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Abstract
Let B be a set of n unit balls in R3. We present a linear-size data structure for storing B that
can determine in O∗(n1/2) time whether a query line intersects any ball of B and report all k such
balls in additional O(k) time. The data structure can be constructed in O(n log n) time. (The O∗(·)
notation hides subpolynomial factors, e.g., of the form O(nε), for arbitrarily small ε > 0, and their
coefficients which depend on ε.)

We also consider the dual problem: Let L be a set of n lines in R3. We preprocess L , in O∗(n2)
time, into a data structure of size O∗(n2) that can determine in O∗(1) time whether a query unit
ball intersects any line of L , or report all k such lines in additional O(k) time.
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1 Introduction

Let B := {B1, . . . , Bn} be a set of n unit-radius balls in R3. We wish to preprocess B into
a data structure that supports various line-intersection queries. That is, given a query line
ℓ in R3, determine whether ℓ intersects a ball in B, report all balls of B that ℓ intersects,
count the number of such balls, or compute some aggregate function on the balls intersected
by ℓ. Since all balls in B have the same radius, this problem can be reformulated as the
unit-cylinder range-searching problem: Consider the set P of the centers of balls in B.
Preprocess P into a data structure so that we can quickly answer range queries for a query
unit-radius cylinder C, such as determine whether C ∩ P = ∅ (referred to as emptiness
query), report C ∩ P (reporting query), or compute |C ∩ P | (counting query). We also
consider the dual problem where the input is a set L of n lines in R3, and we wish to answer
unit-ball-intersection queries, i.e., does a query unit ball intersect any line of L .

Related work The intersection-searching problem asks to preprocess a set O of geometric
objects in Rd into a data structure, so that one can quickly report or count all objects of
O intersected by a query object γ, or just test whether γ intersects any object of O at all.
Intersection queries are generalization of range queries (in which the input objects are points)
and point-enclosure queries (in which the query objects are points).
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5:2 Line Intersection Searching Amid Unit Balls in 3-Space

Intersection-searching problems in 2D have been studied since the early 1990s, see, e.g., [7]
and surveys [1, 3], but these problems mostly reduce to 2D or 3D range searching. In general,
intersection-searching queries can be formulated as semi-algebraic range queries or point-
enclosure queries in an appropriate parametric space, but the storage and query time are
large because the parametric space tends to be much higher dimensional than the ambient
space [2]. For example, using semi-algebraic range searching data structures and multi-level
partition trees based on geometric cuttings (see e.g. [13]), a line-intersection query, and its
generalizations such as segment-intersection and ray-shooting queries, amid n triangles or
balls in R3 can be answered in O∗(n3/4) time using O∗(n) storage, in O(logn) time using
O∗(n4) storage, or in O∗(n/s1/4) time using O∗(s) storage, for any n ≤ s ≤ n4, by combining
the first two solutions [13, 14].1 Recently, Ezra and Sharir [8] proposed a new approach
for answering ray-shooting queries amid triangles in R3, using the polynomial-partitioning
scheme by Guth [9]. This approach was extended to 3D intersection-searching in a fairly
general setting by Agarwal et al. [2].

Analogous to halfspace-emptiness and halfspace-reporting queries, intersection-detection
and intersection-reporting queries in some cases can be answered more quickly than intersection-
counting queries using the concept of shallow cutting [11]. For example, a line/segment
intersection-detection query amid n balls in R3 can be answered in O∗(n/s1/3) time using
O∗(s) storage, for n ≤ s ≤ n3 [12, 13, 14, 16], while the best known data structure for
answering intersection-counting queries takes O∗(n/s1/4) time, as mentioned above.

Our results. In this paper we make progress toward intersection queries between lines
and unit balls in R3. Our first main result (Sections 2–4) is a linear-size data structure for
answering line-intersection queries amid unit balls in R3:

▶ Theorem 1. Let B be a set of n unit balls in R3. B can be preprocessed, in O(n logn)
time, into a linear-size data structure so that for a query line ℓ in R3, a line-intersection-
detection query can be answered in O∗(n1/2) time, and a line-intersection-reporting query
can be answered in additional O(k) time, where k is the output size.

We preprocess the centers of B into a data structure for answering unit-cylinder range
emptiness/reporting queries (Section 2). Our main observation is that if the centers lie in a
narrow slab, the region bounded by two parallel planes within distance 2 from each other,
then a query unit cylinder C can be replaced by O(1) cylindrical prisms, each of which is of
the form τ⊕ru, where τ is a carefully chosen portion of ∂C, u is one of O(1) canonically chosen
directions in R3, and ru is the ray emanating from the origin in the direction u (Section 3).
An advantage of working with such cylindrical prisms is that we can combine the theory of
lower envelopes of bivariate functions [15] with Matoušek’s [11] shallow-cutting technique
to construct a linear-size data structure with O∗(

√
n) query time. One stumbling block in

applying his technique to our setting is the construction of the so-called test set. Roughly
speaking, a test set is a small representative set of all query cylindrical prisms, in the sense
that if the data structure has small query time for the test set, it also has a similar query
time for any cylindrical prism. The construction of a test set Q in [11] for half-space range
searching heavily relies on the linearity of hyperplanes. Agarwal and Matoušek had proposed
an approach for constructing a test set for semi-algebraic ranges [4], but unfortunately it
gives a weaker bound on the query time. Sharir and Shaul [16] were able to overcome this
challenge by proposing a different approach for constructing a test set, which is fairly general.
We adapt their approach to our setting for constructing a desired test set (Section 4).

1 As in the abstract, the O∗(·) notation hides subpolynomial factors, e.g., of the form O(nε), for arbitrarily
small ε > 0, and their coefficients which depend on ε.
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Our second main result (Section 5) is an O∗(n2)-size data structure for answering fixed-
radius neighbor queries amid a set of lines in R3:

▶ Theorem 2. Let L be a set of n lines in R3. L can be preprocessed, in time O∗(n2), into
a data structure of size O∗(n2) that can answer in O(logn) time whether a query point in
R3 lies within unit distance from any of the lines of L . Reporting the subset of these lines
costs additional O(k) time, where k is the output size.

This problem is equivalent to answering point-enclosure queries amid a set of unit cylinders
in R3. Using a two-dimensional geometric cutting, we reduce the problem to the case when
the query point lies inside a narrow slab. We then replace each input cylinder with O(1)
cylindrical prisms and check whether the query point lies in any of the cylindrical prisms.

2 Unit-Cylinder Range Searching

Let P ⊂ R3 be a set of n points in R3. We wish to preprocess P into a linear-size data
structure so that a range-emptiness or a range-reporting query for a unit cylinder C can be
answered quickly. For simplicity, we assume that the axis of C is not parallel to the yz-plane.
A similar but simpler data structure can answer queries for unit cylinders whose axes are
parallel to the yz-plane; we omit the details from this version. Let C be the family of unit
cylinders whose axes are not parallel to the yz-plane. A cylinder Cp ∈ C can be represented
by a point p = (p1, p2, p3, p4) ∈ R4 where (p1, p2) and (p3, p4) are intersection points of the
axis of Cp with the planes x = 0 and x = 1, respectively. We thus identify C with R4.

We construct a two-level partition tree Ψ on P , as follows. For a point p ∈ P , let p∗ be
its xy-projection, and let P ∗ = {p∗ | p ∈ P}. Without loss of generality, we assume that no
two points in P project to the same point. Our top-level tree is a two-dimensional partition
tree, based on simplicial partition, and some of its nodes store a second-level partition tree.

Let S be a set of n points in R2, and let r > 0 be a parameter. A simplicial (1/r)-partition
for P with respect to the parameter r is a collection Π = {(S1,∆1), ..., (Sm,∆m)}, where
m ≤ r is an integer, such that (i) {S1, ..., Sm} is a partition of S (into pairwise-disjoint
subsets) satisfying n/r ≤ |Si| ≤ 2n/r, for each i, and (ii) each ∆i is a (possibly degenerate)
triangle, referred to as a cell, that contains Si. In general, the cells ∆i need not be disjoint.
The crossing number of Π for a line ℓ in R2 is the number of its cells that are crossed by
ℓ. The crossing number of Π is defined as the maximum crossing numbers over all lines ℓ.
Matoušek [11] described an algorithm for constructing a simplicial partition whose crossing
number is O(

√
r). If r = O(1), the running time of his algorithm is O(n); see also [5].

We choose r to be a sufficiently large constant. By constructing simplicial partitions
recursively and stopping the recursion as soon as the number of points becomes smaller than
some sufficiently large constant n0, we construct a two-dimensional partition tree on P ∗,
which is the primary tree of Ψ. See [1, 5, 11] for details. Each node v ∈ Ψ is associated
with a cell ∆v and a subset P ∗

v ⊆ P ∗ ∩ ∆v. If v is the root then ∆v = R2 and P ∗
v = P ∗.

Let Pv = {p ∈ P | p∗ ∈ P ∗
v } be the subset of P corresponding to P ∗

v . Set nv = |Pv|. Let
∆↑

v = ∆v × R be the vertical prism erected over the cell ∆v. Then Pv ⊂ ∆↑
v.

The width of a planar point set X is the minimum distance between two parallel supporting
lines of X. We call a cell of Ψ narrow if its width is at most 2 and wide otherwise. For a node
v ∈ Ψ, if ∆v is narrow, we build a second-level partition tree Σv on Pv for answering range
queries with a unit cylinder, using the algorithm described in Section 3. By Theorem 12, Pv

can be preprocessed, in O(n logn) time, into a linear-size data structure so that an emptiness
query for a unit cylinder can be answered in O∗(n1/2) time. This data structure can also
report all k points of Pv lying in a query cylinder in an additional O(k) time. This completes
the description of the data structure.

SoCG 2023



5:4 Line Intersection Searching Amid Unit Balls in 3-Space

Query procedure. Let C be a query unit cylinder whose axis is not parallel to the z-axis,
and let C∗ be its xy-projection, which is a strip of width 2 bounded by two parallel lines.
For simplicity, we describe the procedure answering the emptiness query with C. We visit Ψ
recursively in a top-down manner, starting from its root. Suppose we are at a node v ∈ Ψ.
If C∗ ∩ ∆v = ∅, then we simply return. If v is a leaf, then we check all points of Pv and
return yes if any of them lies in C and no otherwise. So assume that v is an internal node
and ∆v ∩ C∗ ≠ ∅. If ∆v is narrow then we use the secondary data structure Σv stored at v
to test whether Pv ∩ C ≠ ∅; see Section 3. On the other hand, if ∆v is wide (i.e., its width
is more than 2), then we recursively visit the children of v. Note that if ∆v is wide then it
intersects at least one of the two boundary lines of C∗. For the emptiness query, the query
procedure can terminate as soon as a point of P inside C is found. But for the reporting
query, we continue with recursive calls until we have reported all the points.

Analysis. The height of Ψ is O(logn), and some of its nodes store a linear-size secondary
structure and others use O(1) space, so the overall size of Ψ is O(n logn). A similar argument
shows that the preprocessing time is O(n log2 n).

Concerning the query time, we present the analysis for emptiness queries. Reporting
queries can be analyzed in a similar manner, where we gain an additional factor of O(k) in
the query time. Denote by Q(n) the maximum emptiness query time for the two-level data
structure on a set of n points. For n ≤ n0, Q(n) = O(n). If ∆v is a narrow cell then we use
the secondary data structure stored at v and answer an emptiness query in O∗(

√
nv) time.

On the other hand, if ∆v is wide then as mentioned above, one of the boundary lines of C∗

intersects ∆v. Since the crossing number of a simplicial partition is O(
√
r), the query is

answered recursively at O(
√
r) children. The query procedure spends O∗(

√
nv) time for each

of the remaining children of v. We therefore, obtain the following recurrence for n > n0.

Q(n) = O(
√
r)Q(2n/r) +O∗(rn1/2),

Since r is a sufficiently large constant, the solution is Q(n) = O∗(n1/2).
The logn factor can be removed from the space and preprocessing time using a standard

technique of storing the second-level structure at every ε · logn level of the primary structure,
for a sufficiently small constant ε > 0. This adds a factor of O(nε) to the query time, which
is subsumed by our O∗(·) notation. This completes the proof of Theorem 1.

3 Range Queries for Narrow Cells

Let P ⊂ R3 be a set of n points lying in a vertical slab σ of width at most 2, and let C
be the set of all unit cylinders whose axes are not parallel to the yz-plane. In this section,
we describe a data structure for answering range emptiness and reporting queries on P

with a unit cylinder in C. Let H−, H+ be the two parallel boundary planes of σ with
x(H−) < x(H+). Without loss of generality, we assume that H−, H+ are normal to the
x-axis. We also assume that the width of σ is at most w0 = sin2(1/16) because otherwise we
partition σ into O(1) slabs, each of width at most w0, and build a separate data structure
for each of them.

We first show that a range query on such a set P with a unit cylinder in C can be
reduced to answering range queries with O(1) “cylindrical prisms,” each of which is erected
in one of the O(1) carefully chosen canonical directions; see Section 3.1 for a precise problem
formulation and the reduction. We then apply the machinery developed in [11, 16] to build
the desired data structure. As mentioned in Section 1, a critical ingredient of this machinery
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is the construction of a test set, which, roughly speaking, is a small-size representative set of
query cylindrical prisms. As in [4, 16], each range in the test set is not a cylindrical prism
but a generalized cylindrical prism, the union of an infinite family of cylindrical prisms. We
describe the notion of test set in Section 3.2 but postpone its construction to Section 4. We
finally adapt the machinery of [11] for answering range queries with cylindrical prisms.

3.1 Reduction to cylindrical-prism queries
Let S2 be the unit sphere of directions in R3. For a direction u ∈ S2, let ru be the ray
emanating from the origin in direction u. Set ū = −u. For a point p ∈ R3, p+ ru is the ray
in direction u emanating from p, and p− ru = p+ rū is the ray emanating from p in direction
ū. Let κ > 16π be a sufficiently large constant. By choosing two orthogonal families of
O(κ) great circles, we partition S2 into “spherical grid” cells so that the (spherical) distance
between any two points within a grid cell is at most π

κ . Let G be the set of these O(κ) great
circles, and let A (G ) be the grid formed by the arrangement of G .

Cylindrical patches and prisms. Let C ∈ C be a unit cylinder with axis ℓ. Let the unit
circle C∗ be the orthogonal projection ∂C on a two-dimensional plane orthogonal to ℓ, i.e.,
C = C∗ × ℓ. For a point p∗ ∈ C∗, the line {p} × ℓ ⊂ ∂C is called a generator line of C.
A cylindrical patch τ ⊂ ∂C is a portion of ∂C bounded by two of its generator lines, i.e.,
τ = δ × ℓ, where δ ⊂ C∗ is a unit arc spanning less than a semi-circle. We partition ∂C into
a family P(C) of O(1) canonical patches using the grid A (G ), as follows. Each patch in
P(C) is the maximal portion of ∂C whose (inner) normals lie within the same grid cell of
A (G ). The normals of C form a great circle C⊥ orthogonal to ℓ. The generator lines on
∂C at which normals of C are the intersection points of C⊥ with the great circles of G form
the boundary lines of the canonical patches. The portion of ∂C between two consecutive
boundary lines forms a canonical patch. By construction, the normals within a canonical
patch vary by at most π/κ. Although A (G ) has O(κ2) cells, a cylinder in C has only O(κ)
canonical patches.

Good directions. A direction u ∈ S2 is called good for a canonical patch τ ∈ P(C) if the
following two conditions hold:
(G1) The angle between u and the (inner) normal of either of the planes H−, H+ does not

lie in the range [ π
2 − π

κ ,
π
2 + π

κ ], i.e., if u = (ux, uy, uz) then |ux| ≥ sin π
κ . Recall that the

inner normals of H−, H+ are (±1, 0, 0). This condition says that u is not “nearly parallel”
to the plane H− (or H+).

(G2) The angle between u and the inner normal np for any p ∈ τ is at most π
2 − π

κ , i.e.,
⟨np, u⟩ ≥ sin π

κ . This condition says that for any point p ∈ τ , the ray p+ ru enters C and
it is not “nearly parallel” to the tangent plane of C at p.

(G1)–(G2) imply that for a point p on a canonical patch τ , p+ ru enters C and exits slab
σ before it exits C. We make this notion more precise in Lemma 5 below.

▶ Lemma 3. There exists a constant δ := δ(κ) ≥ π
κ such that the set of good directions for

any canonical patch τ(C) of a cylinder C ∈ C contains a spherical cap of radius δ.

Proof. We show that there is a direction u that is at least δ far away from all bad directions
for τ , which would imply the lemma.

Let B⊕ ⊂ S2 be the set of all directions that are within (spherical) distance δ from a bad
direction for τ . B⊕ is the union of two sets B⊕

0 , B
⊕
1 , formed by the complement of the two

aforementioned conditions (G1) and (G2) of good directions. More precisely,

SoCG 2023



5:6 Line Intersection Searching Amid Unit Balls in 3-Space

(I) Let B0 be the set of all points on S2 that lie within (spherical) distance π
κ from the

great circle normal to the vector (1, 0, 0), i.e., parallel to the planes H−, H+. B⊕
0

is the set of points that lie within distance δ from B0. The area of B⊕
0 is at most

4π sin( π
κ + δ).

(II) Let B1 be the set of directions that make an angle of more then π
2 − π

κ from some
point of τ . Since the normals within τ vary by at most π/κ, B1 is a spherical cap of
angular opening at most π

2 + 2π
κ . B⊕

1 is the set of points on S2 within distance δ from
B1 and thus spherical cap of radius π

2 + 2π
κ + δ. Hence, the area of B⊕

1 is at most
2π + 2π sin( 2π

κ + δ).
Summing these areas, we obtain

Area(B⊕) ≤ 2π
(

1 + 2 sin
(π
κ

+ δ
)

+ sin
(

2π
κ

+ δ

))
< 4π,

provided we choose δ = π
κ and κ ≥ 16π. As such S2 \B⊕ ≠ ∅, and there exists a direction u

such that all directions in the spherical cap of radius δ centered at u are good for τ . ◀

In the following, we set δ = π
κ . Let B0 ⊂ S2 be, as above, the set of directions that violate

the condition (G1). We choose Z ⊂ S2 \B0 to be a set of O(1/δ2) points that is a δ-net for
S2 \B0, i.e., for any point on S2 \B0, there is a point in Z within distance δ. For simplicity,
we assume that Z is centrally symmetric. Lemma 3, the definition of B0 and the choice of δ
immediately imply the following:

▶ Corollary 4. For any point v ∈ S2, there is a point u ∈ Z within distance 2π
κ from v.

Reduction to cylindrical prisms. We first prove a key property of good directions:

▶ Lemma 5. Let C ∈ C be a unit cylinder, let τ ∈ P(C) be a canonical patch, and let u be a
good direction for τ . Then any line parallel to u intersects τ in at most one point. Moreover,
for any point p ∈ τ ∩ σ, the ray p+ ru exits σ before exiting C.

Proof. If a line ℓ parallel to u intersects τ twice, then by the Intermediate Value Theorem, τ
must have a tangent in the u-direction, which contradicts property (G2) of u being a good
direction. Hence, ℓ intersects τ at most once.

We next prove the second assertion of the lemma. Let p′ be the other intersection point
of ∂C and the ray p+ ru. We observe that |pp′| is minimized when pp′ is orthogonal to the
axis of C and forms an angle of π

κ with the tangent plane to C at p. It thus follows that
|pp′| ≥ 2 sin ( π

κ ). On the other hand, by property (G1) of good direction, ru forms an angle of
at most π

2 − π
κ with the outer normal n to the plane H− (or H+). Consequently, the length

of the projection of pp′ on n is at least

|pp′| cos
(π

2 − π

κ

)
= |pp′| sin

(π
κ

)
≥ 2 sin2

(π
κ

)
≥ 2 sin2

(
1
16

)
> w0.

Thus p′ lies outside σ, which completes the proof of the lemma. ◀

For a direction u ∈ Z , let Pu(C) ⊂ P(C) denote the subset of canonical patches of C for
which u is a good direction. We construct a canonical prism τ↑

u on every patch τ ∈ Pu(C).
We construct O(1) canonical prisms for every patch τ ∈ P(C), one for every direction z that
is good for τ . The construction of the prism is somewhat delicate because we wish to meet
two conflicting constraints: (i) we want to ensure that τ↑

u ∩ σ lies inside C ∩ σ, and (ii) the
union of the canonical prisms over all canonical patches and over all their good directions in
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Z covers C ∩ σ. At a high level, we carefully clip τ by a constant-complexity semi-algebraic
curve lying on τ so that any generator line of τ intersects the curve exactly once. Let τ̂u ⊂ τ

be the clipped patch of τ with respect to direction u. We set τ↑
u := τ̂ ⊕ ru. We now describe

the construction of τ̂ .
We fix a direction u ∈ Z . For a point p ∈ τ , let eu(p) = (p+ ru) ∩ σ be the segment of

the ray p + ru that lies inside σ; eu(p) may be empty. Let ϕu(p) be the other endpoint of
eu(p) if eu(p) ̸= ∅. We set

τ̂u := {p ∈ τ | eu(p) ⊂ C}, τ↑
u = τ̂u ⊕ ru, and ∂τ̂u = {p ∈ τ | ϕ(p) ∈ ∂C}. (1)

(Here we use the convention that if eu(p) = ∅ then it lies inside C.) The patch τ is clipped
along the arc ∂τu. We note that the points ϕu(p) for p ∈ ∂τu lie on ∂C ∩H− (resp. ∂C ∩H+)
if the x-component of u is positive (resp. negative); see Figure 1.

H−

H+

eu(p)

∂τ̂u

ℓ′

τ̂u

ϕu(p)

τ

C

p

Figure 1 A clipped canonical patch τ̂u and its boundary arc ∂τu; segment eu(p) and its endpoint
ϕu(p) for a point p ∈ τ .

Fix one of the generator lines ℓ′ of τ . For any point p ∈ ℓ′, the intersection point p̄ = p+ ru
with ∂C lies on another generator line of C, say, ℓ′′. As we translate p along ℓ′, p̄ also
translates along ℓ′′ (with the segment pp̄ being in direction u), and thus there is a unique
point pℓ′ ∈ ℓ′ for which p̄ℓ′ = ϕu(pℓ′), i.e., pℓ′ ∈ ∂τ̂u. The following lemma easily follows from
the convexity of C:

▶ Lemma 6.
(i) Each generator line ℓ′ of τ contains exactly one point pℓ′ of ∂τ̂u. If the x-component of

u is positive (resp. negative), then {p ∈ ℓ | x(p) ≥ x(pℓ′)} (resp. {p ∈ ℓ | x(p) ≤ x(pℓ′)}
is the portion of ℓ′ that lies in τ̂u.

(ii) τ↑
u ∩ σ ⊂ C ∩ σ.

We construct the canonical prisms for every patch in Pu(C), and we repeat this step for all
directions in Z . Finally, we set

Λ(C) :=
⋃

u∈Z

{τ↑
u | τ ∈ Pu(C)}

SoCG 2023
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to be the set of all canonical prisms erected over the patches of Pu(C), and set

U (C) :=
⋃

τ↑∈Λ(C)

τ↑, (2)

to be the union of these canonical prisms.

▶ Lemma 7. For any cylinder C ∈ C, U (C) ∩ σ = C ∩ σ.

Proof. It follows immediately from Lemma 6 that U (C) ∩ σ ⊆ C ∩ σ. Therefore it remains
to prove that U (C) ∩ σ ⊇ C ∩ σ. Let q be a point in C ∩ σ. We show that there exists a
direction u ∈ Z and a patch τ ∈ Pu(C) such that q ∈ τ↑

u .
Let q∗ be the projection of q on the axis of C. Let u ∈ Z be the direction closest to q∗q,

and let ū = −u which is also in Z . By the construction of Z , u, ū satisfy (G1). Let q′ (resp.
q′′) be the intersection point of the ray q + ru (resp. q + rū = q − ru) with ∂C, and let τ ′

(resp. τ ′′) be the canonical (unclipped) patch of C containing q′ (resp. q′′). Let ℓ′ ⊂ τ ′ (resp.
ℓ′′ ⊂ τ ′′) be the generator line of C containing q′ (resp. q′′). See Figure 2.

τ ′

ℓ

ℓ′′

ℓ′

τq′

u
q∗

ūu
ū

C

q′′

q

Figure 2 Points q, q∗, q′, and q′′; generator lines and patches containing q′ and q′′.

We first claim that ū is a good direction for τ ′. By Corollary 4, ∠(qq∗, ū) ≤ 2π
κ . Further-

more, ∠(qq∗,nq′) ≤ ∠(qq∗, ū) ≤ 2π
κ . Therefore

∠(nq′ , ū) ≤ ∠(qq∗, ū) + ∠(qq∗,nq′) ≤ 4π
κ .

However, a direction that violates (G2) for patch τ (i.e., it is in B1) makes an angle of at
least π

2 − 2π
κ with nq′ , which is more than 4π

κ by our choice of κ. Hence, ū is a good direction
for τ ′. A similar argument shows that u is a good direction for τ ′′. If q′ ∈ τ̂ ′ then q lies in
the canonical prism τ ′↑

ū, and similarly if q′′ ∈ τ̂ ′′ then q lies in the prism τ ′′↑
u. We therefore

argue that at least one of these conditions holds.
We claim that if q′ does not lie in the clipped patch τ̂ ′, then q′′ lies in the clipped patch

τ̂ ′′. Without loss of generality, assume that the x-component of u is positive. Let G be the
plane spanned by ℓ′ and ℓ′′; the segment q′q′′ lies in G. Let g− = G ∩H− and g+ = G ∩H+

be the intersection lines of G with the boundary planes of σ; x(g+) > x(g−). Then G ∩ σ is
the strip lying between the parallel lines g−, g+. By definition, q ∈ G ∩ σ. Let w′ = ℓ′ ∩ ∂τ̂ ′

ū
(resp. w′′ = ℓ′′ ∩ ∂τ̂ ′′

u ) be the point on ℓ′ (resp. ℓ′) that lies on the boundary arc ∂τ̂ ′
ū (resp.

∂τ̂ ′′
u ). See Figure 3.
Since the x-component of u is assumed to be positive (and thus the x-component of ū is

negative), by Lemma 6,

τ̂ ′
ū ∩ ℓ′ = {p ∈ ℓ′ | x(p) ≤ x(w′)} and τ̂ ′′

u ∩ ℓ′′ = {p ∈ ℓ′′ | x(p) ≥ x(w′′)}. (3)

Let w̄′ = ϕū(w′) and w̄′′ = ϕu(w′′) be the other endpoints of the segments eū(w′) and eu(w′′),
respectively. By definition, w̄′ = ℓ′′ ∩ g− and w̄′′ = ℓ′ ∩ g+. Furthermore, the segments
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u

ℓ′′

ū

τ̂ ′
ū ∩ ℓ′

w̄′′
G ∩ σ

g−

ℓ′

w′
q′

q′′
w̄′

w′′

x

g+

q
τ̂ ′′

u ∩ ℓ′′

Figure 3 Illustration of at least one of q′ and q′′ lying on the clipped patch.

q′q′′, w′w̄′, and w′′w̄′′ are parallel to each other, with their endpoints lying on ℓ′ and ℓ′′. By
Lemma 5, x(w′) > x(g+) = x(w̄′′) because the ray w̄′ + ru ⊂ G exits σ before exiting C, and
similarly x(w′′) < x(g−) = x(w̄′). See Figure 3. If q′ ̸∈ τ̂ ′

u then by (3), x(q′) > x(w′) and thus
x(q′) > x(w̄′′). Since q′q′′ and w′′w̄′′ are parallel segments, we conclude that x(q′′) > x(w′′)
and therefore by (3), q′′ ∈ ℓ′′ ∩ τ̂ ′′

u . Hence, if q′ ̸∈ τ̂ ′
ū then q′′ ∈ τ̂ ′′

u . This completes the proof
of the lemma. ◀

Recall that P ⊂ σ, therefore by Lemma 7, we can answer an emptiness (or reporting)
query with a unit cylinder C ∈ C by answering emptiness (or reporting) queries with all
cylindrical prisms in Λ(C) (see (2)). Fix a grid cell φ ∈ A (G ) and a direction u ∈ Z that is
good for patches corresponding to φ. Let Cu,φ be the set of all cylindrical prisms τ↑

u erected
in direction u over the canonical patches τ corresponding to the grid cell ϕ of unit cylinders
in C. We build a separate partition tree Tu,φ for answering range queries with prisms in Cu,φ.
In the rest of the section, we describe how we build Tu,φ by adapting the approach in [16].

3.2 Test set for cylindrical prisms
Throughout this section, let r > 1 be a fixed parameter, which we will choose to be a
sufficiently large constant. We call a semi-algebraic set △ (1/r)-shallow (or simply shallow if
the value of r is clear from the context) with respect to P if |P ∩ △| ≤ n/r.

Following the terminology in [16], we call a family Q of constant-complexity semi-algebraic
sets, which we will refer to as generalized prisms, a test set for Cu,ϕ with respect to P and r
if the following properties hold:
(C1) Compactness: |Q| = rO(1).
(C2) Shallowness: Each generalized prism π↑ ∈ Q is (1/r)-shallow with respect to P .
(C3) Containment: Each (1/r)-shallow cylindrical prism τ↑

u ∈ Cu,ϕ is contained in a single
generalized cylindrical prism π↑ of Q, i.e., τ↑

u ⊆ π↑.
(C4) Efficiency: There exists a small bound on the associated function ζ(m), bounding the

size of a partition of the free space, the complement of the union, of any subset of m
generalized cylindrical prisms of Q into elementary cells.

SoCG 2023
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Each set in Q will be the union of cylindrical prisms erected in direction u over an infinite
family of clipped canonical patches – see Section 4 for details. Informally, properties (C1)-(C3)
imply that instead of considering the whole family of cylindrical prisms in Cu,ϕ, we can
consider a small finite set Q of “representative queries” from a more general set, each of
which is shallow with respect to P , such that if the partition tree we build has a small query
time for a range in Q then it also has roughly the same query time for any cylindrical prism.
Property (C4) bounds the query time for a range in the test set. We describe, in Section 4,
the construction of a test set Q of size O(r4) with ζ(m) = O∗(m2) (cf. Lemma 13), and Q

can be constructed in O(n) time if r is a constant.

3.3 Data structure
With a small-size test set at hand, we are now ready to describe the algorithm for constructing
an elementary-cell partition of P and the partition tree by closely following the mechanism
in [11, 16]. Let P and r be the same as above.

Geometric cuttings. Given a family Γ of n constant-complexity semi-algebraic sets in Rd,
a weight function ω : Γ → R+, and a parameter r > 1, a (1/r)-cutting for Γ is a partition of
space (or a portion thereof) into elementary cells, such that total weight of sets crossed by
each cell is at most ω(Γ)/r. The following lemma is taken from [16].

▶ Lemma 8. Let Γ be a collection of n semi-algebraic sets of constant complexity in Rd, let
ω : Γ → R+ a weight function, and r > 1 a parameter. Assume that the free space of any
subset of m sets in Γ can be partitioned into at most ζ(m) elementary cells, where ζ(·) is a
super-linear function. Then there exists a (1/r)-cutting Ξ of Γ of size O(ζ(r)) that covers
the free space of Γ. Furthermore, the free space of Ξ is covered by the union of O(r) sets of
Γ. Ξ can be constructed in O(n) time if r is a constant.

By combining Lemmas 8 and 13, we obtain the following:

▶ Corollary 9. Let Q be a collection of n generalized prisms in R3 satisfying (C1)–(C4).
Let ω : Q → R+ be a weight function, and let r ∈ [1, n] be a parameter. There exists a
(1/r)-cutting Ξ of Q of size O∗(r2) that covers the free space of Q. Furthermore, the free
space of Ξ can be covered by O(r) generalized prisms in Q. Ξ can be constructed in O(n)
time if r is a constant.

Elementary-cell partition and partition tree. Let P be a set of n points in R3, and let
r > 1 be a parameter. We extend the notion of simplicial partition reviewed in Section 2 to
answering queries with cylindrical prisms in Cu,ϕ, as follows.

An elementary-cell (1/r)-partition of P is a collection Φ = {(P1,△1), ..., (Pm,△m)}, for
some integer m = O(r), such that (i) each △i is an elementary cell, (ii) {P1, ..., Pm} is a
partition of P , s.t. Pi ⊂ △i, and n/r ≤ |Pi| ≤ 2n/r. The cells △i may overlap. The crossing
number of Φ for a range R is the number of elementary cells of Φ crossed by R, i.e., the
number of elementary cells that intersect ∂R. The following lemma is a slight adaptation of
the argument in [16] and its proof exploits Corollary 9:

▶ Lemma 10. Let P be a set of n points in R3 lying in the slab σ of width at most sin2(1/16),
let r > 1 be a fixed parameter, and let Q be a family of generalized prisms satisfying (C1)–
(C4). Then there exists an elementary-cell (1/r)-partition Φ of P such that the crossing
number of Φ for any range in Q is O(r/ζ−1(r) + log r log |Q|). Φ can be computed in O(n)
time if r is a constant.
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Plugging Lemma 13 and Corollary 9 in Lemma 10, we obtain the following corollary:

▶ Corollary 11. let P be a set of n points lying in the slab σ of width at most sin2(1/16),
and let r ≥ 1 be a fixed parameter. Then there exists an elementary cell (1/r)-partition Φ
of P such that the crossing number of Φ for any (1/r)-shallow cylindrical prism in Cu,ϕ is
O∗(r1/2). Φ can be constructed in O(n) time if r is a constant.

By applying Corollary 11 recursively in a standard manner–see [11, 16]– we can build
the partition tree Tu,φ of size O(n) in O(n logn) time for answering emptiness or reporting
queries with the cylindrical prisms in Cu,φ. Since the crossing number of the elementary-cell
partition is O∗(r1/2), the query time for an emptiness query is O∗(n1/2), and all k points
lying in a query range can be reported in an additional O(k) time. Omitting all the details,
which can be found in [11, 16], we obtain the following result:

▶ Theorem 12. Let P be a set of n points in R3 lying inside a vertical slab of width at most
2. P can be preprocessed, in O(n logn) time, into a data structure of size O(n), so that for
a (unit) cylinder C ∈ C, an emptiness query can be answered in O∗(n1/2) time, and all k
points of C ∩ P can be reported in additional O(k) time.

4 Test-Set Construction

We now describe the construction of a test set for cylindrical prisms in Cu,φ, for a fixed grid
cell φ ∈ A (G ) and u ∈ Z , that satisfies (C1)–(C4). Recall that the space of cylinders in C
is identified with R4. For a fixed φ and u, a cylindrical prism π↑ is uniquely defined by the
cylinder C ∈ C whose boundary contains π↑, so the space of cylindrical prisms in Cu,φ can
also be identified with R4. For a prism p ∈ R4, let π↑

p be the cylindrical prism defined by p,
i.e., the prism erected in direction u over the canonical patch of the unit cylinder Cp ∈ C
corresponding to the grid cell φ. If Cp does not contain any canonical patch corresponding
to φ, then we regard π↑

p as an empty set.
For a point a ∈ R3, we define the region Ra := {p ∈ R4 | a ∈ π↑

p} to be the locus of
all points in R4 representing cylindrical prisms that contain a. Ra is a semi-algebraic set
of constant complexity. We choose a random subset N ⊆ P of O(r log r) points, with an
appropriate constant of proportionality. We then form the set of regions R := {Rp | p ∈ N}
and construct their arrangement A (R). Set k = c ln r, where c > 0 is an appropriate
constant of proportionality. Let A≤k(R) be the set of all points of A (R) at level at most k,
that is, these points represent all cylindrical prisms of Cu,φ that contain at most k points of
P . We compute the vertical decomposition of the cells of A≤k(R) [15], which decomposes
each cell of A≤k(R) into elementary cells (each of which, in fact, is a pseudo-prism). Let
A ∇

≤k(R) be set of resulting elementary cells; |A ∇
≤k(R)| = O∗(r4) [10].

For an elementary cell △ ∈ A ∇
≤k(R), let π↑

△ =
⋃

p∈△ π↑
p be the generalized (cylindrical)

prism, which is the union of an infinite family of cylindrical prisms defined by the points in
△. The generalized prism π↑ is a constant-complexity semi-algebraic set that is unbounded
in direction u and has the property that for any q ∈ π↑, q + ru ⊆ π↑. We set Π↑ := Π↑(R) =
{π↑

△ | △ ∈ A ∇
≤k(R)} to be the family of O∗(r4) generalized prisms corresponding to the

cells in A ∇
≤k(R). Following a straightforward argument, as in [16], it can be shown that Π↑

satisfies (C1)–(C3). It thus suffices to prove (C4), namely, that the free space K (P↑) of any
subset P↑ ⊆ Π↑ of m generalized prisms can be partitioned into O∗(m2) elementary cells.

In the following, without loss of generality, we assume that u = (0, 0, 1). Let P↑ ⊆ Π be
a subset of m generalized prisms. Let π denote the lower boundary of a π↑ ∈ P↑, i.e., the
set of points p ∈ π↑ for which the open ray p− ru emanating from p in the (−u)-direction is
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disjoint from π↑; π↑ = π ⊕ ru. We refer to π as a generalized (cylindrical) patch, which is
a constant-complexity two-dimensional xy-monotone semi-algebraic set. The patch π can
be viewed as the graph of a partially defined bivariate function, also denote by π. (The
value of the function is set to +∞ for every point (x, y) ∈ R2 at which π is not defined.) Set
P = {π | π↑ ∈ P↑}. The lower envelope of P is defined as the graph of the function

E (x, y) = min
π∈P

π(x, y),

which, with a slight abuse of notation, is also denoted by E . It induces a partition of R2 into
maximal connected regions such that E is attained by a single generalized patch of P (or by
none of them) over the interior of each such region. The boundary of such a region consists
of points at which E is attained by at least two of the generalized patches in P, or by the
boundary of one of them. Let M denote this planar subdivision, called the minimization
diagram of P. The combinatorial complexity of E and M is the number of faces of all
dimensions in M , and it is bounded by O∗(m2) [15]. The free space K (P↑) is the set of
points in R3 lying below the lower envelope E .

We partition K (P↑) into elementary cells, as follows. We first compute the two-
dimensional vertical decomposition of every face f of M , which partitions f into pseudo-
trapezoids. Let M ∇ denote the resulting refinement of M . By construction, the same
function of P appears on E for all points in a trapezoid of M ∇. For each trapezoid ψ ∈ M ∇,
we construct the prism ψ↓ := {(x, y, z) ∈ R3 | (x, y) ∈ ψ and z ∈ (−∞,E (x, y)}; ψ↓ is
unbounded in the (−z)-direction and bounded by the graph of E from above. It is easily
seen that {ψ↓ | ψ ∈ M } is a partition of K (P↑) into elementary cells. Furthermore, since
|M ∇| = O∗(m2), the number of elementary cells in the partition is O∗(m2). Hence, we
obtain the following:

▶ Lemma 13. Let P ⊂ R3 be a set of n points in R3, and let r ≥ 1 be a parameter. A test set
of size O∗(r4) for Cu,φ with respect to P and r that satisfies (C1)–(C4) with ζ(m) = O∗(m2)
can be computed in O∗(r4) time.

5 The Dual Problem

In this section, we consider the dual problem mentioned in Section 1: Given a set L of n
lines in R3, preprocess L into a data structure that supports efficient unit-ball intersection
detection (as well as reporting) queries. This problem can be formulated as a point-enclosure
problem among a set of unit cylinders: Let C be the set of unit cylinders whose axes are the
lines of L . Preprocess C into a data structure that can quickly determine whether a query
point q ∈ R3 lies in the union of the cylinders in C , or report all such cylinders.

Data structure. We project the cylinders in C onto the xy-plane. (As in Section 2, we
assume that none of the axes of the cylinders in C are parallel to the yz-plane.) Let B denote
the set of boundary (silhouette) lines in R2 of the strips corresponding to the xy-projections
of the cylinders in C . Let r > 1 be a sufficiently large constant. We construct in O(n2)
time a hierarchical (1/r)-cutting of B using the algorithm by Chazelle [6]. That is, we
construct s = O(logn) cuttings Ξ1, . . . ,Ξs so that Ξi is a (1/ri)-cutting of B of size O(r2i),
each triangle of Ξi is contained in a triangle of Ξi−1, and each triangle △ ∈ Ξi−1 contains a
constant number of triangles of Ξi, which we refer to as children cells of △. Each cell of Ξs is
crossed by O(1) lines of B. The algorithm also constructs the subset of lines of B crossing
every cell of Ξi for all i ≤ s.
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Fix a cell △ of Ξi for some i ≤ s. Let △↑ := △ × R be the vertical slab erected over △.
Let C△ ⊆ C be the set of cylinders that intersect the slab △↑. Following our definitions
in Section 2, we call △ (and △↑) narrow if its width is at most 2 and wide otherwise. If a
unit cylinder intersects a wide slab △↑, then at least one of its two silhouette lines crosses
△. Hence, by the cutting property, for a wide cell △ of Ξi, |C△| ≤ n/ri. If a cell △ ∈ Ξi

is narrow, then we construct a secondary data structure Ψ△ for answering point-enclosure
queries on C△, as described below. Furthermore, we remove all cells of Ξj , for j > i, that
are contained in △, for they will never be visited by the query procedure.

We now describe the secondary data structure constructed on a narrow cell △. We
assume that the width of △ is at most sin2(1/16), otherwise we split △ into O(1) subcells,
each of width at most sin2(1/16) and construct a separate secondary data structure for each
of them. Let Z and Λ(C), for a unit cylinder C, be the same as defined in Section 3. For
each cylinder C ∈ C△, we construct the collection Λ(C) of canonical cylindrical prisms, as
described in Section 3.1. Recall that each prism in Λ(C) is erected in one of directions in
Z , i.e., it has the following form τ↑

u = τ̂ × ru where τ̂ is a clipped canonical patch of C. By
Lemma 7, for a point q ∈ △↑, q ∈ C if and only if q ∈ U (Λ(C)). We thus a build a data
structure for answering point-enclosure queries in the set

⋃
C∈C△

Λ(C).
We fix a direction u ∈ Z and let P↑

u ⊆
⋃

C∈C△
Λ(C) be the subset of canonical prisms

of cylinders in C△ erected in direction u. We build a separate data structure Ψ△,u for
answering point-enclosure queries in P↑

△,u, for every u ∈ Z , as follows. Without loss of
generality, assume that u is the (+z)-direction. Let P△,u = {τ̂u | τ↑

u ∈ P↑
△,u} be the set

of clipped canonical patches corresponding to the prisms in P↑
△,u, which, as in Section 4,

we regard as a set of partially-defined bivariate functions. Let E△,u be the lower envelope
of P△,u, and M△,u its minimization diagram. Their complexity is O∗(|P△,u|2). A point
q = (qx, qy, qz) ∈ U (P↑

△,u) if and only if qz ≥ E△,u(qx, qy). We construct M△,u and
preprocess it for answering planar point-location queries. Summing over all directions in
Z , the total size of the data structure Ψ△ is O∗(|C△|2) and it can be constructed in time
O∗(|C△|2). Summing these bounds over all narrow cells of the hierarchical cuttings, the total
size and the preprocessing time of the overall data structure are O∗(n2).

Query procedure. Let q = (qx, qy, zz) be a query point. We visit the cuttings Ξ1,Ξ2, . . .

in order. Suppose we are visiting Ξi, and let △ ∈ Ξi be the cell containing q∗ = (qx, qy).
If i = s, we answer the query in O(1) time by testing q with all cylinders of C△. If △ is
narrow, we query the secondary data structure Ψ△, as follows. For each direction u ∈ Z , we
check whether q ∈ U (P↑

u ) by locating (qx, xy) in Mu and testing whether qz ≥ Eu(qx, qy).
If the answer is yes for one such u, we conclude that q ∈ U (C△) and return yes. Otherwise,
we return no. Finally, if △ is wide, we recursively visit the child cell of Ξi+1 that contains q.
The overall query time is O(logn). This completes the proof of Theorem 2.
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