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Abstract
A graph is 2-degenerate if every subgraph contains a vertex of degree at most 2. We show that every
2-degenerate graph can be drawn with straight lines such that the drawing decomposes into 4 plane
forests. Therefore, the geometric arboricity, and hence the geometric thickness, of 2-degenerate
graphs is at most 4. On the other hand, we show that there are 2-degenerate graphs that do not
admit any straight-line drawing with a decomposition of the edge set into 2 plane graphs. That is,
there are 2-degenerate graphs with geometric thickness, and hence geometric arboricity, at least 3.
This answers two questions posed by Eppstein [Separating thickness from geometric thickness. In
Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004].
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1 Introduction

A graph is planar if it can be drawn without crossings on a plane. Planar graphs exhibit
many nice properties, which can be exploited to solve problems for this class more efficiently
compared to general graphs. However, in many situations, graphs cannot be assumed to be
planar even if they are sparse. It is therefore desirable to define graph classes that extend
planar graphs. Several approaches for extending planar graphs have been established over the
last years [4, 14]. Often these classes are defined via drawings, for which the types of crossings
and/or the number of crossings are restricted. A natural way to describe how close a graph
is to being a planar graph is provided by the graph parameter thickness. The thickness of a
graph G is the smallest number θ(G) such that the edges of G can be partitioned into θ(G)
planar subgraphs of G. Related graph parameters are geometric thickness and book thickness.
Geometric thickness was introduced by Kainen under the name real linear thickness [17].
The geometric thickness θ̄(G) of a graph G is the smallest number of colors that is needed to
find an edge-colored geometric drawing (i.e., one with edges drawn as straight-line segments)
of G with no monochromatic crossings. For the book thickness bt(G), we additionally require
that only geometric drawings with vertices in convex position are considered.

An immediate consequence from the definitions of thickness, geometric thickness and
book thickness is that for every graph G we have θ(G) ≤ θ̄(G) ≤ bt(G). Eppstein shows that
the three thickness parameters can be arbitrarily “separated”. Specifically, for any number k
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44:2 On the Geometric Thickness of 2-Degenerate Graphs

there exists a graph with geometric thickness 2 and book thickness at least k [10] as well
as a graph with thickness 3 and geometric thickness at least k [11]. The latter result is
particularly notable since any graph of thickness k admits a k-edge-colored drawing of G

with no monochromatic crossings if edges are not required to be straight lines. This follows
from a result by Pach and Wenger [22], stating that any planar graph can be drawn without
crossings on arbitrary vertex positions with polylines.

Related to the geometric thickness is the geometric arboricity ā(G) of a graph G, in-
troduced by Dujmović and Wood [6]. It denotes the smallest number of colors that are
needed to find an edge-colored geometric drawing of G without monochromatic crossings
where every color class is acyclic. As every such plane forest is a plane graph, we have
θ̄(G) ≤ ā(G). Moreover, every plane graph can be decomposed into three forests [24], and
therefore 3θ̄(G) ≥ ā(G).

Bounds on the geometric thickness are known for several graph classes. Due to Dillencourt
et al. [5] we have n

5.646 + 0.342 ≤ θ̄(Kn) ≤ n
4 for the complete graph Kn. Graphs with

bounded degree can have arbitrarily high geometric thickness. In particular, as shown by
Barárt et al. [2], there are d-regular graphs with n vertices and geometric thickness at least
c
√

dn1/2−4/d−ε for every ε > 0 and some constant c. However, due to Duncan et al. [8], if
the maximum degree of a graph is 4, its geometric thickness is at most 2. For graphs with
treewidth t, Dujmović and Wood [6] showed that the maximum geometric thickness is ⌈t/2⌉.
Hutchinson et al. [15] showed that graphs with n vertices and geometric thickness 2 can have
at most 6n − 18 edges. As shown by Durocher et al. [9], there are n-vertex graphs for any
n ≥ 9 with geometric thickness 2 and 2n − 19 edges. In the same paper, it is proven that it
is NP-hard to determine if the geometric thickness of a given graph is at most 2. Computing
thickness [18] and book thickness [3] are also known to be NP-hard problems. For bounds on
the thickness for several graph classes, we refer to the survey of Mutzel et al. [19]. A good
overview on bounds for book thickness can be found on the webpage of Pupyrev [23].

A graph G is d-degenerate if every subgraph contains a vertex of degree at most d. So we
can repeatedly find a vertex of degree at most d and remove it, until no vertices remain. The
reversal of this vertex order (known as a degeneracy order) yields a construction sequence
for G that adds vertex by vertex and each new vertex is connected to at most d previously
added vertices (called its predecessors). Adding a vertex with exactly two predecessors is
also known as a Henneberg 1 step [12]. In particular, any 2-degenerate graph is a subgraph
of a Laman graph (i.e., a graph that is generically minimal rigid), however not every Laman
graph is 2-degenerate. All d-degenerate graphs are (d, ℓ)-sparse, for any

(
d+1

2
)

≥ ℓ ≥ 0, that
is, every subgraph on n vertices has at most dn − ℓ edges.

Our Results. In this paper, we study the geometric thickness of 2-degenerate graphs. Due
to the Nash-Williams theorem [20, 21], every 2-degenerate graph can be decomposed into 2
forests and hence has arboricity at most 2 and therefore thickness at most 2. On the other
hand, as observed by Eppstein [10], 2-degenerate graphs can have unbounded book thickness.
Eppstein’s examples of graphs with thickness 3 and arbitrarily high geometric thickness are
3-degenerate graphs [11]. Eppstein asks whether the geometric thickness of 2-degenerate
graphs is bounded by a constant from above and whether there are 2-degenerate graphs with
geometric thickness greater than 2. The currently best upper bound of O(log n) follows from
a result by Duncan for graphs with arboricity 2 [7]. We improve this bound and answer both
of Eppstein’s questions with the following two theorems.

▶ Theorem 1. For each 2-degenerate graph G we have θ̄(G) ≤ ā(G) ≤ 4.

▶ Theorem 2. There is a 2-degenerate graph G with ā(G) ≥ θ̄(G) ≥ 3.
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2 Proof of Theorem 1: The upper bound

In this section, we prove Theorem 1. To this end, we describe, for any 2-degenerate graph, a
construction for a straight-line drawing such that the edges can be colored using four colors,
avoiding monochromatic crossings and monochromatic cycles. This shows that 2-degenerate
graphs have geometric arboricity, and hence geometric thickness, at most four.

Before we give a high-level description of the construction we introduce some definitions.
For a graph G we denote its edge set with E(G) and its vertex set with V (G). Consider a
2-degenerate graph G with a given, fixed degeneracy order. We define the height of a vertex
height(v) as the length t of a longest path u0 · · · ut with ut = v such that for each 1 ≤ i ≤ t

vertex ui−1 is a predecessor of ui. The set of vertices of the same height is called a level of
G. By definition, each vertex has at most two neighbors of smaller height.

Our construction process embeds G level by level with increasing height. The levels are
placed alternately either strictly below or strictly to the right of the already embedded part of
the graph. If a level is placed below, then we use specific colors v and vs (short for “vertical”
and “vertical slanted”, respectively) for all edges between this level and levels of smaller
height. Similarly, we use specific colors h and hs (short for “horizontal” and “horizontal
slanted”, respectively) if a level is placed to the right. See Figure 1 (right).

To make our construction work, we need several additional constraints to be satisfied
in each step which we will describe next. For a point p in the plane, we use the notation
x(p) and y(p) to refer to the x- and y-coordinates of p, respectively. Consider a drawing
D of a 2-degenerate graph G of height k together with a coloring of the edges with colors
{h, hs, v, vs}. For the remaining proof, we assume that each vertex of G has either 0 or exactly
2 predecessors. If not, we add a dummy vertex without predecessors to the graph and make
it the second predecessor of all those vertices that originally only had 1 predecessor. We say
that D is feasible if it satisfies the following constraints:
(C1) For each vertex in G the edges to its predecessors are colored differently. If k > 0, then

each vertex of height k in G is incident to one edge of color h and one edge of color hs.
(C2) There exists some xD ∈ R such that for each vertex v ∈ V (G) we have x(v) > xD if

and only if height(v) = k.
(C3) There is no monochromatic crossing.
(C4) No two vertices of G lie on the same horizontal or vertical line.
(C5) Each v ∈ V (G) is h-open to the right, that is, the horizontal ray emanating at v directed

to the right avoids all h-edges.
(C6) Each v ∈ V (G) is v-open to the bottom, that is, the vertical ray emanating at v directed

downwards avoids all v-edges.
These constraints are schematized in Figure 1.

We now show how to construct a feasible drawing for G. We prove this using induction
on the height of the graph. The base case k = 0 is trivial, as there are no edges in the graph.
Assume that k ≥ 1 and the theorem is true for all 2-degenerate graphs with height k − 1.
Let H denote the subgraph of G induced by vertices with height less than k. By induction,
there is a feasible drawing D of H.

As a first step, we reflect the drawing D at the straight line x = −y. Thus, a point (x, y)
before transformation becomes (−y, −x). Additionally, we swap the colors hs and vs as well
as the colors h and v. Let D′ denote the resulting drawing. From now on, all appearing
coordinates of vertices refer to coordinates in D′. By construction, D′ satisfies (C3–C6).
Applying (C1) to D shows that in D′ each vertex of height k − 1 is incident to one edge of
color v and one edge of color vs. Applying (C2) to D shows that there exists yD′ ∈ R such
that for each vertex v ∈ V (H) we have y(x) < yD′ in D′ if and only if height(v) = k − 1.

SoCG 2023
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no vertex

no vertex
no vertex &
no h-crossing

no vertex &
no v-crossing

height
= k

hs

h

xD′

height
≤ k−2

height
= k−1

h

hs

Figure 1 Left: For each vertex v in a feasible drawing, there are no other vertices on the vertical
and the horizontal line through v. Moreover, v is h-open to the right and v-open to the bottom.
Right: All vertices in the highest level (of height k) are placed to the right of all vertices of smaller
height. Moreover, each vertex in that level is incident to one edge of color h and one edge of color hs.

}
}}> ε

> ε

> ε

slope m

xD′

Figure 2 Horizontal lines intersecting straight lines of slope m. Conditions (ii–iv) are illustrated.

As the second (and last) step, we place the points of height k of G such that the resulting
drawing is feasible. Let Lk denote the set of these vertices and let xD′ denote the largest
x-coordinate among all vertices in D′. Choose a sufficiently small slope m, with m > 0, and
a sufficiently small ε, with ε > 0, such that the following holds.

(i) For any distinct u, v ∈ V (H) with y(u) < y(v), the horizontal line through v and the
straight line through u with slope m intersect at a point p with x(p) > xD′ .

(ii) For any distinct u, v ∈ V (H) we have that ε < |y(u) − y(v)|.
(iii) For any distinct u, u′, v, v′ ∈ V (H) let p be the intersection point of the straight line

through u with slope m and the horizontal line through v and let p′ be the intersection
point of the straight line through u′ with slope m and the horizontal line through v′. If
x(p) ̸= x(p′), then ε < |x(p) − x(p′)|.

(iv) For any distinct u, v ∈ V (H) we have that ε is smaller than the distance between the
two straight lines of slope m through u and v, respectively.

The constraints are summarized in Figure 2. Such a choice of m and ε is possible, by
choosing m according to Condition (i) first and then ε according to the Conditions (ii–iv).

For each vertex w ∈ Lk let u and v be the two predecessors of w in H with y(u) < y(v)
and let pw denote the intersection point of the straight line of slope m passing through u

(called a slanted line) and the horizontal line passing through v. We will place w close to pw

and connect w to v using an edge of color h and we connect w to u using an edge of color
hs. To determine the exact location of the vertices, we consider the horizontal lines through
vertices v ∈ V (H) from bottom to top (with increasing y-coordinate) and for each such line
consider the intersections with slanted lines through vertices u ∈ V (H) with y(u) < y(v)
from left to right (with increasing x-coordinate). Let p1, . . . , pt denote the intersection points
in the order just described. For each intersection point pi let ℓi denote the straight line
through pi with slope −1/m (which is negative as m > 0), that is, ℓi is perpendicular to
straight lines of slope m. Every vertex w ∈ Lk with pw = pi will be placed on ℓi at a certain
distance from pw (specified later). Note that there might be multiple points with the same
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h

hs

slope m
90◦

u

v

w
radius ε/2k

height ≤ k − 1

pw = pi

ℓi

Figure 3 The placement of the kth point w in order of vertices in Lk.

Bi

slope m

Bj
v

Bislope m

Bj

u

pi pj

pi

pj

Figure 4 The placement of several points with a common “horizontal” predecessor v (left) or a
common “slanted” predecessor u (right). Edges with color h are drawn blue, edges with color hs are
drawn red.

predecessors and hence multiple vertices w ∈ Lk with pw = pi. For each pi we order all
such vertices arbitrarily. This gives an ordering of all vertices in Lk based on the ordering
p1, . . . , pt. If w is the kth vertex in this order, w is placed on ℓi to the bottom-right of pi

at distance ε/2k from pi; see Figure 3. In this fashion, all vertices in Lk are placed with
decreasing distance to their respective intersection point; see Figure 4.

We call the resulting drawing DG. We claim that DG demonstrates that the geometric
arboricity of G is at most four.

Vertices on distinct points, edges intersect in at most one point in DG. For each i ≤ t

let δi denote the distance between pi and the first vertex w placed close to pi. Then
δi ≤ δi−1/2 for each i with 1 < i ≤ t. For each i ≤ t let Bi be the region formed by
all points q ∈ R of distance at most δi to pi with x(q) > x(pi) and y(q) < y(pi) (Bi is a
quarter of a disk). Then all vertices w ∈ Lk with pw = pi are placed on distinct points
along the intersection of the line ℓi with Bi; see Figure 4.
Due to Conditions (ii) and (iv), all the regions Bi are disjoint. By construction, no two
vertices are placed on the same point within a region Bi. This shows that no two vertices
in G are placed on the same point in DG. Moreover, for the same reasons, for each vertex
v ∈ V (H) the edges between v and vertices in Lk do not contain vertices in their interior
and intersect in v only. This shows no edge in G contains vertices in its interior and any
two edges in G intersect in at most one point.

(C1) By construction, each vertex in Lk is incident to an edge of color h and an edge of
color hs. Hence, DG satisfies (C1).

(C2) By Condition (i), any horizontal line through some vertex of H and a slanted straight
line through a vertex of height k − 1 in H intersect in some point with x-coordinate larger
than xD′ . Each vertex w ∈ Lk is placed slightly to the right of such an intersection point.
Hence, DG satisfies (C2) with xDG

= xD′ .
(C3) The edges in the drawing D′ of H were not changed, so there are still no monochromatic

crossings of those edges. Consider an edge vw with v ∈ V (H) and w ∈ Lk.

SoCG 2023
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height
= k

v/vs

xD′

height
≤ k−2

height
= k−1

slope m
w

v

hs

L

Figure 5 Checking Constraint (C3) for hs-colored edges.

First, assume that its color is h. Then x(w) > x(v) and y(w) < y(v) by construction.
Consider an edge e of color h in H. We shall prove that e does not cross vw. If both
endpoints of e lie above v, then e does not cross vw. If e crosses the horizontal line
through v in some point p, then x(p) < x(v) since v is h-open to the right in D′. Moreover,
one endpoint of e lies above v while the other endpoint lies below w due to Condition (ii).
So e does not cross vw. If both endpoints of e lie below v, then their y-coordinates are
smaller than y(w) due to Condition (ii). Hence, e does not cross vw in either case.
Now consider an edge v′w′ of color h with v′ ∈ V (H), y(v′) < y(v) and w′ ∈ Lk. As
y(w) > y(v′) by Condition (ii) and y(w′) < y(v′) by construction, these two edges do not
cross. This shows that edges of color h do not cross in DG.
Now assume that the color of vw is hs. By construction, v is the predecessor of w of
the smallest y-coordinate. Since w has at least one predecessor of height k − 1 and, by
induction, all vertices of this height are placed below the vertices of smaller height in D′,
we have that height(v) = k − 1. Consider the slanted straight line L (of slope m) through
v. By Condition (i), L does not intersect the convex hull of vertices of height less than
k − 1 in D′; see Figure 5. By induction, all vertices of height k − 1 in H are incident
to edges of color v and vs only. Hence, L does not intersect any edge of color hs in D′.
The edge vw has a positive slope slightly smaller than L and hence does not intersect
any edge of color hs in D′ either. It remains to show that vw does not intersect edges
v′w′ of color hs with v′ ∈ V (H), v′ ̸= v, and w′ ∈ Lk. Consider the slanted straight line
L′ (of slope m) through v′. Without loss of generality, assume that L is above L′ (the
case L = L′ produces no crossing since then v = v′). The edge v′w′ has a positive slope
slightly smaller than L′. By Condition (iv), the distance between L and w is smaller than
the distance between L and L′. Hence vw does not cross v′w′.
This shows that edges of color hs do not cross in DG and hence DG satisfies (C3).

(C4) No two vertices from H lie on a common vertical or horizontal line by induction.
Consider w ∈ Lk and the region Bi containing w. Due to Condition (ii) no horizontal
line through Bi contains a vertex from H. Moreover, by (C2) no vertical line through Bi

contains a vertex from H. Note that either two different regions Bi/Bj are separated
by a horizontal line or y(pi) = y(pj). In both cases, vertices placed in Bi/Bj cannot
have the same y-coordinate. This is clear in the former case and in the latter it is true
since we never select the same distance from pi/pj when placing the vertices. For the
x-coordinates we can argue similarly. Hence, DG satisfies (C4).

(C5) First, consider a vertex v ∈ V (H) and the horizontal ray L emanating at v to
the right. In the drawing D′, each vertex in H is h-open to the right, so L does
not intersect any h-colored edge from H. It remains to consider h-colored edges v′w

with v′ ∈ V (H) and w ∈ Lk. Then x(w) > x(v′) and y(v′) > y(w) > y(v′) − ε by
construction. So if y(v′) < y(v), L does not intersect v′w. If y(v′) > y(v), then observe
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that y(w) > y(v′) − ε > y(v) by Condition (ii). Hence L does not intersect v′w in either
case and v is h-open to the right in GD.
Now consider a vertex w ∈ Lk and the horizontal ray L emanating at w to the right. By
(C2), L does not intersect any edge from H. It remains to consider h-colored edges v′w′

with w′ ∈ Lk. Let v be the neighbor of w in H with vw colored h.
If v′ = v, consider the region Bi containing w. If w′ is in Bi, then w′ and w lie on the
diagonal ℓi in Bi. If w′ is in Bj with j < i, then w′ is placed to the left of w, and if w′ is
on Bj with j > i, then w′ is placed above w. In either case, L does not intersect v′w′.
Now suppose that v′ ̸= v. Assume that y(v′) < y(v) then by Condition (ii) and by
construction y(w) > y(v′) > y(w′). If on the other hand y(v′) > y(v) then y(v′) > y(w′) >

y(v) > y(w), again by Condition (ii) and by construction. In both cases, it follows that L

does not intersect v′w′.
This shows that each vertex of G is h-open to the right in DG.

(C6) In the drawing D′, each vertex in H is v-open to the bottom. The vertices in Lk are
not incident to any edges of color v. Hence, all vertices of G are v-open to the bottom in
DG. So (C6) is satisfied.

No monochromatic cycles. (C1–C6) are satisfied, thus DG is feasible, and uses 4 colors.
Consider any cycle in G and a vertex w of largest height in the cycle. Then its neighbors
u and v in the cycle have to be its predecessors. Due to (C1), uw and vw do not have
the same color. Hence there are no monochromatic cycles.

3 Proof of Theorem 2: The lower bound

In this section, we shall describe a 2-degenerate graph with geometric thickness at least 3.
For a positive integer n let G(n) denote the graph constructed as follows. Start with a vertex
set Λ0 of size n and for each pair of vertices from Λ0 add one new vertex adjacent to both
vertices from the pair. Let Λ1 denote the set of vertices added in the last step. For each pair
of vertices from Λ1 add 89 new vertices, each adjacent to both vertices from the pair. Let
Λ2 denote the set of vertices added in the last step. For each pair of vertices from Λ2 add
one new vertex adjacent to both vertices from the pair. Let Λ3 denote the set of vertices
added in the last step. This concludes the construction. Observe that for each i = 1, 2, 3,
each vertex in Λi has exactly two neighbors in Λi−1. Hence, G(n) is 2-degenerate. We claim
that for sufficiently large n the graph G(n) has geometric thickness at least 3. To prove
this result, we need several geometric and topological insights that are summarized in the
following lemmas.

Let Gk denote the grid formed by k horizontal straight-line segments crossing k vertical
straight-line segments. The grid Gk has four sides: the sets of left and right endpoints of the
horizontal segments and the sets of lower and upper endpoints of the vertical segments form
the four sides of Gk, respectively. The first and the last horizontal segment and the first
and the last vertical segment form the boundary of Gk while all other segments are called
the inner edges of Gk. We call an arrangement of straight-line segments combinatorially
equivalent to Gk a k-grid. Here, we call two arrangements of straight lines or straight-line
segments combinatorially equivalent if the embeddings given by the arrangement of their
graphs (skeletons) are combinatorially equivalent. We point out that a k-grid sometimes
refers to a set of disjoint red segments and a set of disjoint blue segments where every pair of
red/blue segment intersects; e.g., [1]. Note that our definition is more restrictive. Among
others, no two segments share an endpoint in our notion of a k-grid. The following lemma
shows how both concepts are related. A proof is given in the full version [16, Section 3.1].

SoCG 2023
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A B

Figure 6 A tidy drawing of H4, the full 1-subdivision of K4,4. In particular, edges incident to A

do not cross each other, edges incident to B do not cross each other, and, hence, there are no three
pairwise crossing edges.

▶ Lemma 3. Each arrangement of k2k−1 disjoint red straight-line segments and k disjoint
blue straight-line segments, where each red segment crosses each blue segment, contains a
k-grid.

In the following, we need a grid-structure with some additional properties summarized in
the following definitions. For any point set Q in the plane, we call a straight-line segment in
the plane a Q-edge if it has an endpoint in Q. We call two point sets A and B separated if
A ∪ B is in convex position and the convex hull of A does not intersect the convex hull of B

(that is, along the boundary of the convex hull of A ∪ B the sets do not interleave).
Consider a complete bipartite graph Kn,n with bipartition classes A and B. Let Hn

denote the graph obtained from Kn,n by subdividing each edge exactly once. Let C denote
the set of subdivision vertices of Hn. Observe that each edge of Hn has one endpoint in
C and the other endpoint in A ∪ B, and hence is either an A-edge or a B-edge. We call a
geometric drawing of Hn tidy, if A and B are separated, there is no crossing between any two
A-edges, and there is no crossing between any two B-edges. Figure 6 shows a tidy drawing of
H4. Note that we make no (convexity) assumptions on the positions of subdivision vertices.
Since A and B are separated, a tidy drawing induces an ordering of A and B by traversing
these points along the convex hull of A ∪ B in the counterclockwise direction starting with
the vertices in A. An edge of Hn is called an inner edge if it is not incident to the first or
last vertex of A and not incident to the first or last vertex of B in the order given above.
Similarly, we call an edge of the underlying copy of Kn,n an inner edge if it corresponds to
two inner edges of Hn.

Consider a k-grid T in Hn with one side in A and one side in B (and the respective
opposite sides in C). We call the sides of T that are contained in A or B the A-side and
B-side, respectively. Let a1, . . . , ak denote the vertices of the A-side of T in the order given
by A and let b1, . . . , bk denote the vertices of the B-side of T in the order given by B. For
each i let xA

i denote the crossing point between the A-edge of T with endpoint ai and the
B-edge in T farthest away from ai. For i, j ≤ k, with i < j, the Ai,j-corridor of T is the
polygon enclosed by xA

i , ai, ai+1, . . . , aj , xA
j . Crossing points xB

1 , . . . , xB
k and Bi,j-corridors

are defined similarly. Figure 7 (right) shows examples of such corridors. A tidy k-grid is a
topological subgraph T of a tidy drawing of Hn such that

T is a k-grid with one side in A and one side in B (and the opposite sides in C),
for each i ≤ k, the segment aix

A
i is contained in the A1,k-corridor of T ,

for each i ≤ k, the segment bix
B
i is contained in the B1,k-corridor of T .

Figure 7 shows a tidy 3-grid and a 4-grid that is not tidy.
Our arguments require a tidy grid such that every cell contains a (subdivision) vertex

from C. Such a grid is called dotted. The following lemma shows that we can always find a
suitable dotted grid. A proof is given in the full version [16, Section 3.2].
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A B A B

Figure 7 Left: A 4-grid with sides in A and B that is not tidy: there is a (red) A-edge not
contained in the A1,k-corridor as well as a (blue) B-edge not contained in the B1,k-corridor. Right:
A tidy (sub)grid. The A1,2-corridor and the B2,3-corridor are highlighted.

Figure 8 Left: An illustration of Γ(5, 4). Only edges incident to the central vertices are sketched.
Middle: Two monotone paths in Γ(5, 4). Right: The four (3, 3)-quadrants.

▶ Lemma 4. There is a constant c2 such that for any integers n and k, with n ≥ 2c2k428k

and k ≥ 3, each tidy drawing of Hn contains a dotted tidy k-grid.

Next, we will consider connections between the vertices inside of a dotted grid. To find
such connections running in certain directions within the grid, we shall use a Ramsey type
argument, summarized in the following Lemma 5. We will apply this lemma in such a way
that the mentioned color r corresponds to connections within the grid. For positive integers
k and t let Γ(k, t) denote the graph whose vertex set consists of disjoint sets V j

i , i,j ≤ k,
on t vertices each, such that u ∈ V j

i and v ∈ V q
p are adjacent if and only if i ≠ p and

j ̸= q. See Figure 8 (left) for an illustration of Γ(5, 4). Let r ≥ 3. We call an r-coloring of
E(Γ(k, t)) admissible if each monochromatic copy of K5 is of color r and any path uvw is
not monochromatic in some color c with 3 ≤ c < r in case u ∈ V j

i , v ∈ V q
p , and w ∈ V y

x with
1 ≤ i < p < x ≤ k and with 1 ≤ j < q < y ≤ k or 1 ≤ y < q < j ≤ k. Loosely speaking,
Γ(k, t) is the t-blowup of the complement of a k×k-grid graph, and an r-coloring is admissible
if any monochromatic copy of K5 has color r and each monotone monochromatic path on at
least two edges is colored with some color in {1, 2, r}. Given i and j, the (i, j)-quadrants of
Γ(k, t) are the four subgraphs induced by

⋃
p<i,q<j

V q
p ,

⋃
p<i,q>j

V q
p ,

⋃
p>i,q<j

V q
p , and

⋃
p>i,q>j

V q
p ,

respectively. See Figure 8 for an illustration. A proof of the following lemma is given in the
full version [16, Section 3.3].

▶ Lemma 5. Let r and t denote positive integers. There is a constant c3 such that for each
k ≥ c3 and each admissible r-coloring of E(Γ(k, t)) there are i, j ≤ k such that each vertex
in V j

i is incident to four edges of color r with endpoints in different (i, j)-quadrants.

We also use the following bound on Erdős–Szekeres numbers.

SoCG 2023
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▶ Lemma 6 ([13]). There is a constant c4 such that for each positive integer k each set of
2k+c4

√
k log k points in general position in the plane contains a subset of k points in convex

position.

Finally, we prove that the graph G(n) described in the beginning of this section has
geometric thickness at least 3.

▶ Theorem 7. Let k, m, n be integers with k ≥ c3 (with c3 from Lemma 5 for r = 11 and
t = 5), n ≥ 2c2210k2

(with c2 from Lemma 4) and m ≥ 12n. For each N ≥ 22m+c4
√

2m log(2m)

(with c4 from Lemma 6) the graph G(N) has geometric thickness at least 3.

Proof. Consider any geometric drawing of G = G(N). We assume that the vertices are in
general position, otherwise we can apply a small perturbation at the vertices to achieve this
without introducing any new crossings. For the sake of a contradiction, suppose that there is
a partition of G into two plane subgraphs A and B. We refer to the sets Λ0, Λ1, Λ2, and Λ3
as points sets like in the definition of G. Our proof proceeds as follows. We find a large tidy
drawing of Hn with base points in Λ0 and subdivision vertices in Λ1. Lemma 4 guarantees a
dotted grid in this drawing. Then we consider the connections of the vertices in the grid cells
via Λ2. We use Lemma 5 to show that many connections stay within the grid and hence
many vertices of Λ2 lie in the grid as well. Finally, we consider the connections of vertices
from Λ2 within the grid and use Lemma 5 again, to find a configuration of vertices from Λ2
that leads to a contradiction.

Consider the point set Λ0. Lemma 6 yields a set Λ′
0 ⊆ Λ0 of 2m points in convex position,

since N ≥ 22m+c4
√

2m log(2m). We consider the points in Λ′
0 in counterclockwise order with

an arbitrary first vertex. Consider the copy of Hm in G between the set A of the first m

vertices of Λ′
0 and the set B of the last m vertices of Λ′

0. The edges of the underlying copy
of Km,m are of four different types: in Hm they correspond to two edges from A, or to two
edges from B, or one edge from A and one edge from B (where either the edge from A has
an endpoint in A and the edge from B has an endpoint in B or vice versa). Since m ≥ 12n

there is, due to the bipartite Ramsey theorem (precise statement given in the full version [16,
Lemma 6]), a copy of Kn,n with all edges of the same type, leading to a corresponding copy
H of Hn. Since n ≥ 3, this type cannot be one of the types with edges only from A or only
from B as both A and B are planar but K3,3 is not. Without loss of generality, assume that
all edges in H incident to A are in A and all edges incident to B are in B. Observe that H is
a tidy geometric drawing of Hn since A and B are crossing-free and the sets A and B are
separated (their convex hulls do not intersect and A ∪ B = Λ′

0 is in convex position). Further
note that 22k2 ≥ (k2 + 1)428 for k ≥ 4. Hence n ≥ 2c2210k2

≥ 2c2(k2+1)428(k2+1) , and there is,
by Lemma 4, a dotted tidy (k2 + 1)-grid T in H with vertices from Λ1 in the cells.

Let Λ′
1 ⊆ Λ1 denote a set of vertices consisting of one vertex from each cell of T . Consider

the graph Γ1 with vertex set Λ′
1 where two vertices are adjacent if and only if they are in

distinct rows and distinct columns of T . Then Γ1 forms a copy of Γ(k2, 1). We will define
an edge coloring Φ of Γ1 based on the drawing of the edges between Λ′

1 and Λ2. Consider
two vertices x, x′ ∈ Λ′

1. There are 89 vertices in Λ2 adjacent to both x and x′. We will
distinguish 11 different cases how the edges between such y ∈ Λ2 and x, x′ are drawn. Then,
by the pigeonhole principle, there will be nine vertices from Λ2 with the same type of drawing
of xy and x′y. The cases are not disjoint from each other and we break ties arbitrarily. If
there are nine vertices y ∈ Λ2 with xy, x′y ∈ E(A), then Φ(xx′) = 1. If there are nine such
vertices with xy, x′y ∈ E(B), then Φ(xx′) = 2. Now assume that there are no such nine
vertices, so there are 73 such vertices where one edge is from A and the other edge is from
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L′y
z

Figure 9 This arrangement is not realizable by straight-line segments, since the straight line
through L′ does not intersect any of the other lines twice and does not intersect itself.

B. These edges either leave T or stay within T . If we have at least nine vertices that stay
within T , we pick Φ(xx′) = 11. Otherwise, we can assume that there are at least 65 vertices
y, for which the bicolored path xyx′ leaves T . The cell containing x is the intersection of
an A-corridor and a B-corridor of T . So an edge xy intersects the boundary of T either at
one of the two “ends” of the A-corridor (if xy ∈ E(A)) or at one of the two “ends” of the
B-corridor (if xy ∈ E(B)). Similarly, an edge x′y has four options to leave T . Also observe
that each of xy and x′y can intersect the boundary of T only once, see Figure 9. The figure
shows the boundary edges of T and a supposedly straight-line segment L′ intersecting the
boundary twice. This arrangement can’t be realized by straight lines as the straight line
through L′ intersects itself once or some other line twice otherwise. This gives 8 possibilities
how the intersections can be located (under the assumption that xy and x′y are not both
in A and not both in B). We use colors 3, . . . , 10 to encode these possibilities. Whenever
there is a set Ŷ of nine vertices from Λ2 such that the paths xyx′ have the same locations of
intersections for all y ∈ Ŷ , the edge xx′ receives the corresponding color. If xx′ is neither
colored with 1, 2, or 11, we have at least 65 vertices connected via leaving T , and therefore
at least one of the eight possibilities how to leave T occurs nine times. So Φ is well defined
(up to breaking ties arbitrarily).

We claim that Φ is admissible. We first prove that colors 3, . . . , 10 do not induce a
monotone monochromatic path on two edges. For the sake of a contradiction, suppose that
there is such a path xx′x′′. By symmetry, we assume that there are vertices y, y′ and edges
xy′, x′y ∈ E(A), and x′y′, x′′y ∈ E(B) such that xy′ and x′y leave T at the same sides of
their respective A-corridors and x′y′ and x′′y leave T at the same sides of their respective
B-corridors. The situation is depicted in Figure 10. We claim that this arrangement is
not stretchable. To see this consider the 4-cycle between the intersections of xy′, x′′y and
the grid boundary as depicted in Figure 10 (right). This cycle needs to be embedded as
a quadrilateral. For two opposing corners (the depicted crossings L1/L2 and Lx/Lx′′) we
have to embed the edges such that the “stubs” lie in the inside of the quadrilateral. To
achieve this for one corner we need an incident concave angle in the quadrilateral and hence
the realization of the quadrilateral would require at least two concave angles, which is not
possible. Hence, such an arrangement is not stretchable. As a consequence, the colors
3, . . . , 10 do not induce a monotone monochromatic path on two edges. This immediately
shows that these colors also do not induce a monochromatic copy of K5. The color classes 1
and 2 correspond to subgraphs of the plane graphs A and B, respectively. Hence, they do
not induce monochromatic copies of K5 as well. This shows that all monochromatic copies
of K5 are of color r = 11. Therefore, Φ is admissible.

Now divide the (k2 + 1)-grid T into k2 many (k + 1)-grids T j
i , with i, j, ≤ k, where T j

i

consists of the A-edges on position (i − 1)k + 1, . . . , ik + 1 (in the ordering of A) and the
B-edges with positions (j − 1)k + 1, . . . , jk + 1 (in the ordering of B). See Figure 11. Let Γj

i

denote the subgraph of Γ1 corresponding to T j
i . Then Γj

i is a copy of Γ(k, 1) and Φ is an
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x′

x′′

x

y

y′

Lx

L1

Lx′′

L2

x′′

x

Figure 10 Left: A monotone path that is monochromatic under Φ in some color in {3, . . . , 10}.
Note that it is not possible that x′y and x′y′ intersect. Right: The edges from the left part forming
an arrangement that can’t be realized by straight-line segments.
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Figure 11 A (k2 + 1)-grid T contains k2 many (k + 1)-subgrids. (Here k = 5.)

admissible 11-coloring of Γj
i . Consider some fixed i, j ≤ k. Due to the choice of k there is,

by Lemma 5, an edge xx′ in Γj
i of color r = 11 (we do not need the stronger statement of the

lemma here). Hence, there is a set Y j
i ∈ Λ2 of nine vertices such that for each y ∈ Y j

i the
edges xy and x′y stay within T . Let Ax and Bx denote the A-corridor and B-corridor whose
intersection forms the cell containing x. Similarly, let Ax′ and Bx′ denote the respective
corridors for the cell containing x′. As argued above, edges within T cannot leave their
respective corridors. So each y ∈ Y j

i lies either in the cell Ax ∩ Bx′ or in the cell Bx ∩ Ax′ .
By the pigeonhole principle, there is a set Ỹ j

i ⊆ Y j
i of five vertices that lie in the same cell of

T . Note that this cell is contained in T j
i .

Consider the copy of Γ(k, 5) whose vertex set consists of the union of all sets Ỹ j
i , with

i, j ≤ k, where two vertices y ∈ Ỹ j
i and y′ ∈ Ỹ j′

i′ are connected if and only if i ̸= i′ and
j ̸= j′. For any two vertices y, y′ ∈ V (Γ(k, 5)) there is a (unique) vertex in Λ3 adjacent to
both vertices. We define a coloring Ψ of the edges of Γ(k, 5) similar to the coloring Φ above,
except that the color of an edge yy′ in Γ(k, 5) is determined by the drawing of the unique
edges yz and y′z, z ∈ Λ3 (instead of a set of nine edge pairs behaving identically). Then Ψ
is admissible by arguments similar to those applied for Φ. Due to the choice of k there are,
by Lemma 5, indices i, j ≤ k such that each vertex in Ỹ j

i is incident to four edges of color 11
under Ψ with endpoints in different (i, j)-quadrants of Γ(k, 5). See Figure 12 for illustrations.

Let Y = Ỹ j
i for the specific indices i and j from above. Consider the A-corridor A and

B-corridor B of T whose intersection forms the cell containing the set Y . For a vertex y ∈ Y

consider four vertices y1, . . . , y4 from different quadrants with Ψ(yyℓ) = 11, ℓ = 1, . . . , 4.
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y A

B

z4

z3

z1
z2 y2

y1

y4

y3

Y
y

y2y1

y4
y3

Y

Figure 12 Left: Every vertex y ∈ Y is incident to four edges in Γ(k, 5) of color 11 with endpoints
in different quadrants. Right: In G, each y ∈ Y has two edges of the same type (A/B) that leave in
the same direction relative to y; here yz1 and yz2.

y

y′

y′′

x

z

z′

z′′

z̃

z̃′

z̃′′

T j
i

A

Figure 13 Construction in the proof of Theorem 7. Obtaining a monochromatic crossing at xy,
xy′ or xy′′ is unavoidable.

Each edge yyℓ ∈ Γ(k, 5) corresponds to two edges (of G) yzℓ and yℓzℓ for some zℓ ∈ Λ3 such
that zℓ lies within T . In particular, zℓ lies either in A or in B but not in the cell containing
y. As y1, . . . , y4 are from four different quadrants, two of the vertices z1, . . . , z4 lie in A or
two lie in B. Moreover, for either A or B two vertices lie on different “sides” of y within
the corridor. If for y we have |A ∩ {z1, . . . , z4}| ≥ 2 and at least two of these vertices lie on
different sides in A relative to y, we call y an A-vertex, otherwise we call y a B-vertex.

To get a contradiction we now show that Y contains at most two A-vertices and at
most two B-vertices, which violates |Y | = 5. Due to the choice of Y ⊆ Y j

i , there are
vertices x, x′ ∈ V (T j

i ) = V (Γj
i ) such that there are edges xy ∈ E(A) and x′y ∈ E(B) with

Φ(xy) = Φ(x′y) = 11. That is, xy ∈ A and x′y ∈ B. For the sake of a contradiction,
suppose that there are three A-vertices y, y′, y′′ in Y . Then there are three vertices ỹ, ỹ′,
ỹ′′ ∈ V (Γ(k, 5)) ⊆ Λ2 and three vertices z, z′, z′′ ∈ Λ3 such that yz, y′z′, y′′z′′ ∈ E(A),
ỹz, ỹ′z′, ỹ′′z′′ ∈ E(B), and z, z′, z′′ lie in A on the same side relative to y, but not in T j

i .
By the same reasoning we can find three vertices z̃, z̃′, z̃′′ such that yz̃, y′z̃′, y′′z̃′′ ∈ E(A),
but now these vertices lie on the other side in A relative to x (but also outside T j

i ). The
edges L = {yz̃, yz, y′z̃′, y′z′, y′′z̃′′, y′′z′′} split T j

i in four zones. In one of these zones, x has
to be located. No matter which zone we pick, there will always be a crossing of an edge
from {xy, xy′, xy′′} ⊆ E(A) with an edge in L ⊆ E(A) (see Figure 13), a contradiction.
Consequently, there are no three A-vertices in Y .
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Figure 14 This arrangement of 3k red segments and 3k blue segments contains no copy of Gk+1.
For each color and each slope there are k parallel segments (here k = 2 is depicted).

Similarly, there are no three B-vertices in Y . This contradicts |Y | ≥ 5. Hence, the
geometric thickness of G is at least 3. ◀

Theorem 2 is a direct consequence of Theorem 7.

4 Conclusions

We proved that the largest geometric thickness among 2-degenerate graphs is either 3 or 4,
answering two questions posed by Eppstein [11]. It remains open to decide whether there is
a 2-degenerate graph of geometric thickness or geometric arboricity 4.

Our proof of the lower bound shows a geometric thickness of at least 3 for a tremendously
large 2-degenerate graph. This is mainly due to using several rounds of Ramsey type
arguments. We make little attempts to reduce this size and there are several places in the
proof where a smaller size could be attained easily, for instance by using better or more
specific Ramsey numbers (Lemma 5). In one step in the proof (Lemma 3) we are given
a collection of red and blue straight-line segments in the plane and we need to find k red
segments and k blue segments forming a grid combinatorially equivalent to Gk (which is
formed by k horizontal segments crossing k vertical lines). We need exponentially many
segments to be given, however it seems that a linear number suffices. An arrangement of 3k

red segments and 3k blue segments without copy of Gk+1 is given in Figure 14.

▶ Question 1. Given an arrangement of 3k disjoint red straight-line segments and 3k disjoint
blue straight-line segments, where each red segment crosses each blue segment, are there
always k red segments and k blue segments forming a grid combinatorially equivalent to Gk?

The 2-degenerate graphs form a subclass of Laman graphs, which in turn form a subclass
of all graphs of arboricity 2. Our lower bound gives a graph of geometric thickness 3 in
either of these classes. However, for both larger classes it is unknown whether the geometric
thickness is bounded by a constant from above.
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