
Worst-Case Deterministic Fully-Dynamic
Biconnectivity in Changeable Planar Embeddings
Jacob Holm #

University of Copenhagen, Copenhagen, Denmark

Ivor van der Hoog #

Technical University of Denmark, Lyngby, Denmark

Eva Rotenberg #

Technical University of Denmark, Lyngby, Denmark

Abstract
We study dynamic planar graphs with n vertices, subject to edge deletion, edge contraction, edge
insertion across a face, and the splitting of a vertex in specified corners. We dynamically maintain a
combinatorial embedding of such a planar graph, subject to connectivity and 2-vertex-connectivity
(biconnectivity) queries between pairs of vertices. Whenever a query pair is connected and not
biconnected, we find the first and last cutvertex separating them.

Additionally, we allow local changes to the embedding by flipping the embedding of a subgraph
that is connected by at most two vertices to the rest of the graph.

We support all queries and updates in deterministic, worst-case, O(log2 n) time, using an
O(n)-sized data structure.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases dynamic graphs, planarity, connectivity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.40

Related Version Full Version: https://arxiv.org/abs/2209.14079

Funding Ivor van der Hoog and Eva Rotenberg: Partially supported by Independent Research Fund
Denmark grants 2020-2023 (9131- 00044B) “Dynamic Network Analysis”.
Jacob Holm: Partially supported by the VILLUM Foundation grant 16582, “BARC”.
Ivor van der Hoog: This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement No 899987.

1 Introduction

In dynamic graph algorithms, the task is to efficiently update information about a graph that
undergoes updates from a specified family of potential updates. Simultaneously, we want
to efficiently support questions about properties of the graph or relations between vertices.
Two vertices u and v are 2-vertex connected (i.e. biconnected) in a graph G, whenever
after the removal of any vertex in G (apart from u and v) they are still connected in G.
This work considers dynamically maintaining a combinatorial embedding of a graph that
is planar, subject to biconnectivity queries between vertices. We show how to efficiently
maintain G in O(log2 n) time per update operation using linear space. We additionally
support biconnectivity queries in O(log2 n) time. The competitive parameters for dynamic
algorithms include update time, query time, the class of allowed updates, the adversarial
model, and whether times are worst-case or amortized. We present a deterministic algorithm:
which means that all statements hold in the strictest adversarial model; against adaptive
adversaries. Interestingly, for general graphs, there seems to be a large class of problems for
which the deterministic amortized algorithms grossly outperform the deterministic worst-case
time algorithms: for dynamic connectivity the state-of-the-art worst-case update time is of

© Jacob Holm, Ivor van der Hoog, and Eva Rotenberg;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 40; pp. 40:1–40:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaho@di.ku.dk
https://orcid.org/0000-0001-6997-9251
mailto:idjva@dtu.dk
https://orcid.org/0009-0006-2624-0231
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.SoCG.2023.40
https://arxiv.org/abs/2209.14079
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Planar Biconnectivity

the form O(no(1)) [14], whilst the state-of-the-art amortized update time is Õ(log2 n) [21, 44];
for planarity testing, the best amortized solution has O(log3 n) [26] update time, compared
to O(n2/3) worst-case [12] (in a restricted setting). For biconnectivity in general graphs the
current best worst-case solution has update time O(

√
n) [6], while the best amortized update

time is Õ(log3 n) [21, 43, 27].
In this work, we provide algorithms for updating connectivity information of a

combinatorially embedded planar graph, that is both deterministic, worst-case, and fully-
dynamic.

▶ Theorem 1. We maintain a planar combinatorial embedding in O(log2 n) time subject to:
delete(e): where e is an edge, deleting the edge e,
insert(u, v, f): where u, v are incident to the face f , inserting an edge uv across f ,
find-face(u, v): returns some face f incident to both u and v, if any such face exists.
contract(e): where e is an edge, contract the edge e,
split(v, c1, c2): where c1 and c2 are corners (corresponding to gaps between consecutive
edges) around the vertex v, split v into two vertices v12 and v21 such that the edges of v12
are the edges of v after c1 and before c2, and v21 are the remaining edges of v,
flip(v): for a vertex v: flip the orientation of the connected component containing v.

We may answer the following queries in O(log2 n) time:
connected(u, v), where u and v are vertices, answer whether they are connected,
biconnected(u, v), where u and v are connected, answer whether they are biconnected.
When not biconnected, we may report the separating cutvertex closest to u.
Our update time of O(log2 n) should be seen in the light of the fact that even just

supporting edge-deletion, insertion, and find-face(u, v), currently requires O(log2 n) time [30].
We briefly review the concepts in this paper and the state-of-the-art.

Biconnectivity. For each connected component of a graph, the cutvertices are vertices
whose removal disconnects the component. These cutvertices partition the edges of the graph
into blocks where each block is either a single edge (a bridge or cut-edge), or a biconnected
component. A pair of vertices are biconnected if they are incident to the same biconnected
component, or, equivalently, if there are two vertex-disjoint paths connecting them. This
notion generalises to k-connectivity where k objects of the graph are removed. While k-edge-
connectivity is always an equivalence relation on the vertices, k-vertex-connectivity happens
to be an equivalence relation for the edges only when k ≤ 2.

Dynamic higher connectivity. Dynamic higher connectivity aims to facilitate queries to
k-vertex-connectivity or k-edge-connectivity as the graph undergoes updates. For two-edge
connectivity and biconnectivity in general graphs, there has been a string of work [11,
16, 6, 17, 21, 43, 27], and the current best deterministic results have O(log2 n log log2 n)
amortized update time for 2-edge connectivity [27], and spend an additional amortized
log(n)-factor for biconnectivity [21, 43]. Thus, the current state of the art for deterministic
two-edge connectivity is log log(n)-factors away from the best deterministic connectivity
algorithm [44], while deterministic biconnectivity is log(n)-factors away. See [10, 19, 18, 21,
43, 31, 29, 44, 32, 35, 14] for more work on dynamic connectivity. For k-(edge-)connectivity
with k > 2, only partial results have appeared, including incremental [39, 3, 38, 37, 25]
and decremental [13, 42, 22, 1] results. The strongest lower bound is by Pătraşcu et
al. [40], and implies that the update- and query time cannot both be o(log n) for any of
the mentioned fully dynamic problems on general graphs, and this holds even for planar

J. Holm, I. van der Hoog, and E. Rotenberg 40:3

embedded graphs. For special graph classes, such as planar graphs, graphs of bounded
genus, and minor-free graphs, there has been a bulk of work on connectivity and higher
connectivity, e.g. [9, 20, 13, 15, 5, 33, 34, 23, 22]. For dynamic planar embedded graphs, there
are poly-logarithmic worst-case algorithms for two-edge [20] and two-vertex [16] connectivity,
that assume a fixed planar embedding, allowing only edge-deletions and edge-insertions
across a face. In this paper, we obtain the same O(log2 n) time bound as in [20, 16], but
our graphs are subject to a wider range of dynamic updates, including Whitney-flips, and
edge-contractions.

An open question remains whether higher connectivity can generally be maintained
in polylogarithmic worst-case time for dynamic planar graphs (k-connectivity and k-edge
connectivity, k > 2). Particularly, this is highly motivated already when k = 3: In the quest
for fully-dynamic planarity testing with worst-case polylogarithmic update times, an efficient
algorithm for 3-vertex connectivity would be a major milestone. Namely, a 3-connected
graph has a unique planar embedding (up to reflection). Much of the work on (dynamic)
planarity testing [28, 36, 7, 25, 24] goes via understanding (changes to) the SPQR-tree; a
tree over the 3-connected components and their interrelations. Given this, it is likely that
any efficient worst-case fully-dynamic planarity testing algorithm would rely upon an efficient
worst-case fully-dynamic 3-connectivity data structure. Note here that supporting changes
to the embedding is crucial for this venture, since a deletion-insertion-sequence may require
changes to the embedding, in order to remain planar. This paper presents the first step in
this quest towards worst-case polylogarithmic fully-dynamic planarity testing, as we present
a worst-case polylogarithmic data structure for 2-vertex connectivity subject to the required
embedding-changing operations.

Techniques. Exploiting properties of planar graphs, we use the tree-cotree decomposition: a
partitioning of edges into a spanning tree of the graph and a spanning tree of its dual. Using
tree-cotree decompositions to obtain fast dynamic algorithms is a technique introduced by
Eppstein [4], who obtains algorithms for dynamic graphs that have efficient genus-dependent
running times. Note that the construction in [4] does not facilitate inserting edges in a way
that minimises the resulting genus. Such queries are, however, allowed in the structure by
Holm and Rotenberg [23], which also utilises the tree-cotree decomposition.

On this spanning tree and cotree, we use top-trees to handle local biconnectivity
information. Much of our work concerns carefully choosing which biconnectivity information
is relevant and sufficient to maintain, as top-tree clusters are merged and split. Note that the
ideas for two-edge connectivity introduced by Hershberger et al. in [20], i.e. ideas of using
topology trees on a vertex-split version of the graph to keep track of edge bundles, do not
transfer to the problem at hand, since vertex-splitting changes the biconnectivity structure.

2 Preliminaries

We study a dynamic plane embedded graph G = (V, E), where V has n vertices. We assume
access to G and some combinatorial embedding [4] of G that specifies for every vertex in
G the cyclical ordering of the edges incident to that vertex. Throughout the paper, we
maintain some associated spanning tree TG = (V, E′) over G. We study the combinatorial
embedding subject to the update operations specified in Theorem 1. This is the same setting
and includes the same updates as by Holm and Rotenberg [23].

SoCG 2023

40:4 Planar Biconnectivity

Spanning and co- trees. If G is a connected graph, a spanning tree TG is a tree where its
vertices are V , and the edges of TG are a subset of E such that TG is connected. Given TG,
the cotree T ∆

G has as vertices the faces in G, and as edges of T ∆
G are all edges dual to those

in G \ TG. It is known that the cotree is a spanning tree of the dual graph of G [8].

Induced graph. We adopt the standard notion of (vertex) induced subgraphs: for any
V ′ ⊆ V , G[V ′] is the subgraph created by all edges e ∈ E with both endpoints of e in V ′.
For any G and V ′, we denote by G \ G[V ′] the graph G minus all edges in G[V ′]. Observe
that for (V1, V2) the set G[V1 ∪ V2] is not necessarily equal to G[V1] ∪ G[V2] (Figure 1).

Top trees. Our data structure maintains a specific variant of a top tree τ op
G over the

graph G [2, 41, 23]. This data structure (Figure 2) is a hierarchical decomposition of a
planar, embedded, graph G based on a spanning tree TG of G. Formally, for every connected
subgraph S of TG we define the boundary vertices of S as the vertices incident to an edge in
TG \ S. A cluster is a connected subgraph of TG with at most 2 boundary vertices. A cluster
with one boundary vertex is a point cluster ; otherwise a path cluster. A top tree τ op

G is a
hierarchical decomposition of G (with depth O(log n)) into point and path clusters that is
structured as follows: the leaves of τ op

G are the path and point clusters for each edge (u, v) in
TG (a leaf in τ op

G is a point cluster if and only if the corresponding edge (u, v) is a leaf in TG).
Each inner node ν ∈ τ op

G merges a constant number of child clusters sharing a single vertex
into a new point or path cluster. The vertex set of ν is the union of those corresponding
to its children. We refer to combining a constant number of nodes into a new inner node
as a merge. We refer to its inverse as a split. Furthermore, for planar embedded graphs,
we restrict our attention to embedding-respecting top trees; that is, given for each vertex
a circular ordering of its incident edges, top trees that only allow merges of neighbouring
clusters according to this ordering. In other words, if two clusters ν and µ share a boundary
vertex b, and are mergable according to the usual rules of top trees, we only allow them to
merge if furthermore they contain a pair of neighbouring edges eµ ∈ µ and eν ∈ ν where eµ

is a neighbour of eν around b. Holm and Rotenberg [23] show how to dynamically maintain
τ op

G (and the spanning tree and cotree) with the following property:

▶ Property 1. Let ν ∈ τ op
G be a point cluster with boundary vertex u. The graph G[ν] is a

contiguous segment of the extended Euler tour of TG.

▶ Corollary 1. Let ν ∈ τ op
G be a point cluster with boundary vertex u. The edges of G[ν] that

are incident to u form a connected interval in the clockwise order around u.

Edge division. For ease of exposition, we perform the trick of subdividing edges into paths
of length three. We refer to Go as the original and G as this edge-divided graph. Since Go is
planar, this does not asymptotically increase the number of vertices. We note:
1. Edge subdivision respects biconnectivity (since edge subdivision preserves the cycles in

the graph; it preserves biconnectivity).

(a) (b) (c)

Figure 1 (a) A planar graph G. (b) A set β ⊂ V and γ ⊂ V . We show G[β] and G[γ]. The set
G[β] ∪ G[γ] contains no black edges. (c) We show G \ G[γ].

J. Holm, I. van der Hoog, and E. Rotenberg 40:5

u v
R

E

PFFP

Figure 2 We recursively decompose G based on a spanning tree TG. Square vertices are boundary
vertices. We highlight path clusters. The root node has three children, where one is a path cluster
that exposes {u, v}. The letters indicate the later defined merge type.

2. Any spanning tree of Go can be transformed into a spanning tree of G where all non-tree
edges have end points of degree two: for each non-tree edge in G, include exactly the first
and last edge on its corresponding path in the spanning tree. This property can easily be
maintained by any dynamic tree algorithm.

3. Dynamic operations in Go easily transform to constantly many operations in G.
With this in place, our top tree structure automatically maintains more information about
the endpoints of non-tree edges and their ordering around each endpoint.

Paper notation. We refer to vertices in G with Latin letters. We refer to nodes in the top
tree τ op

G with Greek letters. We refer indistinguishably to nodes ν ∈ τ op
G and their associated

vertex set. Vertices u and v are boundary vertices. For a path cluster ν ∈ τ op
G with boundary

vertices {u, v} we call its spine π(ν) the path in TG that connects u and v. For any path, its
internal vertices exclude the two endpoints. For a point cluster with boundary vertex u, its
spine π(ν) is u. We denote by τ op

G (ν) the subtree rooted at ν.

Slim-path top trees over G. We use a variant of the top tree called a slim-path top tree
by Holm and Rotenberg [23]. This variant of top trees upholds the slim-path invariant: for
any path-cluster ν, all edges (of the spanning tree TG) in the cluster that are incident to a
boundary vertex belong to the spine. In other words: for every path cluster ν ∈ τ op

G , for each
boundary vertex u, there is exactly one edge in the induced subgraph G[ν] that is connected
to u. The root of this top tree is the merge between a path cluster with boundary vertices u

and v, with at most two point clusters λ, µ, with π(λ) = {u} and π(µ) = {v}.1 Holm and
Rotenberg show how to obtain (and dynamically maintain) this top tree with four types of
merges between clusters, illustrated by Figure 3 and 4. Our operations merge:
(Root merge) at most two point clusters and a path cluster to create the root node,
(Point merge) two point clusters µ, ν with π(µ) = π(ν).
(End merge) a point and a path cluster that results in a point cluster, and
(Four-way merge) two path clusters µ, ν and at most two point clusters α, β, where their

common intersection is one central vertex m. If there are two point clusters, they are not
adjacent around m. This merge creates a path cluster.

Holm and Rotenberg [23] dynamically maintain the above data structure with at most
O(log n) merges and splits per graph operation (where each merge or split requires O(log n)
additional operations). Their data structure supports two additional critical operations:
Expose(u, v) selects two vertices u, v of G and ensures that for the unique path cluster

ν of the root node, u and v are the two endpoints of π(ν); (O(log n) splits/merges).

1 In the degenerate case where the graph is a star, we add one dummy edge to G to create a path cluster.

SoCG 2023

40:6 Planar Biconnectivity

Meet(u, v, w) selects three vertices u, v, w of G and returns their meet in TG, defined as the
unique common vertex on all 3 paths between the vertices. Moreover, they also support
this operation on the cotree T ∆

G ; (O(log n) time).
When ν is a node in an embedding-respecting slim-path toptree, and G is formed from Go

via edge-subdivisions, note that G[ν] has the following properties:
For a point cluster ν with boundary vertex b that encompasses the tree-edges e1 to el in
the circular ordering around b, G[ν] corresponds to the sub-graph in Go induced by all
vertices in ν, except edges to b that are not in e1, . . . , el.
When ν is a path cluster, G[ν] corresponds to the sub-graph in Go induced by all vertices
in ν except non-tree edges incident to either of the two boundary vertices.

3 Dynamic biconnectivity queries and data structure

We want to maintain a slim-path top tree, subject to the aforementioned operations, that
additionally supports biconnectivity queries in O(log2 n) time. Our data structure consists
of the slim-path top tree from [23] with three invariants which we formalise later:
1. For each cluster ν ∈ τ op

G , we store the biconnected components in G[ν] which are relevant
for the exposed vertices (u, v).

2. For each cluster ν, we store the information required to navigate through the top tree.
3. For each stored biconnected component, we store its “border” along the spine π(ν).
We show the technical details for our invariants. The full version contains the proofs and
larger figures. We specify for each ν ∈ τ op

G , for each endpoint u of the spine, a designated
face:

▶ Lemma 1. Let ν ∈ τ op
G be a path cluster. Each boundary vertex u (resp. v) is incident to

a unique face fdes
u (ν) (resp. fdes

v (ν)) of G[ν]. Moreover, all edges in G that are not in G[ν]
are contained in either fdes

u (ν) or fdes
v (ν).2

▶ Lemma 2. Let ν ∈ τ op
G be a point cluster with boundary vertex u. The subgraph G[ν] has

a unique face fdes
u (ν) such that all edges in G that are not in G[ν] are contained in fdes

u (ν).

▶ Corollary 2. Let ν ∈ τ op
G have a boundary vertex u, let µ be a descendent of ν and x be

the boundary vertex of µ closest to u in T . Then fdes
u (ν) ⊆ fdes

x (µ).

2 Formally, we can say that an edge, vertex, or face in G is contained in face f of a subgraph G′, if it is
contained in f in any drawing of G that is consistent with the current combinatorial embedding.

u

v
w

w

v

End merge

Point Merge

Four-way merge
x

Figure 3 A graph G which we already split into five point clusters (circles) and three path clusters
(ovals). We show the combinations of clusters that create three merge types. To obtain the root:
execute the three suggested merges and merge the remaining components.

J. Holm, I. van der Hoog, and E. Rotenberg 40:7

u w
w

w

vw

u v u v

(a)

(b) (c)

fdesu (µ1) = fdesw (µ1) fdesw (µ2) fdesw (µ3) fdesw (µ4)

Figure 4 (a) Nodes µi with faces fdes
u (µ1) and fdes

w (µi). We color BCu(µ1, fdes
u (µ1)) and

BCw(µi, fdes
w (µi)). (b) The four-way merge introduces a new node ν. Edges in G[ν] that are not

the induced subgraph of G[µj] for j ∈ {1, 2, 3, 4} are dashed/dotted. (c) Every dotted edge is part
of a new biconnected component B ∈ BC∗

u(ν) which we show as tiled.

Lemmas 1 and 2 inspire the following definition: for all ν ∈ τ op
G , for each boundary vertex u

(or v) of ν, there exists a unique face f which we call its designated face fdes
u (ν) (or fdes

v (ν)).
For biconnectivity between the exposed vertices, we are only interested in biconnected
components that are edge-incident to fdes

u (ν) or fdes
v (ν). Let for a node ν with boundary

vertex u, a biconnected component B be edge-incident to fdes
u (ν). Let µ be a descendant

of ν and B ⊆ G[µ] then, by Corollary 2, B must be edge-incident to fdes
x (µ) where x is the

boundary vertex of µ closest to u. This relation inspires us to define the projected face of u

in µ as f̂des
u (µ) = fdes

x (µ).

Relevant and alive biconnected components. Consider for a cluster ν, a biconnected
component B of the induced subgraph G[ν]. We say that B is relevant with respect to ν if
B is vertex-incident to the spine π(ν). We say that B is alive with respect to a face f in
G[ν] if B is edge-incident to f . We denote by BC(ν, f) the set of biconnected components
in the induced subgraph G[ν] that are relevant with respect to ν and alive with respect to f .
Intuitively, we want to keep track of the relevant and alive components (with respect fdes

u (ν)
or fdes

v (ν)). To save space, we store only the relevant biconnected components of ν that are
not in its children. Formally (Figure 4), we define an invariant:

▶ Invariant 1. For each cluster ν ∈ τ op
G (apart from the root) with children µ1, µ2, . . . µs

where u is a boundary vertex of ν, we store a unique object for each element in:

BC∗
u(ν) := BC(ν, fdes

u (ν)) \
⋃s

i=1BC(µi, f̂des
u (µi)).

Storing biconnected components in this way does not make us lose information:

▶ Lemma 3. Let ν ∈ τ op
G with boundary vertex u and B ∈ BC(ν, fdes

u (ν)). There exists a
unique node µ in τ op

G (ν) where: B ∈ BC∗
x(µ) and x is the closest boundary vertex of µ to u.

In the remainder of this paper, we show that for each cluster ν ∈ τ op
G with boundary

vertex v, the set BC∗
v (ν) contains constantly many elements. Moreover, the root vertices

(u, v) are biconnected at the root µ if and only if they share a biconnected components
in BC∗

u(µ). In this section, we define two additional invariants so that we can maintain
Invariant 1 in O(log n) additional time per split and merge. This will imply Theorem 1.

SoCG 2023

40:8 Planar Biconnectivity

α̊↑

α̊↓

β̊

(a) (b) (c)

Figure 5 (a) A path cluster α with π(α) in black and edges in TG in black or grey. We show
the tourpaths α̊↑ and α̊↓ in blue and green. (b) A point cluster β with the path β̊. (c) Any edge in
G[α ∪ β] \ (G[α] ∪ G[β]) must intersect one of {α̊↑, α̊↓} and β̊.

The core of our data structure is a slim-path top tree τ op
G on G, that supports the expose

operation in O(log n) splits and merges. In addition, it supports the meet operation in both
the spanning tree TG and its cotree T ∆

G in O(log n) time. To maintain Invariant 1 in O(log n)
time per split and merge, we add the following invariant for τ op

G where:

▶ Invariant 2.
(a) each node ν has pointers to its boundary vertices and parent node.
(b) each path cluster ν stores: the length of π(ν) and its outermost spine edges.
(c) each point cluster ν stores: the number of tree edges in ν incident to the boundary vertex.
(d) each x ∈ V points to the lowest common ancestor in τ op

G where x is a boundary vertex.
Finally we add one final invariant which uses three additional concepts: slices of

biconnected components, index orderings on the spine and an orientation on edges incident
to a spine.

Biconnected component slices. For any node ν ∈ τ op
G and any biconnected component

B ⊆ G[ν], its slice is the interval B ∩ π(ν) (which may be empty, or one vertex).

▶ Lemma 4. Let ν ∈ τ op
G . For all (maximal) biconnected components B in G[ν], if B ∩ π(ν)

is not empty, it is a path (possibly consisting of a single vertex).

Index orderings. For any ν ∈ τ op
G and w ∈ π(ν), let w be the i’th vertex on π(ν). We say

that i is the index of w in π(ν). We can use Invariant 2 to obtain this index:

▶ Lemma 5. Given Invariant 2, a path cluster ν and a vertex w ∈ π(ν), we can compute
for every path cluster β with π(β) ⊆ π(ν) the index of w in π(β) in O(log n) total time.

Similarly in a point cluster ν, for each tree edge in ν incident to the boundary vertex u

we define its clockwise index in ν as its index in the clockwise ordering of the edges around u.

▶ Lemma 6. Given Invariant 2, and an edge e = (u, x) ∈ TG, we can compute the clockwise
index of e in every point cluster ν ∈ τ op

G that contains e and has u as boundary vertex,
simultaneously, in worst case O(log n) total time.

Euler tour paths and endpoint orientations. Consider the Euler tour of TG and an
embedding of that Euler tour such that the Euler tour is arbitrarily close to the edges in TG.
Each edge e in G that is not in TG must intersect the Euler tour twice. We classify each
endpoint of e based on where it intersects this Euler tour. Formally, we define (Figure 5):

▶ Definition 3. For a point cluster ν with boundary vertex u, we denote by ν̊ its tourpath
(the segment of the Euler tour in TG from u to u that is incident to edges in G[ν]).

J. Holm, I. van der Hoog, and E. Rotenberg 40:9

▶ Definition 4. For a path cluster ν with boundary vertices u and v. We denote by ν̊↑ and
ν̊↓ its two tourpaths (the two paths in the Euler tour in TG from u to v).

▶ Definition 5 (Figure 6). For any tourpath α̊ let e1 be the first and e2 be the last edge of TG

incident to α̊. We denote by ffirst(α̊) the unique face in G (incident to e1) whose interior
contains the start of α̊. The face f last(α̊) is defined analogously using e2.

▶ Observation 6. Let ν be a path cluster with the slim-path property. Any edge in G[ν] is
either an edge in TG or it must intersect one of {ν̊↑, ν̊↓}.

We introduce one last concept. Let e = (x, y) be an edge of G not in TG where e is an edge
with an endpoint in G[α] and in G[β] (for two clusters α, β ∈ τ op

G). We intuitively refer
for an endpoint x of e, to the tourpath intersected by e “near” x. Let α be a path cluster.
We say that the endpoint x ∈ α of e is a northern endpoint if e intersects α̊↑ near x, and
a southern endpoint if e intersects α̊↓ near x. This distinction between north and south
endpoints inspires the notion of biconnected component borders (Figure 7):

▶ Definition 7 (Biconnected component borders). Let B be a subset of the edges in G[ν] that
induces a biconnected subgraph such that B ∩ π(ν) is a path (or singleton vertex).

Let ν be a point cluster. Consider the clockwise ordering of edges in B incident to its
boundary vertex u, starting from fdes

u (ν). The border of B is:
the vertex u together with its eastern border: the first edge of B in this ordering, and
its western border: the last edge of B in this ordering.

Let ν be a path cluster. Denote by a the “eastmost” vertex of B ∩ π(ν) and by b its
“westmost” vertex. If a = b then the border is empty. Otherwise:

the eastern border of B is a, together with the first northern and last southern edge
of B that is incident to a.
the western border of of B is b, together with the last northern and first southern
edge of B that is incident to b.

▶ Invariant 3. For any ν ∈ τ op
G with boundary vertex u, for all B ∈ BC∗

u(ν) we store the
borders of B in ν and their indices and clockwise indices in ν.

Using invariants for biconnectivity. Invariant 2 allows us to not only obtain the meet
between vertices, but also the edges of their path to this meet (incident to the meet):

▶ Theorem 2. Given Invariant 2, let ν be a path cluster with boundary vertices u and v and
w ̸∈ π(ν) be a vertex in G[ν]. We can obtain the meet m = meet(u, v, w) and the last edge
e∗ in the path from w to m (in TG) in O(log n) time.

(a) (b)

Figure 6 (a) A graph with the spine of a node ν shown in blue. We show the faces
(ffirst(α̊↑), f last(α̊↑), ffirst(α̊↓), f last(α̊↓) in green. (b) The cotree T ∆

G . Vertices are triangles.

SoCG 2023

40:10 Planar Biconnectivity

(a) (b) (c)

Figure 7 Three times a cluster ν with π(ν) as red vertices and a yellow (not maximal) set of
biconnected edges in G[ν]. We show: (a) a border in a point cluster (b) a border in a path cluster
and (c) a set of biconnected edges in G[ν] that has an empty border.

In our later analysis, we show that for each merge, the only edges e◦ which can be part
of new relevant and alive biconnected components are the edges incident to some convenient
meets in the dual graph. Given such an edge e◦, we identify a convenient edge e∗ of the newly
formed biconnected component B. We identify the already stored biconnected components
B∗ ∈ BCu(ν) which contain e∗ (these components B∗ get “absorbed” into B). We use
Invariant 3 to identify all such B∗ that contain e∗:

▶ Theorem 3. Let e∗ ∈ TG be an edge incident to a vertex u. Let k be the maximum over
all u and ν of the number of elements in BC∗

u(ν). In O(k log n) total time we can, for all
of the O(log n) nodes ν ∈ τ op

G that contain e∗, for each B∗ ∈ BC∗
u(ν), determine if e∗ is in

between the border of B∗ in ν.

Finally, Invariants 2 + 3 will suffice to maintain Invariant 1 in O(log n) time per split
and merge (and thus, in O(log2 n) time per update operation) which will prove Theorem 1.

4 Summary of the remainder of this paper

We present a high-level overview of how Theorem 1 is obtained in the remainder of this paper.
At all times, we dynamically maintain a (combinatorial) embedding of some edge-divided
graph G. We maintain the top tree τ op

G by Holm and Rotenberg from [23] augmented with
three aforementioned invariants. All updates the combinatorial embedding in Theorem 1 can
be realized by O(log n) split and merge operations on the top tree (and co-tree). On a high
level, we maintain all three invariants with O(log n) additional time per split and merge in
the top tree (and co-tree). Thus, we have O(log2 n) total update time.

4.1 Invariant 2: pointers in the top tree
Invariant 2 specifies that we want to store for each cluster ν in the top tree some “metadata”.
This metadata can be stored using O(1) space and O(log n) additional time per split and
merge. Indeed, per split we simply delete the constant-complexity data. It may occur that
for a vertex x ∈ V , we delete the lowest common ancestor in τ op

G where x is the boundary
vertex: Since a top tree is a balanced tree with O(1) boundary vertices per node, we find the
new lowest common ancestor in O(log n) time. For a merge, we simply compute components
(a), (b) and (c) in O(1) additional time. For the O(1) boundary vertices, we test if there
exists a vertex x ∈ V for which Invariant 2(d) changes in O(log n) additional time.

4.2 Invariant 1: maintaining BC∗
u(ν)

We define k as the maximum over all vertices u and clusters ν, of the size of BC∗
u(ν). During

each split, a cluster ν with boundary vertex u is destroyed and we simply delete BC∗
u(ν) in

O(k) time. What remains is to show that when we merge clusters in our top trees to create
a vertex ν with boundary vertex u, we can identify the new BC∗

u(ν).

J. Holm, I. van der Hoog, and E. Rotenberg 40:11

Suppose we merge clusters α and β to create a cluster ν with boundary vertex u

(Figure 8 (a)). We want to construct the set BC∗
u(ν) of “newly formed” relevant and alive

biconnected components. We assumed that every such set contains at most k elements. Any
B ∈ BC∗

u(ν) contains at least one edge e◦ in G[α ∪ β]\(G[α] ∪ G[β]). Assume, for now, that
there exist at most O(k) such edges e◦.

Any edge e◦ in G[α ∪ β]\(G[α] ∪ G[β]) must be part of some new biconnected component
B in G[ν]. Indeed: e◦ has one endpoint x in G[α] and y in G[β]. The edge e◦ together
with the path π◦ in the spanning tree connecting x and y must form a cycle. To determine
whether B is a relevant and alive biconnected component, we want to (implicitly) compute
the out-most cycle bounding B. This is not straightforward: as the biconnected component
B contains the aforementioned cycle, but may also absorb biconnected components Bα in
G[α] and Bβ in G[β] (Figure 8 (b)).

Testing whether B is relevant. The new biconnected component B is in BC∗
u(ν) whenever

it (partially) coincides with at least one edge from the spine π(ν). We show that this occurs
if and only if π◦ (partially) coincides with π(ν) and we test this in O(log n) time.

Testing whether B is alive. The newly formed biconnected component B is alive whenever
it is incident to the face fdes

u (ν) in the graph G[ν]. We want for a given pair (e◦, B) test
whether B is alive in O(k log n) time. In the full version we show how to do this efficiently.
The core idea of this proof is (Figure 11 (a)) that B is alive if and only if one of two things
is true:
1. {e◦} ∪ π◦ incident to fdes

u (ν), or
2. B contains some (maximal) pre-stored biconnected B∗ incident to fdes

u (ν).
We test case 1 with conventional methods in O(log n) time. For case 2, we identify a special
edge e∗ on π◦. We show that such a pre-stored biconnected component B∗ exists only if
e∗ ∈ B∗. Since the top tree has height O(log n), e∗ may be contained in O(k log n) pre-stored
biconnected components. We find these in O(1) amortized constant time per biconnected
component. I.e., our invariants allow us to apply Theorem 3 to identify such a B∗ in
O(k log n) worst case total time. Given the maximal B∗ that contains e∗, we test whether
B∗ is incident to fdes

u (ν) using an additional O(log n) time (searching over its boundary).

(a)

u

e◦

(b)

u

e◦

Bα

Bβ

π◦e∗

Figure 8 (a) Suppose that we merge a path cluster α (blue) with a point cluster β (yellow)
to create a new point cluster ν (we call this an end merge). We are interested in all “new”
biconnected components in G[ν]. Every such new biconnected component must contain an edge
e◦ in G[α ∪ β]\(G[α] ∪ G[β]). (b) Consider the path π◦ along the spanning tree that connects the
two endpoints of e◦ (red). This creates a cycle, and thus a new biconnected component B in the
graph G[ν]. The component B consists of this cycle, but may additionally “absorb” biconnected
components Bα in G[α] and Bβ in G[β].

SoCG 2023

40:12 Planar Biconnectivity

u

u

G biconnected in {e◦} ∪G[β] ∪ (G[α] ∩ TG)

u

O biconnected in {e◦} ∪G[α] ∪ (G[β] ∩ TG)

u

e◦

The maximal cycle containing e◦ and e∗ is the join of: G, O, P , A where:

uu

e◦

e∗

Figure 9 A cluster ν with as children a point cluster α and a path cluster β. There may be
many edges in G[α ∪ β]. These edges are all contained in some maximal cycle which we show in
blue. For the edge e◦, we show the biconnected component G in {e◦} ∪ G[β] ∪ (TG ∩ G[α]) and O in
{e◦} ∪ G[α] ∪ (TG ∩ G[β]). Similarly, for the edge e∗ we show the biconnected components P and A.
On an intuitive level, the maximal blue cycle is their “join”.

Thus, we identify for every such edge e◦ in O(k log n) time whether it created a new
relevant and alive biconnected component B ∈ BC∗

u(ν). If so, we create an object representing
B ∈ BC∗

u(ν) in O(1) additional time.

4.3 Invariant 3: storing the border of B

For each B ∈ BC∗
u(ν), we show in the full version that we can not only compute B but also

its border to store in Invariant 3. The core idea (Figure 11 (b)) is that when merging two
clusters α and β we can “project” e◦ onto G[α] and G[β] to find the border of B in the
respective graphs. However, two complications arise:

Firstly, we observed earlier that B may be the result of combining the cycle e◦ ∪π◦ with a
biconnected component Bα in G[α] (additionally, some biconnected component Bβ in G[β]).
Whenever that is the case, the eastern border of B is not the border of the path π◦ ∩ π(ν),
but it rather gets “extended” to be the eastern border of Bα. This complication is relatively
easy to solve: In the previous subsection we explained that we can find Bα. Since we merge
the trees bottom-up, we have already restored Invariant 3 for the node α. Thus, we obtain
the eastern border of Bα in O(1) additional time and set it to be the eastern border of B.

Secondly, a merge can contain up to four clusters, not only two. We perform an extensive
case analysis where we show that we can construct the border of B in G[ν] by pairwise
joining projected borders (for an example, see Figure 9).

4.4 Finalising our argument

Up to this point, we showed that we can maintain our data structure and its invariants
in O(k2 log2 n) time per operation in G. The integer k has two functions: first, it upper
bounds the number of elements in BC∗

u(ν) for any u ∈ V and ν ∈ τ op
G . Second we

assumed that to maintain BC∗
u(ν), for each merge we need to inspect at most O(k) edges

e◦ ∈ G[α ∪ β]\(G[α] ∪ G[β]) in O(k log n) time each. In the full version we prove Theorem 1
by proving that such a k exists and that it is constant.

J. Holm, I. van der Hoog, and E. Rotenberg 40:13

u

u

Figure 10 An End merge between a point cluster α and a path cluster β to create a new path
cluster ν. We show two Euler tours α̊ and β̊↑ in blue and red. The tour α̊ corresponds to the red
path in the dual between two faces. The tour β̊↑ to the blue path. The purple path is their meet.
Any edge e◦ ∈ G[α ∪ β]\(G[α] ∪ G[β]) intersects both α̊ and β̊↑ (or α̊ and β̊↓) and must thus lie
on the purple path (or an alternative meet in the dual). The first edge on this path is e⋆, as any
further edge cannot be incident to the face fdes

u (ν).

Proving k exists and that it is a constant. Consider any edge e◦ ∈ G[α ∪ β]\(G[α] ∪ G[β]).
We observe that e◦ must intersect a tourpath of α and a tourpath of β. For any fixed pair
of tourpaths (α̊, β̊) we consider our co-tree (i.e., the spanning tree on the dual of G). The
Euler tour around α̊ is a path in the dual. Similarly, the Euler tour around β̊ is a path and
their common intersection is a meet in the dual (Figure 10). All edges that intersect both α̊

and β̊ must lie on this meet (this concept is similar to the edge bundles by Laporte et al. in
[30]). Thus, by Theorem 2, we can obtain for each pair (α̊, β̊) this meet in O(log n) time.

We show that we may restrict our attention to the first edge e⋆ of this bundle (i.e. the
first edge encountered on the meet). Indeed, the cycle formed by TG and e⋆ encloses all other
edges e◦ of the bundle in a face f⋆. We are only interested in biconnected components that
are alive (incident to the face fdes

u (ν)). For all other edges e◦ their respective biconnected
components B either include e⋆, or are contained in f⋆ and can therefore not be incident to
fdes

u (ν). It follows that whenever we create a new node ν with boundary vertex u, for every
pair of tourpaths of its children, there is a unique edge e⋆ which can form a new biconnected
component in BC∗

u(ν). Each merge involves at most 4 children that collectively have at most
6 tourpaths, and thus k is upper bound by 6 choose 2 (which is 15).

One special case. The above proof strategy applies to almost all our merge types. There
exists however, one special case. During a four-way merge, whenever α and β are path clusters
around a central vertex m, there exists no such “maximal” edge e⋆ (Figure 11 (c)). Thus,
we cannot identify the biconnected components created by the edge bundle between G[α]
and G[β]. We observe that any such component is only useful for answering biconnectivity
queries between u and v if it connects the edges e1 and e2 of π(ν) incident to m. Indeed, if
removing m separates e1 and e2 then it must also separate u and v (which are the boundary
vertices of the root). We test if removing m separates e1 and e2 in G in O(log n) time. Note

SoCG 2023

40:14 Planar Biconnectivity

that testing if removing a vertex separates two other vertices is already possible in O(log2 n)
time using [23] (by splitting m along the right corners and testing for connectivity). However
to have O(log2 n) total update time, we want O(log n) update time per merge. In the full
version we open their black box slightly to test this in O(log n) time instead.

4.5 Conclusion
We have presented an efficient data structure for 2-vertex connectivity in dynamic planar
graphs subject to edge-insertions, edge-deletions, contractions, splits, and local changes to
the embedding in the form of flips. In this process, and with this result, we may have taken a
first step towards worst-case deterministic fully-dynamic planarity testing in polylogarithmic
time; one of the fundamental research questions in dynamic graph drawing.

Our technique is to consider the planar top-tree, and our contribution includes insights
into important features and information to store in the top-tree clusters. Top-tree clusters
can be seen as sketches of subgraphs, and thus, these insights about subgraph features for this
computational problem, may have independent interest. Indeed, the concepts of designated
face and alive, may be useful when constructing a dynamic data structure for fully-dynamic
planar 3-vertex connectivity, or even for higher vertex connectivity in dynamic planar graphs.

Looking forward, there is a multitude of planar graph problems which would be interesting
to examine in the worst-case deterministic fully-dynamic setting. Examples of such problems
include k ≥ 3-vertex connectivity, k-edge connectivity, arboricity decomposition, and various
questions about constrained planar drawings of directed graphs. Approaching any of these
related questions would require new ideas and techniques.

J. Holm, I. van der Hoog, and E. Rotenberg 40:15

yx

m

x′

y′
x′

y′

w

π1 π2

β γ

µ

µ∗

ν

mC∗

π1 π2
4-way merge

y′

e◦

u

e◦

u

e◦

e∗
uu

uu

e◦e◦

e◦

u

(a)

(b)

(c)

v

Figure 11 Three challenges that are encountered in our paper and described in our overview.
(a) Let e◦ have some endpoint w and consider the path in TG to some vertex m. Let B be the
biconnected component of G[ν] that contains e◦. There exists some child µ of ν where m is the
central vertex of the merge. If B contains some pre-stored biconnected component B∗ (red) then B

includes either the edge e1 or e2 in G[µ] incident to m.
(b) Consider an End Merge and an edge e◦ intersecting the purple and green Euler tours. The edge
e◦ is part of a biconnected component with the blue cycle as its outer cycle. We find for e◦, however,
only the purple and green cycles in G[α] and G[β] separately. We smartly join these cycles together
with the cycles for e∗ to get the out-most cycle bounding the new biconnected component B∗.
(c) In a four-way merge, the edges incident to the outer face of the embedding may be arbitrary
edges in the edge bundle between the two path clusters. Neither edges incident to the outer face are
incident to fdes

u (ν) or fdes
v (ν). Since we have no techniques for finding these edges, we instead test if

the central vertex separates (u, v).

SoCG 2023

40:16 Planar Biconnectivity

References
1 Anders Aamand, Adam Karczmarz, Jakub Lacki, Nikos Parotsidis, Peter M. R. Rasmussen,

and Mikkel Thorup. Optimal decremental connectivity in non-sparse graphs. ArXiV, 2021.
2 Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining

information in fully dynamic trees with top trees. Acm Transactions on Algorithms (TALG),
2005. doi:10.1145/1103963.1103966.

3 Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected components
with spqr-trees. Algorithmica, 1996. doi:10.1007/BF01961541.

4 David Eppstein. Dynamic generators of topologically embedded graphs. In ACM-SIAM
Symposium on Discrete algorithms (SODA), 2003. doi:10.5555/644108.644208.

5 David Eppstein, Zvi Galil, Giuseppe Italiano, and Thomas Spencer. Separator-based
sparsification ii: Edge and vertex connectivity. SIAM Journal on Computing, 1999.
doi:10.1137/S0097539794269072.

6 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification - a
technique for speeding up dynamic graph algorithms. Journal of the ACM (JACM), 1997.
doi:10.1145/265910.265914.

7 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification. i. planary testing and minimum spanning trees. Journal of Computer and
System Sciences (JCSS), 1996. doi:10.1006/jcss.1996.0002.

8 David Eppstein, Giuseppe F Italiano, Roberto Tamassia, Robert Tarjan, Jeffery Westbrook,
and Moti Yung. Maintenance of a minimum spanning forest in a dynamic plane graph. Journal
of Algorithms, 1992. doi:10.1016/0196-6774(92)90004-V.

9 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert E. Tarjan, Jeffery R.
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
planar graph. Journal of Algorithms, 1992.

10 Greg Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM Journal on Computing, 1985.

11 Greg Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. SIAM Journal on Computing, 1997. doi:10.1137/S0097539792226825.

12 Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing with
applications. Journal of the ACM (JACM), 1999. doi:10.1145/300515.300517.

13 Dora Giammarresi and Giuseppe F. Italiano. Decremental 2- and 3-connectivity on planar
graphs. Algorithmica, 1996. doi:10.1007/BF01955676.

14 Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander
hierarchy and its applications to dynamic graph algorithms. In Dániel Marx, editor, ACM-
SIAM Symposium on Discrete algorithms (SODA), 2021. doi:10.1137/1.9781611976465.132.

15 Jens Gustedt. Efficient union-find for planar graphs and other sparse graph classes. Theoretical
Computer Science (TCS), 1998. doi:10.1016/S0304-3975(97)00291-0.

16 Monika R. Henzinger and Han La Poutré. Certificates and fast algorithms for biconnectivity
in fully-dynamic graphs. In European Symposium on Algorithms (ESA), 1995.

17 Monika Rauch Henzinger and Valerie King. Fully dynamic 2-edge connectivity algorithm in
polylogarithmic time per operation, 1997.

18 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. Journal of the ACM (JACM), 1999. doi:10.1145/
320211.320215.

19 Monika Rauch Henzinger and Mikkel Thorup. Sampling to provide or to bound: With
applications to fully dynamic graph algorithms. Random Structures and Algorithms, 1997.
doi:10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X.

20 John Hershberger, Monika Rauch, and Subhash Suri. Data structures for two-edge connectivity
in planar graphs. Theoretical Computer Science (TCS), 1994. doi:10.1016/0304-3975(94)
90156-2.

https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1007/BF01961541
https://doi.org/10.5555/644108.644208
https://doi.org/10.1137/S0097539794269072
https://doi.org/10.1145/265910.265914
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1016/0196-6774(92)90004-V
https://doi.org/10.1137/S0097539792226825
https://doi.org/10.1145/300515.300517
https://doi.org/10.1007/BF01955676
https://doi.org/10.1137/1.9781611976465.132
https://doi.org/10.1016/S0304-3975(97)00291-0
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X
https://doi.org/10.1016/0304-3975(94)90156-2
https://doi.org/10.1016/0304-3975(94)90156-2

J. Holm, I. van der Hoog, and E. Rotenberg 40:17

21 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
Journal of the ACM (JACM), 2001. doi:10.1145/502090.502095.

22 Jacob Holm, Giuseppe Italiano, Adam Karczmarz, Jakub Lacki, and Eva Rotenberg.
Decremental SPQR-trees for Planar Graphs. In European Symposium on Algorithms (ESA),
2018. doi:10.4230/LIPIcs.ESA.2018.46.

23 Jacob Holm and Eva Rotenberg. Dynamic planar embeddings of dynamic graphs. Theory of
Computing Systems (TCS), 2017. doi:10.1007/s00224-017-9768-7.

24 Jacob Holm and Eva Rotenberg. Fully-dynamic planarity testing in polylogarithmic time.
In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy, editors, PACM Symposium on Theory of Computing (STOC), 2020. doi:
10.1145/3357713.3384249.

25 Jacob Holm and Eva Rotenberg. Worst-case polylog incremental SPQR-trees: Embeddings,
planarity, and triconnectivity. In Shuchi Chawla, editor, ACM-SIAM Symposium on Discrete
algorithms (SODA), 2020. doi:10.1137/1.9781611975994.146.

26 Jacob Holm and Eva Rotenberg. Good r-divisions imply optimal amortised decremental
biconnectivity. Symposium on Theoretical Aspects of Computer Science (STACS), 2021.
doi:10.4230/LIPIcs.STACS.2021.42.

27 Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log2 n)
amortized time. In ACM-SIAM Symposium on Discrete algorithms (SODA), 2018. doi:
10.1137/1.9781611975031.3.

28 John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. Journal of the ACM
(JACM), 1974. doi:10.1145/321850.321852.

29 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity
in O(log n(log log n)2) amortized expected time. In ACM-SIAM Symposium on Discrete
algorithms (SODA), 2017. doi:10.1137/1.9781611974782.32.

30 Giuseppe F. Italiano, Johannes A. La Poutré, and Monika Rauch. Fully dynamic planarity
testing in planar embedded graphs (extended abstract). In Thomas Lengauer, editor, European
Symposium on Algorithms (ESA, 1993. doi:10.1007/3-540-57273-2_57.

31 Bruce Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogarithmic
worst case time. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013. doi:
10.1137/1.9781611973105.81.

32 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Faster Worst
Case Deterministic Dynamic Connectivity. In European Symposium on Algorithms (ESA),
2016. doi:10.4230/LIPIcs.ESA.2016.53.

33 Jakub Łacki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs in O(n log log n)
time. In European Symposium on Algorithms (ESA), 2011. doi:10.1007/978-3-642-23719-5_
14.

34 Jakub Łacki and Piotr Sankowski. Optimal decremental connectivity in planar graphs. In
Symposium on Theoretical Aspects of Computer Science, (STACS), 2015. doi:10.4230/LIPIcs.
STACS.2015.608.

35 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In Symposium on Foundations of
Computer Science (FOCS), 2017. doi:10.1109/FOCS.2017.92.

36 Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary
version). In Frank Thomson Leighton and Michael T. Goodrich, editors, ACM Symposium on
Theory of Computing (STOC), 1994. doi:10.1145/195058.195439.

37 Johannes A. La Poutré. Maintenance of 2- and 3-edge-connected components of graphs II.
SIAM Journal of Computing, 2000. doi:10.1137/S0097539793257770.

38 Johannes A. La Poutré, Jan van Leeuwen, and Mark H. Overmars. Maintenance of 2-
and 3-edge- connected components of graphs I. Discrete Mathematics, 1993. doi:10.1016/
0012-365X(93)90376-5.

SoCG 2023

https://doi.org/10.1145/502090.502095
https://doi.org/10.4230/LIPIcs.ESA.2018.46
https://doi.org/10.1007/s00224-017-9768-7
https://doi.org/10.1145/3357713.3384249
https://doi.org/10.1145/3357713.3384249
https://doi.org/10.1137/1.9781611975994.146
https://doi.org/10.4230/LIPIcs.STACS.2021.42
https://doi.org/10.1137/1.9781611975031.3
https://doi.org/10.1137/1.9781611975031.3
https://doi.org/10.1145/321850.321852
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1007/3-540-57273-2_57
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.4230/LIPIcs.ESA.2016.53
https://doi.org/10.1007/978-3-642-23719-5_14
https://doi.org/10.1007/978-3-642-23719-5_14
https://doi.org/10.4230/LIPIcs.STACS.2015.608
https://doi.org/10.4230/LIPIcs.STACS.2015.608
https://doi.org/10.1109/FOCS.2017.92
https://doi.org/10.1145/195058.195439
https://doi.org/10.1137/S0097539793257770
https://doi.org/10.1016/0012-365X(93)90376-5
https://doi.org/10.1016/0012-365X(93)90376-5

40:18 Planar Biconnectivity

39 Johannes A. La Poutré and Jeffery R. Westbrook. Dynamic 2-connectivity with backtracking.
SIAM Journal of Computing, 1998. doi:10.1137/S0097539794272582.

40 Mihai Pǎtraşcu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 2006. doi:10.1137/S0097539705447256.

41 Robert Endre Tarjan and Renato Fonseca F Werneck. Self-adjusting top trees. In ACM-SIAM
Symposium on Discrete algorithms (SODA), 2005. doi:10.5555/1070432.1070547.

42 Mikkel Thorup. Decremental dynamic connectivity. In ACM-SIAM Symposium on Discrete
algorithms (SODA), 1997.

43 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In ACM Symposium on
Theory of Computing (STOC), 2000. doi:10.1145/335305.335345.

44 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Encyclopedia
of Algorithms. Springer Berlin Heidelberg, 2016. doi:10.1137/1.9781611973105.126.

https://doi.org/10.1137/S0097539794272582
https://doi.org/10.1137/S0097539705447256
https://doi.org/10.5555/1070432.1070547
https://doi.org/10.1145/335305.335345
https://doi.org/10.1137/1.9781611973105.126

	1 Introduction
	2 Preliminaries
	3 Dynamic biconnectivity queries and data structure
	4 Summary of the remainder of this paper
	4.1 Invariant 2: pointers in the top tree
	4.2 Invariant 1: maintaining BC(v)
	4.3 Invariant 3: storing the border of B
	4.4 Finalising our argument
	4.5 Conclusion

