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Abstract
Modern time series analysis requires the ability to handle datasets that are inherently high-
dimensional; examples include applications in climatology, where measurements from numerous
sensors must be taken into account, or inventory tracking of large shops, where the dimension is
defined by the number of tracked items. The standard way to mitigate computational issues arising
from the high dimensionality of the data is by applying some dimension reduction technique that
preserves the structural properties of the ambient space. The dissimilarity between two time series
is often measured by “discrete” notions of distance, e.g. the dynamic time warping or the discrete
Fréchet distance. Since all these distance functions are computed directly on the points of a time
series, they are sensitive to different sampling rates or gaps. The continuous Fréchet distance offers
a popular alternative which aims to alleviate this by taking into account all points on the polygonal
curve obtained by linearly interpolating between any two consecutive points in a sequence.

We study the ability of random projections à la Johnson and Lindenstrauss to preserve the
continuous Fréchet distance of polygonal curves by effectively reducing the dimension. In particular,
we show that one can reduce the dimension to O(ε−2 log N), where N is the total number of input
points while preserving the continuous Fréchet distance between any two determined polygonal
curves within a factor of 1 ± ε. We conclude with applications on clustering.
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53:2 Random Projections for Curves in High Dimensions

1 Introduction

Time series analysis lies in the core of various modern applications. Typically, a time series
consists of various (physical) measurements over time. Formally, it is a finite sequence of points
in Rd. Depending on the use case, the ambient space may be extremely high-dimensional,
for example d ∈ 2Ω(log n), or even d ∈ 2Ω(n), where n is the number of given sequences. For
example, large facilities nowadays supervise their production lines using a plethora of sensors.
Another concrete example are climatology applications, where data consist of measurements
from multiple sensors, each one corresponding to a different dimension.

Many analysis techniques are based on (dis-)similarity between time series, c.f. [27]. This
is often measured by distance functions such as the Euclidean distance, which however
requires the time series to be of same length and does not include any form of alignment
between the sequences. This is of course less expressive than distances which are indeed
defined over an optimal alignment, e.g. the dynamic time warping, or the discrete Fréchet
distance, which are based on Euclidean distances between the points but enable compensation
of differences in phase. A common downside of these distances is that they take into account
solely the points of a time series. Hence, they are sensitive to differences in sampling rates or
data gaps. Here, the continuous Fréchet distance offers a popular alternative which aims to
alleviate this issue by assuming that time series are discretizations of continuous functions of
time. It is an extension of the discrete Fréchet distance that takes into account all points on
the polygonal curves obtained by linearly interpolating between any two consecutive points
in a sequence (where the interpolation is carried out only implicitly).

Two main parameters typically govern computational tasks associated with the Fréchet
distance: the lengths of the time series and the number of dimensions of the ambient space. In
this paper, we study the problem of compressing the input with respect to the latter parameter
using a dimension reducing linear transform that preserves Euclidean distances within a
factor of (1± ε). These transforms, which are usually named Johnson-Lindenstrauss (JL)
transforms or embeddings, are a popular tool in dimensionality reduction. The preservation
of pairwise distances within a factor of (1 ± ε) is sometimes called JL guarantee. Recent
work has provided various probability distributions over JL transforms [14, 21, 1, 28, 24],
which are efficient to sample from and which yield the JL guarantee with at least constant
positive probability while the target dimension is only O(ε−2 log n), where n is the size of
the input point set. Towards applying this result on time series, one can easily guarantee
that all Euclidean distances between points of the time series are preserved. While this has
direct implications on “discrete” notions of distances between time series, the case of the
continuous Fréchet distance is far more intriguing.

1.1 Related Work
In their seminal paper [23], Johnson and Lindenstrauss proved the following statement, which
is commonly known as the Johnson-Lindenstrauss lemma and coined the term JL embedding.

▶ Theorem 1 ([23]). For any n ∈ N and ε ∈ (0, 1) there exists a probability distribution over
linear maps f : Rd → Rd′ , where d′ ∈ O(ε−2 log n), such that for any n-point set X ⊂ Rd the
following holds with high probability over the choice of f :

∀p, q ∈ X : (1− ε)∥p− q∥ ≤ ∥f(p)− f(q)∥ ≤ (1 + ε)∥p− q∥.

In their proof, Johnson and Lindenstrauss [23] show that this can be achieved by orthogonally
projecting the points onto a random linear subspace of dimension O(ε−2 log n) – and indeed
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there are point sets that require Ω(ε−2 log n) dimensions [5, 25, 26]. Several proofs of their
statement followed, these however don’t require a proper projection but only a multiplying
the points with a certain random matrix, cf. [22, 14, 1, 24, 4].

The impact of a JL embedding on higher-dimensional objects other than points has
already been studied. Magen [29, 30] shows that applying a (scaled) JL embedding not only
to a given set P ⊂ Rd of points, but to P ∪W , where W ⊂ Rd is a well-chosen set of points
determined by P , approximately preserves the height and angles of all triangles determined
by any three points in P . Magen even extends this result and shows that by a clever choice
of W , the volume (Lebesgue measure) of the convex hull of any k − 1 points from P is
approximately preserved when the target dimension is in Θ(ε−2k log|P |). Furthermore, in
this case the distance of any point from P to the affine hull of any k − 1 other points from
P is also approximately preserved. Furthermore, JL embeddings can even be utilized to
preserve all pairwise Euclidean and geodesic distances on a smooth manifold [8].

Fréchet distance preserving embeddings are a relatively unexplored topic. Recently
Driemel and Krivosija [17] studied the first Fréchet distance preserving embedding for c-
packed curves, which are curves whose intersections with any ball of radius r are of length
at most cr. This class of curves was introduced by Driemel et al. [16] and has so far been
considered a viable assumption for realistic curves, see e.g. [3, 9, 15]. Driemel and Krivosija
consider projections on random lines, where curves are orthogonally projected on a vector
which is sampled uniformly at random from the unit sphere. They observed that in any
case (even if the curves are not c-packed), the discrete Fréchet distance between the curves
decreases. Furthermore, they show that with high probability the discrete Fréchet distance
between two curves σ and τ , of complexity (number of vertices of the curve) at most m,
decreases by a factor in O(m). Finally, they proved that there exist c-packed curves such
that the discrete Fréchet distance decreases by a factor in Ω(m). The latter also holds for
the continuous Fréchet distance and for the dynamic time warping distance.

More recently, Meintrup et al. [32] studied JL embeddings in the context of preserving
the Fréchet distance to facilitate k-median clustering of curves in a high-dimensional ambient
space. They show that when the dimension is reduced to Θ(ε−2 log N), where N is the total
number of vertices of the given curves, the Fréchet distances are preserved up to a combined
multiplicative error of (1± ε) and additive error of ±εL, where L is the largest arclength of
any input curve. For their proof, they only use the JL guarantee, i.e., the (1± ε)-preservation
of Euclidean distances, and properties of the polygonal curves and the Fréchet distance, while
linearity is not taken into account. In this setting, it seems that the additive error is possible
– Meintrup et al. give a simple example where some vertex-to-vertex distances expand and
others contract, which induces an additive error to the Fréchet distance. Meintrup et al.
complement their results with experimental evaluation showing that in real world data and
using a JL transform (which is a linear map), the Fréchet distance is preserved within
the multiplicative error only in almost any case. The other cases can not be distinguished
between a failed attempt to obtain a JL embedding (recall the probabilistic nature) and a
successful attempt to obtain a JL embedding with the additive error occuring.

1.2 Our Contributions
We study the ability of random projections à la Johnson and Lindenstrauss to preserve the
continuous Fréchet distances among a given set of n polygonal curves, each of complexity
(number of vertices of the curve) at most m. We show that there exists a set X of vectors (in
Rd), of size polynomial in n and m and depending only on the given curves, such that any
JL transform for the curves vertices and X also preserves the continuous Fréchet distance
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53:4 Random Projections for Curves in High Dimensions

between any two of the given polygonal curves within a factor of (1± ε), without additional
additive error. This effectively extends the JL guarantee to pairwise Fréchet distances. By
plugging in any known JL transform from one of [14, 21, 1, 28, 24] we obtain our main
dimension reduction result which states that one can reduce the number of dimensions to
O(ε−2 log(nm)). We achieve our result using a completely different approach than Meintrup
et al. [32]. Our approach relies on Fréchet distance predicates originating from [2]. These
allow a reduction from deciding the continuous distance to a finite set of events occurring.
Using only the predicates, it is relatively easy to prove that the Fréchet distance between
two curves does not expand by more than a factor of (1 + ε) under a (linear) JL transform.
To prove that the Fréchet distance does not contract by more than a factor of (1 − ε) is
however much more challenging. We achieve this by proving that all distances between one
fixed point and any point on a fixed line do not contract by more than a factor of (1− ε)
when a JL transform is applied to a well-chosen set of four vectors determined by the point
and the line, which is then applied to any vertex of any curve and any line determined by an
edge of any curve. We note that this result is comparable to a result by Magen [29, 30], but
our statement is stronger since it takes into account all distances between the fixed point
and the line and not only the affine distance, i.e., the distance between the point and its
orthogonal projection onto the line.

Our motivation is that distance preserving dimensionality reductions imply improved
algorithms for various tasks. Best-known algorithms for many proximity problems under the
continuous Fréchet distance have exponential dependency on the dimension, in at least one of
their performance parameters. Such algorithms either directly employ the continuous Fréchet
distance, e.g. the approximation algorithms for k-clustering problems [13], or approximate it
with the discrete Fréchet distance by resampling the time series to a higher granularity. For
example, to the best of our knowledge, the best solution for the approximate near neighbor
(ANN) problem in general dimensions derives from building the data structure of Filtser et
al. [20], which originally solves the problem for the discrete Fréchet distance, on a modified
input. The idea is that a new dense set of vertices can be added to each input polygonal curve
so that the discrete Fréchet distance of the resulting curves approximates the continuous
Fréchet distance of the original curves. Under the somewhat restrictive assumption that the
arclength of each curve is short, a small number of new vertices suffices. Even in this case
though, the space and preprocessing time of the data structure depends exponentially on the
number of dimensions. Obviously, polynomial-time algorithms (e.g. [10]) can also benefit
from reducing the number of dimensions, especially when it comes to real applications.

Our embedding naturally inherits desired properties of the JL transforms like the fact
that they are oblivious to the input. This makes it directly applicable to data structure
problems like the above-mentioned ANN problem. Moreover, we show that our embedding is
also applicable to estimating clustering costs. First, we show that one can approximate the
optimal k-center cost within a constant factor, with an algorithm that has no dependency
on the original dimensionality apart from an initial step of randomly projecting the input
curves. Second, we show that one can use any algorithm for computing the k-median cost in
the dimensionality-reduced space to get a constant factor approximation of the k-median
cost in the original space.

1.3 Organization
The paper is organized as follows. In Section 2 we introduce the necessary notation, definitions
and the concept of Fréchet distance predicates. In Section 3 we prove our main result in
two steps. First, as a warm-up, we prove that an application of any JL transformation
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for the given curves vertices and a polynomial-sized set X determined by these does not
increase Fréchet distances by more than a factor of (1 + ε). In Section 3.1 we prove the
challenging part that this also does not decrease Fréchet distances by less than a factor
of (1 − ε). Interestingly, here a different polynomial-sized set X ′ is used. In Section 3.2
we combine both to our main result. Finally, in Section 4 we apply our main result to
clustering of curves; we modify an existing approximation algorithm for the (k, ℓ)-center
problem (see [10]) which has negligibly decreased approximation quality compared to the
original and we prove that applying any algorithm for the (k, ℓ)-median problem (such as the
one from [13]) on the embedded curves leads to a constant factor approximation in terms of
clustering cost. Section 5 concludes the paper.

2 Preliminaries

For n ∈ N we define [n] = {1, . . . , n}. By ∥·∥ we denote the Euclidean norm, by ⟨·, ·⟩ we
denote the Euclidean dot product and by Sd−1 = {p ∈ Rd | ∥p∥ = 1} we denote the unit
sphere in Rd. We define line segments, the building blocks of polygonal curves.

▶ Definition 2. A line segment between two points p1, p2 ∈ Rd, denoted by p1p2, is the
set of points {(1 − λ)p1 + λp2 | λ ∈ [0, 1]}. For λ ∈ R we denote by lp (p1p2, λ) the point
(1− λ)p1 + λp2, lying on the line supporting the segment p1p2.

We formally define polygonal curves.

▶ Definition 3. A (parameterized) curve is a continuous mapping τ : [0, 1]→ Rd. A curve
τ is polygonal, if and only if, there exist v1, . . . , vm ∈ Rd, no three consecutive on a line,
called τ ’s vertices and t1, . . . , tm ∈ [0, 1] with t1 < · · · < tm, t1 = 0 and tm = 1, called τ ’s
instants, such that τ connects every two consecutive vertices vi = τ(ti), vi+1 = τ(ti+1) by a
line segment.

We call the line segments v1v2, . . . , vm−1vm the edges of τ and m the complexity of
τ , denoted by |τ |. Sometimes we will argue about a sub-curve τ [i, j] of a given curve τ ,
which is the polygonal curve determined by the vertices vi, . . . , vj . We define two notions of
continuous Fréchet distances. We note that the weak Fréchet distance is used only rarely.

▶ Definition 4. Let σ, τ be curves. The weak Fréchet distance between σ and τ is

dwF(σ, τ) = inf
f : [0,1]→[0,1]
g : [0,1]→[0,1]

max
t∈[0,1]

∥σ(f(t))− τ(g(t))∥,

where f and g are continuous functions with f(0) = g(0) = 0 and f(1) = g(1) = 1. The
Fréchet distance between σ and τ is

dF(σ, τ) = inf
f : [0,1]→[0,1]
g : [0,1]→[0,1]

max
t∈[0,1]

∥σ(f(t))− τ(g(t))∥,

where f and g are continuous bijections with f(0) = g(0) = 0 and f(1) = g(1) = 1.

We define the type of embedding we are interested in. Since we want to keep our results
general, we do not specify the target number of dimensions. As a consequence, we drop the
JL-terminology and call these (1± ε)-embeddings.

▶ Definition 5. Given a set P ⊂ Rd of points and ε ∈ (0, 1), a function f : Rd → Rd′ is a
(1± ε)-embedding for P , if it holds that

∀p, q ∈ P : (1− ε)∥p− q∥ ≤ ∥f(p)− f(q)∥ ≤ (1 + ε)∥p− q∥.

SoCG 2023



53:6 Random Projections for Curves in High Dimensions

We note that if f is linear and 0 ∈ P , then ∀p ∈ P : (1− ε)∥p∥ ≤ ∥f(p)∥ ≤ (1 + ε)∥p∥.
We now define valid sequences with respect to two polygonal curves. Such a sequence

can be seen as a discrete skeleton in deciding the continuous Fréchet distance and is derived
from the free space diagram concept used in Alt and Godau’s algorithm [6].

▶ Definition 6. Let σ, τ be polygonal curves with vertices vσ
1 , . . . , vσ

|σ|, respectively vτ
1 , . . . , vτ

|τ |.
A valid sequence with respect to σ and τ is a sequence F = (i1, j1), . . . , (ik, jk) with

i1 = j1 = 1, ik = |σ| − 1, jk = |τ | − 1,
(il, jl) ∈ [|σ| − 1]× [|τ | − 1],
(il − il−1, jl − jl−1) ∈ {(0, 1), (1, 0), (0,−1), (−1, 0)} for all 1 < l < k and
any pair (il, jl) ∈ [|σ| − 1]× [|τ | − 1] appears at most once in F .

A valid sequence is said to be monotone if (il − il−1, jl − jl−1) ∈ {(0, 1), (1, 0)} for all
1 < l < k.

Further decomposing the free space diagram concept, any valid sequence for two curves
σ, τ and any radius r ≥ 0 induces a set of predicates which truth values in conjunction
determine whether dF(σ, τ) ≤ r, respectively dwF(σ, τ) ≤ r.

▶ Definition 7 ([2, 19]). Let σ, τ be polygonal curves with vertices vσ
1 , . . . , vσ

|σ|, respectively
vτ

1 , . . . , vτ
|τ | and r ∈ R≥0. We define the Fréchet distance predicates for σ and τ with respect

to r.
(P1)σ,τ,r: This predicate is true, iff ∥σ1 − τ1∥ ≤ r.
(P2)σ,τ,r: This predicate is true, iff ∥σ|σ| − τ|τ |∥ ≤ r.
(P3)σ,τ,r

(i,j) : This predicate is true, iff there exists a point p ∈ vσ
i vσ

i+1 with ∥p− vτ
j ∥ ≤ r.

(P4)σ,τ,r
(i,j) : This predicate is true, iff there exists a point p ∈ vτ

j vτ
j+1 with ∥p− vσ

i ∥ ≤ r.
(P5)σ,τ,r

(i,j,k): This predicate is true, iff there exist p1 = lp
(
vσ

j vσ
j+1, t1

)
and p2 = lp

(
vσ

j vσ
j+1, t2

)
with ∥vτ

i − p1∥ ≤ r, ∥vτ
k − p2∥ ≤ r and t1 ≤ t2.

(P6)σ,τ,r
(i,j,k): This predicate is true, iff there exist p1 = lp

(
vτ

i vτ
i+1, t1

)
and p2 = lp

(
vτ

i vτ
i+1, t2

)
with ∥vσ

j − p1∥ ≤ r, ∥vσ
k − p2∥ ≤ r and t1 ≤ t2.

The following two theorems state the aforementioned facts. These will be one of our main
tools in obtaining our main results. We note that these are rephrased here to fit our needs.

▶ Theorem 8 ([19]). Let σ, τ be polygonal curves and r ∈ R≥0. There exists a valid sequence
F with respect to σ and τ , such that (P1)σ,τ,r ∧ (P2)σ,τ,r ∧Ψσ,τ,r

w (F) is true, where

Ψσ,τ,r
w (F) =

∧
(i,j)∈[|σ|]×[|τ |]
(i,j−1),(i,j)∈F

(P3)σ,τ,r
(i,j)

∧
(i,j)∈[|τ |]×[|σ|]
(i−1,j),(i,j)∈F

(P4)σ,τ,r
(i,j) ,

if, and only if, dwF(σ, τ) ≤ r.

▶ Theorem 9 ([2, 19]). Let σ, τ be polygonal curves and r ∈ R≥0. There exists a monotone
valid sequence F with respect to σ and τ , such that (P1)σ,τ,r ∧ (P2)σ,τ,r ∧Ψσ,τ,r(F) is true,
where

Ψσ,τ,r(F) =
∧

(i,j)∈[|σ|]×[|τ |]
(i,j−1),(i,j)∈F

(P3)σ,τ,r
(i,j)

∧
(i,j)∈[|τ |]×[|σ|]
(i−1,j),(i,j)∈F

(P4)σ,τ,r
(i,j)

∧
(i,j,k)∈[|τ |]×[|σ|]×[|τ |]

(i,j−1),(i,k)∈F
j<k

(P5)σ,τ,r
(i,j,k)

∧
(i,j,k)∈[|τ |]×[|σ|]×[|σ|]

(i−1,j),(k,j)∈F
i<k

(P6)σ,τ,r
(i,j,k),

if, and only if, dF(σ, τ) ≤ r.
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3 Linear Embeddings preserve Fréchet Distances

In this section we prove our main results on embeddings of polygonal curves that approx-
imately preserve the Fréchet distance. In the following Lemma 10, we show that linear
(1± ε)-embeddings for a polynomial number of points determined by the input polygonal
curves imply embeddings for the curves that are not expansive by a factor greater than
(1 + ε). Similarly, in Section 3.1, we show that linear (1± ε)-embeddings for a polynomial
number of points determined by the curves, imply embeddings for the curves that are not
contractive by a factor smaller than (1− ε). Combining these two bounds yields our main
results in Section 3.2. Our main dimensionality reduction result states that one can embed
a set of n polygonal curves of complexity at most m into a Euclidean space of dimensions
d′ ∈ O(ε−2 log(nm)), so that all Fréchet distances are preserved within a factor of (1± ε).
The embedding is implemented by mapping the vertices of each polygonal curve with a JL
transform. The image of each input curve is a curve in Rd′ having as vertices the images of
the original vertices.

▶ Lemma 10. Let σ, τ be polygonal curves with vertices vσ
1 , . . . , vσ

|σ|, respectively vτ
1 , . . . , vτ

|τ |,
and let f be a linear (1± ε)-embedding for P = {vσ

1 , . . . , vσ
|σ|, vτ

1 , . . . , vτ
|τ |} ∪ P ′, where P ′ is

a set of points determined by σ and τ with |P ′| ∈ O(|σ|2 · |τ |+ |τ |2 · |σ|). Let σ′ and τ ′ be
polygonal curves with vertices f(vσ

1 ), . . . , f(vσ
|σ|), respectively f(vτ

1 ), . . . , f(vτ
|τ |). It holds that

dwF(σ′, τ ′) ≤ (1 + ε) dwF(σ, τ) and
dF(σ′, τ ′) ≤ (1 + ε) dF(σ, τ).

The proof follows by an application of the (1± ε)-embedding to all points determined by
the (weak) Fréchet distance predicates. The proof can be found in the full paper [35].

3.1 Lower Bound
In this section, we show that we can use linear (1± ε)-embeddings for a polynomial number
of points determined by the input polygonal curves to define embeddings for the curves that
are not contractive with respect to their Fréchet distance by a factor smaller than (1− ε).

We first introduce a few necessary technical lemmas and then we proceed with the main
result. We make use of the following lemma, which indicates that inner products are (weakly)
concentrated in (1± ε)-embeddings. Slightly different versions of this lemma have been used
before (see e.g. [7, 34, 36]). Our statement is a bit more generic, it holds for any linear
(1± ε)-embedding, and we make use of the involved scaling factors, we include a proof in [35].

▶ Lemma 11. Let f be a linear (1± ε)-embedding for a finite set P ⊂ Rd with 0 ∈ P . For
all p, q ∈ P it holds that

⟨p, q⟩ − 16ε(∥p∥ · ∥q∥) ≤ ⟨f(p), f(q)⟩ ≤ ⟨p, q⟩+ 14ε(∥p∥ · ∥q∥).

Next, we prove that (1± ε)-embeddings for a specific point set do not contract distances
between any point on a fixed ray starting from the origin and a fixed point lying in a certain
halfspace by a factor smaller than (1− 3ε).

▶ Lemma 12. Let x ∈ Rd and u ∈ Sd−1 such that ⟨x, u⟩ ≤ 0. Let f be a linear (1± ε/16)-
embedding for {0, x, u}. For any λ ≥ 0, we have

∥f(x)− λ · f(u)∥ ≥ (1− 3ε)∥x− λu∥.

SoCG 2023
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Proof. By Lemma 11 and Definition 5: i) ⟨f(x), f(u)⟩ ∈ ⟨x, u⟩±ε∥x∥, ii) ∥f(x)∥ ∈ (1±ε)∥x∥
and iii) ∥f(u)∥ ∈ (1± ε). For any λ ≥ 0 we have:

∥f(x)− λ · f(u)∥2 = ∥f(x)∥2 + λ2 · ∥f(u)∥2 − 2λ · ⟨f(x), f(u)⟩
≥ (1− ε)2∥x∥2 + (1− ε)2λ2 − 2λ⟨x, u⟩ − 2λε∥x∥ (1)
≥ (1− ε)2∥x∥2 + (1− ε)2λ2 − (1− ε)2 · 2λ · ⟨x, u⟩ − 2λε · ∥x∥ (2)
≥ (1− ε)2∥x− λu∥2 − 2ελ∥x∥
≥ (1− ε)2∥x− λu∥2 − 2ε∥x− λu∥2 (3)
≥ (1− 3ε)2∥x− λu∥2,

where the last inequality holds, since ε/16 ∈ (0, 1/4]. In Equation (1) we use events i), ii),
iii), in Equation (2) we use the fact that ⟨x, u⟩ ≤ 0, and in Equation (3) we use the fact that
⟨x, u⟩ ≤ 0 and λ ≥ 0 implies that ∥x− λu∥ ≥ λ and ∥x− λu∥ ≥ ∥x∥. ◀

We now prove our main technical lemma. This says that given a fixed line and a fixed
point p, there is a set P of points such that any linear (1 ± ε)-embedding for P does not
contract distances between p and any point on the line by a factor smaller than (1 − 3ε).
A somewhat similar statement appears in [29] which however focuses on the distortion of
point-line distances, i.e., how the distance between a point and its orthogonal projection
onto the line changes after the embedding.

▶ Lemma 13. Let x, y, z ∈ Rd and ℓ = {lp (yz, λ) | λ ∈ R} be the line supporting yz. Let
f be a linear (1 ± ε/16)-embedding for {0, u,−u, x − (t + ⟨x, u⟩ · u)}, where u ∈ Sd−1 and
t ∈ Rd, such that ⟨u, t⟩ = 0 and {t + λu | λ ∈ R} = ℓ. For all λ ∈ R it holds that

∥f(x)− f(t + λu)∥ ≥ (1− 3ε)∥x− (t + λu)∥.

Proof. We first note that such an element t exists, namely the orthogonal projection of 0
onto ℓ. Let p = t + ⟨x− t, u⟩ ·u = t + ⟨x, u⟩ ·u be the projection of x onto ℓ and let x′ = x−p.
Notice that

⟨x′, u⟩ = ⟨x, u⟩ − ⟨t + ⟨x, u⟩ · u, u⟩ = ⟨x, u⟩ − ⟨t, u⟩ − ⟨x, u⟩ = 0.

We apply Lemma 12 on the vectors x′, u. This implies that for any λ ≥ 0,

∥f(x′)− λf(u)∥ ≥ (1− 3ε)∥x′ − λu∥
⇐⇒ ∥f(x− p)− λf(u)∥ ≥ (1− 3ε)∥x− p− λu∥
⇐⇒ ∥f(x− (t + ⟨x, u⟩ · u))− λf(u)∥ ≥ (1− 3ε)∥x− (t + ⟨x, u⟩ · u)− λu∥
⇐⇒ ∥f(x)− f(t)− ⟨x, u⟩ · f(u)− λf(u)∥ ≥ (1− 3ε)∥x− t− ⟨x, u⟩ · u− λu∥
⇐⇒ ∥f(x)− f(t + (⟨x, u⟩+ λ) · u)∥ ≥ (1− 3ε)∥x− (t + (⟨x, u⟩+ λ) · u)∥.

Now by reparametrizing λ′ ← ⟨x, u⟩+ λ, we conclude that for any λ′ ≥ ⟨x, u⟩,

∥f(x)− f(t + λ′ · u)∥ ≥ (1− 3ε)∥x− (t + λ′ · u)∥. (4)

Finally, we apply Lemma 12 on the vectors x′,−u. Notice that ⟨x′,−u⟩ = −⟨x′, u⟩ = 0.
This implies that for any λ ≥ 0,

∥f(x′)− λf(−u)∥ ≥ (1− 3ε)∥x′ − λ(−u)∥
⇐⇒ ∥f(x− p)− λf(−u)∥ ≥ (1− 3ε)∥x− p− λ(−u)∥
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⇐⇒ ∥f(x− (t + ⟨x, u⟩ · u))− λf(−u)∥ ≥ (1− 3ε)∥x− (t + ⟨x, u⟩ · u)− λ(−u)∥
⇐⇒ ∥f(x)− f(t)− ⟨x, u⟩ · f(u)− λf(−u)∥ ≥ (1− 3ε)∥x− t− ⟨x, u⟩ · u− λ(−u)∥
⇐⇒ ∥f(x)− f(t + (⟨x, u⟩ − λ) · u)∥ ≥ (1− 3ε)∥x− (t + (⟨x, u⟩ − λ) · u)∥.

Now by reparametrizing λ′ ← ⟨x, u⟩ − λ, we conclude that for any λ′ ≤ ⟨x, u⟩,

∥f(x)− f(t + λ′ · u)∥ ≥ (1− 3ε)∥x− (t + λ′ · u)∥. (5)

Equation (4) and Equation (5) conclude the lemma. ◀

Using the lemma above we can finally prove the main result of this section.

▶ Lemma 14. Let σ, τ be polygonal curves with vertices vσ
1 , . . . , vσ

|σ|, respectively vτ
1 , . . . , vτ

|τ |,
and let f be a linear (1± ε/48)-embedding for P = {vσ

1 , . . . , vσ
|σ|, vτ

1 , . . . , vτ
|τ |} ∪ P ′, where P ′

is a set of points determined by σ and τ with |P ′| ∈ O(|σ| · |τ |). Let σ′ and τ ′ be polygonal
curves with vertices f(vσ

1 ), . . . , f(vσ
|σ|), respectively f(vτ

1 ), . . . , f(vτ
|τ |). It holds that

dwF(σ′, τ ′) ≥ (1− ε) dwF(σ, τ) and
dF(σ′, τ ′) ≥ (1− ε) dF(σ, τ).

Proof. For the first claim, let r = dwF(σ, τ), for the second claim let r = dF(σ, τ). In both
cases, let r′ = (1− ε)r.

In the following, we prove that for any (monotone) valid sequence F and any δ > 0 we have
that (P1)σ′,τ ′,r′−δ ∧ (P2)σ′,τ ′,r′−δ ∧Ψσ′,τ ′,r′−δ

w (F), respectively (P1)σ′,τ ′,r′−δ ∧ (P2)σ′,τ ′,r′−δ ∧
Ψσ′,τ ′,r′−δ(F), is false and therefore dwF(σ′, τ ′) > r′ − δ, respectively dF(σ′, τ ′) > r′ − δ by
Theorem 8, respectively Theorem 9.

Now, let F be an arbitrary (monotone) valid sequence. By definition of r and Theorem 8,
respectively Theorem 9, we know that for any δ > 0 it holds that (P1)σ,τ,r−δ ∧ (P2)σ,τ,r−δ ∧
Ψσ,τ,r−δ

w (F), respectively (P1)σ,τ,r−δ ∧ (P2)σ,τ,r−δ ∧ Ψσ,τ,r−δ(F), is false. If (P1)σ,τ,r−δ or
(P2)σ,τ,r−δ is false then clearly (P1)σ′,τ ′,r′−δ or (P2)σ′,τ ′,r′−δ is also false by Definitions 5
and 7. In the following, we assume that Ψσ,τ,r−δ

w (F), respectively Ψσ,τ,r−δ(F) is false.
Since the arguments for predicates of type P3 and P4 are analogous, we focus on the

former type. Assume that Ψσ,τ,r−δ
w (F) is false because a predicate (P3)σ,τ,r−δ

(i,j) is false. This
means that there does not exist a point p ∈ vσ

i vσ
i+1 with ∥p − vτ

j ∥ ≤ r − δ. At this point,
recall that since f is linear, any points lp (pq, t1) , . . . , lp (pq, tn), where p, q ∈ Rd, are still
collinear when f is applied and the relative order on the directed lines supporting pq is
preserved, which is immediate since f(lp (pq, ti)) = lp

(
f(p)f(q), ti

)
. By Lemma 13 for any

t ∈ R and the determined point p = lp
(
vσ

i vσ
i+1, t

)
on the line supporting vσ

i vσ
i+1 it holds that

∥f(vτ
j )−f(p)∥ ≥ (1−ε)∥p−vτ

j ∥. Thus, for any f(p) ∈ f(vσ
i )f(vσ

i+1) we have p ∈ vσ
i vσ

i+1 and
∥f(vτ

j )−f(p)∥ ≥ (1−ε)∥p−vτ
j ∥, which in conclusion is larger than r′−δ, hence (P3)σ′,τ ′,r′−δ

(i,j)

is false and therefore Ψσ′,τ ′,r′−δ
w (F) is false. The first claim follows by Theorem 8.

Now, since again the arguments for predicates of type P5 and P6 are also analogous, we
focus on the former. Assume that Ψσ,τ,r−δ(F) is false, because a predicate (P5)σ,τ,r−δ

(i,j,k) is
false. This means that for any two t1, t2 ∈ R with t1 ≤ t2, the points p1 = lp

(
vσ

j vσ
j+1, t1

)
and

p2 = lp
(
vσ

j vσ
j+1, t2

)
do not satisfy ∥vτ

i −p1∥ ≤ r−δ or ∥vτ
k −p2∥ ≤ r−δ. Since by Lemma 13

we have ∥f(vτ
i )− f(p1)∥ ≥ (1− ε)∥vτ

i − p1∥ and ∥f(vτ
k)− f(p2)∥ ≥ (1− ε)∥vτ

k − p2∥, one of
these distances must be larger than r′− δ and it follows that (P5)σ′,τ ′,r′−δ

(i,j,k) is false. Therefore,
Ψσ′,τ ′,r′−δ(F) is false and the second claim follows by Theorem 9.

SoCG 2023
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Finally, for the above statements to hold, the set P ′ contains 0, both directions u,−u ∈
Sd−1 determined by an edge of σ or τ and all points x− (t + ⟨x, u⟩ · u), where x is a vertex
of a curve σ or τ , and t, u determine a line supporting an edge of τ or σ. ◀

3.2 Main Result
We now prove our main result which combines the upper and lower bounds on the distortion
and Lemma 10.
▶ Theorem 15. Let T = {τ1, . . . , τn} be a set of polygonal curves in Rd, each of complexity
at most m. There exists a probability distribution over linear maps f : Rd → Rd′ , where
d′ ∈ O(ε−2 log(nm)), such that with high probability over the choice of f , the following is
true for all σ, τ ∈ T :
|dwF(σ, τ)− dwF(F (σ), F (τ))| ≤ ε · dwF(σ, τ) and
|dF(σ, τ)− dF(F (σ), F (τ))| ≤ ε · dF(σ, τ),

where for any τ ∈ T with vertices vτ
1 , . . . , vτ

|τ | we let F (τ) be the curve with vertices
f(vτ

1 ), . . . , f(vτ
|τ |).

Proof. We apply Theorem 1 on the set P of O(n2m3) points determined by an application
of Lemmas 10 and 14 on all pairs of curves in T . ◀

4 Application to Clustering

In this section, we study the effect of randomized (1±ε)-embeddings on the cost of k-clustering
of polygonal curves. In particular, we show that a constant factor approximation of the cost
of the optimal k-center solution can be computed with an algorithm, which, except for the
time needed to embed the input curves, runs in time independent of the input dimensionality.
Moreover, we show that the optimal cost of the k-median problem is preserved within a
constant factor in the target space. This means that running any algorithm for the k-median
problem in the target space, yields an algorithm for estimating the cost in the original space.

This effectively reduces the computational effort required for approximating the clustering
cost, and it directly assists analytical tasks like estimating the optimal number of clusters –
where cost estimations for multiple values of k are typically performed.

4.1 Clustering under the Fréchet Distance
In 2016, Driemel et al. [18] introduced clustering under the Fréchet distance, for the
purpose of clustering (one-dimensional) time series. The objectives, named (k, ℓ)-center
and (k, ℓ)-median, are derived from the well-known k-center and k-median objectives in
Euclidean k-clustering. Both are NP-hard [18, 10, 11], even if k = 1 and d = 1, and the
(k, ℓ)-center problem is even NP-hard to approximate within a factor of (2.25− ε) in general
dimensions [10]. One particularity of these clustering approaches is that the obtained center
curves should be of low complexity. In detail, while the given curves have complexity at most
m each, the centers should be of complexity at most ℓ each, where ℓ≪ m is a constant. The
idea behind is that due to the linear interpolation, a compact summary of the cluster members
through an aggregate center curve is enabled. A nice side effect is that overfitting, which
may occur without the complexity restriction, is suppressed. For further details see [18].

We now present a modification of the constant factor approximation algorithm for (k, ℓ)-
center clustering from [10]. We note that due to its appealing complexity, this algorithm is
used vastly in practice (c.f. [12]) and therefore constitutes a prime candidate to be combined
with dimensionality reduction.
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4.2 (k, ℓ)-Center Clustering
We formally define the (k, ℓ)-center clustering objective.

▶ Definition 16. The (k, ℓ)-center clustering problem is to compute a set C of k polygonal
curves in Rd, of complexity at most ℓ each, which minimizes the cost maxτ∈T minc∈C dF(τ, c),
where T = {τ1, . . . , τn} is a given set of polygonal curves in Rd of complexity at most m each,
and k ∈ N, ℓ ∈ N≥2 are constant parameters of the problem.

The following algorithm largely makes use of simplifications of input curves. We formally
define this concept.

▶ Definition 17. An α-approximate minimum-error ℓ-simplification of a curve τ in Rd is
a curve σ = simpl(τ) in Rd with at most ℓ vertices, where ℓ ∈ N≥2 and α ≥ 1 are given
parameters, such that dF(τ, σ) ≤ α · dF(τ, σ′) for all other curves σ′ with ℓ vertices.

A simplification σ = simpl(τ) is vertex-restricted if the sequence of its vertices is a
subsequence of the sequence of τs vertices. Crucial in our modification of the algorithm by
Buchin et al. [10] is that we want to compute simplifications in the dimensionality-reduced
ambient space to spare running time. In the following, we give a thorough analysis of the
effect of dimensionality reduction before simplification. The proof can be found in the full
paper [35].

▶ Theorem 18. Let F be the embedding of Theorem 15 with parameter ε ∈ (0, 1/2], for a
given set T of n polygonal curves in Rd of complexity at most m each, all segments vτ

i vτ
j ,

all subcurves τ [i, j] as well as all vertex-restricted ℓ-simplifications of all τ ∈ T (where
vτ

1 , . . . , vτ
|τ | are the vertices of τ and i, j ∈ [|τ |] with i < j). For each τ ∈ T , a 4-approximate

minimum-error ℓ-simplification simpl(F (τ)) of F (τ) can be computed in time O(d′ · |τ |3 log|τ |)
and for all σ ∈ T it holds that

(1− ε) dF(σ, simpl(τ)) ≤ dF(F (σ), simpl(F (τ)) ≤ (1 + ε) dF(σ, simpl(τ)),

where simpl(τ) denotes a (4 + 16ε)-approximate minimum-error ℓ-simplification of τ .

We now present our modification of the algorithm. Let F denote the embedding from
Theorem 15 for T ∪ T ′ ∪ C∗, where T ′ is the set of all segments vτ

i vτ
j , all subcurves τ [i, j] as

well as all vertex-restricted ℓ-simplifications of all τ ∈ T (where vτ
1 , . . . , vτ

|τ | are the vertices
of τ and i, j ∈ [|τ |] with i < j), and C∗ is an optimal set of k centers for T .

The algorithm first sets C = {simpl(F (τ))} for an arbitrary τ ∈ T . Then, until |C| = k it
computes a curve τ ∈ T that maximizes minc∈C dF(F (τ), c) and sets C = C ∪{simpl(F (τ))}.
Finally, it returns C.

We now prove the approximation guarantee and analyse the running time of this algorithm,
thereby we adapt parts of the analysis in [10]. The proof can be found in the full paper [35].

▶ Theorem 19. Given a set T of n polygonal curves in Rd of complexity at most m each,
and a parameter ε ∈ (0, 1/2], the above algorithm returns a solution C to the (k, ℓ)-center
clustering problem, consisting of k curves in RO(ε−2ℓ log(knm)) of complexity at most ℓ each,
such that

(1− 3ε)r∗ ≤ max
τ∈T

min
c∈C

dF(F (τ), c) ≤ (6 + 38ε)r∗,

where r∗ denotes the cost of an optimal solution. The algorithm has running time

O(ε−2kℓ log(nm + k)m3 log m + ε−2ℓ log(nm + k)k2nm log m).

SoCG 2023
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4.3 (k, ℓ)-Median Clustering
In this section, we show that the cost of the optimal (k, ℓ)-median solution is preserved
within a constant factor, when projecting the input curves as described in Section 3. We
first define the (k, ℓ)-median clustering problem.

▶ Definition 20. The (k, ℓ)-median clustering problem is to compute a set C of k polygonal
curves in Rd of complexity at most ℓ each, which minimizes the cost

∑
τ∈T minc∈C dF(τ, c),

where T = {τ1, . . . , τn} is a given set of polygonal curves in Rd of complexity at most m each,
and k ∈ N, ℓ ∈ N≥2 are constant parameters of the problem.

In Section 4.3.1, we focus on the case ℓ ≥ m, and we bound the distortion of the optimal
cost by a factor of 2 + O(ε). In Section 4.3.2, we discuss case ℓ < m, and we bound the
distortion of the optimal cost by a factor of 6 + O(ε).

4.3.1 Unrestricted Medians
In this section, we present our results on the (k, ℓ)-median clustering problem, when ℓ ≥ m.
Computing medians of complexity ℓ = m is a widely accepted scenario following, for example,
from the wide acceptance of local search methods for clustering, which explore candidate
solutions from the set of input curves. The proof follows a similar reasoning as in Section 4.3.2
and is diverted to the full paper [35]. Comparing to Section 4.3.2, we obtain an improved
bound on the approximation factor. This is mainly because simplifications are no longer
needed in order to obtain a meaningful bound.

▶ Theorem 21. Let T = {τ1, . . . , τn} be a set of polygonal curves in Rd of complexity at most
m each and let ℓ ≥ m. There exists a probability distribution over linear maps f : Rd → Rd′ ,
where d′ ∈ O(ε−2 log(nℓ)), such that with high probability over the choice of f , the following
is true. For any polygonal curve τ with vertices vτ

1 , . . . , vτ
|τ |, we define F (τ) to be the curve

with vertices f(vτ
1 ), . . . , f(vτ

|τ |). Then,

1− ε

2 · r∗ ≤ r∗
f ≤ (1 + ε) · r∗,

where r∗ is the cost of an optimal solution to the (k, ℓ)-median problem on T , and r∗
f is the

cost of an optimal solution to the (k, ℓ)-median problem on F (T ).

4.3.2 Restricted Medians
To bound the cost of the optimal (k, ℓ)-median in the projected space, we use the notion
of simplifications which was introduced in Section 4.2. By an averaging argument, for each
cluster, there exists an input curve σi which is within distance 1

|Ti| ·
∑

τ∈Ti
dF(F (τ), cf

i ) from
the optimal median cf

i , where Ti is the input curves associated with the ith cluster in the
projected space. To lower bound the optimal cost in the projected space, we repeatedly
apply the triangle inequality on distances involving a vertex-restricted ℓ-simplification of
σi and a vertex-restricted ℓ-simplification of F (σi). The upper bound simply follows by
the non-contraction guarantee of JL transforms, on distances between input curves and the
optimal medians in the original space. The proof can be found in the full paper [35].

▶ Theorem 22. Let T = {τ1, . . . , τn} be a set of polygonal curves in Rd of complexity at most
m each and let ℓ < m. There exists a probability distribution over linear maps f : Rd → Rd′ ,
where d′ ∈ O(ε−2ℓ log(nm)), such that with high probability over the choice of f , the following
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is true. For any polygonal curve τ with vertices vτ
1 , . . . , vτ

|τ |, we define F (τ) to be the curve
with vertices f(vτ

1 ), . . . , f(vτ
|τ |). Then,

1− ε

6 · (1 + ε) · r
∗ ≤ r∗

f ≤ (1 + ε) · r∗,

where r∗ is the cost of an optimal solution to the (k, ℓ)-median problem on T , and r∗
f is the

cost of an optimal solution to the (k, ℓ)-median problem on F (T ).

5 Conclusion

Our results are in line with the results by Magen [29, 30] in the sense that by increasing the
constant hidden in the O-notation specifying the number of dimensions of the dimensionality-
reduced space, JL transforms become more powerful and do not only preserve pairwise
Euclidean distances but also affine distances, angles and volumes, and as we have proven,
Fréchet distances.

Concerning JL transforms we have improved the work by Meintrup et al. [32] by proving
that no additive error is involved in the resulting Fréchet distances. To facilitate this result,
we had to incorporate the linearity of these transforms, which is not done in [32]. Interestingly,
this shows that when one uses a terminal embedding instead (see e.g. [33]) – for example to
handle a dynamic setting involving queries – this may induce an additive error to the Fréchet
distance, as the results by Meintrup et al. [32] can still be applied but ours can not since
terminal embeddings are non-linear. Consequently, in contrast to Euclidean distances where
a terminal embedding constitutes a proper extension of a JL embedding, this may not be
the case when it comes to Fréchet distances.

One open question of practical importance is whether one can improve our result for
polygonal curves that satisfy some realistic structural assumption, e.g., c-packness [16].
Moreover, it is possible that our implications on clustering can be improved. One question
there is whether one can reduce (or eliminate) the dependence on n from the target dimension,
in the same spirit as with the analogous results for the Euclidean distance [31].
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