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Abstract
We analyze the touring regions problem: find a (1 + ϵ)-approximate Euclidean shortest path in
d-dimensional space that starts at a given starting point, ends at a given ending point, and visits
given regions R1, R2, R3, . . . , Rn in that order.

Our main result is an O
(

n√
ϵ

log 1
ϵ

+ 1
ϵ

)
-time algorithm for touring disjoint disks. We also give

an O
(

min
(

n
ϵ

, n2
√

ϵ

))
-time algorithm for touring disjoint two-dimensional convex fat bodies. Both

of these results naturally generalize to larger dimensions; we obtain O
(

n
ϵd−1 log2 1

ϵ
+ 1

ϵ2d−2

)
and

O
(

n
ϵ2d−2

)
-time algorithms for touring disjoint d-dimensional balls and convex fat bodies, respectively.
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1 Introduction

We analyze the touring regions problem: find a (1 + ϵ)-approximate Euclidean shortest path
in d-dimensional space that starts at a given starting point, ends at a given ending point,
and visits given regions R1, R2, R3, . . . , Rn in that order. We primarily present algorithms
for the cases where the regions Ri are constrained to be convex fat bodies or balls.1 To the
best of our knowledge, we are the first to consider the cases where regions are disjoint convex
fat bodies or balls in arbitrary dimensions. Consequently, our algorithms use techniques not
previously considered in the touring regions literature (Section 1.4). Our algorithms work
under the assumption that a closest point oracle is provided; closest point projection has
been extensively used and studied in convex optimization and mathematics [5, 16].

Most prior work focuses on d = 2 or significantly restricts the convex bodies. The special
case where d = 2 and all regions are constrained to be polygons is known as the touring
polygons problem. Dror et al. [9] solved the case where every region is a convex polygon
exactly, presenting an O

(
|V |n log |V |

n

)
-time algorithm when the regions are disjoint as well

as an O
(
|V |n2 log |V |

)
-time algorithm when the regions are possibly non-disjoint and the

1 The full version also contains results for the case where the regions Ri are unions of general convex
bodies.
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54:2 New Approximation Algorithms for Touring Regions

subpath between every two consecutive polygons in the tour is constrained to lie within
a simply connected region called a fence. Here, |V | is the total number of vertices over
all polygons. Tan and Jiang [19] improved these bounds to O (|V |n) and O

(
|V |n2)-time,

respectively, without considering subpath constraints.
For touring nonconvex polygons, Ahadi et al. [3] proved that finding an optimal path is

NP-hard even when polygons are disjoint and constrained to be two line segments each. Dror
et al. [9] showed that approximately touring nonconvex polygons with constraining fences is
a special case of 3D shortest path with obstacle polyhedra, which can be solved in Õ

(
e4

ϵ2

)
time by applying results of Asano et al. [4], where e is the total number of edges over all
polyhedra. Mozafari and Zarei [13] improved the bound for the case of nonconvex polygons
with constraining fences to Õ

(
|V |2n2

ϵ2

)
time. Ahadi et al. [3] also solve the touring objects

problem exactly in polynomial time, in which the Ri are disjoint, nonconvex polygons and
the objective is to visit the border of every region without entering the interior of any region.

For touring disjoint disks, a heuristic algorithm with experimental results was demon-
strated by Chou [7]. Touring disjoint unit disks was given in a programming contest and
was a source of inspiration for this paper; an O

(
n
ϵ2

)
-time algorithm was given [1]. The main

result that we show for disks is superior to both of these algorithms.
Polishchuk and Mitchell [17] showed the case where regions are constrained to be inter-

sections of balls or halfspaces in d dimensions to be a special instance of a second-order cone
program (SOCP), which runs in O

(
d3c1.5n2 log 1

ϵ

)
time using SOCP time bounds as a black

box. Here, c is the number of halfspace or ball constraints.

1.1 Formal problem description
▶ Definition 1 (Approximate touring regions problem). Given n sets of points (regions)
R1, R2, . . . , Rn each a subset of Rd, a starting point p0, and an ending point pn+1,2 define
the function D : (Rd)n → R as D(p1, p2, . . . , pn) ≜

∑n
i=0 ∥pi − pi+1∥2.

Let A ≜ {(p1, p2, . . . , pn) | ∀i, pi ∈ Ri} ⊆ (Rd)n. Find a tuple of points (tour)
(p′

1, p′
2, . . . , p′

n) ∈ A such that D(p′
1, p′

2, . . . , p′
n) ≤ (1 + ϵ) minx∈A D(x).

We primarily consider two types of regions: convex fat bodies with constant bounded
fatness and balls. Fat objects have been previously considered in a variety of computational
geometry settings [12, 10, 15, 14].

▶ Definition 2 (Bounded fatness). We say that a convex region R ⊂ Rd is fat if there exist
balls h, H with radii 0 < rh ≤ rH , respectively, that satisfy h ⊆ R ⊆ H ⊂ Rd and rH

rh
= O (1).

One element of the problem that has not yet been determined is how we represent the
sets of points R1, R2, . . . , Rn; this depends on what we restrict the regions to be:

Convex fat bodies: We have access to each of the convex bodies Ri via a closest
point oracle. This oracle allows us to call the function closesti(p) on some point p, which
returns the point p′ ∈ Ri such that ∥p − p′∥ is minimized in O (1) time (note that p′ is
unique due to convexity). Additionally, for each region, we are given the radius rh of the
inscribed ball (as described in Definition 2), and a constant upper bound on the quantity
rH

rh
over all regions.

Balls: For each ball in the input we are given its center c ∈ Rd and its radius r ∈ R>0.

2 For convenience, some of our results define the degenerate regions R0 ≜ {p0} and Rn+1 ≜ {pn+1}.
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We consider the 2-dimensional and general d-dimensional cases separately. In the d-
dimensional case, we assume d is a constant (for example, we say 2d = O (1)). We also
consider the possibly non-disjoint versus disjoint cases separately, where the latter is defined
by the restriction Ri ∩ Rj = ∅ for all 0 ≤ i < j ≤ n + 1.

Motivation for our model

When considering general convex bodies, it is natural to augment the model of computation
with oracle access to the bodies, including membership, separation, and optimization oracles
[11]. In fact, when solving the touring regions problem for general convex bodies, a closest
point oracle is necessary even for the case of a single region, where the starting point is the
same as the ending point and the optimal solution must visit the closest point in the region
to the starting point. Closest point oracles can be constructed trivially when the bodies are
constant sized polytopes or balls. Closest point oracles have been used in the field of convex
optimization [8, 5].

Our representations for convex fat bodies and balls have the nice structure that the
former “contains” the latter: a ball is a specific type of convex fat body, and we can trivially
construct a closest point oracle for balls. We justify considering convex fat bodies as they
are in some sense “between” balls and general convex bodies: they obey some of the packing
constraints of balls.

1.2 Summary of results

Our results and relevant previous results are summarized in Tables 1 and 2. We obtain a
O
(

n
ϵ2d−2

)
time algorithm for touring disjoint convex fat bodies. Notice that this bound is

linear in n; in fact, we show that any FPTAS for touring convex fat bodies can be transformed
into one that is linear in n (Lemma 14). If the regions are further restricted to be balls,
we can apply our new technique of placing points nonuniformly, and the time complexity
improves to O

(
n

ϵd−1 log2 1
ϵ + 1

ϵ2d−2

)
, which roughly halves the exponent of 1

ϵ compared to
the convex fat bodies algorithm while retaining an additive 1

ϵ2d−2 term.
Our 2D-specific optimizations allow us to obtain superior time bounds compared to if we

substituted d = 2 into our general dimension algorithms. For convex fat bodies, we obtain
an algorithm with linear time dependence on both n and 1

ϵ . For our main result of touring
disjoint disks, we combine our optimizations for convex fat bodies and balls with 2D-specific
optimizations.

▶ Theorem 18. There is an O
(

n√
ϵ

log 1
ϵ + 1

ϵ

)
-time algorithm for touring disjoint disks.

With a new polygonal approximation technique, we use the result of [19] for touring
polygons as a black box to obtain algorithms with a square root dependence on 1

ϵ , most
notably an O

(
n3.5
√

ϵ

)
-time algorithm for touring 2D convex bodies and an O

(
n2
√

ϵ

)
-time

algorithm for touring 2D disjoint convex fat bodies.
The O

(
c1.5n2 log 1

ϵ

)
-time result for touring d dimensional convex bodies given by [17],

where each body is an intersection of balls and half spaces (with a total of c constraints) can
be applied specifically to balls to yield an O

(
n3.5 log 1

ϵ

)
-time algorithm. Our algorithms for

touring disjoint disks and balls all take time linear in n and are thus superior when ϵ is not
too small.

SoCG 2023
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Representation Runtime Intersecting? Source

Convex Polygons (Exact) O (|V |n), O
(
|V |n2) No, Yes Touring Polygons

[9], [19]

Convex (Oracle Access) O
(

n2.5
√

ϵ

)
, O
(

n3.5
√

ϵ

)
No, Yes Theorem 10

Convex Fat (Oracle Access) O
(

n
ϵ

)
, O
(

n2
√

ϵ

)
No Theorems 16, 17

Disks O
(

n√
ϵ

log 1
ϵ

+ 1
ϵ

)
No Theorem 18

Table 1 Previous and new bounds on touring n regions in two dimensions up to multiplicative
error 1 + ϵ, where ϵ ≤ O (1). For polygons, |V | is the total number of vertices over all polygons.

Representation Runtime Intersecting? Source

Convex Bodies, each an inter-
section of balls or halfspaces

O
(
c1.5n2 log 1

ϵ

)
Yes SOCP [17]

Convex Fat (Oracle Access) O
(

n
ϵ2d−2

)
No Theorem 15

Balls O
(

n
ϵd−1 log2 1

ϵ
+ 1

ϵ2d−2

)
No Theorem 19

Table 2 Previous and new bounds on touring n regions in d ≥ 2 dimensions up to multiplicative
error 1 + ϵ, where ϵ ≤ O (1). Note that d is treated as a constant. For polyhedra, c is the total
number of constraints.

1.3 Organization of the paper
We start in Section 2 by introducing the general techniques used by all of our algorithms,
including the closest point projection and 2D-specific optimizations. We then use the ideas
of packing and grouping to obtain algorithms for convex fat bodies in Section 3. Finally, we
optimize specifically for balls in Section 4 by placing points non-uniformly.

1.4 Summary of techniques
Here, we introduce the techniques mentioned in the previous subsection.

Placing points uniformly (Section 2)

A general idea that we use in our approximation algorithms is to approximate a convex
body well using a set of points on its boundary. For previous results involving polygons or
polyhedra [4, 13], this step of the process was trivial, as points were equally spaced along
edges. In order to generalize to convex bodies in arbitrary dimensions, we equally space
points on boundaries using the closest point projection oracle with a bounding hypercube
(Lemma 4). After discretizing each body into a set of points, we can solve the problem in
polynomial time using dynamic programming (DP): for each point, we find and store the
optimal path ending at it by considering transitions from all points on the previous region.

2D-specific optimizations (Section 2)

When the input shapes are convex and disjoint, we use properties of Monge matrices to
optimize dynamic programming transitions from quadratic to expected linear time (Lemma 5).
Previous approximation algorithms for related problems discretize the boundary of each
convex region using O

( 1
ϵ

)
points. We present a new approach to approximate each boundary
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using a convex polygon with O
(

1√
ϵ

)
vertices (Lemma 9). This allows us to use previous

exact algorithms for touring convex polygons as black boxes.

Packing and grouping (Section 3)

The key ideas behind our improvements for disjoint convex fat bodies are packing and
grouping. We use a simple packing argument to show that the path length for visiting n

disjoint convex fat bodies with radius r must have length at least Ω(r · n) for sufficiently
large n (Lemma 11). This was used by [1] for the case of unit disks. However, it is not
immediately clear how to use this observation to obtain improved time bounds when convex
fat regions are not all restricted to be the same size. The idea of grouping is to split the
sequence of regions into smaller contiguous subsequences of regions (groups). In each group,
we find the minimum-sized region, called a representative region, which allows us to break
up the global path into smaller subpaths between consecutive representatives. The earlier
packing argument now becomes relevant here, as we can show a lower bound on the total
length of the optimal path in terms of the sizes of the representatives.

Placing points non-uniformly (Section 4)

Previous approximation methods rely on discretizing the surfaces of bodies into evenly spaced
points. For balls, we use the intuition that the portion of the optimal path from one ball to
the next is “long” if the optimal path does not visit the parts of the surfaces that are closest
together. This allows us to place points at a lower density on most of the surface area of each
ball, leading to improved time bounds. We use this technique in conjunction with packing
and grouping. For disks, we additionally apply the aforementioned 2D-specific optimizations.

2 General Techniques

First, we describe the general techniques used by all of our algorithms. We split the discussion
into the general d-dimensional case and the 2-dimensional case.

2.1 General dimensions
The first main ingredient is the closest point projection, which allows us to equally space
points on each convex body.

▶ Lemma 3. For a convex region C, define closestC(p) ≜ argminc∈C ∥c − p∥. For any two
points p1 and p2, ∥closestC(p1) − closestC(p2)∥ ≤ ∥p1 − p2∥.

For any closed set X, let ∂X denote the boundary of X.

▶ Lemma 4 (Equal spacing via closest point projection). Given a convex body C for which
we have a closest point oracle and a hypercube H with side length r, we can construct a
set S ⊂ C of O

( 1
ϵd−1

)
points such that for all p ∈ (∂C) ∩ H, there exists p′ ∈ S such that

∥p − p′∥ ≤ rϵ.

Proof Sketch. First, we prove the statement for C = H. For this case, it suffices to equally
space points on each face of an axis-aligned hypercube defined by [0, r]d. For example, for the
face defined by xd = 0, we place points in a lattice at all coordinates (x1, x2, . . . , xd−1, xd)
that satisfy xd = 0 and xi = ki · rϵ for all integers ki ∈

[
0, 1

ϵ

]
. For C ̸= H, equally space

points on H as we stated to create a set SH. Then define S ≜ {closestC(s) | s ∈ SH}. ◀

SoCG 2023
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The proof of Lemma 3 and the remainder of the proof of Lemma 4 are deferred to the
full version of this paper.

2.2 Two dimensions
When the convex bodies are constrained to lie in 2D, there are two main avenues for further
improvements: first, by speeding up the dynamic programming (DP) transitions when all
regions have been discretized into point sets, and second, by approximating convex bodies
by convex polygons instead of sets of points.

2.2.1 Dynamic programming speedup
▶ Lemma 5. Given are the vertices of two disjoint convex polygons B = [b1, . . . , bm] and
A = [a1, a2, . . . , an] in counterclockwise order and real weights [w1, . . . , wn], one for each
vertex of A. Define d(i, j) ≜ wj + ∥aj − bi∥. Then min1≤j≤n d(i, j) may be computed for all
i ∈ [1, m] in O (m + n) expected time.

Proof. We first discuss the case where all wi = 0. Aggarwal and Klawe
[2] showed how to reduce the computation of min1≤j≤n,aj visible from bi d(i, j) and
min1≤j≤n,aj not visible from bi

d(i, j) for all i ∈ [1, m] to computing the row minima of sev-
eral Monge partial matrices with dimensions m1 × n1, m2 × n2, . . . , mk × nk such that∑

(mi + ni) ≤ O(m + n) in O(m + n) time. Here, aj is said to be visible from bi if the
segment ajbi intersects neither the interiors of polygons A nor B. The definition of Monge
partial matrix can be found in [6]. Chan [6] recently introduced an O (m + n) expected time
randomized algorithm for computing the row minima of an m × n Monge partial matrix.3
Thus, the case of wi = 0 can be solved in O (m + n) expected time.

The key claim that Aggarwal and Klawe [2] use to show that all the matrices they
construct are Monge partial is as follows:

▷ Claim 6 (Lemma 2.1 of [2], adapted). Assume all wj = 0. Suppose j ≠ j′ and i ̸= i′. If
ajaj′bi′bi form a convex quadrilateral in that order then d(i, j) + d(i′, j′) ≤ d(i, j′) + d(i′, j).

The claim above holds by the triangle inequality, and it is easy to check that it still
holds without the assumption wj = 0. Thus the algorithm from [2] generalizes to the case of
nonzero wj with minor modifications. ◀

▶ Corollary 7. The Touring Regions Problem in 2D, where all Ri are sets of finitely many
points Si that each form a convex polygon in counterclockwise order and the convex hulls of
all Si are disjoint, can be solved exactly in O (

∑n
i=1 |Si|) expected time.

Using the above techniques, the following result is proven in the full version and is used
multiple times in Section 3.

▶ Theorem 8. There is an O
(
n2 (log log n + 1

ϵ

))
-time algorithm for touring disjoint convex

bodies in two dimensions. When the bodies are possibly non-disjoint, the bound is
O
(

n3
(

log log n + 1
ϵ + log 1/ϵ

nϵ

))
time.

3 The Monge partial matrix does not have to be given explicitly; it suffices to provide an oracle that
returns the value of any entry of the matrix in O(1) time.



B. Qi and R. Qi 54:7

2.2.2 Polygonal approximation algorithms
Up until now, we have approximated the perimeter of a convex region using points. We can
alternatively approximate the perimeter using a convex polygon with fewer vertices. The
proof is deferred to the full version.

▶ Lemma 9 (Polygonal approximation). Given a closest point oracle for a convex region C

and a unit square U , we may select O
(
ϵ−1/2) points in C such that every point within C ∩ U

is within distance ϵ of the convex hull of the selected points.

The polygonal approximation allows us to immediately obtain the following result.

▶ Theorem 10. There is a O
(

n2.5
√

ϵ

)
-time algorithm for touring 2D disjoint convex bodies.

When the convex bodies are possibly non-disjoint, the bound is O
(

n3.5
√

ϵ

)
time.

Proof Sketch. After using Theorem 8 to find a constant approximation of the optimal path
length, we draw a square of this side length around the starting point, and we know the
optimal path must lie within the square. Then, we apply Lemma 9 to approximate each
region with a convex polygon and use previous exact algorithms for touring polygons [19] to
finish. ◀

3 Disjoint convex fat bodies

In this section, we present packing and grouping techniques for touring disjoint convex fat
bodies and show how they can be applied to obtain O

(
min

(
n
ϵ , n2

√
ϵ

))
-time algorithms for

touring 2D disjoint convex fat bodies.

3.1 Techniques
3.1.1 Packing
A packing argument shows that the length of the optimal path length is at least linear in the
number of bodies and the minimum rh (that is, the minimum radius of any inscribed ball).
Intuitively, if we place n disjoint objects of radius at least 1 that are close to being disks on
the plane, the length of the optimal tour that visits all of them should be at least linear in n

for sufficiently large n. The proof is deferred to the full version.

▶ Lemma 11 (Packing Lemma). Assume a fixed upper bound on rH

rh
. Then there exists

n0 = O (1) such that the optimal path length OPT for touring any n ≥ n0 disjoint convex
fat objects is Ω(n · min rh). For balls, n0 = 3.

The packing lemma allows us to obtain a strong lower bound on the length of the optimal
tour in terms of the size of the regions, which will be crucial in proving that our algorithms
have low relative error.

▶ Corollary 12. Let ri denote the ith largest rh. For all i ≥ n0, ri ≤ O
(

OP T
i

)
.

Proof. Consider dropping all regions except those with the i largest inner radii and let OPTi

be the optimal length of a tour that visits the remaining disks in the original order. By
Lemma 11, for i ≥ n0, OPT ≥ OPTi ≥ Ω(i · ri) =⇒ ri ≤ O

(
OP T

i

)
. ◀

▶ Lemma 13. The optimal path length for touring n disjoint convex fat bodies is
Ω
(∑

i≥n0
ri/ log n

)
, and there exists a construction for which this bound is tight.

SoCG 2023
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Proof Sketch. Using Corollary 12,∑
i≥n0

ri

log n
≤
∑
i≥n0

O
(

OP T
i

)
log n

≤ O

(
OPT

log n

n∑
i=n0

1
i

)
≤ O (OPT ) .

We display the construction in Figure 1; we defer the full description to the full version. The
idea is to place disjoint disks of radii 1/1, 1/2, 1/3, . . . such that they are all tangent to a
segment of the x-axis of length O (1). ◀

x = 0 x = 6

Figure 1 Construction from Lemma 13: placement of the first 30 disks.

3.1.2 Grouping
We now show that we can split up the optimal path into smaller subpaths by splitting the
sequence of bodies into groups of consecutive bodies, finding the minimum-sized body in each
group, and considering the subpaths between these small bodies. By the packing lemma, the
sum of the radii of the representatives is small compared to the total path length.

In particular, using groups of size 1
ϵ , we can compress the smallest sized region into a

single point, meaning that we can consider touring regions between these points independently
from each other. This allows us to turn any polynomial time approximation scheme for
touring disjoint convex fat bodies into one that is linear in n.

▶ Lemma 14 (Grouping Lemma). Given an algorithm for touring disjoint convex fat bodies
in d dimensions that runs in f(n, ϵ) time, where f is a polynomial, we can construct an
algorithm that runs in O (nϵ + 1) · f

( 1
ϵ , ϵ
)

time (for ϵ ≤ O(1)).

Proof. We describe an algorithm achieving a (1 + O(ϵ))-approximation. To achieve a
(1 + ϵ)-approximation, scale down ϵ by the appropriate factor.

Define s ≜
⌈ 1

ϵ

⌉
and let n0 be the constant defined in the statement of Lemma 11. We will

prove the statement for all ϵ satisfying 1
ϵ ≥ n0. First, we divide the n+2 regions (including R0

and Rn+1) into k = max
(⌈

n+2
s

⌉
, 2
)

≤ O (nϵ + 1) consecutive subsequences, each with exactly
s regions (except the starting and ending subsequences, which are allowed to have fewer). Let
Mi be the region with minimum inscribed radius rh in the ith subsequence; note that M1 = R0
and Mk = Rn+1. For each i ∈ [1, k], pick an arbitrary point pi ∈ Mi. Let OPT ′ be the
length of the shortest tour of R0, . . . , Rn+1 that passes through all of the pi. The p1, . . . , pk

form k − 1 subproblems, each with at most 2s regions. Therefore, we can (1 + ϵ)-approximate
OPT ′ by (1 + ϵ)-approximating each subproblem in (k − 1) · f(2s, ϵ) ≤ O (nϵ + 1) · f

( 1
ϵ , ϵ
)

time.
It remains to show that OPT ′ is a (1+O(ϵ))-approximation for OPT . Let ri be shorthand

for the radius rh of Mi (r1 = rk = 0). By the definition of fatness, the distance between any
two points in Mi is at most O (ri). By following through OPT and detouring to each point
pi, we get a path through points pi with length at most OPT + O (

∑
ri), and OPT ′ is at

most this amount.
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The last remaining step is to show
∑

ri ≤ O (ϵ · OPT ). We apply Lemma 11 to each
subsequence, and obtain that ris ≤ O (OPTi), where OPTi is the optimal distance to tour
regions in subsequence i. Note that although the starting and ending subsequences can have
sizes less than s, they satisfy ri = 0, so this bound holds for all subsequences. Therefore,∑

ri ≤ O (ϵ ·
∑

OPTi) ≤ O (ϵ · OPT ). ◀

3.2 Algorithms for convex fat bodies
Using a similar grouping argument, but using constant sized instead of 1

ϵ sized groups, along
with earlier methods of using estimates of the path length to place points on the boundaries
of the convex fat bodies yields the following results.

▶ Theorem 15. There is an O
(

n
ϵ2d−2

)
-time algorithm for touring disjoint convex fat bodies

in d dimensions.

Proof. We proceed in a similar fashion as Lemma 14, except we define s ≜ n0, i.e., using
constant sized groups instead of ⌈ 1

ϵ ⌉ sized groups. Let the Mi be defined as in the proof of
Lemma 14, and define mi to be the outer radius of Mi.

For each pair of regions Mi, Mi+1, pick arbitrary points a ∈ Mi, b ∈ Mi+1, and use the
d-dimensional analog of Theorem 84 to obtain a 4-approximation Dapprox of the length of the
shortest path from a to b in O (1) time. Suppose that the optimal path uses p ∈ Mi, q ∈ Mi+1
and the shortest path from a to b has distance OPTa,b; by the triangle inequality, we must
have

1
4Dapprox ≤ OPTa,b ≤ OPTi + 2mi + 2mi+1.

Now, consider the path where we start at p and then travel along the line segment from p to
a, the approximate path of length Dapprox from a to b (visiting the regions in between Mi and
Mi+1), and the line segment from b to q. This path has length at most Dapprox +2mi +2mi+1,
and upper bounds the length of the optimal path between p and q. So, the entire path
between p and q lies within a ball of radius Dapprox + 4mi + 2mi+1 centered at a; call this
ball L. Note that L has radius l = Dapprox + 4mi + 2mi+1 ≤ O (OPTi + mi + mi+1).

For each region Rj between Mi and Mi+1 inclusive, we apply Lemma 4 with the region
and a hypercube containing L, which has side length 2l. Note that points are placed twice
on each Mi; this is fine. Lemma 4 guarantees the existence of a point in Rj that is 2lϵ close
to the point OPT uses by placing O

( 1
ϵd−1

)
points on each region.

We now bound the difference between the optimal and the shortest paths using only the
points we placed. The difference is at most

k∑
i=1

(2liϵ · n0) = ϵ · O

(
k∑

i=1
li

)
= ϵ · O

(
OPT +

k∑
i=1

mi

)
= O (ϵ · OPT ) ,

where the last step is due to Corollary 12 applied on each subsequence: in particular, the
optimal path length visiting all the regions in subsequence i has length at least Ω(mi), so
summing this inequality over all subsequences, we have

∑k
i=1 mi ≤ O (OPT ).

We have now reduced the problem to the case where each region has only finitely many
points. We finish with dynamic programming. Since we have O

( 1
ϵd−1

)
points on each of the

n regions, the runtime is O
(

n
ϵ2d−2

)
, as desired. ◀

4 This theorem may be found in Table 2 of the full version.
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▶ Theorem 16. There is an O
(

n
ϵ

)
-time algorithm for touring 2D disjoint convex fat bodies.

Proof. This is almost the same as Theorem 15, where O
( 1

ϵd−1

)
= O

( 1
ϵ

)
points are placed

on each body, except that we use Corollary 7 to more efficiently solve the case where each
region is a finite point set. ◀

▶ Theorem 17. There is an O
(

n2
√

ϵ

)
-time algorithm for touring 2D disjoint convex fat bodies.

Proof. Theorem 16 through the construction of Theorem 15 places O
( 1

ϵ

)
points on an arc

of length R on each convex fat body to guarantee additive error ≤ ϵR. We can achieve the
same additive error using a convex polygon with O

(
ϵ−1/2) vertices using Lemma 9. Then,

recall that [19] gives an O (|V |n)-time exact algorithm for touring convex polygons, so we
can recover a solution in O (|V |n) = O

(
(n · ϵ−1/2) · n

)
time. ◀

4 Balls

We can improve the results in previous sections by discretizing the surfaces non-uniformly,
placing fewer points on areas of each hypersphere that are farther away from the previous
and next ball in the sequence. This reduces the dependence on ϵ by a square root compared
to Theorem 15 and Theorem 16. We first state the results:

▶ Theorem 18. There is an O
(

n√
ϵ

log 1
ϵ + 1

ϵ

)
-time algorithm for touring disjoint disks.

▶ Theorem 19. There is an O
(

n
ϵd−1 log2 1

ϵ + 1
ϵ2d−2

)
-time algorithm for touring disjoint balls

in d dimensions.

The crucial lemma we use for these results follows. We defer its proof to the full version.

▶ Lemma 20. A tour of disjoint balls is globally optimal if and only if for each intermediate
ball, the tour either passes straight through the ball or perfectly reflects off its border (see
Figure 2 for an example).

p0

p2 p3c1

c2

Figure 2 Lemma 20: An optimal tour of two unit disks. The tour starts at p0, passes through c1,
reflects off c2 at p2, and ends at p3.

We start with the special case of unit disks and then generalize to non-unit disks
(Theorem 18). First, we provide intuition through a simple example where n = 1 and R1 is a
line.

▶ Example 21. Given start and endpoints p0 = (−1, 1) and p2 = (1, 1), select p1 from the
x-axis such that OPT = ∥p0 − p1∥ + ∥p1 − p2∥ is minimized.

Solution. To solve this exactly, choose p1 = (0, 0) such that the path perfectly reflects off
the x-axis. This gives OPT = 2

√
2.
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Now suppose that we are only interested in an approximate solution. Tile the x-axis with
points at regular intervals such that every two consecutive points are separated by distance
d, and round p1 to the closest such point p′

1. Since ∥p1 − p′
1∥ ≤ d,

OPT ′ ≜ ∥p0 − p′
1∥ + ∥p′

1 − p2∥

≤
√

1 + (1 − d)2 +
√

1 + (1 + d)2 ≤
√

2 − 2d + d2 +
√

2 + 2d + d2

≤
√

2(1 − d/2 + 1 + d/2 + O
(
d2)) ≤ 2

√
2(1 + O

(
d2)).

So, to attain OPT ′ ≤ (1 + ϵ)OPT , it suffices to take d = Θ(
√

ϵ) rather than d = Θ(ϵ)
because p′

1 − p1 is parallel to the x-axis. We can apply a similar idea to replace the middle
region with a point set when R1 is a circle rather than a line since circles are locally linear.
However, this doesn’t quite work when either ∥p0 − p1∥ or ∥p1 − p2∥ is small. For example,
if p0 was very close to the x-axis (say, p0 = (−d, d)) then rounding p1 to the nearest p′

1 could
cause OPT ′ to increase by Θ(d) ≫ d2. So when we replace each circle with a point set, we
need to be careful about how we handle two circles that are close to touching; the solution is
to space points more densely near where they touch. ◀

▶ Theorem 22. There is an O
(

n√
ϵ

log 1
ϵ

)
-time algorithm for touring disjoint unit disks.

Proof. We describe how to place a set of O
(

1√
ϵ

log 1
ϵ

)
points Si on each unit circle ci so

that the length of an optimal path increases by at most O (nϵ) after rounding each pi to
the nearest p′

i ∈ Si. Define unit(x) = x
∥x∥ . Let oi ≜ p′

i − pi for all i ∈ [0, n + 1] (note that
o0 = on+1 = 0), where o stands for offset. Also, define vectors

di ≜ p′
i+1 − p′

i = pi+1 + oi+1 − pi − oi

and scalars

ai ≜ di · unit(pi+1 − pi) = ∥pi+1 − pi∥ + (oi+1 − oi) · unit(pi+1 − pi),

where ai is the component of di along the direction of pi+1 − pi. Then the total path length
after rounding each pi to p′

i is:
n∑

i=0
∥di∥ =

n∑
i=0

√
[di · unit(pi+1 − pi)]2 + [di · unit(pi+1 − pi)⊥]2

=
n∑

i=0

√
a2

i + [(oi+1 − oi) · unit(pi+1 − pi)⊥]2

=
n∑

i=0

[
ai +

(√
a2

i + [(oi+1 − oi) · unit(pi+1 − pi)⊥]2 − ai

)]

= OPT +
n∑

i=1

extra1(i)︷ ︸︸ ︷
oi · (unit(pi − pi−1) − unit(pi+1 − pi))

+
n∑

i=0

extra2(i)︷ ︸︸ ︷(√
a2

i + [(oi+1 − oi) · unit(pi+1 − pi)⊥]2 − ai

)

= OPT +
n∑

i=1
extra1(i) +

n∑
i=0

extra2(i).

We defer the construction of the sets Si so that both extra terms are small to Lemma 23.
Then we can finish with dynamic programming (Corollary 7). ◀
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▶ Lemma 23. It is possible to choose Si in the proof of Theorem 22 such that |Si| ≤
O
(

1√
ϵ

log 1
ϵ

)
, extra1(i) ≤ O (ϵ), and extra2(i) ≤ O (ϵ) for all i.

Proof. First, we present the construction. For every pair of adjacent disks i and i + 1 we
describe a procedure to generate points on their borders. Then we set Si to be the union of
the generated points on the border of disk i when running the procedure on disks (i, i + 1)
and on disks (i − 1, i). Finally, we show that extra1(i) and extra2(i) are sufficiently small for
all i for our choice of Si.

Procedure. Reorient the plane that ci = (0, y) and ci+1 = (0, −y) for some y > 1. Let
spacing : R≥0 → R>0 be a function that is nonincreasing in |ϕ| that we will define later.
Given spacing, we use the following process to add points to Si (and symmetrically for Si+1):

1. Set ϕ = 0.
2. While ϕ ≤ π:

Add (sin ϕ, y − cos ϕ) to Si.
ϕ += spacing(ϕ).

3. Repeat steps 1-2 but for ϕ from 0 to −π.

This procedure has the property that for any ϕ ∈ [−π, π], the point (sin ϕ, y − cos ϕ) is
within distance spacing(|ϕ|) of some point in Si. In particular, if the optimal path has
pi = (sin ϕi, y − cos ϕi) then it is guaranteed that ∥oi∥ ≤ spacing(ϕi). To compute |Si|, note
that as long as spacing(ϕ) is sufficiently smooth that spacing(ϕ)

spacing(ϕ+spacing(ϕ)) = Θ(1) for all ϕ,
the number of points added to Si will be at most a constant factor larger than the value of
the definite integral

∫ π

−π
1

spacing(ϕ) dϕ.

Next, we construct spacing so that |Si| = O
(

1√
ϵ

log 1
ϵ

)
. Intuitively, by Example 21, we

should have spacing(ϕ) = Θ(ϵ) closer to circle i + 1 (when ϕ ≈ 0) and spacing(ϕ) = Θ(
√

ϵ)
farther from circle i + 1 (when ϕ = Θ(1)). Thus, we set spacing(ϕ) = max(ϵ,

√
ϵϕ). The total

number of added points is on the order of:∫ π

0

1
spacing(ϕ) dϕ = 1√

ϵ

(∫ √
ϵ

0

1√
ϵ

dϕ +
∫ π

√
ϵ

1
ϕ

dϕ

)

= 1√
ϵ

(
1 + log

(
π√
ϵ

))
≤ O

(
1√
ϵ

log 1
ϵ

)
.

Finally, we show that both extra terms are small for our choice of Si.

Part 1: extra1(i). We note that unit(pi − pi−1) − unit(pi+1 − pi) must be parallel to pi − ci

for an optimal solution p. To verify this, it suffices to check the two cases from Lemma 20:
1. The points pi−1, pi, pi+1 are collinear, in which case unit(pi − pi−1) − unit(pi+1 − pi) = 0.
2. The path reflects perfectly off circle i, in which case unit(pi − pi−1) − unit(pi+1 − pi) is

parallel to pi − ci.

If we ensure that spacing(ϕ) ≤
√

ϵ for all ϕ, then |oi · unit(pi − ci)| ≤ ϵ because oi is
always nearly tangent to the circle centered at ci at point pi. The conclusion follows because
extra1(i) ≤ 2|oi · unit(pi − ci)| ≤ 2ϵ.
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Part 2: extra2(i). We upper bound extra2(i) by the sum of two summands, the first
associated only with oi and the second associated only with oi+1.

▷ Claim 24. Letting ycoord(·) denote the y-coordinate of a point,

extra2(i) ≤ 2 ·

(
min

(
∥oi∥ ,

4 ∥oi∥2

ycoord(pi)

)
+ min

(
∥oi+1∥ ,

4 ∥oi+1∥2

−ycoord(pi+1)

))
.

Proof. We do casework based on which term is smaller on each of the mins.
1. ∥oi∥ ≥ ycoord(pi)

4 , ∥oi+1∥ ≥ −ycoord(pi+1)
4

The result, extra2(i) ≤ 2(∥oi∥+∥oi+1∥), follows by summing the following two inequalities:

√
a2

i + [(oi+1 − oi) · unit(pi+1 − pi)⊥]2 − ∥pi+1 − pi∥

= ∥pi+1 − pi + oi+1 − oi∥ − ∥pi+1 − pi∥ ≤ ∥oi∥ + ∥oi+1∥

and ∥pi+1 − pi∥ − ai ≤ ∥oi∥ + ∥oi+1∥.
2. ∥oi∥ ≤ ycoord(pi)

4 , ∥oi+1∥ ≤ −ycoord(pi+1)
4

Then ∥oi∥ , ∥oi+1∥ ≤ ∥pi+1−pi∥
4 so ai ≥ ∥pi+1−pi∥

2 , and

extra2(i) ≤ ∥oi+1 − oi∥2

2ai
≤ 2(∥oi+1∥2 + ∥oi∥2)

2ai

≤ 2 · ∥oi+1∥2 + ∥oi∥2

∥pi − pi+1∥
≤ 2 ·

(
∥oi∥2

ycoord(pi)
+ ∥oi+1∥2

−ycoord(pi+1)

)
.

3. ∥oi∥ ≤ ycoord(pi)
4 , ∥oi+1∥ ≥ −ycoord(pi+1)

4
Define extra′(i) to be the same as extra2(i) with oi+1 set to 0. Then

extra′(i) ≜ ∥pi+1 − pi − oi∥ − (∥pi+1 − pi∥ − oi · unit(pi+1 − pi))

=
√

(∥pi+1 − pi∥ − oi · unit(pi+1 − pi))2 + [oi · unit(pi+1 − pi)⊥]2

− (∥pi+1 − pi∥ − oi · unit(pi+1 − pi))

≤ ∥oi∥2

2 · 3
4 ∥pi − pi+1∥

≤ ∥oi∥2

2 · 3
4 · ycoord(pi)

and by similar reasoning as case 1, extra2(i) − extra′(i) ≤ 2 ∥oi+1∥.
4. ∥oi∥ ≥ ycoord(pi)

4 , ∥oi+1∥ ≤ −ycoord(pi+1)
4

Similar to case 3. ◀

Now that we have a claim showing an upper bound on extra2(i), it remains to show
that min

(
∥oi∥ , ∥oi∥2

ycoord(pi)

)
≤ O (ϵ) for our choice of spacing. Indeed, when ϕ ≤

√
ϵ we have

∥oi∥ ≤ spacing(ϕ) ≤ ϵ, while for ϕ >
√

ϵ we have ∥oi∥2

ycoord(pi) ≤ O
(

spacing(ϕ)
ϕ2

)
≤ O (ϵ). ◀

With small modifications to the proof of Lemma 23, we have the following corollary:

▶ Corollary 25. Consider the case of non-unit disks. If the ith disk has radius ri, then we
can place O

(
1√
ϵi

log 1
ϵi

)
points on its border such that the additive error associated with ci

—specifically, extra1(i) plus the components of extra2(i − 1) and extra2(i) associated with ∥oi∥
—is O (riϵi). Consequently, OPT +

∑n
i=1 extra1(i) +

∑n
i=0 extra2(i) ≤ OPT +

∑n
i=1 riϵi.

SoCG 2023



54:14 New Approximation Algorithms for Touring Regions

Now, we finally prove Theorems 18 and 19.

Proof of Theorem 18 (Non-Unit Disks). We first present a slightly weaker result, and then
show how to improve it. Recall that by Corollary 12, the ith largest disk has radius O

(
OP T

i

)
for i ≥ 3. So if we set ϵi = ϵ′ = ϵ

log n for each of the ith largest disks for i ≥ 3, the total
additive error contributed by these disks becomes

O

(
n∑

i=3

OPT

i
· ϵi

)
≤ O

(
OPT · ϵ′ ·

n∑
i=3

1
i

)
≤ O (ϵOPT )

by Corollary 25. For the two largest disks, we use the previous naive discretization (placing
O
( 1

ϵ

)
points uniformly on the intersection of the circles with a square of side length

O (OPT ) centered about the starting point). We may assume we have already computed a
constant approximation to OPT in O (n) time by applying Theorem 16 with ϵ = 1. After
selecting the point sets, we can finish with Corollary 7. The overall time complexity is

O
(

n√
ϵ′ log 1

ϵ′ + 1
ϵ

)
≤ O

(
n
√

log n√
ϵ

log
(

log n
ϵ

)
+ 1

ϵ

)
.

We can remove the factors of log n by selecting the ϵi to be an increasing sequence. Set
ϵi = Θ

(
ϵi2/3

n2/3

)
for each i ∈ [3, n] such that more points are placed on larger disks. Then the

total added error remains

O

(
OPT ·

(
ϵ +

n∑
i=3

ϵi

i

))
= O

(
OPT ·

(
ϵ +

n∑
i=3

1
i

· ϵi2/3

n2/3

))

= O

(
OPTϵ ·

(
1 + n−2/3 ·

n∑
i=3

i−1/3

))
≤ O (OPTϵ) ,

and the factors involving log n drop out from the time complexity:

O

(
n∑

i=3

1√
ϵi

log
(

1
ϵi

)
+ 1

ϵ

)
≤ O

(∫ n

i=3

1√
ϵ
n1/3i−1/3 log

(
n2/3

i2/3ϵ

)
di + 1

ϵ

)
≤ O

(
3n1/3

2
√

ϵ
i2/3

(
log n2/3

i2/3ϵ
+ 1
) ∣∣∣∣n

3
+ 1

ϵ

)
≤ O

(
n√
ϵ

log
(

1
ϵ

)
+ 1

ϵ

)
. ◀

To extend to multiple dimensions, we generalize the construction from Lemma 23.

Proof of Theorem 19 (Balls). As in Lemma 23, set spacing(ϕ) = max(ϵ,
√

ϵϕ) for a point
pi satisfying m∠picici+1 = ϕ, meaning that there must exist p′

i ∈ Si satisfying ∥pi − p′
i∥ ≤

ri · spacing(ϕ). The total number of points |Si| placed on the surface of a d-dimensional
sphere is proportional to∫ π

0

sind−2(ϕ)
spacing(ϕ)d−1 dϕ ≤ 1

(
√

ϵ)d−1

∫ π

0

ϕd−2

max(
√

ϵ, ϕ)d−1 dϕ

= 1
ϵ(d−1)/2

(∫ √
ϵ

0

ϕd−2

(
√

ϵ)d−1 dϕ +
∫ √

ϵ

0

1
ϕ

dϕ

)
≤ O

(
1

ϵ(d−1)/2 log 1
ϵ

)
,

where the derivation of the integration factor sind−2(ϕ) can be found in [18].
It remains to describe how to space points so that they satisfy the given spacing function.

For each spacing s = ϵ, 2ϵ, 4ϵ, . . . ,
√

ϵ, we can find a d-dimensional hypercube of side length
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O(s/
√

ϵ) that encloses all points on the hypersphere with required spacing at most 2s. Evenly
space points with spacing s across the surface of this hypercube according to Lemma 4, and
project each of these points onto the hypersphere. There are a total of O

(
log 1

ϵ

)
values of s,

and each s results in O
( 1

ϵ(d−1)/2

)
points being projected onto the hypersphere, for a total of

O
( 1

ϵ(d−1)/2 log 1
ϵ

)
points. ◀
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