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Abstract
In 1973, Fisk proved that any 4-coloring of a 3-colorable triangulation of the 2-sphere can be obtained
from any 3-coloring by a sequence of Kempe-changes. On the other hand, in the case where we are
only allowed to recolor a single vertex in each step, which is a special case of a Kempe-change, there
exists a 4-coloring that cannot be obtained from any 3-coloring.

In this paper, we present a linear-time checkable characterization of a 4-coloring of a 3-colorable
triangulation of the 2-sphere that can be obtained from a 3-coloring by a sequence of recoloring
operations at single vertices. In addition, we develop a quadratic-time algorithm to find such a
recoloring sequence if it exists; our proof implies that we can always obtain a quadratic length
recoloring sequence. We also present a linear-time checkable criterion for a 3-colorable triangulation
of the 2-sphere that all 4-colorings can be obtained from a 3-coloring by such a sequence. Moreover,
we consider a high-dimensional setting. As a natural generalization of our first result, we obtain
a polynomial-time checkable characterization of a k-coloring of a (k − 1)-colorable triangulation
of the (k − 2)-sphere that can be obtained from a (k − 1)-coloring by a sequence of recoloring
operations at single vertices and the corresponding algorithmic result. Furthermore, we show that
the problem of deciding whether, for given two (k +1)-colorings of a (k −1)-colorable triangulation of
the (k − 2)-sphere, one can be obtained from the other by such a sequence is PSPACE-complete for
any fixed k ≥ 4. Our results above can be rephrased as new results on the computational problems
named k-Recoloring and Connectedness of k-Coloring Reconfiguration Graph, which
are fundamental problems in the field of combinatorial reconfiguration.
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1 Introduction

In 1973, Fisk [14] proved that all 4-colorings of a 3-colorable triangulation of the 2-sphere
are Kempe-equivalent, that is, for any two 4-colorings of the graph, one is obtained from
the other by a sequence of Kempe-changes. The method of Kempe-changes is known as a
powerful tool for coloring of graphs (see e.g., [19, 10]), and has been intensively studied in
graph theory (see e.g., [26, 24, 27, 28, 13, 1, 12, 2]). In particular, Mohar [27] proved that
all 4-colorings of a 3-colorable planar graph are Kempe-equivalent using Fisk’s result, and
then Feghali [12] improved this for 4-critical planar graphs. Mohar and Salas [28] extended
Fisk’s result to toroidal triangulations.

The formal definitions of Kempe-change and Kempe-equivalence are given as follows. Let
α : V (G)→ {0, 1, . . . , k − 1} be a k-coloring of a graph G, let a, b be two distinct colors in
{0, 1, . . . , k − 1}, and let C be a connected component of the subgraph of G induced by the
vertices colored with either a or b. Then, a Kempe-change of α (at C) is an operation to give
rise to a new k-coloring by exchanging the colors a and b on all vertices in C. In particular, if
C consists of a single vertex, then we refer to such a Kempe-change at C as a single-change.
Two k-colorings of G are Kempe-equivalent if one is obtained from the other by a sequence
of Kempe-changes, and single-equivalent if one is obtained from the other by a sequence of
single-changes.

Let us return to Fisk’s result for the Kempe-equivalence. Let G be a 3-colorable triangu-
lation of the 2-sphere. The proof consists of the following two statements: All 3-colorings of
G are Kempe-equivalent under 4-colorings, and any 4-coloring of G is Kempe-equivalent to a
3-coloring. Here, a 3-coloring means that a coloring uses only three colors in {0, 1, 2, 3}. The
first statement, which is folklore, can be easily obtained as follows. Since G is a 3-colorable
triangulation, for any two 3-colorings α, β of G there uniquely exists a permutation π on
{0, 1, 2, 3} such that β = π ◦ α. Then, according to π, we can obtain β from α by a sequence
of Kempe-changes (under 4-colorings) each of which changes a color at only one vertex,
namely, a sequence of single-changes, by using the fourth color not appearing in α; see
Figure 1 for example. Therefore, the nontrivial and crucial part in Fisk’s result is to show
the second statement.

The above observation for the first statement says that all 3-colorings of G are single-
equivalent under 4-colorings. On the other hand, in general, some 4-coloring is not single-
equivalent to any of 3-colorings (Figure 2). Here natural questions arise: What 4-colorings
are single-equivalent to some 3-coloring? and which 3-colorable triangulations of the 2-sphere
have the property that all 4-colorings are single-equivalent?

In this paper, we resolve these questions in the following sense, where n denotes the
number of vertices of G.
1. We present an O(n)-time checkable characterization for a 4-coloring of G to be single-

equivalent to some 3-coloring (Theorem 2). In addition, we show that, for any 4-colorings
α, β of G single-equivalent to some 3-coloring, there exists a sequence of single-changes of
length O(n2) from α to β and we can obtain it in O(n2) time (Theorem 6).
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Figure 1 Single-equivalence of two 3-colorings of a 3-colorable triangulation of the 2-sphere.
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Figure 2 A 4-coloring of a 3-colorable triangulation of the 2-sphere such that it is not single-
equivalent to any 3-coloring; no vertex can be recolored by a single-change. This coloring is “frozen”.

2. We provide an O(n)-time checkable criterion for a 3-colorable triangulation of the 2-sphere
that all 4-colorings are single-equivalent (Theorem 8).

Furthermore, we consider a triangulation of a high-dimensional sphere. Let G be a (k − 1)-
colorable triangulation of the (k − 2)-sphere for some positive integer k ≥ 4. Then, by the
same argument as in the case of k = 4 above, all (k − 1)-colorings of G are single-equivalent
under k-colorings. The following is a generalization of our first results (Theorem 2 and
Theorem 6):
3. We present a characterization for a k-coloring of a (k − 1)-colorable triangulation G of

the (k − 2)-sphere to be single-equivalent to some (k − 1)-coloring. In addition, we show
that, for any k-colorings α, β of G single-equivalent to some (k − 1)-coloring, there exists
a sequence of single-changes of length O(n2⌊(k−1)/2⌋) from α to β and we can obtain it in
O(n2⌊(k−1)/2⌋) time.

In fact, the third result can be further generalized to (k − 1)-colorable triangulations of
connected closed (k − 2)-manifolds satisfying a certain condition. This result is omitted in
this paper, and given in the full version [21].

Our results are deeply related to the computational problems named k-Recoloring and
Connectedness of k-Coloring Reconfiguration Graph, which ask the connectedness
of a k-coloring reconfiguration graph. Here, the k-coloring reconfiguration graph of a k-
colorable graph G, denoted by Rk(G), is a graph such that its vertex set consists of all
k-colorings of G and there is an edge between two k-colorings α and β of G if and only if β

is obtained from α by recoloring only a single vertex in G, i.e., by a single-change. Thus,

SoCG 2023
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two k-colorings of G are single-equivalent if and only if they are connected in Rk(G). Then
k-Recoloring and Connectedness of k-Coloring Reconfiguration Graph are
defined as follows.
k-Recoloring
Input: A k-colorable graph G and k-colorings α and β of G.
Output: YES if α and β are connected in Rk(G), and NO otherwise.

Connectedness of k-Coloring Reconfiguration Graph
Input: A k-colorable graph G.
Output: YES if Rk(G) is connected, and NO otherwise.

The problems k-Recoloring and Connectedness of k-Coloring Reconfiguration
Graph are fundamental in the recently emerging field of combinatorial reconfiguration (see
[35, 30] for surveys and [22] for a general solver), which are extensively studied. It is shown
that k-Recoloring is polynomial-time solvable if k ≤ 3 [6], while PSPACE-complete if
k ≥ 4 [3]. According to [35, Section 3.2], the situation is very different from that for
Kempe-equivalence, whose complexity is widely open. Bonsma and Cereceda [3] considered
k-Recoloring for (bipartite) planar graphs; k-Recoloring for planar graphs is PSPACE-
complete if 4 ≤ k ≤ 6 and that for bipartite planar graphs is PSPACE-complete if k = 4.
Cereceda, van den Heuvel, and Johnson [4] showed that Rk(G) is connected for any (k − 2)-
degenerate graph. By combining it with the fact that any planar graph is 5-degenerate and
any bipartite planar graph is 3-degenerate, we see that k-Recoloring and Connectedness
of k-Coloring Reconfiguration Graph are in P (all instances are YES-instances) for
any planar graph with k ≥ 7 and for any bipartite planar graph with k ≥ 5. In another
paper [5], Cereceda, van den Heuvel, and Johnson also showed that Connectedness of
3-Coloring Reconfiguration Graph is coNP-complete in general and is in P for bipartite
planar graphs.

The problem Connectedness of k-Coloring Reconfiguration Graph is also
fundamental in the studies of the Glauber dynamics (a class of Markov chains) for k-colorings
of a graph, which are used for random sampling and approximate counting. In each step of
the Glauber dynamics of k-colorings, we are given a k-coloring of a graph. Then, we pick a
vertex v and a color c uniformly at random, and change the color of v to c when the neighbors
of v are not colored by c. Hence, one step of this Markov chain is exactly a single-exchange
as long as we move to another coloring, and the state space is identical to the k-coloring
reconfiguration graph. The connectedness of the k-coloring reconfiguration graph ensures
that the Markov chain is irreducible. For the Glauber dynamics, the mixing property is one
of the main concerns. It is an open question whether the Glauber dynamics of k-colorings
has polynomial mixing time when k ≥ ∆ + 2, where ∆ is the maximum degree of a graph [23].
From continuing work in the literature, we know that the Glauber dynamics mixes quickly
when k > 2∆ [23], k > 6

11∆ [36], and finally k > ( 6
11 − ε)∆ for a small absolute constant

ε > 0 [7]. Results on restricted classes of graphs have also been known. For example, Hayes,
Vera and Vigoda [17] proved that the Glauber dynamics mixes fast for planar graphs when
k = Ω(∆/ log ∆).

Our proofs provide algorithms for special cases of k-Recoloring and Connectedness
of k-Coloring Reconfiguration Graph. Here, we are supposed to be given a simplicial
complex K whose geometric realization is homeomorphic to the (k − 2)-sphere such that its
1-skeleton G is (k−1)-colorable. As we have seen, all (k−1)-colorings of G belong to the same
connected component of Rk(G); we refer to it as the (k − 1)-coloring component of Rk(G).
Our third result (including the first) implies that, provided one of the input k-colorings α
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and β belongs to the (k − 1)-coloring component of Rk(G), the problem k-Recoloring
for G can be solved in linear time in the size #K of the input simplicial complex K. In
particular, if k is fixed, then our result says that it can be solved in polynomial time in
n. Our second result implies that Connectedness of 4-Coloring Reconfiguration
Graph for a 3-colorable triangulation of the 2-sphere can be solved in linear time in n.

We further investigate the computational complexity of the recoloring problem for a
(k−1)-colorable triangulation G of the (k−2)-sphere. It is still open whether k-Recoloring
for G can be solved in polynomial time, although we prove the polynomial-time solvability of
the special case where one of the input k-colorings α and β belongs to the (k − 1)-coloring
component of Rk(G). In this paper, we additionally show that, if the number of colors which
we can use increases by one, then it is difficult to check the single-equivalence between given
two colorings:
4. For any fixed k ≥ 4, the problem (k + 1)-Recoloring is PSPACE-complete for (k − 1)-

colorable triangulations of the (k − 2)-sphere (Theorem 13).
In the case of k = 4, our result is stronger than the PSPACE-completeness of 5-Recoloring
for planar graphs, which is known in the literature [3].

We here emphasize that, for our algorithmic results, we are given a triangulation of a
sphere, but not only its 1-skeleton. We need this assumption since our algorithm uses the
triangulation and obtaining the triangulation from the 1-skeleton is hard. Indeed, for each
fixed d ≥ 5, the sphere recognition problem is undecidable [37, 8]: Namely it is undecidable
whether a given simplicial complex is a triangulation of the d-sphere. This implies that it is
also undecidable whether a given graph is the 1-skeleton of some triangulation of the d-sphere.
When d = 3, the sphere recognition is decidable [31, 34], but not known to be solved in
polynomial time (while it is known to be in NP [33]); the decidability is open when d = 4.
Therefore, when d ≥ 3, to filter out the intrinsic intractability of sphere recognition, we
assume that a triangulation is also given along with a graph. On the other hand, when d = 2,
we can decide whether a graph is the 1-skeleton of some triangulation in linear time [20]. In
this case, the size of a triangulation is the same as the size of its 1-skeleton in the order of
magnitude by Euler’s formula, and therefore, the assumption that a triangulation is also
given is not relevant.

Organization

This paper is organized as follows. In Section 2, we introduce notation. We provide a linear-
time checkable characterization of the 3-coloring component of a 3-colorable triangulation
of the 2-sphere in Section 3, which answers the first question. Section 4 is devoted to
resolving the second question: We present a linear-time checkable criterion for a 3-colorable
triangulation of the 2-sphere that any two 4-colorings are single-equivalent. In Section 5, we
show the PSPACE-completeness of (k + 1)-Recoloring for (k − 1)-colorable triangulations
of the (k − 2)-sphere for k ≥ 4. The arguments on our third result (a high-dimensional
generalization of our first result) and several proofs of the statements marked with ⋆ are
omitted. They are given in the full version of this paper [21].

2 Preliminaries

For a set A, we denote by #A the cardinality of A.
Let G = (V, E) be a graph. For v ∈ V , we denote by NG(v) the set of neighbors of v and

by δG(v) the set of edges incident to v; we simply write N(v) and δ(v) if G is clear from the
context. A map α : V → {0, 1, . . . , k − 1} is called a k-coloring if α(u) ̸= α(v) for each edge

SoCG 2023
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StK(v) LkK(v) StK(e) LkK(e)

Figure 3 An example of the star complexes and the link complexes of a 2-dimensional simplicial
complex K.

{u, v} ∈ E. A vertex v ∈ V is said to be recolorable with respect to a k-coloring α if there is
a k-coloring α′ such that α′(u) = α(u) for u ∈ V \ {v} and α′(v) ̸= α(v), i.e., we can change
the color α(v) of v.

Let Sd denote the d-sphere. A triangulation of Sd is a pair of a simplicial complex K

and a homeomorphism h : |K| → Sd, where |K| denotes the geometric realization of K. See,
for instance, Munkres [29] for fundamental terminology in simplicial complexes. Throughout
this paper, we identify |K| with Sd and omit to write h. For a simplex σ ∈ K, its star
complex StK(σ) and link complex LkK(σ) are defined by

StK(σ) := {τ ∈ K | σ and τ are faces of a common simplex in K},
LkK(σ) := {τ ∈ K | σ ∩ τ = ∅, σ ∗ τ ∈ K},

where σ ∗ τ denotes the join of σ and τ (see [29, Section 62]). Figure 3 shows examples. Also,
let Std

K(σ) denote the d-simplices in StK(σ). For a subset K ′ ⊆ K, we define |K ′| ⊆ Sd by
|K ′| :=

⋃
σ∈K′ σ. For instance, if v is a vertex of a triangulation of a surface without boundary,

then |StK(v)| and |LkK(v)| are homeomorphic to a closed disk and a circle, respectively.
In this paper, we specify a triangulation by an embedded graph G in Sd, which is actually
the 1-skeleton of a triangulation K. Also, we suppose that the input of k-Recoloring and
Connectedness of k-Coloring Reconfiguration Graph is the simplicial complex
K; for example, we are given the set of faces of a triangulation of the 2-sphere. We use
StG(σ) instead of StK(σ) by abuse of notation. For example, St0

G(v) \ {v} = NG(v) and
St1

G(v) \ LkG(v) = δG(v). Also, we simply write St(σ) and Lk(σ) if G or K is clear from the
context.

It is well-known that a triangulation of the 2-sphere is 3-colorable if and only if every
vertex has an even degree (i.e., Eulerian). In this sense, a 3-colorable triangulation is said
to be even. More generally, a triangulation K of a closed d-manifold is even if # Std(σd−2)
is even for every (d− 2)-simplex σd−2 ∈ K, where d ≥ 2. If the 1-skeleton of K is (d + 1)-
colorable, then K is even. By [16, Sections I.4 and VI.2], the converse is also true for Sd,
more generally, for simply-connected manifolds. Hence, it is easy to check whether a given
triangulation of Sd is (d + 1)-colorable.

3 A characterization of the (k − 1)-coloring component

In this section, we resolve the first question posed in Section 1: In a 3-colorable triangulation G

of the 2-sphere, what 4-colorings are single-equivalent to some 3-coloring? A characterization
for high-dimensional cases can be obtained by a similar argument, which is omitted and
given in the full version of this paper [21].

Let G = (V, E) be a 3-colorable triangulation of the 2-sphere. Recall that all 3-colorings
of G belong to the same connected component of R4(G); we refer to it as the 3-coloring
component of R4(G). Let n denote the number #V of vertices of G.
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Figure 4 An example of the signature assignment to the faces. Red edges depict the +-nonsingular
edges and blue edges depict the −-nonsingular edges.

Let F be the set of faces of G. We first define the signature on a face in F with respect
to a 4-coloring of G and its related concepts, which were originally introduced in [18] (see
also [32, Section 8 of Chapter 2]). These play an important role in our characterization.

Let α : V → {0, 1, 2, 3} be a 4-coloring of G. We assign a signature +1/−1 to each face
f ∈ F so that, for every pair of adjacent faces f, f ′ with f = {u, v, w} and f ′ = {u′, v, w},
they have the same signature if and only if α(u) ̸= α(u′), where two faces f, f ′ ∈ F are said to
be adjacent if f and f ′ share an edge, i.e., #(f ∩f ′) = 2. Such an assignment can be obtained
as follows. For each face f = {u, v, w} ∈ F , we denote by [α(f)] the cyclically ordered set
[α(u)α(v)α(w)] on {α(u), α(v), α(w)}, where u, v, w are arranged in counterclockwise order
in G if we see it from the outside of the 2-sphere. We define εα : F → {+1,−1} by

εα(f) :=
{

+1 if [α(f)] ∈ {[123],−[023], [013],−[012]},
−1 if [α(f)] ∈ {−[123], [023],−[013], [012]},

where the minus sign − indicates the opposite order, that is, −[ijk] = [jik]. We note here
that when we regard [123],−[023], [013],−[012] as oriented 2-simplices, they appear in the
boundary of an oriented 3-simplex [0123]: ∂[0123] = [123] ∪ −[023] ∪ [013] ∪ −[012]. A face
f ∈ F with εα(f) = +1 (resp. εα(f) = −1) is called a +-face (resp. −-face) with respect
to α. Figure 4 shows an example. Recall that, for v ∈ V , the set of faces containing v is
denoted as St2(v). For a 4-coloring α, let F +

α (v) (resp. F −
α (v)) denote the set of +-faces

(resp. −-faces) in St2(v).
An edge e ∈ E is said to be singular with respect to α if the two adjacent faces f, f ′ ∈ F

sharing e have different signatures, i.e., εα(f) ̸= εα(f ′), and to be nonsingular if it is
not singular [14, 15]. A nonsingular edge is particularly said to be +-nonsingular (resp.
−-nonsingular) if εα(f) = εα(f ′) = +1 (resp. εα(f) = εα(f ′) = −1). Figure 4 also illustrates
the +- and −-nonsingular edges. For v ∈ V , we denote by NSα(v), NS+

α (v), and NS−
α (v)

the set of nonsingular, +-nonsingular, and −-nonsingular edges incident to v, respectively.
Also, the set of nonsingular edges is denoted as NSα. The following are obtained by direct
observations.

▶ Lemma 1. Let α be any 4-coloring of a 3-colorable triangulation G of the 2-sphere.
(1) A vertex v ∈ V is recolorable with respect to α if and only if all edges incident to v are

singular, i.e., NSα(v) = ∅.
(2) The coloring α is a 3-coloring if and only if all edges are singular, i.e., NSα = ∅.

We can derive a necessary condition for a 4-coloring α of G to belong to the 3-coloring
component of R4(G) as follows. Let α′ be a 4-coloring obtained from α by changing the
color of v, i.e., α′(v) ̸= α(v) and α′(u) = α(u) for all u ∈ V \ {v}. Then the signatures of all
faces in St2(v) are inverted (see also Figure 5):

SoCG 2023
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Figure 5 An example of the change of the signatures by a single-change. As in Figure 4, red and
blue edges depict the +- and −-nonsingular edges, respectively.

εα′(f) =
{
−εα(f) if f ∈ St2(v),
εα(f) if f /∈ St2(v).

(1)

This implies that, if α and α′ belong to the same connected component in R4(G), then we
have #F +

α (v) = #F +
α′(v) and #F −

α (v) = #F −
α′(v) for all v ∈ V . Furthermore, Lemma 1 (2)

implies that, if α is a 3-coloring of G, then we have εα(f) ̸= εα(f ′) for all v ∈ V and all
adjacent f, f ′ ∈ St2(v). Therefore, it follows from the above equation and Lemma 1 (2) that
the following balanced condition holds if α belongs to the 3-coloring component of R4(G):
(B) For each v ∈ V ,

#F +
α (v) = #F −

α (v). (2)

Our main result in this subsection is showing that the balanced condition (B) is also
sufficient, that is, condition (B) characterizes the 3-coloring component of R4(G).

▶ Theorem 2. Let α : V → {0, 1, 2, 3} be a 4-coloring of a 3-colorable triangulation G of the
2-sphere. Then, α belongs to the 3-coloring component of R4(G) if and only if it satisfies the
balanced condition (B).

For the proof of Theorem 2, we observe the behavior of NSα when we recolor a vertex
from a 4-coloring α. If we change the color α(v) of a vertex v, then it follows from the
equation (1) that all singular edges in Lk(v) will be nonsingular and vice versa (see Figure 5).
Thus, the following holds, where, for sets A and B, let A△B denote the symmetric difference
(A \B) ∪ (B \A) of A and B.

▶ Lemma 3. Let α be a 4-coloring of a 3-colorable triangulation G of the 2-sphere and α′ a
4-coloring obtained from α by changing the color of a vertex v. Then

NSα′(u) =
{

NSα(u) if u /∈ N(v),
NSα(u)△ (Lk(v) ∩ δ(u)) if u ∈ N(v).

In particular, NSα′ = NSα△(Lk(v) ∩ E).

In our proof, the set NSα of nonsingular edges is viewed as the disjoint union of
noncrossing closed trails in G. Here, a closed trail is a closed walk such that all edges
are distinct. For a closed trail C of G and a vertex v ∈ V , we denote by Cv the
set of subpaths of C obtained from the restriction of C to δ(v), i.e., Cv := {{e, e′} |
{e, e′} is a subpath of C such that e, e′ ∈ δ(v)}. A closed trail C of G is said to be noncross-
ing if for any vertex v, no pair of subpaths P, P ′ ∈ Cv crosses in S2, i.e., P ′ is contained in
the closure of a connected component of |St(v)| \ P in S2, where P is viewed as a curve in
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Figure 6 An example of NS-pairings. A part of a triangulation of a 2-sphere is depicted. Colors
show closed trails. This NS-pairing is admissible. The gray areas show innermost closed trails.

S2. For a noncrossing closed trail C with a fixed orientation, we define LC by the union of
connected components of S2 \C such that it lies on the left side of some edge in C. Similarly,
we define RC by the union of connected components of S2 \ C such that it lies on the right
side of some edge in C. Since C is noncrossing, the family {LC , RC} forms a bipartition of
S2 \ C.

By fixing a certain face fout ∈ F as the outer face of G, we can define the volume of a set
of noncrossing closed trails in G as follows. We say that one of LC and RC is the outside of
C if it contains the outer face fout. The other is called the inside of C. Let FC ⊆ F denote
the set of faces in the inside of C. Then, for a set C of noncrossing closed trails in G, its
volume, denoted as vol(C), is the sum of the number of faces contained in the inside of C

over all C ∈ C, i.e., vol(C) :=
∑

C∈C #FC . It is clear that vol(C) = 0 if and only if C = ∅.
We will prove that any 4-coloring satisfying the balanced condition (B) has a recolorable
vertex v such that, by changing the color of v, the volume of a set of noncrossing closed
trails corresponding to the resulting 4-coloring strictly decreases from that of the original
one. This implies that, by repeating this, we can obtain a 4-coloring such that its volume is
zero, i.e., a 3-coloring.

We here see how NSα corresponds to a set of noncrossing closed trails in G. It is known
that, for any 4-coloring α of G and v ∈ V , the number # NSα(v) of nonsingular edges
incident to v is even (see e.g., [14, Lemma 5]). For v ∈ V , let πv be a partition of NSα(v)
such that each member of πv is of size two (such a partition exists since # NSα(v) is even),
and define π :=

⋃
v∈V πv. We refer to π as an NS-pairing (with respect to α). An NS-pairing

π =
⋃

v∈V πv uniquely determines a family Cπ of closed trails in G satisfying that all closed
trails in Cπ are disjoint and πv =

⋃
C∈Cπ

Cv for all v ∈ V . Note that NSα equals the disjoint
union of all closed trails C ∈ Cπ. Figure 6 provides an example of the set of closed trails
induced by an NS-pairing.

An NS-pairing π =
⋃

v∈V πv is said to be admissible if the following hold for any v ∈ V :
(A1) All members of πv consist of one +-nonsingular edge and one −-nonsingular edge;
(A2) No two pairs P, P ′ ∈ πv cross in |St(v)| ⊆ S2.
Let π be an admissible NS-pairing. Since each C ∈ Cπ is noncrossing by (A2), the inside of
C, and hence FC , are well-defined. We define the face set family Lπ ⊆ 2F by Lπ := {FC |
C ∈ Cπ}.

SoCG 2023



43:10 Reconfiguration of Colorings in Triangulations of the Sphere

The admissibility of π induces interesting properties on Cπ and Lπ as follows. Here, a
set family F ⊆ 2A is said to be laminar if, for any X, Y ∈ F , we have X ⊆ Y , X ⊇ Y , or
X ∩ Y = ∅.

▶ Lemma 4. Let π be an admissible NS-pairing with respect to a 4-coloring α.
(1) The restriction of α to C is a 2-coloring.
(2) The family Lπ is laminar.

Proof. (1). Take any member {{u, v}, {v, w}} of πv, which forms a subpath of some C ∈ Cπ.
It suffices to show that α(u) = α(w). We may assume that α(v) = 3.

Let n+ (resp. n−) denote the number of +-faces (resp. −-faces) in St2(v) ∩ FC . By
the definition of the signature map εα, we have α(w) ≡ α(u) + (n+ − n−) (mod 3) or
α(w) ≡ α(u) − (n+ − n−) (mod 3). Since πv is noncrossing, the set of nonsingular edges
incident to v in the inside of C is of the form of the union of a subset of πv. Moreover, since
all members of πv consist of one +-nonsingular edge and one −-nonsingular edge, the number
of +-nonsingular edges incident to v in the inside of C equals that of −-nonsingular edges.
This implies that n+ = n−. Thus α(u) = α(w) follows, as required.

(2). Take any two closed trails C, C ′ ∈ Cπ. Since π is admissible, in particular, no pair of
members in πv crosses in |St(v)| for any v ∈ V , the closed trail C ′ is contained in either the
inside or the outside of C. Thus, in the former case we have FC′ ⊆ FC , and in the latter
case we have FC ⊆ FC′ or FC ∩ FC′ = ∅, which implies that Lπ is laminar. ◀

Lemma 4 (2) implies that Cπ has an innermost closed trail in S2, which corresponds to a
minimal set in Lπ.

We are ready to prove Theorem 2.

Proof of Theorem 2. We have already seen the only-if part. In the following, we show the
if part. Let α : V → {0, 1, 2, 3} be a 4-coloring of G satisfying the balanced condition (B)
but not a 3-coloring, i.e., NSα ̸= ∅ by Lemma 1 (2).

We first see that α has an admissible NS-pairing. Since 2·#F +
α (v) = 2·# NS+

α (v)+#(δ(v)\
NSα(v)) and 2·#F −

α (v) = 2·# NS−
α (v)+#(δ(v)\NSα(v)), we have # NS+

α (v) = # NS−
α (v) by

(B). We construct an admissible NS-pairing as follows. For v ∈ V , let π′ := ∅, N+
v := NS+

α (v),
and N−

v := NS−
α (v). While N+

v ̸= ∅ and N−
v ̸= ∅, we take e+ ∈ N+

v and e− ∈ N−
v such

that one of the connected components of |St(v)| \ {e+, e−} contains no edges in N+
v ∪N−

v

(such a pair (e+, e−) always exists) and update π′ ← π′ ∪ {{e+, e−}}, N+
v ← N+

v \ {e+},
and N−

v ← N−
v \ {e−}. After the above procedure stops, we define πv as the resulting π′.

Then, we can see that πv satisfies (A1) and (A2). Therefore, π :=
⋃

v∈V πv is an admissible
NS-pairing.

The following claim is crucial for the proof of Theorem 2.

▷ Claim 5. There exists a recolorable vertex v0 ∈ V such that the 4-coloring α′ obtained
from α by recoloring v0 has an admissible NS-pairing π′ satisfying vol(Cπ′) < vol(Cπ).

If this claim is true, then by recoloring such v0 repeatedly, we finally obtain a 4-coloring α∗

and an admissible NS-pairing π∗ with respect to α∗ such that vol(Cπ∗) = 0. The equality
vol(Cπ∗) = 0 implies NSα∗ = ∅, i.e., α∗ is actually a 3-coloring by Lemma 1 (2). Therefore,
α belongs to the 3-coloring component of R4(G), as required.

In the following, we prove Claim 5. Take an arbitrary innermost closed trail C ∈ Cπ,
the existence of which is guaranteed by Lemma 4 (2), and an edge e = {v1, v2} ∈ C. Let
{v0, v1, v2} be the face in the inside of C, or in FC . Since α is a 4-coloring, the color α(v0) is
different from both α(v1) and α(v2). Therefore v0 does not belong to C by Lemma 4 (1),
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Figure 7 Reducing the volume. In this example, C′ = {C′
1, C′

2}.

implying that St2(v0) ⊆ FC . Since C is an innermost closed trail, no edge incident to the
vertex v0 is nonsingular with respect to α. Thus, by Lemma 1 (1), we can change the color
of v0.

Let α′ be the 4-coloring obtained from α by changing the color of v0. For each v ∈ N(v0),
we have # (δ(v) ∩ Lk(v0)) = 2, and denote δ(v) ∩ Lk(v0) by Pv. We define π′ =

⋃
v∈V π′

v by

π′
v :=


πv if v /∈ N(v0),
πv ∪ {Pv} if v ∈ N(v0) and NSα(v) ∩ Lk(v0) = ∅,
(πv \ {P}) ∪ {P △ Pv} if v ∈ N(v0) and πv contains P with |P ∩ Pv| = 1,

πv \ {Pv} if v ∈ N(v0) and πv contains Pv.

See also Figure 5. Then π′ is an NS-pairing with respect to α′ by Lemma 3.
Moreover, we can see that π′ is admissible as follows. It is clear that π′

v ∩ πv satisfies
(A1) and (A2) for each v ∈ V , implying that π′

v satisfies (A1) and (A2) if v /∈ N(v0), or
v ∈ N(v0) and πv contains Pv. Since the edge {v0, v} is singular with respect to α′, the path
Pv (resp. P △Pv) does not cross any P ′ ∈ πv (resp. P ′ ∈ πv \ {P}); π′

v satisfies (A2) even for
other v. Suppose that Pv = {{u, v}, {v, w}}. Then, we have εα′({u, v, v0}) = εα({w, v, v0})
and εα′({w, v, v0}) = εα({u, v, v0}). This implies that, if v ∈ N(v0) and πv contains P with
|P ∩ Pv| = 1, then P △ Pv consists of one +-nonsingular edge and one −-nonsingular edge
with respect to α′, and if v ∈ N(v0) and NSα(v) ∩ Lk(v0) = ∅, then Pv consists of one
+-nonsingular edge and one −-nonsingular edge with respect to α′. Thus π′

v satisfies (A1)
for other v.

Let C′ be the set of the closed trails in Cπ′ containing some e ∈ Lk(v0) ∩NSα′ . Then, we
have FC =

⋃
C′∈C′ FC′ ∪ St2(v0) and Cπ′ = Cπ \ {C} ∪ C′. Therefore, we obtain vol(Cπ′) =

vol(Cπ)−# St2(v0) < vol(Cπ); see also Figure 7
This completes the proof of the claim (and hence that of Theorem 2). ◀

Our proof of Theorem 2 is constructive; for a 4-coloring α satisfying the balanced
condition (B), we explicitly construct a sequence of single-changes from α to a certain
3-coloring α∗. This leads to the following.

▶ Theorem 6 (⋆). Let G be a 3-colorable triangulation of the 2-sphere. For any α and
β belonging to the 3-coloring component of G, we can obtain in O(n2) time a sequence of
single-changes of length O(n2) from α to β. In particular, the diameter of the 3-coloring
component of G is O(n2).

Theorems 2 and 6 immediately imply the polynomial-time solvability of 4-Recoloring
for G if one of the given α or β belongs to the 3-coloring component. We here note that, for
a 4-coloring α of G, we can check if it satisfies the balanced condition (B) in O(#F ) = O(n)
time.
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G

G1 G2

Figure 8 A triangulation is split by the separating triangle C highlighted by red lines.

0

0

1

1

2

2

Figure 9 The octahedral graph with a 3-coloring.

▶ Corollary 7. Let G be a 3-colorable triangulation of the 2-sphere. 4-Recoloring for
G can be solved in O(n) time, provided one of the input 4-colorings α and β belongs to
the 3-coloring component of R4(G). In addition, if both α and β belong to the 3-coloring
component, then we can obtain a reconfiguration sequence from α to β in O(n2) time.

4 Connectedness of the 4-coloring reconfiguration graph

In this section, we solve the second question posed in Introduction: In what 3-colorable
triangulation of the 2-sphere all 4-colorings are single-equivalent? To explain the answer, we
introduce some notation. Since we deal with only the case of the 2-sphere in this section, we
simply use the term a triangulation instead of a triangulation of the 2-sphere.

A separating triangle in a triangulation is a cycle of length 3 that does not bound a
face. Note that a triangulation with at least five vertices is 4-connected if and only if it
has no separating triangles. A triangulation with a separating triangle C can be split into
two triangulations, the subgraph induced by the inside of C and that by the outside of C,
respectively (Figure 8). Note that they share C. By iteratively applying this procedure to a
triangulation G with k separating triangles, we obtain a collection of k + 1 triangulations
without separating triangles. We call the k + 1 triangulations 4-connected pieces of G. It is
known [11] that the collection of the 4-connected pieces is uniquely determined. It is easy to
see that G is 3-colorable if and only if every 4-connected piece of G is 3-colorable.

The octahedral graph is the 1-skeleton of the octahedron (Figure 9), which has six vertices,
twelve edges, and eight faces, and is 3-colorable. A triangulation is said to be octahedron-
stacked if every 4-connected piece of G is isomorphic to the octahedral graph. The following
is the main theorem in this section.

▶ Theorem 8 (⋆). Let G be a 3-colorable triangulation. Then, R4(G) is connected if and
only if G is octahedron-stacked.
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Figure 10 The 4-contraction of v at {w1, w3}.
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Figure 11 The twin-contraction of {u, v} at {w1, w3}.

Since we can enumerate all separating triangles in linear time [9], the criterion in Theorem
8 can be used to obtain a linear-time algorithm for Connectedness of 4-Coloring
Reconfiguration Graph for a 3-colorable triangulation of the 2-sphere, as follows.

▶ Corollary 9. Connectedness of 4-Coloring Reconfiguration Graph for a 3-
colorable triangulation G of the 2-sphere is solvable in O(n) time.

We prove Theorem 8 by combining some lemmas together with the so-called generating
theorem. The following lemma deals with splitting a triangulation to obtain a 4-connected
piece, and allows us to focus on 4-connected 3-colorable triangulations. Due to space limit,
we leave a proof to the readers.

▶ Lemma 10. Let G be a 3-colorable triangulation with a separating triangle C, and let G1
and G2 be the two triangulations obtained by splitting along C. Then R4(G) is connected if
and only if both R4(G1) and R4(G2) are connected.

The if part of Theorem 8 is easily proven by Lemma 10 and the fact that R4(G) is
connected, where G is the octahedral graph. To prove the only if part, we now define two
operations to reduce a 3-colorable triangulation G to a smaller triangulation G′ as follows.
Let v be a vertex of degree four in G and let {w1, w2, w3, w4, w1} be the cycle that forms
the link of v. The 4-contraction of v at {w1, w3}, illustrated in Figure 10, is to remove v,
identify the vertices w1 and w3, and replace the two pairs of multiple edges obtained from
{{w1, w2}, {w2, w3}} and {{w1, w4}, {w3, w4}} with two single edges, respectively. Let u and
v be adjacent vertices of degree four, where {w1, w2, w3, v, w1} and {w1, u, w3, w4, w1} are the
cycles that form the links of u and v, respectively. The twin-contraction of {u, v} at {w1, w3},
illustrated in Figure 11, is to remove u and v, identify the vertices w1 and w3, and replace
the two pairs of multiple edges obtained from {{w1, w2}, {w2, w3}} and {{w1, w4}, {w3, w4}}
with two single edges, respectively.

Notice that we do not perform these operations if they give rise to multiple edges.
Matsumoto and Nakamoto proved the following generating theorem.
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▶ Theorem 11 ([25]). For every 4-connected 3-colorable triangulation G, there exists a
sequence G0, G1, . . . , Gℓ from G0 := G such that Gℓ is the octahedral graph, Gi is a 4-
connected 3-colorable triangulation for 0 ≤ i ≤ ℓ, and Gi is obtained from Gi−1 by either a
4-contraction or a twin-contraction for 1 ≤ i ≤ ℓ.

For a 4-contraction and a twin-contraction, we need the following lemma.

▶ Lemma 12. Let G be a 4-connected 3-colorable triangulation, and let G′ be a 4-connected
3-colorable triangulation obtained from G by either a 4-contraction or a twin-contraction. If
R4(G′) is disconnected, then so is R4(G).

It is not difficult to see that if the octahedral graph is obtained from a 3-colorable
triangulation G by a 4-contraction, then R4(G) is disconnected, and if the octahedral graph
is obtained from a 3-colorable triangulation G by a twin-contraction, then G has a separating
triangle, i.e. G is not 4-connected. Therefore, it follows from Theorem 11 and Lemma 12
that for a 4-connected 3-colorable triangulation G, R4(G) is disconnected, unless G is the
octahedral graph. By Lemma 10, this completes the proof of the only if part of Theorem 8.

The proof of Theorem 8 implies that if the answer to Connectedness of 4-Coloring
Reconfiguration Graph is NO, then in a given 3-colorable triangulation G, we can find
in polynomial time a 4-coloring that does not belong to the 3-coloring component of R4(G).
This would be a certificate for being a NO-instance.

5 PSPACE-completeness

As in Section 1, we show the following result in this section.

▶ Theorem 13 (⋆). For k ≥ 4, the problem (k + 1)-Recoloring for (k − 1)-colorable
triangulations of the (k − 2)-sphere is PSPACE-complete.

When restricted to the case k = 4, Theorem 13 implies that 5-Recoloring is PSPACE-
complete even for planar 3-colorable triangulations (i.e., even triangulations).

In order to prove Theorem 13, we introduce a new recoloring problem. For a list coloring,
we associate a list assignment L = (L(v))v∈V (G) with a graph G such that each v ∈ V (G)
is assigned a list L(v) of colors. For a list assignment L of a graph G, a map α on V (G) is
an L-coloring if α(v) ∈ L(v) for every v ∈ V (G) and α(u) ̸= α(v) for every {u, v} ∈ E(G).
For a graph G and a list assignment L of G, the L-coloring reconfiguration graph, denoted
by R(G, L), is defined as follows: Its vertex set consists of all L-colorings of G and there
is an edge between two L-colorings α and β of G if and only if β is obtained from α by
recoloring only a single vertex in G. We consider the following reconfiguration problem
named List-Recoloring.
List-Recoloring
Input: A graph G, a list assignment L of G, and two L-colorings α and β of G.
Output: YES if α and β are connected in R(G, L), and NO otherwise.
Bonsma and Cereceda [3] proved that List-Recoloring is PSPACE-complete for particularly
restricted graphs and list assignments.

We give a brief outline of the reduction from List-Recoloring to 5-Recoloring. In [3],
restricted graphs are planar (not necessarily even triangulations) and a list of restricted list
assignments is {0, 1, 2} or {0,1}. We construct an even triangulation graph from a restricted
graph used in [3] by inserting some vertices and graphs into faces and consider a 5-coloring
by using colors 0, 1, 2, 3, 4. Then, inserted graphs have a 5-coloring such that for each vertex
v, all colors except for the color assigned to v appear in the neighbor of v. Such a 5-coloring
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is called a frozen 5-coloring. We insert new graphs in such a way that their frozen 5-colorings
do not conflict. Since the coloring in the inserted graphs are frozen, for each vertex v not
contained in the original graph, all colors except for the color assigned to v appear in the
neighbor of v, i.e., all vertices not contained in the original graph have the property being
“frozen.” Therefore, the vertices contained in the original graph can only use colors in a
restricted list assignment used in [3]. Consequently, 5-Recoloring in our even triangulation
is the same as List-Recoloring in a restricted graph in [3].
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