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Abstract
Regression depth, introduced by Rousseeuw and Hubert in 1999, is a notion that measures how
good of a regression hyperplane a given query hyperplane is with respect to a set of data points.
Under projective duality, this can be interpreted as a depth measure for query points with respect to
an arrangement of data hyperplanes. The study of depth measures for query points with respect to
a set of data points has a long history, and many such depth measures have natural counterparts in
the setting of hyperplane arrangements. For example, regression depth is the counterpart of Tukey
depth. Motivated by this, we study general families of depth measures for hyperplane arrangements
and show that all of them must have a deep point. Along the way we prove a Tverberg-type theorem
for hyperplane arrangements, giving a positive answer to a conjecture by Rousseeuw and Hubert
from 1999. We also get three new proofs of the centerpoint theorem for regression depth, all of
which are either stronger or more general than the original proof by Amenta, Bern, Eppstein, and
Teng. Finally, we prove a version of the center transversal theorem for regression depth.
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1 Introduction

A central topic in combinatorial geometry and computational geometry is the study of
structural properties of finite families of points in Euclidean spaces. Studying which sets
can be separated from others by hyperplanes is a natural question, which leads us to study
combinatorial properties of convex sets. Classic results, such as Tverberg’s theorem [26] and
Rado’s centerpoint theorem [17] follow from this line of thought.

In some cases, instead of being provided our data as a finite set of points in Rd, we might
receive it as a set of hyperplanes. Understanding which results for families of points transfer
to families of hyperplanes is a natural question.

Given a hyperplane arrangement A in Rd and a point q, we first consider the depth of q

with respect to A as follows.

▶ Definition 1. The regression depth of a query point q with respect to hyperplane arrangement
A, denoted by RD(A,q), is the minimum number of hyperplanes in A intersected by or parallel
to any ray emanating from q.

Note that if q lies on a hyperplane H, then any ray emanating from q intersects H.
Regression depth has been widely studied [1, 7, 21, 22, 28]. In this manuscript we provide
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new structural results for regression depth, related to Tverberg’s theorem and enclosing depth.
In particular, given a finite arrangement A of hyperplanes in Rd, we might measure the depth
of a point q in A in several different ways, so we study general properties of depth measures
with respect to arrangements of hyperplanes. This follows a similar approach recently taken
for depth measures with respect to finite families of points [23].

Given an arrangement A of n hyperplanes, the existence of points with regression depth
at least n/(d + 1) has been established by Amenta, Bern, Eppstein, and Teng [1], and later
by Mizera [15] as well as Karasev [11]. This can be considered a hyperplane version of Rado’s
centerpoint theorem [17]. We give three new proofs of the existence of points with large
regression depth. First, we prove a Tverberg-type theorem for hyperplanes, confirming a
conjecture of Rousseeuw and Hubert [21].

▶ Theorem 2. Let r, d be positive integers and A be an arrangement of at least (r−1)(d+1)+1
hyperplanes in Rd. Then, there exists a point q in Rd and a partition of A into r parts such
that q has positive regression depth with respect to each of the r parts.

This was previously known when d = 2 [21] or when r is a prime power [12, 13]. The
version for prime powers by Karasev holds with a slightly more restrictive version of regression
depth. Based on this result, we define the hyperplane Tverberg depth of a point.

▶ Definition 3. The hyperplane Tverberg depth of a query point q with respect to hyperplane
arrangement A, denoted by HTvD(A,q), is the maximum r such that there is a partition of
A into r parts such that q has positive regression depth with respect to each part.

Our other two proofs are topological, and each also has stronger consequences. One proof
based on a topological version of Helly’s theorem shows the existence of points of high open
regression depth, which is a slightly weaker measure of depth introduced in Section 5. The
last proof, based on properties of vector bundles, works for regression depth in families of
weighted arrangements.

Another way to measure the depth of a point with respect to a hyperplane arrangement
is via k-enclosures. We say that an arrangement A k-encloses a query point q if A can be
partitioned into d + 1 pairwise disjoint subsets A1, . . . , Ad+1, each of size k, such that for
every choice h1 ∈ A1, . . . , hd+1 ∈ Ad+1 we have that RD({h1, . . . , hd+1}, q) ≥ 1.

▶ Definition 4. The hyperplane enclosing depth of a query point q with respect to a hyperplane
arrangement A, denoted by HED(A,q), is the maximum k such that there is a sub-arrangement
of A which k-encloses q.

Given a finite hyperplane arrangement A, we prove the existence of points with high
hyperplane enclosing depth with respect to A. In particular, our lower bound is linear in |A|.
The existence of points with large enclosing depth for families of points has been established
by Pach [16] and by Fabila-Monroy and Huemer [6] (see [23] for improved constants).

One striking generalization of Rado’s centerpoint theorem is the central transversal
theorem, proven independently by Dolnikov and by Živaljević and Vrećica [5, 29]. In Section
7 we prove an analogue for hyperplane arrangements. Given a hyperplane arrangement A in
Rd and a linear subspace L in Rd, we denote by A ∩ L the restriction of A to L. In Theorem
28, we show that given d − k + 1 different arrangements of hyperplanes in Rd, there exists a
k-dimensional linear subspace L such that the restrictions of each arrangement to L share a
point with high regression depth.

In particular, just as the central transversal theorem generalizes the ham sandwich
theorem, Theorem 28 has the following corollary.
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▶ Corollary 5. Let A1, . . . , Ad be d hyperplane arrangements in Rd. There exists a line ℓ

through the origin in Rd and a point q ∈ ℓ such that each of the two rays in ℓ starting from q

intersects at least |Ai|/2 hyperplanes of Ai, for each i = 1, . . . , d.

The corollary above is similar to mass partition results for families of hyperplanes with
segments [3, 18], and to projective versions of the central transversal theorem [13].

2 Correspondence to depth measures for point sets

For an arrangement A and a query point q, we define the dual of A at q, denoted by A∗
q , as

follows. For each hyperplane h ∈ A, let p(h) be the unique point on h that is closest to q.
We define A∗

q as the set formed by all these points, that is, A∗
q := {p(h) | h ∈ A}. Note that

if q lies on k hyperplanes, then those k dual points coincide with q in A∗
q .

Using this duality, for every depth measure ρ on point sets we can define a corresponding
depth measure ρ∗ on hyperplane arrangements and vice versa, by setting ρ∗(A, q) = ρ(A∗

q , q).
We have the following observation.

▶ Observation 6. 1. a ray r emanating from q intersects a hyperplane h if and only if the
half-space r⊥ defined by the hyperplane thorugh q orthogonal to r, oriented such that it
contains r, contains p(h);

2. the point q has positive regression depth with respect to h1, . . . , hn if and only if it is in
the convex hull of p(h1), . . . , p(hn).

3. the point q lies in the simplex defined by h1 . . . , hd+1 if and only if it is in the interior of
the convex hull of p(h1), . . . , p(hd+1).

The three depth measures for hyperplane arrangements defined in Section 1 all have
natural corresponding depth measures for point sets that follow immediately from Observation
6. For regression depth, the corresponding depth measure is Tukey depth (TD), which is
defined as the minimum number of data points contained in any closed half-space containing
the query point q [25]. For hyperplane Tverberg depth we get Tverberg depth (TvD), which is
defined as the maximum r for which there exists an r-partition of the data points containing
the query point q in their intersection. Finally, for hyperplane enclosing depth, we get
enclosing depth (ED), which is defined as the maximum k for which there exists a subset of
the data points that k-encloses the query point q [23].

▶ Corollary 7. Let A be an arrangement of hyperplanes in general position in Rd and let q

be a query point. Then
1. RD(A, q) = TD(A∗

q , q);
2. HTvD(A, q) = TvD(A∗

q , q);
3. HED(A, q) = ED(A∗

q , q).

3 Axioms for hyperplane depth

Let ARd denote the family of all finite arrangements of hyperplanes in Rd. A depth measure
for hyperplanes is a function ρ : (ARd

,Rd) → R≥0 which assigns to each pair (A, q) consisting
of a hyperplane arrangement A and a query point q a value, which describes how deep the
query point q lies within the arrangement A. A depth measure is called combinatorial if it
is the same for all points in a face of A. Similar to [23], we introduce some axioms, that
reasonable depth measures for hyperplane arrangements should satisfy.

We say that a combinatorial depth measure for hyperplanes is super-additive if it satisfies
the following four conditions.

SoCG 2023
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q

Figure 1 Hyperplane enclosing depth does not satisfy condition (iv): the point q has hyperplane
enclosing depth 1 with respect to both the blue and the red lines, but its hyperplane enclosing depth
with respect to the union of the two sets is still 1.

(i) for all A ∈ ARd and q ∈ Rd and any hyperplane h we have |ρ(A, q) − ρ(A ∪ {h}, q)| ≤ 1,
(ii) for all A ∈ ARd we have ρ(A, q) = 0 if q is in an unbounded cell of A,
(iii) for all A ∈ ARd we have ρ(A, q) ≥ 1 if q is in a bounded cell or if q lies on a hyperplane

of A,
(iv) for any disjoint subsets A1, A2 ⊆ A and q ∈ Rd we have ρ(A, q) ≥ ρ(A1, q) + ρ(A2, q).

▶ Observation 8. Regression depth and hyperplane Tverberg depth are super-additive, but
hyperplane enclosing depth is not.

For hyperplane enclosing depth, an example with HED(A1, q) = HED(A2, q) =
HED(A, q) = 1 can be found in Figure 1.

▶ Lemma 9. Let ρ be any combinatorial depth measure that satisfies conditions (i) and (ii).
Then for all A ∈ ARd and q ∈ Rd we have ρ(A, q) ≤ RD(A, q).

Proof. Let RD(A, q) = k. This means that there is a ray r which intersects or is parallel
to some k hyperplanes of A. Removing these k hyperplanes, we get a new arrangement A′

and we have RD(A′, q) = 0. In particular, q is in an unbounded cell of A′ and thus also
ρ(A′, q) = 0 by condition (ii). By condition (i) we have ρ(A, q) ≤ ρ(A′, q) + k = k. ◀

▶ Lemma 10. Let ρ be any combinatorial depth measure that satisfies conditions (iii) and
(iv). Then for all A ∈ ARd and q ∈ Rd we have ρ(A, q) ≥ HTvD(A, q).

Proof. Let HTvD(A, q) = k. This means that there is a k-partition A1, . . . , Ak such that q

has regression depth ≥ 1 with respect to each part. By condition (iii) we have ρ(Ai, q) ≥ 1
for each Ai. By condition (iv) we get ρ(A, q) ≥ ρ(A1, q) + . . . + ρ(Ak, q) ≥ k. ◀

▶ Lemma 11. For all A ∈ ARd and q ∈ Rd we have HTvD(A, q) ≥ 1
d RD(A, q).

Proof. By Corollary 7 we have HTvD(A, q) = TvD(A∗
q , q) and RD(A, q) = TD(A∗

q , q). It
is well known that for any point set S in Rd and any query point q we have TvD(S, q) ≥
1
d TD(S, q), see e.g. [1, 8, 19]. ◀

Combining all of the above, we get
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▶ Theorem 12. Let ρ be a super-additive depth measure for hyperplanes. Then for all
A ∈ ARd and q ∈ Rd we have RD(A, q) ≥ ρ(A, q) ≥ HTvD(A, q) ≥ 1

d RD(A, q).

As we have seen above, not all depth measures are super-additive: hyperplane enclosing
depth is an example of a measure that is not. To include more general depth measures, we
define a second family of measures, defined by a weaker set of axioms. We call a combinatorial
depth measure for hyperplanes enclosable if it satisfies the following conditions.

(i) for all A ∈ ARd and q ∈ Rd and any hyperplane h we have |ρ(A, q) − ρ(A ∪ {h}, q)| ≤ 1,
(ii) for all A ∈ ARd we have ρ(A, q) = 0 if q is in an unbounded cell of A,

(iii’) for all A ∈ ARd we have ρ(A, q) ≥ k if A k-encloses q,
(iv’) for all A ∈ ARd and q ∈ Rd and any hyperplane h we have ρ(A ∪ {h}, q) ≥ ρ(A, q).

▶ Observation 13. Regression depth, hyperplane Tverberg depth and hyperplane enclosing
depth are all enclosable.

By Lemma 9, any enclosable depth measure is bounded from above by regression depth.
On the other hand, it follows immediately from conditions (iii’) and (iv’) that any enclosable
depth measure is bounded from below by hyperplane enclosing depth. We finish this section
by showing a lower bound for hyperplane enclosing depth. In Theorem 17 in [23] it was
shown that there is a constant c(d) such that for any point set S in Rd and any query point
q we have ED(S, q) ≥ c · TD(S, q). Let now q be a point of largest regression depth for a
hyperplane arrangement A. We will see in Theorem 24 that q has regression depth at least
|A|
d+1 . By Observation 6, this means TD(A∗

q , q) ≥ |A|
d+1 . By Theorem 17 in in [23], it follows

that ED(A∗
q , q) ≥ c|A|

d+1 . Using Observation 6 again, we deduce the following:

▶ Theorem 14. Let A be an arrangement of hyperplanes in Rd. There is a constant c = c(d)
such that there is a query point q with hyperplane enclosing depth HED(A, q) ≥ c|A|

d+1 .

Combining all of the above, we get an analogue to Theorem 12.

▶ Theorem 15. Let ρ be an enclosable depth measure for hyperplanes. Then for all A ∈ ARd

and q ∈ Rd we have RD(A, q) ≥ ρ(A, q) ≥ HED(A, q) ≥ c · RD(A, q).

In particular, all combinatorial depth measures for hyperplanes that we consider in this
paper are constant factor approximations of regression depth. In the next three sections, we
give three lower bounds for the depth of a deepest point. In Section 4 we give a lower bound
for hyperplane Tverberg depth, in Section 5 a slightly stronger bound for regression depth,
and in Section 6 we give a lower bound for super-additive depth measures with contractible
depth regions in the more general setting of weighted arrangements.

4 A first lower bound: Hyperplane Tverberg Depth

In this section we prove an analogue of Tverberg’s theorem for hyperplane arrangements,
resolving a conjecture by Rousseeuw and Hubert from 1999 [21]. Our proof is inspired by
the proof of Tverberg’s theorem by Roudneff [20], see also [2].

▶ Theorem 2. Let r, d be positive integers and A be an arrangement of at least (r−1)(d+1)+1
hyperplanes in Rd. Then, there exists a point q in Rd and a partition of A into r parts such
that q has positive regression depth with respect to each of the r parts.

SoCG 2023
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Proof. Let π be a partition of A into r parts, each of size at most d + 1. Note that π can
have at most d parts of size ≤ d. Define the following function fπ : Rd → R≥0: for each
point q ∈ Rd, consider the point set A∗

q . The partition π induces a partition of this point set
into parts X1(q), . . . , Xr(q). Let B(q) be the smallest ball centered at q which for every part
intersects the convex hull, and define fπ(q) as the radius of this ball. As the map which for
a hyperplane h assigns to a point in Rd the closest point on h is continuous as a function of
q, the function fπ is also continuous. Further, the function goes to infinity along any ray, so
it attains a minimum. Denote by C(q) the set of parts whose convex hulls B(q) is tangent
to. By general position, we may assume that |C(q)| ≤ d + 1.

Let now π be a partition which minimizes min fπ and let p be a point where fπ attains
its minimum. If fπ(p) = 0, then by Observation 6, p is the desired point. So, assume that
fπ(p) > 0. For each Xj(q) let yj(q) denote the unique point in convXj(q) that minimizes
the distance to q, i.e., d(q, convXj) = ||q − yj(q)||, and define Yj(q) ⊂ Xj(q) as the unique
subset for which yj(q) lies in the relative interior of conv(Yj(q)). In particular we can write
fπ(q) = 1

|C(q)|
∑

Xj∈C(q) ||q −yj(q)||, and its gradient as ∇fπ(q) = 1
|C(q)|

∑
Xj∈C(q)(q −yj(q)).

As fπ is minimized at p, we have ∇fπ(p) = 0.
We claim that C(p) consists of exactly d + 1 parts and that no d of the corresponding

vectors (p − yj(p)) lie in a common hyperplane with p. Assume for the sake of contradiction
that the latter is not the case, that is, that there is a hyperplane h containing all except
possibly one of the vectors (p−yj(p)). Let ℓ be a line through p that is orthogonal to h. Note
that all except possibly one of the affine hulls affYj(p) for Xj(p) ∈ C(p) are parallel to ℓ. If
there is a single vector not in h, then this vector induces a direction on ℓ. Move p a distance
ε in the opposite direction. If all vectors are in h, then move p along ℓ in any direction.
Call the resulting point p′. We can choose ε small enough that C(p′) = C(p). Let h′ be the
hyperplane through p′ that is parallel to h and let h+ be its side containing p. Consider now
the point yj(p′) for some Xj(p) ∈ C(p). This point is in the relative interior of the points
in Yj(p′). Let a(p′) ∈ Yj(p′) and let a(p) be the corresponding point in Yj(p). If a(p) is on
the same side of h as p′, then d(a(p′), p′) < d(a(p), p) and if a(p) is on the other side then
d(a(p′), p′) > d(a(p), p), see Figure 2. In particular, The affine subspace Yj(p′) is not parallel
to ℓ and the vector (p′ − yj(p′)) points into h+. As this holds for any Xj ∈ C(p), then also
the gradient ∇fπ(p′) = 1

|C(p)|
∑

Xj∈C(p)(p′ − yj(p′)) points into h+, and as this is the side
that contains p, this means that p cannot be a local minimum, which is a contradiction to
the choice of p. It follows that any d of the vectors (p − yj(p)) are linearly independent, and
thus we need at least d + 1 of them to have ∇fπ(p) = 0.

Thus, the ball B(p) is tangent to exactly d + 1 convex hulls, and the d + 1 tangent
hyperplanes form a simplex containing p in its interior. As there are at most d parts of size
≤ d, there must be a point v in some Xj such that B(p) still intersects the convex hull of
Xj \ {v}. This point must lie on the same side as p of some other tangent hyperplane, say
of Xi. Then adding v to Xi gives a new partition π′ in which B(p) intersects the interior
of the convex hull of Xi. In particular, due to the arguments above, p is not a minimum
of fπ′ , and thus min fπ′ < min fπ. This is a contradiction to the choice of π, showing that
min fπ = 0. ◀

From Theorem 2, for any super-additive depth measure the existence of a point with
depth at least |A|

d+1 follows using Theorem 12.
The existence of a Tverberg theorem for regression depth naturally leads us to ask about

a colorful version of such a result.

▶ Conjecture 16. Let r, d be positive integers and A1, . . . , Ad+1 be sets of r hyperplanes each
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p p′

`

Figure 2 Moving p to p′ the affine hulls of Yj are not parallel to ℓ anymore.

in Rd. There is a partition of their union into r sets B1, . . . Br such that |Ai ∩ Bj | = 1 for
every i ∈ [d + 1], j ∈ [r] and a point q such that q has positive regression depth for each Bj.

In the plane, Karasev conjectured, provided the hyperplanes are in general position, such
a partition could be found so that q was in the simplex determined by each Bj , since his
Tverberg-type results for hyperplanes hold in that setting [11]. However, his conjecture and
its natural extensions to Rd have been disproved [4, 14]. Yet, those counterexamples do not
disprove the regression depth version, in which the q can be in the simplex determined by
each Bj or the union of the hyperplanes making Bj .

5 A second lower bound: topological Helly theorem

In this section, we give a proof for the centerpoint theorem for regression depth based on
one of the first topological versions of Helly’s theorem, which states that given a finite family
F of subsets of Rd with the property that for any d + 1 or fewer of them their intersection is
non-empty and contractible, there is a point in the intersection of all families [9]. In fact,
this method proves a stronger statement: we will show that for an arrangement A in general
position, there is always as point in a cell of A of regression depth ⌈ |A|−d

d+1 ⌉. As we will see,
this implies that there is always a point of regression depth ⌊ |A|

d+1 ⌋ + 1.
The basic idea is the following: given an arrangement A of hyperplanes, consider some

direction ℓ, and for every point q in Rd compute how many hyperplanes of A the open ray
with direction ℓ emanating from q intersects. Denote this number by ℓ(q). Define RA(k, ℓ)
as the set of points where ℓ(q) ≥ k. As A is finite, there are only finitely many different
such regions. If we can show that for k = ⌈ |A|−d

d+1 ⌉ the intersection of any d + 1 or fewer
such regions is contractible, then the existence of a deep point as claimed above follows from
the topological Helly theorem. In fact, our arguments will show that any non-empty depth
region is contractible.

There is however one technical issue: the depth regions of regression depth are in general
not contractible. Consider three lines in the plane that form a triangle. The regression depth
is 1 on any line or in the interior of the triangle, but it is 2 on the three corners, where two

SoCG 2023
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of the lines intersect. So, the region of depth 2 consists of three isolated points and is thus
not contractible.

If we however look only at the 2-dimensional cells of a planar line arrangement, then it is
easy to show that the closure of the union of cells of depth at least k is contractible: no cell
can be completely surrounded by cells of larger depth, as any ray witnessing depth k, that is,
intersecting exactly k lines, also witnesses that the other cells it intersects all have depth
smaller than k.

To overcome this issue, we define a new measure, which we call open regression depth,
denoted by RD’ as follows: let A be an arrangement of hyperplanes in Rd. We first slightly
perturb A to get an arrangement A′ in general position. In particular, in any k-dimensional
affine subspace at most d − k of the hyperplanes intersect. Reversing this perturbation
induces a surjective map π of the faces of A′ to the faces of A. For any face F of A, we call
π−1(A) the faces perturbed from F . Note that if A was already in general position, then π is
a bijection.

Consider now the perturbed arrangement A′. For any point q ∈ Rd, define the open
regression depth with respect to the perturbed arrangement as the minimum number of
hyperplanes of A that any ray emanating from q crosses or is parallel to, where a ray crosses a
hyperplane if there is a point in the relative interior of the ray that is also on the hyperplane.
In other words, the open regression depth for perturbed arrangement is just the regression
depth, where we do not count the hyperplanes that q lies on. The depth regions of open
regression depth in a perturbed arrangement are the unions of cells with large enough depth,
with lower-dimensional faces added whenever they are incident to only deep enough cells.

In order to extend the definition to the original arrangement, we define the open re-
gression depth of a query point q in some face Fq of the arrangement A as RD’(A, q) :=
maxq′∈F ∈Fq

{RD’(A′, q)}, that is, as the maximum open regression depth of any point in one
of the faces perturbed from Fq. Note that we can perturb the arrangement in a deterministic
way, ensuring that the open regression depth is well defined. The following lemma follows
immediately from the definition:

▶ Lemma 17. For any arrangement of hyperplanes A and any query point q, we have
RD’(A, q) ≤ RD(A, q).

In particular, proving the existence of deep points for open regression depth implies the
existence of deep points for regression depth. Note, however, that open regression depth is
not super-additive: it does not satisfy condition (iii). We will now prove the existence of
deep points for open regression depth using the approach sketched above. We show that
we have the necessary ingredients to apply the topological Helly theorem, starting with
the contractability of the relevant regions. Recall that we defined the regions RA(k, ℓ) as
the set of points where ℓ(q) ≥ k for a hyperplane arrangement A and a direction ℓ, where
we considered the relevant ray to be open, that is, not containing q. Also recall that as
A is finite, is is sufficient to restrict our attention to finitely many directions, and we may
assume that these directions are d-wise linearly independent, that is, any d of them span a
d-dimensional cone.

Our proof of contractability requires some algebraic topology and is independent of the
rest of the manuscript, so we defer its proof to the full version [24]. For our purposes, a
homology cell is the same as a contractible space.

▶ Lemma 18. Let A1, . . . , Am be open subsets of Rd. Assume that each set is a homology
cell and that the union of any d of them is a homology cell. Then

⋂
A :=

⋂m
i=1 Ai is either

empty or a homology cell.
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We can apply this result to our setting.

▶ Lemma 19. Let ℓ1, . . . , ℓm be directions in d-wise general position in Rd, let A be a
hyperplane arrangement and let R(k) :=

⋂m
i=i RA(k, ℓ). If R(k) ̸= ∅ then R(k) is contractible.

In particular, the depth regions, that is, the intersections of RA(k, ℓ) over all considered
directions ℓ is contractible.

Proof. As in our setting homology cells are contractible, by Lemma 18 it suffices to show
that the union of any d regions RA(k, ℓ1), . . . , RA(k, ℓd) is contractible. Denote this union
by U(k) and let n = |A|. Let C ⊊ Rd be the cone spanned by the d directions and let ℓ0 be
a direction in −C. In particular, moving from any point in U(k) in direction ℓ0 we never
leave U(k). Thus, U(k) is contractible. ◀

The final property that we need in order to apply the topological Helly theorem is that
the intersection of any d + 1 or fewer regions is non-empty.

▶ Lemma 20. Let ℓ1, . . . , ℓm be directions in Rd, m ≤ d+1, let A be a hyperplane arrangement
and let R :=

⋂m
i=i RA(k, ℓ) for k ≤ ⌈ |A|−d

d+1 ⌉. Then R ̸= ∅.

Proof. For every direction ℓi let hi be a hyperplane orthogonal to ℓi which bounds a half-
space h+

i that contains RA(k, ℓi). In paticular, for any point p in h+
i , moving p in direction

ℓi, we eventually enter RA(k, ℓi) and never leave it again. Thus, if all these half-spaces have
a common intersection, then this intersection can be translated to lie in R, showing R ̸= ∅.
So, assume that these half-spaces have an empty intersection. As we assumed that any d of
our directions are linearly independent, this can only happen for m = d + 1. In this case,
we find a point q ∈ Rd such that the d + 1 (closed) rays emanating from q with directions
−ℓi all intersect strictly more than |A| − k hyperplanes of A. Each hyperplane that does not
contain q can intersect at most d of the rays, and by the general position assumption, at
most d hyperplanes contain q. Thus, if x denotes the number of intersections between rays
and hyperplanes, we have

(|A| − k)(d + 1) < x ≤ (|A| − d)d + d(d + 1) = (|A| + 1)d.

Rearranging this and using that all numbers are integers gives k > ⌈ |A|−d
d+1 ⌉, which is a

contradiction to the assumption, showing that R ̸= ∅. ◀

Now we have all the ingredients that are necessary for the topological Helly theorem, and
we deduce the following

▶ Corollary 21. For every hyperplane arrangement A in Rd there is a point q ∈ Rd for which
the open regression depth is RD’(A, q) ≥ ⌈ |A|−d

d+1 ⌉.

In particular, by the definition of open regression depth, if the arrangement A is in general
position, such a point can be chosen in a cell of A. It remains to show that we can get even
deeper points for regression depth.

▶ Lemma 22. For every hyperplane arrangement A in Rd there is a point q ∈ Rd for which
the regression depth is RD(A, q) ≥ ⌊ |A|

d+1 ⌋ + 1.

Proof. Consider a point q in a cell C of maximum open regression depth k, and let ∂C be
the boundary of the cell C. If there is a point on ∂C with open regression depth k, then this
point has regression depth k + 1, and the claim follows. So assume that the open regression
depth is strictly smaller everywhere on ∂C. Then we again find d + 1 directions such that
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the rays emanating from q with these directions intersect exactly k hyperplanes. Looking
at the opposite directions, the rays thus intersect exactly |A| − k hyperplanes, and as q

lies in the interior of a cell every hyperplane intersects at most d rays. Analogous to the
proof of Lemma 20 we thus get k > ⌈ |A|

d+1 ⌉. This proves the claim for all cases where d + 1
does not divide |A|. If d + 1 divides |A|, note that as soon as one of the hyperplanes only
intersects d − 1 of the considered rays, then we get k > ⌈ |A|+1

d+1 ⌉, and the claim follows again.
So, assume that each hyperplane intersects exactly d rays. This gives a partition of the set
of hyperplanes into d + 1 parts, each of size |A|

d+1 defined by the ray they do not intersects.
The boundary ∂C inherits this partition, and each of the parts is contractible. In particular,
∂C contains a vertex q that is the intersection of d hyperplanes of d different parts. Now
every ray emanating from q must intersect all hyperplanes of some part, but also lies on at
least d − 1 other hyperplanes, showing that the regression depth of q is at least k + d − 1,
which is a contradiction to the assumption that the open regression depth is strictly smaller
everywhere on ∂C. ◀

Using the above insights, we can also conclude the contractability of many regions of
regression depth.

▶ Lemma 23. Let k ≤ ⌈ |A|
d+1 ⌉. Then the region R of points p whose regression depth is

RD(A, q) ≥ k is contractible.

Proof. If there is a point with open regression depth k, then R is just the closure of the
region of points with open regression depth at least k, which is contractible by Lemma
19. Otherwise, by the proof of Lemma 22, R is the union of faces incident only to cells of
maximum open regression depth. As no cell is completely surrounded by deeper faces there
is a contraction from a cell of maximum open regression depth to the deeper faces incident
to it. Thus, as the region of maximum open regression depth is contractible, so is R. ◀

6 A third lower bound: weighted arrangements

In this section we give yet another proof for the existence of points with large regression
depth. The proof we give here works for (and actually requires) the more general case of
weighted arrangements of hyperplanes. A weighted arrangement of hyperplanes is a tuple
(A, w) consisting of a finite arrangement A of hyperplanes and a weight function w : A → R≥0
which assigns to each hyperplane a weight. By a slight abuse of notation we will often just
write A for a weighted arrangement. For a subarrangement A′ ⊆ A we have w′(h) ≤ w(h),
where w′ is the weight function on A′, and we write w′(A′) :=

∑
h∈A′ w′(h). We say that

A′ ⊊ A is a strict subset of A if the underlying hyperplane arrangement of A′ is a strict
subset of that of A. The definition of regression depth extends to weighted arrangements:
for any ray r emanating from a query point q, let A(r) be the hyperplanes intersected by
r. Then, the regression depth RD(A, q) of q is the minimum of w(A(r)) taken over all rays
emanating from q. This definition is similar to, but more restrictive than a measure-theoretic
generalization of regression depth considered by Mizera [15].

Our proof also works for more general families of depth measures on weighted hyperplane
arrangements. We extend the definition of super-additive depth measures above to weighted
hyperplane arrangements as follows:

(i) for all A ∈ ARd and q ∈ Rd and any hyperplane h we have |ρ(A, q)−ρ(A∪{h}, q)| ≤ w(h),
(ii) for all A ∈ ARd we have ρ(A, q) = 0 if q is in an unbounded cell of A,
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(iii) for all A ∈ ARd we have ρ(A, q) ≥ min{w(h) | h ∈ A} if q is in a bounded cell or if q lies
on a hyperplane of A,

(iv) for any disjoint subsets A1, A2 ⊆ A and q ∈ Rd we have ρ(A, q) ≥ ρ(A1, q) + ρ(A2, q).

Note that any hyperplane arrangement can be considered as a weighted hyperplane
arrangement by assigning weight 1 to each hyperplane. On the other hand, each depth
measure for hyperplane arrangement can be extended to a depth measure on weighted
hyperplanes: using the fact that Q is dense in R, we can place multiple hyperplanes in the
same position and the normalize to get a weighted arrangement.

For a weighted arrangement of hyperplanes A and a depth measure ρ denote by RA
ρ (α) :=

{q ∈ Rd | ρ(A, q) ≥ α} the α-depth region. The median region, which is the deepest non-empty
depth region, is denoted by MA

ρ .

▶ Theorem 24. Let A be a weighted arrangement of hyperplanes in Rd and let ρ be a
super-additive depth measure on weighted hyperplanes whose depth regions are compact and
contractible. Then there exists a point q ∈ Rd for which ρ(A, q) ≥ w(A)

d+1 .

Before we prove Theorem 24, we give some lemmata that we will need in the proof. The
first lemma concerns a generalization of a section in a vector bundle. Let π : E → B be a
real vector bundle over a compact manifold B. Following [29] we say that ϕ : B → E is
a multisection if for every x ∈ B we have that ϕ(x) ⊆ Fx := π−1(x). We further say that
ϕ is contractible if it is contractible in each fiber, that is, for every x ∈ B the set ϕ(x) is
contractible. Finally, we say that ϕ is compact if Γ(ϕ) := {(x, v) | v ∈ ϕ(x)} ⊆ B × E is
compact. For any multisection ϕ, denote by Z(ϕ) its intersection with the zero section. In
the full version [24] we show the following

▶ Lemma 25. Let π : E → B be a real vector bundle over a compact manifold B. Let ϕ be a
compact contractible multisection. Then there is a section s with Z(s) = Z(ϕ). In particular,
if π has no nowhere zero section, then ϕ must intersect the zero section.

The second lemma is about partitions of hyperplane arrangements.

▶ Lemma 26. Let ρ be a depth measure for weighted hyperplanes whose depth regions
are compact and contractible and let A be a weighted hyperplane arrangement in Rd with
|A| ≥ d + 2. Then there exists a partition of A into strict subarrangements A1 and A2 whose
median regions intersect.

The proof is analogous to the proof of Lemma 9 in [23], replacing Proposition 1 from [29]
with our Lemma 25. For a full proof we refer to the full version [24].

Proof of Theorem 24. Let A be a weighted arrangement of hyperplanes in Rd. We prove
the statement by induction on the number of hyperplanes in A. If A consists of at most d + 1
hyperplanes, it follows from condition (iii) that ρ(A, q) ≥ w(A)

d+1 for some q ∈ Rd: just take
q as any point on a hyperplane of maximum weight. So assume that A consists of at least
d + 2 hyperplanes. By assumption the depth regions are compact and contractible. Thus,
by Lemma 26, we can partition A into strict subarrangements A1 and A2 whose median
regions intersect. As both A1 and A2 are strict subarrangements, by the induction hypothesis
for any point q in the intersection of their median regions we have ρ(A1, q) ≥ w1(A1)

d+1 and
ρ(A2, q) ≥ w2(A2)

d+1 . As ρ satisfies condition (iv), for any such point we thus have

ρ(A, q) ≥ ρ(A1, q) + ρ(A2, q) ≥ w1(A1) + w2(A2)
d + 1 = w(A)

d + 1 .

◀

SoCG 2023
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At this point, it is not clear how we can use Theorem 24 to prove the existence of
centerpoints for regression depth. If we look at the depth regions of regression depth, we
have seen in Section 5 that they are in general not contractible. To overcome this issue, we
have introduced open regression depth and argued that the depth regions of open regression
depth are contractible, and these arguments go through even if the arrangement is weighted.
However, for a hyperplane arrangement in general position, these regions are by definition
open, and thus not compact. Further, open regression depth is not a super-additive depth
measure, as it does not satisfy condition (iii). In particular, if A consists of a single hyperplane,
then the open regression depth is 0 everywhere, and so the base case of the proof of Theorem
24 fails. However, as we have seen in Lemma 23, if k ≤ ⌈ |A|

d+1 ⌉ the region of regression depth
at least k is contractible. Again, the involved arguments go through if the arrangement
is weighted, implying that if k ≤ w(A)

d+1 , then the region of regression depth at least k is
contractible. Thus, defining a new measure truncated regression depth by

TRD(A, q) := min
(

w(A)
d + 1 , RD(A, q)

)
,

we get a measure whose depth regions are closed and contractible. Clearly, the only unbounded
regions are the ones containing an unbounded face of the arrangement, and we can make
those compact by intersecting with a sufficiently large ball. Finally, as regression depth
is super-additive, so is truncated regression depth, and by definition, truncated regression
depth is bounded from above by regression depth. We thus have the following:

▶ Lemma 27. Truncated regression depth is a super-additive depth measure for hyperplane ar-
rangements which has compact and contractible depth regions. Further, for every arrangement
A and every point q we have TRD(A, q) ≤ RD(A, q).

It now follows from Theorem 24 that there is always a point of truncated regression depth
TRD(A, q) ≥ w(A)

d+1 and such a point also has regression depth RD(A, q) ≥ w(A)
d+1 .

7 A regression depth version of the center transversal theorem

Let A be an arrangement of hyperplanes in Rd. Assume that the origin is not contained
in any hyperplane in A. Let L be a k-dimensional linear subspace of Rd. Then A ∩ L is a
hyperplane arrangement in L. In particular, we can again study the depth of points q ∈ L

within the Euclidean space L with respect to the arrangement A ∩ L. Note however that
A ∩ L might have smaller cardinality than A, as some hyperplanes of A might be parallel to
L. In fact, if all of them are parallel to L, then A ∩ L is empty. We define the regression
depth of q ∈ L with respect to A ∩ L as the minimum number of hyperplanes in A intersected
by or parallel to any ray in L emanating from q, and denote it by RD(A, q, L). In particular,
if all hyperplanes in A are parallel to L, then RD(A, q, L) = |A| for all q ∈ L. This definition
extends to open regression depth and truncated regression depth, where we truncate at |Ai|

k+1 .

▶ Theorem 28. Let 1 ≤ k ≤ d be integers and A1, . . . , Ad−k+1 be d−k+1 finite arrangements
of hyperplanes in Rd. Then there exists a k-dimensional linear subspace L and a point q ∈ L

such that q has regression depth RD(Ai, q, L) ≥ |Ai|
k+1 in L for every i ∈ {1, . . . , d − k + 1}.

Proof. We will prove the statement for truncated regression depth, which will imply the
theorem as regression depth is bounded from below by truncated regression depth. Consider
the Grassmann manifold Grk(Rd) of all k-dimensional subspaces of Rd. Let γd

k be the
canonical bundle over Grk(Rd), which has total space E := {(L, v) | v ∈ L} and whose
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projection π : E → Grk(Rd) is given by π((L, v)) = L. For an arrangement Ai, let Ri(L) be
the set of points in L that have large depth, that is, Ri(L) := {v ∈ L | TRD(Ai, v, L) ≥ |Ai|

k+1 }.
By Lemma 27, each Ri(L) is compact and contractible. Further, when a hyperplane h ∈ Ai

becomes parallel to L, the depth of any point can only increase, thus Ri(L′) ⊆ Ri(L) for any
L′ in a small neighborhood of L. Thus, Ri is a compact contractible multisection. Define
the negative multisection −Ri by reflecting Ri(L) at the origin for each L, and for each
i ∈ {1, . . . , d − k} consider Qi := Rd−k+1 − Ri, defined by taking the Minkowski sum of
Rd−k+1(L) and −Ri(L) on each L. As Minkowski sums of compact and contractible sets
are again compact and contractible, Qi is again a compact contractible multisection. In
particular, by Lemma 25, there are sections si whose zeroes coincide with the zeroes of
Qi. It was shown in [29], Prop. 2 (see also [5], Lem. 1), that any d − k sections on γd

k

must have a common zero, that is, there is a subspace L such that s1(L) = . . . sd−k(L) = 0.
By the definition of the sections si, this implies that there is a point q ∈ L such that
q ∈ Ri(L) for all i ∈ {1, . . . , d − k + 1}. In particular, TRD(Ai, q, L) ≥ |Ai|

k+1 in L for every
i ∈ {1, . . . , d − k + 1}. ◀

Since there is a regression depth version of the center transversal theorem and of Tverberg’s
theorem, a natural question is if there is a generalization of both. This is still open in the
case of finite families of points, since it was conjectured by Tverberg and Vrećica in 1993 [27].

▶ Conjecture 29. Let 1 ≤ k ≤ d be integers and A1, . . . , Ad−k+1 be d − k + 1 finite
arrangements of hyperplanes in Rd. Assume that |Ai| = (k + 1)(ri − 1) + 1 for some positive
integer ri, for each i = 1, . . . , d−k+1. Then, there exists a k-dimensional subspace L, a point
q ∈ L, and a partition of each Ai into ri parts A

(1)
i , . . . , A

(ri)
i such that RD(A(j)

i , q, L) ≥ 1
for each i = 1, . . . , d − k + 1, j = 1, . . . , ri.

The classic conjecture for families of points, which has similar parameters, has only been
confirmed when all ri are powers of the same prime p and pk is even [10].
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