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Abstract
The Hilbert metric is a distance function defined for points lying within a convex body. It generalizes
the Cayley-Klein model of hyperbolic geometry to any convex set, and it has numerous applications in
the analysis and processing of convex bodies. In this paper, we study the geometric and combinatorial
properties of the Voronoi diagram of a set of point sites under the Hilbert metric. Given any m-
sided convex polygon Ω in the plane, we present two randomized incremental algorithms and one
deterministic algorithm. The first randomized algorithm and the deterministic algorithm compute
the Voronoi diagram of a set of n point sites. The second randomized algorithm extends this to
compute the Voronoi diagram of the set of n sites, each of which may be a point or a line segment.
Our algorithms all run in expected time O(mn log n). The algorithms use O(mn) storage, which
matches the worst-case combinatorial complexity of the Voronoi diagram in the Hilbert metric.
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1 Introduction

The Hilbert metric was introduced by David Hilbert in 1895 [12]. Given a convex body
Ω in d-dimensional space, it defines a distance function between any pair of points in the
interior of Ω. (Definitions are presented in Section 2.1.) The Hilbert geometry has a number
of natural properties. For example, straight line segments are geodesics. It generalizes the
Cayley-Klein model of hyperbolic geometry (on Euclidean balls) to any convex body. It is
also invariant under projective transformations. Hilbert geometry provides new insights into
classical questions from convexity theory. It also provides new insights into the study of
metric and differential geometries (such as Finsler geometries). An excellent resource on the
Hilbert geometries is the handbook on Hilbert geometry by Papadopoulos and Troyanov [18].

Hilbert geometry is also relevant to the topic of convex approximation. Efficient
approximations of convex bodies have been applied to a wide range of applications,
including approximate nearest neighbor searching both in Euclidean space [6] and more
general metrics [1], optimal construction of ε-kernels [4], solving the closest vector problem
approximately [10,11,14,19], computing approximating polytopes with low combinatorial
complexity [3,5]. These works all share one thing in common – they approximate a convex
body by covering it with elements that behave much like metric balls. These covering
elements go under various names: Macbeath regions, Macbeath ellipsoids, Dikin ellipsoids,
and (2, ε)-covers. While these all behave like metric balls, the question is in what metric
space? Vernicos and Walsh showed that these shapes are, up to a constant scaling factor,
equivalent to Hilbert balls [2, 21].

In spite of its obvious appeals, there has been remarkably little work the design of
algorithms in the Hilbert geometry on convex polygons and polytopes. Two notable exceptions
are the work of Nielsen and Shao, which investigates properties and efficient construction of
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35:2 Voronoi Diagrams in the Hilbert Metric

Hilbert balls in convex polygons [15], and Nielsen and Sun, which investigates clustering in
Hilbert simplex geometry [16].

In this paper, we investigate perhaps the most fundamental computational questions
one might ask about a metric geometry: How to construct the Voronoi diagram of a set of
sites, points and/or line segments, in the plane? Given any convex polygon Ω bounded by m

sides, we present two randomized algorithms and one deterministic algorithm for computing
the Voronoi diagram of an n-element point set in the Hilbert metric induced by Ω. The
first randomized algorithm works for point sites, while the second works for point sites
and segment sites. Both run in O(mn log n) expected time. The deterministic algorithm
works for point sites in O(mn log n) time and uses a divide-and-conquer approach. Due to
space limitations the deterministic algorithm will be presented in the arXiv version of the
paper. All the algorithms use O(mn) space. We show that the worst-case combinatorial
complexity of the Voronoi diagram is Θ(mn), so all the algorithms are worst-case optimal up
to logarithmic factors.

2 Preliminaries

Throughout, let Ω denote a convex body in Rd, that is, a compact, full-dimensional convex
set. Let ∂ Ω and int(Ω) denote its boundary and interior, respectively. Given points p, q ∈ Rd,
let ∥p − q∥ denote the Euclidean distance between these points. Given two distinct points
p, q ∈ Ω, let χ(p, q) denote the chord defined as the intersection of the line passing through p

and q with Ω.

2.1 Funk and Hilbert Metrics
Before defining the Hilbert metric, it will be convenient to define a simpler (asymmetric)
distance function called the Funk weak metric.

▶ Definition 1 (Funk weak metric). Given a convex body Ω in Rd and two distinct points
p, q ∈ int(Ω), let y denote point where a ray shot from p to q intersects ∂ Ω. Define the Funk
weak metric to be

FΩ(p, q) = ln ∥p − y∥
∥q − y∥

,

and define FΩ(p, p) = 0 (see Figure 1(a)).

p
q

y

Ω

(a)

Ω

(b)

x

p
q

y

Figure 1 (a) The Funk weak metric and (b) the Hilbert metric.

Observe that in the limit as q approaches y along the chord χ(p, y) the Funk distance
increases to +∞, and thus, the boundary is infinitely far away from any interior point of Ω.
The Funk weak metric is not symmetric, but it satisfies triangle inequality. Symmetrizing
this yields a true metric, called the Hilbert metric [12].
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▶ Definition 2 (Hilbert metric). Given a convex body Ω in Rd and two distinct points
p, q ∈ int(Ω), let x and y denote endpoints of the chord χ(p, q), so that the points are in the
order ⟨x, p, q, y⟩. Define the Hilbert metric to be

dΩ(p, q) = FΩ(p, q) + FΩ(q, p)
2 = 1

2 ln ∥p − y∥∥q − x∥
∥q − y∥∥p − x∥

,

and define dΩ(p, p) = 0 (see Figure 1(b)).

Hilbert showed that line segments are geodesics, and if q lies on the line segment between
p and r, then dΩ(p, q) + dΩ(q, r) = dΩ(p, r). Note however that generally there may be
multiple shortest paths between two points, and hence geodesics need not be line segments
(see, e.g., [7]). As in the Funk weak metric, the boundary of Ω is infinitely far away from any
interior point. Observe that the quantity in the ln term in the definition is the cross ratio of
(p, q; y, x). It follows that the Hilbert metric is invariant under projective transformations.
For further information, see the first chapters of the handbook on Hilbert geometry by
Papadopoulos and Troyanov [18].

3 Hilbert Metric Balls

In this section we consider the properties of metric balls in the Hilbert metric. Given a
convex body Ω in Rd, p ∈ int(Ω), and r ≥ 0, let us denote the Hilbert ball of radius r centered
at p by

BΩ(p, r) = {q ∈ Ω : dΩ(q, p) ≤ r}.

We can extend the notion of distance to any nonempty set P in the natural way by taking
the minimum distance to the set, that is, dΩ(q, P ) = inf{dΩ(q, p) : p ∈ P}. This allows us
to talk about the Hilbert ball of other shapes, such as line segments. We will consider balls
generated by both points and line segments.

3.1 Hilbert Balls of Points
Nielsen and Shao [15] provided a characterization of Hilbert balls when Ω is an m-sided
convex polygon in R2, showing that the ball is a convex polygon bounded by at most 2m

sides. We generalize their result to arbitrary convex polytopes in Rd. This provides an
alternative (and more elementary) proof that Hilbert balls are convex (also proved in [17,20]).

▶ Lemma 3. Given any convex polygon Ω in R2 bounded by m sides, p ∈ int(Ω), and r ≥ 0,
the ball BΩ(p, r) is a convex polygon bounded by at most 2m sides. It can be constructed in
O(m) time.

Proof. For now, let us take Ω to be any convex body (not necessarily a polytope) in R2. Let
S1 denote the unit sphere, that is the set of all unit vectors in R2. For each u ∈ S1, consider
the ray emanating from p in direction u, and define qr(u) ∈ Ω to be the (unique) point along
this ray whose Hilbert distance from p is r. Clearly, the boundary of BΩ(p, r) is just the set
of points qr(u) over all u ∈ S1.

For any u ∈ S1, let h(u) denote any support line of Ω at the point where the ray
emanating from p in the direction u intersects the boundary of Ω (see Figure 2(a)). Define
h(−u) analogously for the ray emanating from p in the direction −u. Let g(u) (= g(−u))
denote the point where h(u) and h(−u) intersect. (Through an infinitesimal perturbation of
Ω, we may assume that h(u) and h(−u) are not parallel.) Let br(u) denote the ray originating
at g(u) and passing through qr(u), and define br(−u) analogously for qr(−u).

SoCG 2023
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Figure 2 The Hilbert ball of a point p.

Let W (u) denote the convex wedge whose apex is at g(u) and is bounded by h(u) and
h(−u) (see Figure 2(b)). It follows from basic properties of projective geometry that every
line passing through p on this plane is cut by h(u), h(−u), br(u), and p into four points that
share the same cross ratio. This implies that every point on br(u) is at Hilbert distance
r from p with respect to W (u). The same applies symmetrically to br(−u), and therefore
the sub-wedge of W (u) bounded by br(u) and br(−u) is just the Hilbert ball of radius r

centered at p for W (u). (This was observed by Nielsen and Shao in their analysis of the
two-dimensional case.) Let us call this sub-wedge Br(u) (shaded in yellow in Fig. 2(b)).

Note that p ∈ Ω ⊆ Br(u), and therefore Hilbert distances from p in Br(u) are at least as
large as they are in Ω. Therefore, for all u ∈ S1, BΩ(p, r) ⊆ Br(u), and hence

BΩ(p, r) ⊆
⋂

u∈S1
Br(u).

On the other hand, by definition of Br(u), we know that Br(u) and BΩ(p, r) both cover the
exactly the same portion of the chord parallel to u passing through p. Since these chords
cover all the boundary points of BΩ(p, r), we have

BΩ(p, r) =
⋂

u∈S1
Br(u).

Clearly, Br(u) is the intersection of a (possibly infinite) set of convex wedges, and so it is
also convex.

Suppose now that Ω is an m-sided convex polygon. We say that two sides f+ and f−

form a complementary pair if there exists u ∈ S1 such that the rays emanating from p in
the directions u and −u hit f+ and f−, respectively (see Figure 2(c)). We can partition
the elements of S1 into equivalence classes according to the associated complementary pair.
All the unit vectors u from any one equivalence class share the same support lines h(u)
and h(−u), and therefore all of them contribute the same wedge Br(u) to BΩ(p, r). By
considering the chords χ(v, p) for each each of the m vertices of Ω, it follows directly that
the number of complementary pairs is at most m. These chords partition Ω into at most m

double wedges about p, each of which contributes two edges to the final ball, for a total of
2m sides.

The final Hilbert ball BΩ(p, r) can be constructed in O(m) time by observing that the
sorted sequence of double wedges about p can be generated in linear time and then generating
the two line segments bounding Br(u) within each double wedge (assuming a standard
representation of Ω as a cyclic sequence of vertices). ◀
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This result can be readily generalized to the higher dimensional case, but the worst-case
number of bounding facets is quadratic in the number of facets. (Due to space limitations,
the proof appears in the arXiv of the version of the paper.)

▶ Lemma 4. Given any convex polytope Ω in Rd bounded by m facets, p ∈ int(Ω), and r ≥ 0,
BΩ(p, r) is a convex polytope bounded by O(m2) facets.

Given the characterization on Hilbert ball in Ω ∈ R2, a natural question arises, how can
we define Hilbert balls for points at infinity, that is, on ∂ Ω? Let q be a point in Ω, we define
the Hilbert ball at p ∈ ∂ Ω whose boundary passes through q to be limit of any sequence of
Hilbert balls passing through q whose centers approach p. We show this limit is unique and
yields a convex polygon with at most m sides.

▶ Lemma 5. Given any convex polygon Ω in R2 bounded by m sides, p ∈ ∂ Ω, q ∈ int(Ω),
there exists a unique ball, B, centered at p containing q on its boundary which is a convex
polygon with at most m sides.

Proof. Let us begin by considering an arbitrary sequence of Hilbert balls {Bn}n∈N centered
at points pn such that {pn}n∈N converges to a point p on a side e of Ω (see Fig. 3(a)). Since
our sequences converges to p there must be some n0 ∈ N such that ∀n ≥ n0 in the sequence
the wedges that contributes the boundary sides to Bn, n ≥ n0 all share the side e except
the one made by the spokes through the vertices of e and p. Call this other wedge W with
sides f+ and f−. It can be see that as {pn}n≥n0 approaches p, the measure of the region
contributed by the wedge W vanishes to 0. Likewise, for any wedge W ′ between some e′ and
e, the portion of the boundary contributed between pn and e vanishes in the limit. Hence we
need only look at the boundaries contributed by the wedges between e and other sides of Ω.

f+

f−

q q

(a) (b)

e′′

epn p

Figure 3 The Hilbert ball of a point p on ∂ Ω through a point q.

To construct this boundary let q lie on the wedge between e and e′′ from the perspective
of pn. By tracing the line through q to the apex of the wedge we are able to determine the
boundary of an arbitrary pn through q and a point on the boundaries of the neighboring
wedges, from here we can walk along the wedges using the same process to complete the
boundary. As pn approaches p we can see that this converges to the unique polygonal
boundary made by the same procedure applied to p. Since each wedge contributes one side
to the boundary and there are m − 1, paired with the edge e this gives the ball centered at p

has at most m sides. ◀

3.2 Hilbert Balls of Lines and Line Segments
In this section we will describe the ball of radius r about an arbitrary line segment in Ω. Let
us first consider the case of line ℓ that intersects Ω. Let BΩ(ℓ, r) denote the set of points
of Ω that lie within Hilbert distance r of ℓ. We will consider just the 2-dimensional case,
but the general case in Rd can be generated by considering the union of 2-dimensional slices
generated by planes passing through ℓ. Given any point q in the interior of Ω, the following
lemma characterizes the point of ℓ that is closest to q.

SoCG 2023
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▶ Lemma 6. Given any convex body Ω in R2 in general position and a line ℓ that intersects
the interior of Ω, for any q ∈ int(Ω) that is not on ℓ, its closest point on ℓ is uniquely
determined to be the point p ∈ ℓ such that there exist support lines from each of the endpoints
of the chord χ(q, p) that intersect at a point lying on ℓ (see Fig. 4(a)).

Proof. We begin by showing that, assuming general position, for any point q ∈ int(Ω), there
exists a unique point p satisfying the desired properties. We first consider the simpler case
where Ω is strictly convex, and we will generalize later. Let us also assume for the sake of
illustration that ℓ is horizontal. Define t0 and t1 to be the leftmost and rightmost points of
intersection of ℓ with Ω, respectively (see Fig. 4(b)).

(a) (b) (c)

q

t p t0 t1t
ℓ

h+(t)

h−(t)

t

q

Ω

χ(p, q) h+(t)

h−(t)

W (t)

Figure 4 The closest point to q on line ℓ.

Consider a point t that moves continuously along ℓ \ Ω, which starts at t0, moves to the
left until reaching x = −∞, then wraps around to x = +∞, and finally moves to t1. At
each such point t, let h+(t) and h−(t) denote the two support lines of Ω that pass through
t above and below ℓ, respectively. Since Ω is strictly convex, each pair of supporting lines
defines a unique chord by joining the points where these support lines intersection ∂ Ω. It is
a straightforward consequence of convexity that points where these support lines intersect
∂ Ω move continuously and monotonically along both sides of the boundary of Ω from t0 to
t1. Thus, every point of Ω lies on exactly one of these chords. Given point q ∈ int(Ω), the
chord passing through q satisfies the conditions of the lemma. (Note that if Ω has vertices,
multiple points t may generate the same chord. So even though the chord is unique, the
associated supporting lines need not be.)

We can generalize to the case where Ω is not strictly convex. Suppose, for example, that
it is an m-sided convex polygon. We may assume through an infinitesimal perturbation of ℓ

that the linear extensions of any two edges of Ω do not intersect on ℓ. If we extend each edge
of Ω until it intersects ℓ, we have m distinct points on ℓ \ Ω. It is no longer true that each
point t generates a unique chord, but each point along the extended edge generates a chord
in conjunction with the supporting vertex on the opposite side ℓ (see Fig. 4(c)). It follows
from monotonicity that for any q ∈ int(Ω), exactly one of these chords passes through q.

Because the endpoints of each of these chords lies on opposite sides of ℓ, each chord
intersects ℓ. We assert that the point p where this chord intersects ℓ is the unique closest
point to q. To see why, consider the wedge W (t) bounded by h+(t) and h−(t). Because the
three lines ℓ, h+(t), and h−(t) are coincident at t, every line passing through q cuts these
lines so that the cutting points have the same cross ratios. It follows that every point on
ℓ is equidistant to q with respect to the Hilbert distance defined by W (t). But (assuming
general position) Ω intersects each such line through q along a strictly smaller subsegment,
and hence the Hilbert distance between q and any point on ℓ other than p is strictly larger
than dΩ(q, p). Therefore, p is the unique closest point to q on ℓ. ◀



A. H. Gezalyan and D. M. Mount 35:7

▶ Lemma 7. Given any convex polygon Ω in R2 bounded by m sides, any line ℓ that intersects
the interior of Ω, and r ≥ 0, the Hilbert ball BΩ(ℓ, r) is a convex polygon bounded by at most
2m sides. Furthermore, this ball can be constructed in O(m) time.

Proof. Our proof is constructive. As in Lemma 6, let us assume that ℓ is horizontal. Consider
the m points where the linear extensions of the edges of Ω intersect ℓ. We assume by general
position that these points are distinct. As mentioned in the earlier proof, each of these points
t generates two support lines h+(t) and h−(t) lying above and below ℓ, respectively. It also
generates a continuous family of chords, by joining each point on the corresponding side e(t)
of Ω to the vertex of Ω through which the other support line passes (see Fig. 5(a) and (b)).

(a) (b) (c)

t

h+(t)

h−(t)

ℓ ℓ ℓ

b+r (t)

b−r (t)

W (t)

q

e(t)

Figure 5 The Hilbert ball of a line ℓ.

Let W (t) denote the double wedge bounded by h+(t) and h−(t). Given the radius r,
we can draw a ray b+

r (t) emanating from t and passing above ℓ so that for every point q

on b+
r (t), its Hilbert distance from ℓ with respect to W (t) is r. As shown in Lemma 6, if q

also lies on one of the chords generated by edge e(t), then this is also true with respect to
the Hilbert distance defined by Ω. Therefore, such a point q lies on the upper boundary of
BΩ(ℓ, r) (see Fig. 5(b)). Analogously, we can find the ray b−

r (t), which generates the lower
boundary of of BΩ(ℓ, r) for the chords generated by e(t).

All that remains to complete the entire ball is to repeat this process for each of the m

points t where the extensions of the sides of Ω intersect ℓ. The ball BΩ(ℓ, r) is clearly a
simple polygon bounded by at most 2m sides. Convexity follows by observing that, due
to the monotonicity of the points t along the line ℓ, the slopes of its sides along the upper
boundary of the ball decrease monotonically and the slopes of sides along the lower boundary
of the ball increase monotonically. ◀

Given two points a, b ∈ Ω, the Hilbert ball of a line segment ab can be formed by first
constructing the Hilbert ball for the line ℓ that passes through these points (see Fig. 6(a)),
then cutting this ball through the chords of the line-ball construction passing through points
a and b (see Fig. 6(b)), and finally filling in the missing ends with the portions of the Hilbert
balls centered at the points a and b (see Fig. 6(c)).

▶ Lemma 8. Given any convex polygon Ω in R2 bounded by m sides, any line segment ab

for a, b ∈ Ω, and r ≥ 0, the Hilbert ball BΩ(ab, r) is a convex polygon bounded by at most 4m

sides. Furthermore, this ball can be constructed in O(m) time.

4 Characterizing Voronoi Diagrams in the Hilbert Metric

Using our understanding of Hilbert balls we can characterize the Voronoi diagram of a set of
point sites in the Hilbert metric. Throughout, let Ω denote a convex polygon in R2, and
unless otherwise stated, distances will be in the Hilbert metric induced by Ω, which we

SoCG 2023
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(a) (b) (c)

ℓ ℓ baba ba

Figure 6 Three-step process for building the Hilbert ball of a line segment ab.

denote by dΩ(·, ·) or simply d(·, ·), when Ω is clear. Let S denote a set of n points lying
within the interior of Ω, which we call sites. For p ∈ S, define its Voronoi cell to be

V (p) = VS(p) =
{

q ∈ Ω : d(q, p) ≤ d(q, p′), ∀p′ ∈ S \ {p}
}

.

Although points on the boundary of Ω are infinitely far from points in the interior of Ω, we
can compare the relative distances between a fixed boundary point and two interior points
by considering the limit as an interior point approaches this boundary point. The Voronoi
diagram of S in the Hilbert metric induced by Ω, denoted VorΩ(S), is the cell complex of
Ω induced by the Voronoi cells V (p) for all p ∈ S. We assume that the points of S are in
general position, and in particular, the line passing through any pair of sites of S and the
lines extending any two edges of Ω are not coincident at a common point (including all three
being parallel). If this assumption does not hold, the bisectors separating Voronoi cells can
widen into 2-dimensional regions.

Recall that a set R ⊆ Rd is a star (or is star-shaped) with respect to a point p ∈ R if for
each q ∈ R, the segment pq lies within R. We next show that Hilbert Voronoi cells are stars.

▶ Lemma 9. Voronoi cells in the Hilbert Metric are stars with respect to their defining sites.

Proof. If this were not the case, there would exist a site p and points x, y ∈ Ω such that x ∈
V (p), y /∈ V (p), and y lies on the line segment px. By collinearity, d(p, x) = d(p, y) + d(x, y).
Letting q be the closest site to y, we have d(q, y) < d(p, y) and d(p, x) ≤ d(q, x). Combining
these we have d(q, x) + d(p, y) > d(q, y) + d(p, x), or equivalently d(q, x) > d(q, y) + d(x, y).
But this violates the triangle inequality, yielding a contradiction. ◀

4.1 Bisectors in the Hilbert Metric
Given two sites p, p′ ∈ int(Ω), we define their Hilbert bisector, denoted the (p, p′)-bisector,
to be {z ∈ Ω : dΩ(z, p) = dΩ(z, p′)}. We will explore the conditions for a point z to lie
on the bisector. Let x and y denote the endpoints of the chord χ(z, p), and define x′ and
y′ analogously for χ(z, p′). Label these points in the order ⟨x, z, p, y⟩ and ⟨x′, z, p′, y′⟩ (see
Figure 7(a)). Finally, let ℓx, ℓp, and ℓy denote the lines passing through the line segments
xx′, pp′ and yy′, respectively. If these three lines are coincident on some point q then by
basic properties of projective geometry, the cross ratios (z, p; y, x) and (z, p′; y′, x′) are equal.
It follows that dΩ(z, p) = dΩ(z, p′), and hence z is on the bisector. If not, then the cross
ratios are different and the Hilbert distances are different. Observe that as z approaches the
boundary of Ω (on the same side of ℓp as ℓx), the points z, x, and x′ converge on a common
point on ∂ Ω, and ℓx approaches a support line for Ω at this point (see Figure 7(b)). Thus,
we obtain the following characterization of bisector points.
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x′

q
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p′
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Figure 7 Conditions for a point z to lie on the Hilbert bisector between sites p and p′.

▶ Lemma 10. Given a convex body Ω in R2, sites p, p′ ∈ int(Ω) and any other point
z ∈ int(Ω), z lies on the (p, p′)-bisector if any only if lines ℓx, ℓp, and ℓy (defined above) are
coincident. Further, a point x ∈ ∂ Ω is on the Hilbert bisector if the coincidence holds when
ℓx is any support line at x.

When Ω is an m-sided convex polygon in R2, we can provide a more precise characterization
of the bisectors. Given two sites p, p′ ∈ int(Ω), we will show below that the (p, p′)-bisector is a
piecewise conic (see Lemma 14). Assuming this for now, we can characterize the breakpoints
in this curve. Letting {v1, . . . , vm} denote the vertices of Ω, the 2m chords χ(vi, p) subdivide
Ω into 2m triangular regions, which we call p’s sectors with respect to Ω (see Figure 8(a)).

Ω Ω

(a) (b)

p p
p′

Figure 8 (a) The sectors of p with respect to Ω and (b) the Hilbert bisector (in red) between p

and p′.

4.2 Bisector Segments and Combinatorial Complexity
For each point z on the (p, p′)-bisector, let e and f denote the edges where the endpoints
of chord χ(z, p) intersect ∂ Ω, and let e′ and f ′ denote the corresponding edges of χ(z, p′).
Observe that the pair (e, f) is uniquely determined by the sector of p containing z, and the
pair (e′, f ′) is similarly determined by the sector of p′ containing z. Therefore, the points
of the (p, p′)-bisector can be grouped into a discrete set of equivalence classes based on
their sector memberships with respect to p and p′ (see Figure 8(b)). We refer to these as
bisector segments. Observe that by the star-shaped nature of Voronoi cells, as we travel
along the bisector, we encounter the (up to 2m) sectors of p in cyclic order (say clockwise
as in the figure), and we visit (up to 2m) the sectors of p′ in the opposite cyclic order
(counterclockwise). We will see below that, each bisector segment can be described by a
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35:10 Voronoi Diagrams in the Hilbert Metric

simple parametric function involving p, p′, and the four edges defining the equivalence class.
Star-shapedness implies that the bisector is simply connected. Combining the total number
of sectors involved for each site, we have:

▶ Lemma 11. Given an m-sided convex polygon Ω in R2 and sites p, p′ ∈ int(Ω), the (p, p′)-
bisector is a simply connected piecewise curve consisting of at most 4m bisector segments.

Given a set of n sites S in Ω, the Voronoi diagram consists of a collection of n Voronoi cells.
The intersection of two cells V (p) and V (p′) (if nonempty) is a portion of (p, p′)-bisector,
which we call a Voronoi edge. As shown in the above lemma, each such edge is composed
of at most 4m = O(m) bisector segments. A cell’s boundary may also contain a portion of
the boundary of Ω. The intersection of two Voronoi edges (if nonempty) is a Voronoi vertex.
Because the diagram is a planar graph, we have the following bounds by a straightforward
application of Euler’s formula.

▶ Lemma 12. Given an m-sided convex polygon Ω in R2 and a set of n sites S in Ω,
VorΩ(S) has n Voronoi cells, at most 3n Voronoi edges, and at most 2n Voronoi vertices.
Each Voronoi edge consists of at most 4m bisector segments. Therefore, the entire diagram
has total combinatorial complexity O(mn). The average number of Voronoi edges per cell is
O(1), and the average number of bisector segments per cell is O(m).

The following lemma shows that the bound on the combinatorial complexity is tight in
the worst case.

▶ Lemma 13. For all sufficiently large m and n, there exists a convex polygon Ω′ with m

sides and a set S of n sites within Ω′ such that VorΩ′(S) has combinatorial complexity Ω(mn).
(Here we are using Ω(·) in the asymptotic sense.)

Proof. We start the construction with an axis parallel rectangle R that is slightly taller than
wide, and the set S consists of n points positioned on a short horizontal line segment near
the center of this rectangle (see Figure 9(a)). (This violates our general position assumptions,
but the construction works if we perturb the sides of the rectangle.) Also, create a set of
m − 4 points V = {v1, . . . , vm−4} along the left edge of R. We can adjust the spacing of
points of V and S and the side lengths of R so that there exists a diamond shape (shaded in
orange in the figure) so that for any point q in this region, the chord χ(vi, q) intersects the
boundary of R along its vertical sides. Observe that within the diamond, each consecutive
pair of sites contributes an edge to the Voronoi diagram, which is easily verified to be a
vertical line segment within the diamond.

v1
v2
v3
...

vm−4

p p′

(a) (b)

Ω′

(c)

R

S S

v1
v2
v3
...

vm−4

Figure 9 Proof of Lemma 13.

To form Ω′, we bend the left side of the rectangle out infinitesimally (see Figure 9(b)) so
the points of V become vertices of a convex polygon. The bending does not alter the shape
of the Voronoi edges significantly, except to break each edge up into multiple arcs.
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We assert that each consecutive pair of points p, p′ ∈ S contributes at least m − 4 arcs to
the Voronoi diagram. To see why, observe that there are m − 4 sectors about p and p′, and
vertical line passing between p and p′ intersects the boundaries between these sectors (see
the red curve in Figure 9(c)). Due to the infinitesimal bending of the left side of R, each
crossing produces a new segment on the bisector. Since there are n − 1 consecutive pairs of
sites, the total complexity of VorΩ′(S) is at least (m − 4)(n − 1) = Ω(mn), as desired. ◀

4.3 Bisector Segments Structure
In this section we discuss the properties of bisectors in the Hilbert metric. We consider
cases involving both points, lines, and combinations thereof. In particular, we prove that the
bisectors are piece-wise conics.

First, we will characterize the local structure of a bisector between two point sites a

and b with respect to Ω. Let us hypothesize that a point q ∈ int(Ω) lies on the bisector
between these sites (see Fig. 10(a)). Draw chords aq and bq. Let us make the general-position
assumption that these chords do not intersect vertices of Ω. Consider the two edges of Ω
incident chord aq, and let pa be the point (possibly at infinity) where the linear extensions
of these edges intersect (see Fig. 10(b)). Define pb analogously for the chord bq.

b

a

q

Ω

b

a

pa

pbq

a′
−1

x
1

−1

b′

y

1

b

a

pa

pbq

a′
−1

x

1

−1

b′

y

1

(a) (b) (c)

Figure 10 Segments of a point-point bisector.

If there are only two distinct edges involved (implying that pa = pb), the problem can be
reduced to a simple 1-dimensional case by projection through the point where the extensions
of the two edges meet. Otherwise, there are two wedges with apexes at the points pa and pb

such that Ω is contained within their intersection. The shape resulting from the intersection
of the two wedges may be a convex quadrilateral (as shown in Fig. 10(b)), but if two edges
coincide, we obtain a triangle (see Fig. 10(c)). Also, this shape may be unbounded, which
we treat as wrapping around the projective plane.

Shoot two rays originating at pa passing through a and q, and let a′ and x denote the
respective points these rays hit on the opposite side of the quadrilateral (see Fig. 10(b)).
Define b′ and y analogously for rays originating at pb through b. Let us parameterize points
on these two edges so that −1 and 1 are the edge endpoints, and the points along the edge
appear in the orders ⟨−1, a′, x, 1⟩ and ⟨−1, b′, y, 1⟩, respectively. We can now think of points
{a′, x, b′, y} as reals, where −1 < a′ ≤ x < 1 and −1 < b′ ≤ y < 1. (Due to space limitations,
the proof appears in the arXiv version of the paper.)

▶ Lemma 14. Given a convex polygon Ω and two sites a, b ∈ int(Ω), the bisector between a

and b in the Hilbert metric is a piecewise conic curve.
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Next, let us consider the case where a is a point site and b = b0b1 is a line segment, where
a, b0, b1 ∈ Ω. As before, we wish to characterize the set of points q lying on the Hilbert
bisector between a and b with respect to Ω. Let ℓb denote the linear extension of this line
segment.

Recall from Lemma 6 that the closest point on ℓb is uniquely determined to be the point
bq such that there exist support lines to Ω at the endpoints of the chord χ(q, bq) that intersect
at a point on ℓb (see Fig. 11(a)).

bq

q
Ω a

pa

pbq

a′
−1

x
1

−1

b′

y

1

(a) (b)

pb

b

ℓ

ℓ′
ℓb

bq
b

bq

q

(c)

pb

b
ℓb

pa

aq

ℓa

a

Figure 11 (a) Closest point on b to point q, (b) point-segment bisector, (c) segment-segment
bisector.

Given the point pb, we carry out the same construction as in the point-point bisector
case, where the point pa is defined exactly as before. We centrally project the points a and
q through pa until they hit the far side of the pb-wedge, and symmetrically we centrally
project the segment b and point q through pb until they hit the far side of the pa-wedge (see
Fig. 11(b)). (Note that the entire segment b projects to the single point b′.) The values x

and y, which determine curve containing the bisector, satisfy exactly the same conditions
here as they do in the point-point case.

The segment-segment case is exactly analogous. Again, we find the point pa through
which the supporting lines pass, and obtain the same parameterization through central
projections. The values x and y, which determine curve containing the bisector, satisfy
exactly the same conditions here as they do in the point-point case.

It is interesting that unlike the Euclidean case, at a local level there is no fundamental
difference between Hilbert bisectors in the point-point case and bisectors in the point-line or
line-line cases. They are all conics, which may degenerate to lines in special configurations.

▶ Lemma 15. Given a convex polygon Ω and two sites a, b ∈ int(Ω), either or both of
which may be points or line segments, the bisector between a and b in the Hilbert metric is a
piecewise conic curve.

5 Randomized Incremental Algorithm

In this section we present two randomized incremental algorithms to compute the Hilbert
Voronoi diagram of a set S of n sites. In both cases, the domain is an m-sided convex polygon
Ω. First, we describe the algorithm in the case when S of n point sites. Second, we explain
the changes when the sites are line segments. Both algorithms follow the structure of the
randomized incremental algorithm for abstract Voronoi diagrams by Mehlhorn, Meiser, and
Ó’Dúnlaing [13]. (A discussion on the relation of the Hilbert metric to abstract Voronoi
diagrams can be found in the arXiv version of the paper.)



A. H. Gezalyan and D. M. Mount 35:13

5.1 Point Sites
In this section we consider the construction of a Voronoi diagram for a set S of n point sites.
The algorithm given in [13] starts by computing a bounding enclosure, but our body Ω serves
that role. Let S be our set of sites. Consider an arbitrary iteration of the algorithm, and let
R denote the set of sites already added to the diagram. To facilitate the constructing of our
algorithm we maintain two data structures: Vor(R) the current Voronoi diagram of R as a
cell complex, and G(R) the conflict graph of R with respect to S (defined below).

Vor(R) may be stored in any standard data structure for planar subdivisions, such as a
doubly connected edge list [9]. The vertices of Vor(R) are the Voronoi vertices and the edges
are the bisectors connecting them. To facilitate efficient tracing of bisectors, we augment
each Voronoi cell with spokes, that is, line segments emanating from each site in the diagram
to the segment vertices of the bisectors forming its Voronoi cell (see Fig. 12).

The conflict graph G(R) is defined as follows. Its vertices consist of the edges of Vor(R)
together with the remaining sites S \ R. There is an edge between e ∈ Vor(R) and p ∈ S \ R

if and only if the addition of p would result in edge e either being removed or trimmed.

Ω Ω

p
p′

p p′

(a) (b) (c)

p′

pp
t

Figure 12 Inserting a new site in the randomized algorithm.

The algorithm randomly permutes the sites and inserts them one by one. The first two
sites are inserted by brute force and the conflict graph is initialized based on the single
bisector between these sites. Otherwise, let us assume that we have already inserted some
subset R of sites and are now inserting the next site p ∈ S \ R. We need to (1) trace the
boundary of p’s Voronoi cell in Vor(R ∪ {p}) and (2) update the conflict graph. To trace a
bisector between two sites we use the following method:

Let V (p) denote the Voronoi cell of p after its insertion. We select any edge e that
conflicts with p and we compute any point t on this edge that lies within p’s Voronoi cell. We
proceed to walk along the bisector, continuously maintaining the distances to the associated
sites until reaching a point on the boundary of V (p). Starting at this point, we proceed
to trace the boundary of V (p) in counterclockwise order about p (see Figure 12(b)). This
involves two types of traces:

Bisector Trace: We are tracing the bisector between p and some existing site p′ (see
Figure 12(c)). We consider the sectors of p and p′ containing the current portion
of the (p, p′)-bisector. By applying the parameterization from Lemma 14, we can trace
the bisector until (1) we encounter the boundary of either sector, (2) we encounter the
bisector between p′ and another site, or (3) we encounter the boundary of Ω.
In the first case, we create a new segment vertex here, add spokes to this vertex, erase
the extension of the sector edge (shown as a broken line in Figure 12(c)) and continue
the tracing in the new sector. In the second case, we create a new Voronoi vertex, add
spokes to this vertex from its three defining sites, and continue the trace along the new
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bisector. In the third case, we insert two spokes joining the point where the bisector
encounters the boundary to p and p′, respectively. We then transition to the boundary
trace described next.

Boundary Trace: We are tracing the Voronoi cell of p along the boundary of Ω. We walk
along the boundary of Ω in counterclockwise order, considering each consecutive sector
of the closest site p′, prior to p’s insertion. By applying the parameterization from
Lemma 14, we determine whether the (p, p′)-bisector intersects the boundary of Ω within
the intersection of the current pair of sectors. If so, we identify this point on the ∂ Ω, add
spokes to each of p and p′, and then resume tracing along the (p, p′)-bisector. Otherwise,
we encounter one of the two sector boundaries, and we continue the tracing the next
sector.

Along the way, we erase spokes from the current diagram, and/or introduce new spokes
connected to p. When we return to our starting point, the insertion is completed.

While we are tracing the bisector for the new site, we can simultaneously update the
conflict graph. Whenever we arrive at a new Voronoi vertex in the diagram, we construct
a Hilbert ball at this point whose radius is the distance to the newly added site p (recall
Lemma 3). This includes Voronoi vertices “at infinity”, which arise whenever a bisector
extends all the way to the boundary of Ω. Let p′ and p′′ be the two other sites of R that
share this vertex. All the sites of S \ R in this ball are added as conflict-graph neighbors of
the two new Voronoi edges between p and p′ and p and p′′.

The algorithm given in [13] runs in O(n log n) expected time, under the update assumption
of Clarkson and Shor [8], which states that the time to insert a new site p is proportional
to the number of objects that conflict with regions that conflict with p. In our context, we
need to add an additional factor of O(m). First, this is needed because bisectors are no
longer of constant complexity, but consist of O(m) segments. Our algorithm processes each
new segment in O(1) time. Second, when updating the conflict graph, in order to determine
which points conflict with the newly created edges, we need to construct a Hilbert ball at
each newly created Voronoi vertex, and this takes time O(m). The overall expected running
time is thus larger by a factor of O(m), implying the following.

▶ Theorem 16. Given an m-sided convex polygon Ω in R2 and a set of n point sites S in
Ω, the randomized incremental algorithm computes VorΩ(S) in expected time O(mn log n)
(where the expectation is over all possible insertion orders).

5.2 Segment Sites
In this section, we present a sketch of the modifications necessary to generalize the algorithm
from Section 5.1 to the case of line segments (due to space limitations, a more detailed
account of the changes can be found in the arXiv version of the paper). Since the algorithm
by Mehlhorn, Meiser, and Ó’Dúnlaing [13] is quite general, the approach applies here as well,
but with a few changes.

First, we need to modify the notion of spokes to apply to segment objects. This is done by
joining each bisector segment endpoint to its closest point on the segment (see Section 3.2).
Second, the sector tracing process will be changed, but the complexity of the bisector is
unaffected (see Lemma 15). Finally, the updating of the conflict graph is different, due to
the fact that the circumcircles involved are now defined by combinations of point sets and
segment sites.

Other than these changes, the algorithm and its analysis go through exactly as before.
We suffer the same additional O(m) in the running time due to complexity of Ω.
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▶ Theorem 17. Given an m-sided convex polygon Ω in R2 and a set of n point and line-
segment sites S in Ω, the randomized incremental algorithm computes VorΩ(S) in expected
time O(mn log n) (where the expectation is over all possible insertion orders).
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