graphs

We then consider the behavior of layered tree-independence number with respect to
graph powers. We show that odd powers of graphs of bounded layered tree-independence
number have bounded layered tree-independence number and that this does not extend to
even powers. Combined with Theorem 1, this gives the following result which applies, for
example, to unit disk graphs and cannot be extended to odd d ∈ N (see Section 5.2).

▶ Theorem 2. For a fixed positive even integer d, the distance-d version of Max Weight
Independent Packing admits a PTAS on every class of bounded layered tree-independence
number, provided that a tree decomposition and a layering witnessing small layered tree-
independence number can be computed efficiently.

Finally, we show that the approach to PTASes through tree-independence number is
competitive in terms of running time for some classes of intersection graphs. Specifically, in
Section 5.3, we obtain PTASes for Max Weight Independent Set for intersection graphs
of families of unit disks, unit-height rectangles, and paths with bounded horizontal part on a
grid, which improve or generalize results from [6, 12, 43] mentioned in the next section.

We believe that the notion of fractional tree-α-fragility can find further applications in
the design of PTASes. In fact, it would be interesting to obtain an algorithmic meta-theorem
similar to those for fractionally treewidth-fragile classes [28, 26] and classes of bounded
tree-independence number [45]. Although our interest is in approximation schemes, we notice
en passant that the observations from Section 3 lead to a subexponential-time algorithm for
the distance-d version of Max Weight Independent Packing, for d even, on unit disk
graphs. We finally remark that all our PTASes for intersection graphs of geometric objects
are not robust i.e., they require a geometric realization to be part of the input.

1.2 Other related work

Disk graphs. Very recently, Lokshtanov et al. [41] established a framework for designing
EPTASes for a broad class of minimization problems (specifically, vertex-deletion problems)
on disk graphs including, among others, Feedback Vertex Set and d-Bounded Degree
Vertex Deletion. Previous sporadic PTASes on this class were known only for Vertex
Cover [30, 50], Dominating Set [35], Independent Set [11, 30] and Max Clique [8].
Theorem 1 adds several maximization problems to this list (see Section 5).

Unit disk graphs. Unit disk graphs are arguably one of the most well-studied graph classes
in computational geometry, as they naturally model several real-world problems. Great
attention has been devoted to approximation algorithms for Max Weight Independent
Set on this class (see, e.g., [39, 46, 49]). To the best of our knowledge, the fastest known
PTAS is a (1 − 1/k)-approximation algorithm with running time O(kn

4⌈ 2(k−1)√
3

⌉) [43]. We also
remark that a special type of Decomposition Theorem was recently shown to hold for the
class of unit disk graphs. A Contraction Decomposition Theorem (CDT) is a statement of
the following form: given a graph G, for any p ∈ N, one can partition the edge set of G into
E1, . . . , Ep such that contracting the edges in each Ei in G yields a graph of treewidth at most
f(p), for some function f : N → N. CDTs are useful in designing efficient approximation and
parameterized algorithms and are known to hold for classes such as graphs of bounded genus
[18] and unit disk graphs [5]. Since these classes are efficiently fractionally tree-α-fragile, our
results can be seen as providing a different type of relaxed decomposition theorems for them.
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Intersection graphs of unit-height rectangles. As observed by Agarwal et al. [1], this class
of graphs arises naturally as a model for the problem of labeling maps with labels of the
same font size. Improving on [38], they obtained a (1 − 1/k)-approximation algorithm for
Max Weight Independent Set on this class with running time O(n2k−1). Chan [12]
provided a (1 − 1/k)-approximation algorithm with running time O(nk).

Intersection graphs of paths on a grid. Asinowski et al. [3] introduced the class of Vertex
intersection graphs of Paths on a Grid (VPG graphs for short). A graph G is a VPG graph if
there exists a collection P of paths on a grid G such that P is in one-to-one correspondence
with V (G) and two vertices are adjacent in G if and only if the corresponding paths intersect.
It is not difficult to see that this class coincides with the well-known class of string graphs.
If every path in P has at most k bends i.e., 90 degrees turns at a grid-point, the graph is
a Bk-VPG graph. Golumbic et al. [36] introduced the class of Edge intersection graphs of
Paths on a Grid (EPG graphs for short) which is defined similarly to VPG, except that two
vertices are adjacent if and only if the corresponding paths share a grid-edge. It turns out
that every graph is EPG [36] and Bk-EPG graphs have been defined similarly to Bk-VPG
graphs. Approximation algorithms for Independent Set on VPG and EPG graphs have
been deeply investigated, especially when the number of bends is a small constant (see,
e.g., [7, 33, 40, 44]). It is an open problem whether Independent Set admits a PTAS on
B1-VPG graphs [44]. Concerning EPG graphs, Bessy et al. [6] showed that the problem
admits no PTAS on B1-EPG graphs, unless P = NP, even if each path has its vertical
segment or its horizontal segment of length at most 1. On the other hand, they provided a
PTAS for Independent Set on B1-EPG graphs where the length of the horizontal part of
each path is at most a constant c with running time O∗(n 3c

ε ).

2 Preliminaries

We consider only finite simple graphs. If G′ is a subgraph of G and G′ contains all the
edges of G with both endpoints in V (G′), then G′ is an induced subgraph of G and we write
G′ = G[V (G′)]. For a vertex v ∈ V (G) and r ∈ N, the r-closed neighborhood Nr

G[v] is the
set of vertices at distance at most r from v in G. The degree dG(v) of a vertex v ∈ V (G) is
the number of edges incident to v in G. The maximum degree ∆(G) of G is the quantity
max {dG(v) : v ∈ V }. Given a graph G = (V, E) and V ′ ⊆ V , the operation of deleting the
set of vertices V ′ from G results in the graph G − V ′ = G[V \ V ′]. A graph is Z-free if it
does not contain induced subgraphs isomorphic to graphs in a set Z. The complete bipartite
graph with parts of sizes r and s is denoted by Kr,s. An independent set of a graph is a set
of pairwise non-adjacent vertices. The maximum size of an independent set of G is denoted
by α(G). A clique of a graph is a set of pairwise adjacent vertices. A matching of a graph is
a set of pairwise non-incident edges. An induced matching in a graph is a matching M such
that no two vertices belonging to different edges in M are adjacent in the graph.

Intersection graphs of unit disks and rectangles. We now explain how the geometric
realizations of these intersection graphs are encoded. A collection of unit disks with a
common radius c ∈ R is encoded by a collection of points in R2 representing the centers of
the disks. Unless otherwise stated, when we refer to a rectangle we mean an axis-aligned
closed rectangle in R2. As is typically done for intersection graphs of rectangles, we assume
that the vertices of the rectangles are on an integer grid G and each rectangle is encoded by
the coordinates of its vertices. Given an intersection graph G of a family R of rectangles, a
grid representation of G is a pair (G, R) as above.

SoCG 2023



34:6 PTASes for Independent Packing Problems on Fractionally tree-α-Fragile Graphs

VPG and EPG graphs. Given a rectangular grid G, its horizontal lines are referred to as
rows and its vertical lines as columns. For a VPG (EPG) graph G, the pair R = (G, P) is a
VPG representation (EPG representation) of G. More generally, a grid representation of a
graph G is a triple R = (G, P, x) where x ∈ {e, v}, such that (G, P) is an EPG representation
of G if x = e, and (G, P) is a VPG representation of G if x = v. Note that, irrespective
of whether x = e (that is, G is an EPG graph) or x = v (that is, G is a VPG graph), if
two vertices u, v ∈ V (G) are adjacent in G then Pu and Pv share at least one grid-point. A
bend-point of a path P ∈ P is a grid-point corresponding to a bend of P and a segment of P

is either a vertical or horizontal line segment in the polygonal curve constituting P . Paths
in P are encoded as follows. For each P ∈ P, we have one sequence s(P ) of points in R2:
s(P ) = (x1, y1), (x2, y2), . . . , (xℓP

, yℓP
) consists of the endpoints (x1, y1) and (xℓP

, yℓP
) of P

and all the bend-points of P in their order of appearance when traversing P from (x1, y1) to
(xℓP

, yℓP
). If each path in P has a number of bends polynomial in |V (G)|, then the size of this

data structure is polynomial in |V (G)|. Given s(P ), we can easily determine the horizontal
part h(P ) of the path P . Note that our results for VPG and EPG graphs (Theorems 11
and 26), although stated for constant number of bends, still hold for polynomial (in |V (G)|)
number of bends, with a worse polynomial running time.

PTAS. A PTAS for a maximization problem is an algorithm which takes an instance I of
the problem and a parameter ε > 0 and produces a solution within a factor 1 − ε of the
optimal in time nO(f(1/ε)). A PTAS with running time f(1/ε) · nO(1) is called an efficient
PTAS (EPTAS for short).

3 Layered and local tree-independence number

The key definitions of this section are those of tree-independence number and layering, which
we now recall. A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )), where T is
a tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the
following conditions are satisfied:
(T1) Every vertex of G belongs to at least one bag;
(T2) For every uv ∈ E(G), there exists a bag containing both u and v;
(T3) For every u ∈ V (G), the subgraph Tu of T induced by {t ∈ V (T ) : u ∈ Xt} is connected.
The width of T = (T, {Xt}t∈V (T )) is the maximum value of |Xt| − 1 over all t ∈ V (T ). The
treewidth of a graph G, denoted tw(G), is the minimum width of a tree decomposition of
G. The independence number of T , denoted α(T ), is the quantity maxt∈V (T ) α(G[Xt]). The
tree-independence number of a graph G, denoted tree-α(G), is the minimum independence
number of a tree decomposition of G. Clearly, tree-α(G) ≤ tw(G) + 1, for any G. On the
other hand, tree-independence number is more powerful than treewidth, as there exist classes
with bounded tree-independence number and unbounded treewidth (for example, chordal
graphs have tree-independence number 1 [15]).

A layering of a graph G is a partition (V0, V1, . . . , Vt) of V (G) such that, for every edge
vw ∈ E(G), if v ∈ Vi and w ∈ Vj , then |i − j| ≤ 1. Each set Vi is a layer. The layered
width of a tree decomposition T = (T, {Xt}t∈V (T )) of a graph G is the minimum integer ℓ

such that, for some layering (V0, V1, . . .) of G, and for each bag Xt and layer Vi, we have
|Xt ∩ Vi| ≤ ℓ. The layered treewidth of a graph G is the minimum layered width of a tree
decomposition of G. Layerings with one layer show that the layered treewidth of G is at most
tw(G) + 1. We now introduce the analogue of layered treewidth for the width parameter
tree-independence number.
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▶ Definition 3. The layered independence number of a tree decomposition T = (T, {Xt}t∈V (T ))
of a graph G is the minimum integer ℓ such that, for some layering (V0, V1, . . .) of G, and for
each bag Xt and layer Vi, we have α(G[Xt ∩ Vi]) ≤ ℓ. The layered tree-independence number
of a graph G is the minimum layered independence number of a tree decomposition of G.

Layerings with one layer show that the layered tree-independence number of G is at most
tree-α(G). Moreover, the layered tree-independence number of a graph is clearly at most its
layered treewidth. The proof of [21, Lemma 10] shows, mutatis mutandis, that graphs of
bounded layered tree-independence number have O(

√
n) tree-independence number:

▶ Lemma 4. Every n-vertex graph with layered tree-independence number k has tree-
independence number at most 2

√
kn.

Given a width parameter p, a graph class G has bounded local p if there is a function
f : N → N such that for every integer r ∈ N, graph G ∈ G, and vertex v ∈ V (G), the subgraph
G[Nr[v]] has p-width at most f(r). In [21], it is shown that if every graph in a class G has
layered treewidth at most ℓ, then G has bounded local treewidth with f(r) = ℓ(2r + 1) − 1.

▶ Lemma 5 (⋆). If every graph in a class G has layered tree-independence number at most ℓ,
then G has bounded local tree-independence number with f(r) = ℓ(2r + 1).

▶ Corollary 6 (⋆). The layered tree-independence number of Kn,n is at least n/5.

Figure 1 Examples showing that VPG/EPG graphs and intersection graphs of rectangles have
unbounded layered tree-independence number: VPG/EPG representation (left) and representation
by intersection of rectangles (right) of K4,4.

▶ Theorem 7 (⋆). The following are equivalent for a minor-closed class G:
1. Some apex3 graph is not in G;
2. G has bounded local tree-independence number;
3. G has linear local tree-independence number (i.e., f(r) is linear in r);
4. G has bounded layered tree-independence number.

For p ∈ N, the p-th power of a graph G is the graph Gp with vertex set V (Gp) = V (G),
where uv ∈ E(Gp) if and only if u and v are at distance at most p in G. Bonomo-Braberman
and Gonzalez [9] showed that fixed powers of bounded treewidth and bounded degree graphs
are of bounded treewidth: For any graph G and p ≥ 2, tw(Gp) ≤ (tw(G)+1)(∆(G)+1)⌈ p

2 ⌉−1.
It follows from [23] that powers of graphs of bounded layered treewidth and bounded maximum
degree have bounded layered treewidth. The upper bound therein was later improved by
Dujmović et al. [22], who showed that if G has layered treewidth k, then Gp has layered
treewidth less than 2pk∆(G)⌊ p

2 ⌋. Using a result from [45], we show that odd powers of
bounded layered tree-independence number graphs have bounded layered tree-independence
number and that this does not extend to even powers.

3 An apex graph is a graph that can be made planar by deleting a single vertex.

SoCG 2023



34:8 PTASes for Independent Packing Problems on Fractionally tree-α-Fragile Graphs

▶ Theorem 8 (⋆). Let G be a graph and let d be a positive integer. Given a tree decomposition
T = (T, {Xt}t∈V (T )) of G and a layering (V1, . . . , Vm) of G such that, for each bag Xt and
layer Vi, α(G[Xt ∩ Vi]) ≤ k, it is possible to compute in O(|V (T )| · (|V (G)| + |E(G)|)) time a
tree decomposition T ′ = (T, {X ′

t}t∈V (T )) of G1+2d and a layering (V ′
1 , . . . , V ′

⌈ m
1+2d ⌉) of G1+2d

such that, for each bag X ′
t and layer V ′

i , α(G1+2d[X ′
t ∩ V ′

i ]) ≤ (1 + 4d)k. In particular, if G

has layered tree-independence number k, then G1+2d has layered tree-independence number
at most (1 + 4d)k.

▶ Lemma 9 (⋆). Fix an even k ∈ N. There exist graphs G with layered tree-independence
number 1 and such that the layered tree-independence number of Gk is arbitrarily large.

3.1 Intersection graphs with bounded layered tree-independence number
▶ Theorem 10 (⋆). Let G be the intersection graph of a family D of n unit disks. It is
possible to compute, in O(n) time, a tree decomposition T = (T, {Xt}t∈V (T )}) and a layering
(V1, V2, . . .) of G such that |V (T )| = O(n) and, for each bag Xt and layer Vi, α(G[Xt∩Vi]) ≤ 8.
In particular, G has layered tree-independence number at most 8.

▶ Theorem 11 (⋆). Let G be a graph on n vertices together with a grid representation
R = (G, P, x) such that each path in P has horizontal part of length at most ℓ − 1, for some
fixed ℓ ≥ 1, and number of bends constant. It is possible to compute, in O(n2) time, a tree
decomposition T = (T, {Xt}t∈V (T )) and a layering (V1, V2 . . .) of G such that |V (T )| = O(n2)
and, for each bag Xt and layer Vi, α(G[Xt ∩ Vi]) ≤ 4ℓ − 1. In particular, G has layered
tree-independence number at most 4ℓ − 1.

4 Fractional tree-α-fragility

Let p be a width parameter in {tw, tree-α}. Fractional tw-fragility was first defined in [24].
We provide here an equivalent definition from [26], which was explicitly extended to the case
p = tree-α in [25].

▶ Definition 12. For β ≤ 1, a β-general cover of a graph G is a multiset C of subsets of
V (G) such that each vertex belongs to at least β|C| elements of the cover. The p-width of the
cover is maxC∈C p(G[C]).

For a parameter p, a graph class G is fractionally p-fragile if there exists a function
f : N → N such that, for every r ∈ N, every G ∈ G has a (1 − 1/r)-general cover with p-width
at most f(r).

A fractionally p-fragile class G is efficiently fractionally p-fragile if there exists an algorithm
that, for every r ∈ N and G ∈ G, returns in poly(|V (G)|) time a (1 − 1/r)-general cover C of
G and, for each C ∈ C, a tree decomposition of G[C] of width (if p = tw) or independence
number (if p = tree-α) at most f(r), for some function f : N → N.

Note that classes of bounded tree-independence number are efficiently fractionally tree-α-
fragile thanks to [14]. Hence, the family of efficiently fractionally tree-α-fragile classes
contains the two incomparable families of bounded tree-independence number classes and
efficiently fractionally tw-fragile classes (to see that they are incomparable, consider chordal
graphs and planar graphs). We now identify one more subfamily:

▶ Lemma 13. Let ℓ ∈ N and let G be a graph. For each r ∈ N, given a tree decomposition
T = (T, {Xt}t∈V (T )) of G and a layering (V0, V1, . . .) of G such that, for each bag Xt and
layer Vi, α(G[Xt ∩ Vi]) ≤ ℓ, it is possible to compute in O(|V (G)|) time a (1 − 1/r)-general
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cover C of G and, for each C ∈ C, a tree decomposition of G[C] with independence number
at most ℓ(r − 1). In particular, if every graph in a class G has layered tree-independence
number at most ℓ, then G is fractionally tree-α-fragile with f(r) = ℓ(r − 1).

Proof. Fix r ∈ N. Let T = (T, {Xt}t∈V (T )) and (V0, V1, . . .) be the given tree decomposition
and layering of G, respectively. For each m ∈ {0, . . . , r − 1}, let Cm =

⋃
i̸≡m (mod r) Vi. We

claim that C = {Cm : 0 ≤ m ≤ r −1} is a (1−1/r)-general cover of G with tree-independence
number at most ℓ(r − 1). Observe first that each v ∈ V (G) is not covered by exactly one
element of C and so it belongs to r − 1 = (1 − 1/r)|C| elements of C. Let now C ∈ C.
Each component K of G[C] is contained in at most r − 1 (consecutive) layers and so, since
α(G[Xt ∩ Vi]) ≤ ℓ for each bag Xt and layer Vi, restricting the bags in T to V (K), gives
a tree decomposition of K with independence number at most ℓ(r − 1). We then merge
the tree decompositions of the components of G[C] into a tree decomposition of G[C] with
independence number at most ℓ(r − 1) in linear time. ◀

Note that the same argument of Lemma 13 shows that, if every graph in a class G has
bounded layered treewidth, then G is fractionally tw-fragile. The following result implies
that, if a class is fractionally tree-α-fragile, then it has bounded biclique number.

▶ Theorem 14. For any function f : N → N and integer r > 2, there exists n ∈ N such that
no (1 − 1/r)-general cover of Kn,n has tree-independence number less than f(r). Hence, the
class {Kn,n : n ∈ N} is not fractionally tree-α-fragile.

Proof. Fix arbitrary f : N → N and r > 2. Consider a copy G of Kn,n, with n > f(r)/(1 −
2/r). Let C be a (1 − 1/r)-general cover of G. Then, every vertex of G belongs to at least
(1−1/r)|C| elements of C and so there exists C ∈ C of size at least 2n(1−1/r). Let A and B be
the two bipartition classes of G. Then, |A∩C| ≥ |C|−|B| ≥ 2n(1−1/r)−n = n(1−2/r) > f(r)
and, similarly, |B ∩ C| > f(r). Therefore, G[C] contains Kf(r),f(r) as an induced subgraph
and since tree-α(Kf(r),f(r)) = f(r) [15], tree-α(G[C]) ≥ f(r). ◀

However, the following result shows that small biclique number does not guarantee
fractional tree-α-fragility.

▶ Theorem 15. The class of K2,3-free graphs is not fractionally tree-α-fragile.

Proof. Let Gn be the n-dimensional grid graph of width n, i.e., the graph with vertex set
V (Gn) = [n]n = {(a1, . . . , an) : 1 ≤ a1, . . . , an ≤ n}, where two vertices (a1, . . . , an) and
(b1, . . . , bn) are adjacent if and only if

∑
1≤i≤n |ai − bi| = 1. It is not difficult to see that

Gn is K2,3-free, for each n ∈ N. We show that the class {Gn : n ∈ N} is not fractionally
tree-α-fragile.

Fix arbitrary f : N → N and r > 2. For such a choice, fix n ∈ N such that r−4
2r n + 1 ≥

R(3, f(r)), where R(3, s) denotes the smallest integer m for which every graph on m vertices
either contains a clique of size 3 or an independent set of size s. We now show that every
(1−1/r)-general cover of Gn has tree-independence at least f(r). Let C be a (1−1/r)-general
cover of Gn. Then, every vertex of Gn belongs to at least (1 − 1/r)|C| elements of C and so
there exists C ∈ C containing at least (1 − 1/r)|V (Gn)| = (1 − 1/r)nn vertices of Gn. Fix
such a C and let G be the subgraph of Gn induced by C. We claim that tree-α(G) ≥ f(r).

Observe first that, for each v ∈ V (Gn), n ≤ dGn
(v) ≤ 2n. Hence, 2|E(Gn)| =∑

v∈V (Gn) dGn
(v) ≥ n · nn. Consider now the graph G′ obtained from Gn by deleting

the vertex set C. Clearly, G′ has at most nn/r vertices. Since deleting a vertex from Gn

decreases the number of edges of the resulting graph by at most 2n, we have that |E(G)| ≥
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|E(Gn)| − 2n|V (G′)|, from which
∑

v∈V (G) dG(v) ≥ n · nn − 2 · 2n · nn/r = n · nn(1 − 4/r).
Therefore, the average degree of G is at least n(1 − 4/r) and so tw(G) ≥ r−4

2r n, for example
by [13, Corollary 1]. This implies that every tree decomposition of G has a bag of size at
least r−4

2r n+1 ≥ R(3, f(r)) and, since G is triangle-free, it follows that tree-α(G) ≥ f(r). ◀

4.1 Intersection graphs of fat objects
In this section we show that the class of intersection graphs of fat objects in Rd is efficiently
fractionally tree-α-fragile. Let d ≥ 2 be a fixed integer. A box of size r is an axis-aligned
hypercube in Rd of side length r. The size of an object O in Rd, denoted s(O), is the side
length of its smallest enclosing axis-aligned hypercube.

Chan [11] considered the following definition of fatness: A collection of objects in Rd is
fat if, for any r and size-r box R, we can choose c points in Rd such that every object that
intersects R and has size at least r contains at least one of the chosen points. Chan also
stated that a collection of balls or boxes with bounded aspect ratios are fat (recall that the
aspect ratio of a box is the ratio of its largest side length over its smallest side length). We
slightly generalize this fatness definition as follows.

▶ Definition 16. A collection of objects in Rd is c-fat if, for any r and any size-r closed box
R, for every sub-collection P of pairwise non-intersecting objects which intersect R and are
of size at least r, we can choose c points in Rd such that every object in P contains at least
one of the chosen points.

▶ Remark 17. When working with a c-fat collection of objects, we assume that some reasonable
operations can be done in constant time: determining the center and size of an object, deciding
if two objects intersect and constructing the geometric realization of the collection.

▶ Theorem 18 (⋆). Let O be a c-fat collection of objects in Rd and let G be its intersection
graph. For each r0 > 1, let f(r0) = 2

⌈
1

1−
(

1− 1
r0

) 1
d

⌉
. Then, we can compute in linear time a

(1 − 1/r0)-general cover C of G of size at most (f(r0)/2 − 1)d. Moreover, for each C ∈ C,
we can compute in linear time a tree decomposition T = (T, {Xt}t∈V (T )) of G[C], with
|V (T )| ≤ |V (G)| + 1, such that α(T ) ≤ cf(r0)2d.

▶ Corollary 19 (⋆). There exist fractionally tree-α-fragile classes of unbounded local tree-
independence number.

5 PTASes

Let us begin by defining Max Weight Independent Packing. Given a graph G and a
finite family H = {Hj}j∈J of connected non-null subgraphs of G, an independent H-packing
in G is a subfamily H′ = {Hi}i∈I of subgraphs from H (that is, I ⊆ J) that are at pairwise
distance at least 1, that is, they are vertex-disjoint and there is no edge between any two
of them. If the subgraphs in H are equipped with a weight function w : J → Q+ assigning
weight wj to each subgraph Hj , the weight of an independent H-packing H′ = {Hi}i∈I in G

is
∑

i∈I wi. Given a graph G, a finite family H = {Hj}j∈J of connected non-null subgraphs
of G, and a weight function w : J → Q+ on the subgraphs in H, the problem Max Weight
Independent Packing asks to find an independent H-packing in G of maximum weight.
In the special case when F is a fixed finite family of connected non-null graphs and H is the
set of all subgraphs of G isomorphic to a member of F , the problem is called Max Weight
Independent F-Packing and is a common generalization of several problems, among
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which: Independent F-Packing [10], Max Weight Independent Set (F = {K1}),
Max Weight Induced Matching (F = {K2}), Dissociation Set (F = {K1, K2} and
the weight function assigns to each subgraph Hj the weight |V (Hj)|) [47, 51].

5.1 Packing subgraphs at distance at least 1 in efficiently fractionally
tree-α-fragile classes

Our PTAS relies on the following result.

▶ Theorem 20 (Dallard et al. [15]). Let k and h be two positive integers. Given a graph G and
a finite family H = {Hj}j∈J of connected non-null subgraphs of G such that |V (Hj)| ≤ h for
every j ∈ J , Max Weight Independent Packing can be solved in time O(|V (G)|h(k+1) ·
|V (T )|) if G is given together with a tree decomposition T = (T, {Xt}t∈V (T )) with α(T ) ≤ k.

▶ Theorem 21. Let h ∈ N and let f : N → N be a function. There exists an algorithm that,
given r ∈ N, an n-vertex graph G equipped with a (1 − 1/r)-general cover C = {C1, C2, . . .}
and, for each i, a tree decomposition Ti = (Ti, {Xt}t∈V (Ti)) of G[Ci] with α(Ti) ≤ f(r), a
finite family H = {Hj}j∈J of connected non-null subgraphs of G such that |V (Hj)| ≤ h for
every j ∈ J , and a weight function w : J → Q+ on the subgraphs in H, returns in time
|C| · O(nh(f(r)+1) · t), where t = maxi |V (Ti)|, an independent H-packing in G of weight at
least a factor (1 − h/r) of the optimal.

Proof. For each i ≥ 1, we proceed as follows. Using the algorithm from Theorem 20, we simply
compute a maximum-weight independent H-packing Pi in G[Ci] in time O(nh(f(r)+1) · t).
The total running time is then |C| · O(nh(f(r)+1) · t). For a collection A of subgraphs of
G, each isomorphic to a member of H, and a subset C ⊆ V (G), let w(A) =

∑
A∈A w(A)

and let A ∩ C = {A ∈ A : A ⊆ C}. Observe that, given a subgraph H of G, each vertex
v ∈ V (H) is not contained in at most |C|/r elements of the (1 − 1/r)-general cover C. Hence,
V (H) is contained in at least (1 − |V (H)|/r)|C| elements of C. Let P = {P1, P2, . . .} be an
independent H-packing in G of maximum weight. Then,∑

Ci∈C
w(P ∩ Ci) =

∑
Ci∈C

∑
Pj∈P

w(Pj)1{Pj⊆Ci}

=
∑

Pj∈P
w(Pj)

∑
Ci∈C

1{Pj⊆Ci}

≥
∑

Pj∈P
w(Pj)(1 − |V (Pj)|/r)|C|

≥
∑

Pj∈P
w(Pj)(1 − h/r)|C|

= |C|(1 − h/r)w(P).

By the pigeonhole principle, there exists Ci ∈ C such that w(P ∩ Ci) ≥ (1 − h/r)w(P).
We then return the maximum-weight independent H-packing Pi in G[Ci] computed above.
Since P ∩ Ci is an independent H-packing in G[Ci], we have that w(Pi) ≥ w(P ∩ Ci) ≥
(1 − h/r)w(P). ◀

Theorem 21 immediately implies that Max Weight Independent Packing admits a
PTAS in any efficiently fractionally tree-α-fragile class. A special case is the following.
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▶ Corollary 22 (⋆). There exists an algorithm that, given r ∈ N, a c-fat collection O of n

objects in Rd and its intersection graph G, and a weight function w : V (G) → Q+, returns in
time (f(r)/2 − 1)d · O(n(cf(r)2d+2)), where f(r) = 2

⌈
1

1−
(

1− 1
r

) 1
d

⌉
, an independent set in G of

weight at least a factor (1 − 1/r) of the optimal.

5.2 Packing subgraphs at distance at least d in graphs with bounded
layered tree-independence number

Max Weight Independent Packing has a natural generalization. For a fixed positive
integer d, given a graph G and a finite family H = {Hj}j∈J of connected non-null subgraphs
of G, a distance-d H-packing in G is a subfamily H′ = {Hi}i∈I of subgraphs from H that
are at pairwise distance at least d. If we are also given a weight function w : J → Q+, Max
Weight Distance-d Packing is the problem of finding a distance-d H-packing in G of
maximum weight. The case d = 2 coincides with Max Weight Independent Packing.

▶ Theorem 23 (⋆). Let h, ℓ ∈ N. Let d be an even positive integer. There exists an
algorithm that, given r ∈ N, an n-vertex graph G equipped with a tree decomposition T =
(T, {Xt}t∈V (T )}) and a layering (V1, V2, . . .) of G such that, for each bag Xt and layer Vi,
α(G[Xt ∩ Vi]) ≤ ℓ, a finite family H = {Hj}j∈J of connected non-null subgraphs of G such
that |V (Hj)| ≤ h for every j ∈ J , and a weight function w : J → Q+, returns in time
r · |V (T )| · nO(r) a distance-d H-packing in G within a factor (1 − h/r) of the optimal.

Combining Theorem 23 with Theorem 10, we obtain the following:

▶ Corollary 24. Let d ∈ N be even. Max Weight Distance-d Packing admits a PTAS
for unit disk graphs.

Observe that Theorem 23 cannot be extended to odd values of d, unless P = NP. Indeed,
Eto et al. [31] showed that, for each ε > 0 and fixed odd d ≥ 3, it is NP-hard to approximate
Distance-d Independent Set to within a factor of n1/2−ε for chordal graphs.

Since unit disk graphs have O(
√

n) tree-independence number (Theorem 10 and Lemma 4)
and since Max Weight Distance-d Packing is solvable in time nO(k), where k is the tree-
independence number of the input graph [45], we immediately obtain a subexponential-time
algorithm on unit disk graphs.

▶ Lemma 25. For any fixed even d ∈ N, Max Weight Distance-d Packing can be solved
in 2O(

√
n log n) time on unit disk graphs.

A subexponential-time algorithm for Independent Set on unit disk graphs was first
given in [2] and later extended in [16] to intersection graphs of fat objects.

5.3 Packing independent unit disks, unit-width rectangles and paths
with bounded horizontal part on a grid

The following PTASes are obtained by showing that the tree-independence number of graphs
whose geometric realizations are contained in an axis-aligned rectangle with bounded width
is bounded.

▶ Theorem 26 (⋆). Max Weight Independent Set admits a PTAS when restricted to:
Intersection graphs of a family of n unit disks of common radius c ≥ 1. The running time
is O(c⌈ 2

ε ⌉ · n2⌈ 2
ε ⌉+3).

Intersection graphs of a family of n width-c rectangles together with a grid representation
(G, R). The running time is O(c⌈ 1

ε ⌉ · n⌈ 1
ε ⌉· c

2 +4).
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Graphs on n vertices with a grid representation R = (G, P, x) such that each path in P
has number of bends constant and the horizontal part of each path in P has length at
most c, for some fixed c ∈ N. If x = v, the running time is O(c⌈ 1

ε ⌉ · n⌈ 1
ε ⌉c+4). If x = e,

the running time is O(c⌈ 1
ε ⌉ · n3(⌈ 1

ε ⌉c+1)).
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