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Abstract
Datasets with non-trivial large scale topology can be hard to embed in low-dimensional Euclidean
space with existing dimensionality reduction algorithms. We propose to model topologically complex
datasets using vector bundles, in such a way that the base space accounts for the large scale topology,
while the fibers account for the local geometry. This allows one to reduce the dimensionality of
the fibers, while preserving the large scale topology. We formalize this point of view and, as an
application, we describe a dimensionality reduction algorithm based on topological inference for
vector bundles. The algorithm takes as input a dataset together with an initial representation in
Euclidean space, assumed to recover part of its large scale topology, and outputs a new representation
that integrates local representations obtained through local linear dimensionality reduction. We
demonstrate this algorithm on examples coming from dynamical systems and chemistry. In these
examples, our algorithm is able to learn topologically faithful embeddings of the data in lower target
dimension than various well known metric-based dimensionality reduction algorithms.
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1 Introduction

Motivation. We take the manifold hypothesis at face value and consider data consisting of
a finite sample of a Riemannian manifold. We take the goal of dimensionality reduction to
be that of learning an embedding of the input data in low dimension, in such a way that
the differentiable structure of the underlying manifold is preserved. This is different from
charting, whose objective we take to be that of producing local parametrizations of the data
that, together, cover the entire manifold.

We refer to dimensionality reduction algorithms which aim to preserve metric relationships
and do not explicitly incorporate large scale topology in their objective function as metric-
based. Metric-based algorithms work best when the Riemannian manifold underlying the
data can be isometrically embedded in the target dimension. For example, algorithms such as
Isomap [53], Local Tangent Space Alignment (LTSA) [59], and Hessian Eigenmaps (HLLE)
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56:2 Fiberwise Dimensionality Reduction

Figure 1 Left: A sample from a cylinder with height equal to 0.15 times its radius, colored by
height. The cylinder is developable, since it is diffeomorphic to an annulus in R2, and is also flat,
but it is not isometric to the annulus, which also has a flat, yet distinct, Riemannian metric. Center
three: Well known dimensionality reduction algorithms run on the cylinder data. The outputs are
representative of other parameter choices and of Laplacian Eigenmaps (LE) [8], Diffusion Maps (DM)
[13], LLE [42], HLLE, t-SNE [55], and UMAP [28]. Some algorithms only capture the circularity,
others only the local 2D structure, while others capture both, but they are not able to consistently
align the local 2D structure. Right: The output of fiberwise dimensionality reduction.

[15] assume that the manifold X underlying the data is isometrically developable, in the
sense that X is a d-dimensional Riemannian manifold for which there exists an embedded d-
dimensional manifold X ′ ⊆ Rd and a diffeomorphism X ′ → X which is a Riemannian isometry.
An isometrically developable manifold X is necessarily flat (i.e., locally isometric to Euclidean
space) and developable (i.e., diffeomorphic to an embedded d-dimensional manifold X ′ ⊆ Rd).
But a manifold can be flat and developable without it being isometrically developable: a
simple example is that of a straight cyilinder in R3 (Figure 1). As observed in [24], and
shown in Figure 1, already in the setting of a flat and developable d-dimensional manifold,
metric-based dimensionality reduction algorithms can fail to find an embedding of the data
in Rd. On the mathematical side, while Whitney’s embedding theorem [57] guarantees that
any closed d-dimensional manifold admits a smooth (C∞) embedding in 2d dimensions, a
smooth, Riemannian isometric embedding of a closed d-dimensional Riemannian manifold
can require in the order of d2 dimensions [11]. Thus, the preservation of distances requires
more complicated embeddings than the preservation of topology.

If we remove a small portion of the cylinder of Figure 1, in order to make it a curved
rectangle, most metric-based dimensionality reduction algorithms have no problem finding
an embedding in R2. It is thus the non-trivial topology of the cylinder – its circularity –
that causes difficulties. This suggests that embeddings of topologically non-trivial manifolds
can be built by gluing local representations along a representation of the global topological
structure: in the case of the cylinder, one would try to glue 2D patches around a circle in a
globally consistent manner. This leads to the following problem, formalized as the vector
bundle embedding problem (Problem 1):

Given a dataset X and an initial map X → RD capturing the large scale topology of X,
find a new representation X → RD that captures the large scale topology as well as the local
geometry.

We call our approach to the above problem fiberwise dimensionality reduction (FibeRed).
In the examples of Section 4, we focus on manifolds with an essential loop, and, as initial
map, we use circular coordinates based on persistent cohomology [14, 37], a technique from
Topological Data Analysis [32, 18]. Nevertheless, the approach is not restricted to the case
of a circular initial embedding and one could use as initial map one constructed by, e.g.,
other cohomological coordinates [35, 38, 43], standard non-linear dimensionality reduction
methods [23, 13], or lens functions as in [50, Section 4].
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Contributions. We show that the theory of vector bundles is useful in abstracting (Sec-
tion 2.1), devising solutions to (Section 3), and computing obstructions to solving (Section 2.3)
the problem of extending an initial coarse representation of data to a new, more descriptive
representation. We demonstrate with computational examples (Section 4) that topological
inference for vector bundles can be carried out in practice. In particular, we show that
efficient embeddings and chartings of topologically non-trivial data can be learned with this
approach and give examples supporting the claim that metric-based dimensionality reduction
algorithms are often not able to find such representations. We implement our main algorithm
in [44].

Related work. Various dimensionality reduction schemes [52, 41, 10] learn a global alignment
of local linear models from the local interactions of the models, which can be challenging in
the presence of non-trivial topology. In contrast, our approach assumes a global topological
representation is given and builds and aligns the local linear models along this representation.

There has been recent interest in designing topology-preserving dimensionality reduction
schemes [26, 58, 31, 56]. Our approach is different from previous approaches we are aware
of, as it builds a new representation around an initial topological representation, instead of
using topology to regularize an essentially metric objective.

Our cut-unfold technique of [45, Appendix C.1] has a similar goal to that of [24, 58],
which propose to tear a data manifold in order to find efficient representations of it. A main
difference is that our technique allows the user to select a specific hole to cut and to use
topological persistence to guide this choice.

2 The vector bundle embedding problem

For background, please refer to [45, Appendix A.1]. In Section 2.1 we describe the Vector
Bundle Embedding problem; in Section 2.2, we recall the notion of discrete vector bundle
that we use to estimate vector bundles from finite samples; and in Section 2.3 we explain how
characteristic classes of vector bundles give computable obstructions to solving the vector
bundle embedding problem and can thus be used for parameter selection.

2.1 Main problem
Let B be a closed differentiable manifold and let π : X → B be a rank r Euclidean vector
bundle with zero-section s0 : B → X , where by Euclidean we mean that π is endowed with
a scalar product on each fiber π−1(b) ⊆ X , which varies smoothly with b ∈ B. The main
problem we seek to solve is that of extending an embedding B → RD to a fiberwise isometric
embedding of X , as follows:

▶ Problem 1. Given an embedding ι : B → RD, find a fiberwise isometric embedding
ι : X → RD that extends ι in the sense that ι ◦ s0 = ι, and that is orthogonal to B, in the
sense that ι(π−1(b))⊥ ι(TbB) for all b ∈ B.

By fiberwise isometric embedding X → RD we mean a map that is a linear isometry when
restricted to each fiber π−1(b) ⊆ X , where b ∈ B.

Let ν : N → B be the normal bundle of the embedding ι : B → RD and endow ν with the
Euclidean structure inherited from RD. The following result reduces Problem 1 to a problem
only involving vector bundles.

▶ Lemma 2. Problem 1 admits a solution if and only if there exists a morphism X → N of
vector bundles over B that is an isometry in each fiber.

SoCG 2023
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In order to do this, we trivialize the bundles X and N over a common cover of the base B
and construct the embedding X → N by restricting to each element of the cover. Formally,
we proceed as follows.

Let e be the dimension of B, so that the rank of ν is D− e. Let U = {Ui} be a cover of B
such that both π and ν can be trivialized over U and let Xi := π−1(Ui). Recall that V(n, m)
denotes the Stiefel manifold, which consist of m-by-n matrices with orthonormal columns and
that O(n) = V(n, n) denotes the orthogonal group. Let α = {αi : Ui → V(D−e, D)} be local
bases for N , and let Θ = {Θij : Ui ∩Uj → O(D− e)} be defined by Θij(b) = αi(b)αj(b)T for
all b ∈ Ui∩Uj , so that Θ is a cocycle with associated vector bundle ν. Finally, let {(π|Xi

, fi) :
Xi → Ui ×Rr} be a metric trivialization of X over U and let Ω = {Ωij : Ui ∩Uj → O(r)} be
defined as the unique set of maps satisfying

Ωij(π(x)) fj(x) = fi(x), for all x ∈ Xi ∩ Xj , (1)

so that Ω is a cocycle with associated vector bundle π. We refer to the maps {fi : Xi → Rr}
as the fiber coordinates. With these definitions, one can use Lemma 2 to prove the following.

▶ Proposition 3. There exists a fiberwise isometric embedding X → N if and only if there
exist maps Φ = {Φi : Ui → V(r, D − e)} such that

Φi(b)Ωij(b) = Θij(b)Φj(b), for all i and j and b ∈ Ui ∩ Uj . (2)

Given the maps Φ = {Φi : Ui → V(r, D − e)} of Proposition 3, one obtains the fiberwise
isometric embedding ι : X → RD by ι(x) = αi(b) Φi(b) fi(x) + ι(b), where b = π(x).

In general, the fiberwise isometric embedding ι : X → RD is not an embedding of X
as a manifold, since different fibers may intersect. Nonetheless, if τ > 0 is the reach [1,
Definition 2.1] of ι(B) ⊆ RD, i.e., the largest possible radius of a uniform tubular neighborhood
around ι(B), one can find an embedding of a full-dimensional compact subset of X by scaling
the fibers by a fraction of τ , as follows. Let disk(π) ⊆ X be the unit disk of the bundle π,
namely, the subspace of points x ∈ X such that ∥x− s0(π(x))∥ ≤ 1, where ∥ − ∥ denotes the
norm of the fiber π−1(π(x)) induced by the Euclidean structure of π. Then, the following
formula gives an embedding disk(π)→ RD:

x 7→ c τ · αi(π(x)) Φi(π(x)) fi(x) + ι(π(x)), for π(x) ∈ Ui, (3)

where 0 < c < 1 is any fixed constant.

2.2 Vector bundles from finite samples
In practice, continuous maps to a Stiefel manifold or orthogonal group – such as the maps
{αi : Ui → V(D − e, D)} or the cocycle {Ωij : Ui ∩ Uj → O(r)} of Section 2.1 – are hard
to work with, as they are potentially determined by an infinite amount of data. One of
the main takeaways of [46] is that one can work with Euclidean vector bundles in practice
by considering only constant maps into Stiefel manifolds or orthogonal groups. In order to
accomplish this, one relaxes the notion of Euclidean vector bundle as follows.

Given a simplicial complex S, a rank r discrete approximate cocycle on S ([46, Defini-
tion 5.1]) consists of a family of matrices {Ωij ∈ O(r)} indexed by the oriented 1-simplices of
S, which satisfies Ωij = ΩT

ji. There is a similar way of discretizing maps into a Stiefel manifold
([46, Definition 5.4]). These discretizations can be used to represent usual vector bundles [46,
Theorem A] and any vector bundle can be represented in this way [46, Proposition 5.7].

This justifies the fact that, in Section 3, we discretize the base B by considering the
simplicial complex given by the nerve of a cover U = {Ui} and we consider constant maps
from Ui into a Stiefel manifold and from Ui ∩ Uj into an orthogonal group.
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2.3 Computable obstructions to vector bundle embedding

The theory of vector bundles provides us with algebraic obstructions to solving Problem 1,
namely, characteristic classes. We now give a few details about the subject; we refer the
reader to [30] for a detailed account of the theory of characteristic classes.

To a vector bundle π : X → B and number i ∈ N, one can associate an element
wi(π) ∈ Hi(B;Z/2) of the ith cohomology group of B with coefficients in the group Z/2,
called the ith Stiefel–Whitney class of π. This procedure is such that, if π and π′ are
isomorphic vector bundles over the same base B, then wi(π) = wi(π′).

If Problem 1 admits a solution, then there exists a complement of π in ν, that is there
exists a vector bundle κ over B such that π ⊕ κ ∼= ν, where ⊕ denotes the direct sum of
vector bundles. It follows from the Whitney product formula [30, Section 4, Axiom 3] that
w(π) ⌣ w(κ) = w(ν), where ⌣ denotes the cup-product in cohomology [21, Section 3.2]. In
particular, when Problem 1 admits a solution, we have the following:

If D = r + e, then w1(π) = w1(ν) ∈ H1(B;Z/2).

If D = r + e + 1, then w2(π)− w1(π)2 + w1(π) ⌣ w1(ν) = w2(ν) ∈ H2(B;Z/2).

Thus, if any of these equalities is not satisfied, then Problem 1 does not admit a solution.
These obstructions can be computed from finite samples using [46, Theorem C].

3 The fiberwise dimensionality reduction scheme

We describe the FibeRed algorithm in Sections 3.1–3.4. In Section 3.5 we justify a main
subroutine of the algorithm. In Section 3.6, we explain how we choose parameters. We
represent vector bundles using discrete approximate cocycles as in [46] (see Section 2.2).

To facilitate the interpretation of the different steps of the algorithm, the notation is
kept as in Section 2.1, except for the spaces X and B, which we denote here by X and B

to emphasize the fact that we are working with finite samples X ⊆ X and B ⊆ B. See also
Figure 2 for a schematic representation of some of the main steps (4,5,6) of the algorithm.

Precise assumptions about the input of the algorithm are in [45, Appendix B.1]. Our
algorithm can be efficiently implemented; we give more details in [45, Appendix B.2].

3.1 Main routine

Inputs. A dataset represented by a finite set X together with a distance matrix ∂ : X×X →
R; and a function π : X → RD. We let B := π(X) ⊆ RD.
Parameters. A number k ∈ N, the number of sets we use to construct a cover of B; a
number n_iter ∈ N used in the AlignFibers subroutine; an estimate e ∈ N of the intrinsic
dimension of B; an estimate d ∈ N of the intrinsic dimension of X ; a fiber scale 0 < c < 1.
Output. A map X → RD.

The pseudocode is in Algorithm 1. With this notation, the map ι of Section 2.1 corresponds
to the inclusion B = π(X) ⊆ RD and the rescaling of ι of Equation (3) corresponds to the
output of the algorithm.

SoCG 2023
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Figure 2 Schematic representation of the main constructions in the FibeRed pipeline.

Algorithm 1 FibeRed(X, π, k, e, d, c, n_iter).
1: U , ρ← CoverAndPartitionUnity(k, B)
2: N ← Nerve(B,U)
3: for 1 ≤ i ≤ k do
4: ℓi ← LocalLinearRepresentation(X,U , d, i)
5: Ψi, αi ← EstTangAndNormBun(B,U , e, i)
6: f i ← EstNormFiberCoordinates(B, Ψi, ℓi)
7: end for
8: τ ← EstReach(B,U , Ψ)
9: for (ij) ∈ N do

10: Ωij , Θij ← EstCocycles(f i, f j , αi, αj)
11: end for
12: Φ← AlignFibers(N , Ω, Θ, n_iter)
13: return Assemble(ρ, τ, c, α, Φ, f , π)
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3.2 Subroutines

Compute cover and partition of unity (CoverAndPartitionUnity). We compute a
cover U = {Ui ⊆ B}1≤i≤k of B as follows. We first run on B an approximate algorithm for
the k-center problem. We use a simple, greedy approach, but more sophisticated options
are available (see, e.g., [17] for a survey). This results in k points {b1, . . . , bk} ⊆ B and in
a radius c > 0 such that any point of B is at distance at most c from some bi. We then
let Ui = {b ∈ B : ∥b − bi∥ < 3c}. The factor of 3 is arbitrary; we choose it to ensure that
elements of the cover have sufficiently large intersections.

We compute a partition of unity ρ = {ρi : Ui → R} subordinate to U by first defining
pi(x) = exp

(
−1/(1− (∥x− bi∥/(3c))2)

)
for x ∈ Ui and pi(x) = 0 for x ̸∈ Ui, and then

normalizing as follows ρi(x) = pi(x)/
∑

j pj(x).

Compute nerve of cover (Nerve). We let N be the undirected graph with vertices
1 ≤ i ≤ k and an edge (ij) with weight sij = |Ui ∩ Uj | when Ui ∩ Uj ̸= ∅.

Compute local linear representation (LocalLinearRepresentation). Given 1 ≤ i ≤ k,
we let Xi := π−1(Ui) and apply a linear dimensionality reduction algorithm to each Xi,
resulting in a function ℓ′

i : Xi → Rd. In our implementation, we use classical multidimensional
scaling (see, e.g., [9]). We then mean-center ℓ′

i to get a function ℓi : Xi → Rd.

Estimate local trivialization of tangent and normal bundle (EstTangAndNormBun).
Given 1 ≤ i ≤ k, we compute an orthonormal frame Ψi ∈ V(e, D) by applying PCA with
target dimension e to Ui ⊆ RD. We then compute an orthonormal frame αi ∈ V(D − e, D)
such that αi ⊥ Ψi.

Estimate normalized fiber coordinates (EstNormFiberCoordinates). Given 1 ≤ i ≤ k,
we define t : Xi → Re by t(x) = ΨT

i (π(x)−bi). We find a linear transformation mi : Rd → Re,
which has minimal Frobenius norm and minimizes∑

x∈Xi

∥t(x)−mi(ℓi(x))∥2, (4)

and compute an orthonormal frame ηi ∈ V(r, d) with image in the kernel of mi. We let
fi := ηT

i ◦ ℓi : Xi → Rr, and obtain a normalized fiber coordinate f i : Xi → Rr with image
contained in the unit ball by normalizing fi. We justify these choices in Section 3.5.

Estimate reach (EstReach). If {b1, . . . , bk} ⊆ B are the centers of the k balls used to
construct the cover U in CoverAndPartitionUnity, we compute an estimate of the reach
of B by

τ = inf
i ̸=j

∥bj − bi∥2

2
√
∥bj − bi∥2 − ∥ΨT

i (bj − bi)∥2
.

This formula is equivalent to [1, Equation 6.1], where it is proven that, under suitable
assumption, it yields a consistent estimator of the reach.

SoCG 2023
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Estimate cocycles for ν and π (EstCocycles). Based on Equation (1), given (ij) ∈ N ,
we compute an orthogonal matrix Ωij ∈ O(r) which minimizes∑

x∈Xi∩Xj

∥Ωijfj(x)− fi(x)∥2.

We also compute an orthogonal matrix Θij ∈ O(D − e) which minimizes ∥Θij − αT
i αj∥F ,

where ∥−∥F denotes the Frobenius norm. Both minimizations are instances of the orthogonal
Procrustes problem, which can be solved using SVD (see, e.g., [22, Section 7.4]).

Align fibers (AlignFibers). Based on Equation (2), we compute orthonormal frames
{Φi ∈ V(r, D − e)} minimizing the following expression; we describe the minimization
procedure in Section 3.3:∑

(ij)∈N

sij ∥ΦiΩij −ΘijΦj∥F . (5)

Compute final representation (Assemble). Based on Eq. 3, we represent x ∈ X by∑
1≤i≤k

ρi(x)
(
cτ · αi Φi f i(x) + π(x)

)
.

3.3 Minimizing Equation (5)

The minimization problem in AlignFibers is non-convex, so a possible solution is to do
gradient descent in a product Stiefel manifold. This is the approach we take, except that
we avoid explicitly computing a gradient, and take a sampling based approach, as done in,
e.g., LargeVis [51]. Before describing the approach, we note that, in the case D = r + e, the
Stiefel manifold V(r, r) is equal to the orthogonal group O(r), which is disconnected. Thus,
in this case, any local optimization approach to minimizing Equation (5), such a gradient
descent, is bound to fail. In Section 3.4 we describe a procedure based on the notion of
synchronization (see, e.g., [48]) that reduces the problem from having to align using matrices
in O(r) to using matrices in SO(r), which is connected.

Iterative procedure. We start by initializing {Φi ∈ V(r, D−e)} at random and setting a = 1.
For 1 ≤ n ≤ n_iter, we proceed as follows. We sample an edge (ij) ∈ N with probability
proportional to its weight sij , let M be an orthonormal frame minimizing ∥MΩij −ΘijΦj∥F ,
and replace Φi with a closest orthonormal frame to the convex combination (1− a)Φi + aM .
Finally, we replace a with 1− n/n_iter.

3.4 Preprocessing in the case D = r + e

In this case, the matrices Φ, Ω, and Θ are in O(r). The preprocessing consists of replacing
the matrices {Θij} by matrices that induce an equivalent problem to the one of minimizing
Equation (5), but for which the matrices {Φi} we look for can be taken to be in the special
orthogonal group SO(r), which is connected.

Note that, if we want ΦiΩij and ΘijΦj to belong to the same connected component
of O(r), then we must have det(Ωij) det(Θij) = det(Φi) det(Φj) ∈ O(1) = {−1, +1}. This
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suggests that we can let ωij = det(Ωij) det(Θij) ∈ O(1) and consider first the problem of
finding {λi ∈ O(1)} such that λiλj = ωij , which leads to minimizing the objective function∑

(ij)∈N

sij |ωij − λiλj |2.

This is a well known synchronization problem, for which an approximate solution can be
found effectively and efficiently with spectral methods [49, 4]. Here, we use [4, Algorithm 2.3],
with d = 1, which yields an approximate solution {λi ∈ O(1)}.

Given λ ∈ O(1) = {−1, +1} let M(λ) ∈ O(r) be the diagonal matrix with all diagonal
entries equal to 1, except for the first one, which is equal to λ. With this in mind, we can
replace Θij by M(λi)ΘijM(λj). Having done this, we can now restrict the matrices {Φi} to
belong to the connected component of O(r) of orthogonal matrices with +1 as determinant.
More specifically, we now can carry out the optimization procedure described above, but
restring the matrices {Φi} to be in SO(r) ⊆ O(r) = V(r, r).

3.5 Justification of estimate of fiber coordinates
Let xi := s0(bi) ∈ X . We interpret the local model ℓi : Xi → Rd as a projection ℓi : Xi →
TxX ∼= Rd of Xi onto the tangent space at the origin of the fiber π−1(bi). In the idealized
case ([45, Appendix B.1]), the fiber coordinate fi : Xi → Rr is given by any map fitting into
a fiberwise isometric diffeomorphism (π|Xi

, fi) : Xi → Ui × Rr. When dealing with finite
samples, we use the following composite as a proxy for fi:

Xi
ℓi−→ Txi

X
(dfi)xi−−−−→ Tfi(xi)Rr ∼= Rr.

Note that, by assumption, (dfi)xi is the second component of an isometric isomorphism of
Euclidean vector spaces d(π, fi)xi

: Txi
X → Tbi

B ⊕ Rr, in which the two direct summands
are orthogonal. It is thus sufficient to estimate the first component dπxi : TxiX → TbiB and
to then compose ℓi with the orthogonal projection onto the orthogonal complement of dπxi

.
We do have an estimate for the composite

Xi
ℓi−→ Txi

X
dπxi−−−→ Tbi

B ∼= Re,

namely t = ΨT
i ◦π|Xi

: Xi → Re, but, since the embedding B ⊆ RD is not required to preserve
the Riemannian structure of B inherited from that of X , the map t is an approximation
of dπxi ◦ ℓi up to a linear map mi : Rd → Re. This justifies finding mi by minimizing
Equation (4), and getting the approximate fiber coordinate fi by composing ℓi with the
orthogonal projection onto the kernel of mi.

3.6 Choosing input and parameters
We discuss some guiding principles to choose parameters for our pipeline. We focus mostly
on parameter selection for the examples of Section 4.

Parameters. An estimate of the dimensions e of B and d of X can be obtained by analyzing
the explained variance of PCA applied to each of the sets Ui and Xi with a range of target
dimensions, but more sophisticated algorithms are available; see, e.g., [25]. The parameter k

is chosen to be large enough so that the cover U captures the topology of the base space B,
and such that each open ball of the cover is sufficiently small so that it can be approximated

SoCG 2023
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reasonable well by a linear space. Admittedly, this is in general a difficult choice and
producing good covers of data is an interesting problem in its own right. In our case, when
the base space is the circle, we use k = 16; see also [45, Appendix C.5] for a parameter
sensitivity analysis. The algorithm is robust to the choice of parameter n_iter, which we
choose to be 1000 in all of our examples.

Choosing base map and D. We construct the initial map π : X → RD in two ways.
The first way is to use the persistent cohomology of the initial data X to construct circular

coordinates X → S1 and then embed the circle S1 as the unit circle in the plane spanned
by the first two coordinates of RD, D ≥ 2, which gives us the initial map X → RD. In
order to choose the embedding dimension D, we compute the Stiefel–Whitney obstructions,
as in Section 2.3. Since the base space is the circle, which is 1-dimensional, only the first
Stiefel–Whitney class provides an obstruction. The Stiefel–Whitney class of the normal
bundle of the embedding S1 ⊆ RD is trivial. Thus, if the first Stiefel–Whitney class of the
estimated cocycle Ω is trivial, we set D = r + 1, and if it is non-trivial, we set D = r + 2.

The second way is to use the cut-unfold technique, explained in [45, Appendix C.1], with
the circular coordinates and map X → RD by embedding the interval [0, 1) as the unit
interval of the line spanned by the first coordinate of RD. In this case, since the interval
is topologically trivial (contractible), the Stiefel–Whitney classes give no obstructions, and
thus we set D = r + 1.

4 Examples

We apply FibeRed to three examples. We reproduce a dynamical system simulation from [12]
and reconstruct an attractor – a torus. We reconstruct the conformation space – a Möbius
band – and energy landscape of the pentane molecule from a simulation using RDKit [39];
this is inspired by an analysis in [29]. Finally, we reconstruct the conformation space of the
cyclooctane molecule – a Klein bottle glued to a 2-sphere – using the data of [27].

We compare FibeRed to various well known dimensionality reduction algorithms (see
[45, Appendix C.4] for more results). Given that we consider topologically non-trivial data,
we follow [40, 33] and evaluate the output of algorithms using persistent homology and
persistence diagrams (PDs) to quantify the preservation of large scale topology (see [45,
Appendix A.1] for background and references). When we do not clarify the field of coefficients
used to compute a PD, the PD is independent of this choice. See Table 1 for a summary.

For the initial map π : X → B we use the implementation of circular coordinates in [54].
The parameters for FibeRed are chosen as in Section 3.6 and the computed Stiefel–Whitney
obstructions are in Figure 3. For persistent homology computations, we use ripser [5] on
geodesic distance, estimated as shortest path distance in a 15-nearest neighbor graph. For
other dimensionality reduction algorithms, we use their scikit-learn implementation [34].

An implementation and Jupyter notebooks to reproduce the examples is in [44].

Torus from attractor of double-gyre dynamical system. Dynamical systems can be
analyzed by studying the topology of their attractors [2, 36]. Given a real-valued time series
coming from measurements of a given particle on which a dynamical system acts, one can
obtain a pointcloud by constructing a delay embedding of the time series, which, under
certain conditions, is concentrated around a diffeomorphic copy of the attractor the particle
is converging to [36]. Using the delay embedding method with target dimension 4, it was
shown in [12, Section 4.1] that a certain attractor of the double-gyre dynamical system [47]
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Figure 3 We proceed as in [45, Appendix C.3]. The persistence diagram of {Nr}r∈[0,1] for each
of the three examples, with the span of Ω shaded in grey, and the classes summing to w1(Ω) circled
in red. Recall that in the three examples, the nerve N is a circle and thus the persistence diagram
consists of just one prominent 1-dimensional cohomology class. In the case of the torus, the first
Stiefel–Whitney class is zero and thus there is no obstruction to choosing D = 1 + 2 (1 being the
dimension of the circle and 2 the rank of the vector bundle). In the case of the Möbius band, the first
Stiefel–Whitney class coincides with the only point in the persistence diagram and is thus non-trivial,
which gives an obstruction to selecting D = 1 + 1, which reflects the fact that the Möbius band
cannot be embedded in the plane. Similarly, in the case of the Klein bottle, the Stiefel–Whitney
computation gives an obstruction to selecting D = 1 + 2, which reflects the fact that the Klein bottle
cannot be embedded in R3.

Optimal Isomap t-SNE LE/DM LLE HLLE LTSA UMAP FibeRed
Cyl. 2 3 3 3 3 3 3 3 2

Torus 3 4 4 4 4 4 4 4 3
Möb. 3 4 4 3∗ N/A N/A N/A 3∗ 3
Klein 4 5 5 7 7 5 5 4 4

Table 1 The minimal target dimension that can be chosen for each of the algorithms considered in
this section, so that there exist parameters that return a topologically faithful embedding of the data.
“Optimal” refers to the theoretical minimal embedding dimension. “Cylinder” refers to the dataset
of Figure 1. “Torus”, “Möbius band”, and “Klein bottle” refer to the three datasets considered in
this section. Since the Möbius band data is not Euclidean, some algorithms cannot be run on these
data; we denote this with “N/A”. Asteriscs indicate that the data had to be preprocessed with MDS
and target dimension 20 in order to get a topologically faithful embedding with the corresponding
algorithm and dimension.

is orientable and has the homology of a torus. Here, we reproduce the simulation of [12]
using the code from [16] and apply dimensionality reduction to this 4D pointcloud, with the
goal of embedding the attractor and its dynamics in R3.

In Figure 4, we show the results of FibeRed and t-SNE. In order to highlight self-
intersections in low-dimensional representations, we use the following function: given a
dataset X and a representation of it f : X → Y let κ : X → R be defined by κ(x) =
miny∈X dY (f(x), f(y))/dX(x, y). The output of t-SNE in Figure 4 is representative of the
output with other parameter choices and other dimensionality reduction algorithms we have
tried on this data (LE, DM, LLE, HLLE, Isomap, UMAP): if the target dimension is 3, there
are always self-intersections or tears. The difficulty faced by metric-based algorithms in this
example is that the input torus in 4D has an approximately flat metric and thus it does not
admit a smooth isometric embedding in R3.

Möbius band from conformation space of pentane. Any fixed molecule admits different
realizations, or conformations, in three-dimensional space. In, e.g., molecular dynamics [19],
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Figure 4 The PD of the original pointcloud (two prominent 1-dimensional classes, and one
prominent 2-dimensional class); the output of FibeRed with the reconstructed dynamics and side
view, and the PD of the output (which matches the PD of the original pointcloud well); the output
of t-SNE on the same data and side view, colored by κ (red is smaller), there seem to be two
self-intersections, and the PD of the output of t-SNE, which has one prominent 1-dimensional hole
and two 2-dimensional voids, confirming that the red regions have been pinched.

Figure 5 The PD of the original pointcloud, which has one prominent 1-dimensional class; the
output of FibeRed and its PD; the output of Isomap and its PD (regardless of the parameter
for Isomap, the algorithm is unable to capture the circularity of the data, and thus its PD has
no prominent features); the output of t-SNE and its PD (regardless of the parameters for t-SNE,
the algorithm is unable to capture the circularity and non-orientability of the data without tears,
which cause the output to have two holes). Outputs are colored by the (aligned) fiber coordinates
estimated by FibeRed.

one is interested in understanding all possible conformations of a molecule. The collection of
conformations up to rotations and translations is known as the conformation space of the
molecule. Each conformation has an associated energy and the conformation space together
with the energy function is known as the energy landscape of the molecule.

We reconstruct the conformation space and energy landscape of the pentane molecule from
a simulation (see [45, Appendix C.2] for details). The pentane molecule has two rotational
degrees of freedom (modelled as a torus S1×S1) but also has a symmetry which interchanges
the two angles of rotation. For this reason, the (unlabeled) conformation space consists of
a quotient of the torus, which can be seen to be a Möbius band. In Figure 5, we embed
the conformation space of pentane in R3 and compare the output of FibeRed to that of
Isomap and t-SNE. LE and DM are able to recover a Möbius band in R3; since UMAP uses
LE as initialization, it is also able to recover the Möbius band in R3. In Figure 6, we use the
cut-unfold technique to find a fundamental domain of the conformation space and estimate
the energy landscape.

The difficulty faced by some of the metric-based dimensionality reduction algorithms in
this example is that, with respect to the intrinsic metric, the ratio between the height of
the Möbius band and its circumference is approximately 2/3 and thus there is no isometric
embedding in R3 [20, Theorem 15.1].
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Figure 6 Left: the 2D representation of the conformation space of pentane using FibeRed with
the cut-unfold technique, colored by energy. Arrows indicate how the data must be glued in order to
recover its global topology; this information can be extracted from the cocycle Ω of EstCocycles.
Right: a 2D representation of the energy landscape of pentane, where the energy is estimated using
the representation on the left and Gaussian smoothing. We see that there are four local minima of
the energy function. By going back to the molecule simulation, we confirm that these four minima
correspond to the four well known conformations of pentane [3].

Figure 7 The PD of the original data with Z/2 (two prominent 1-dimensional and one 2-
dimensional classes) and Z/3 coefficients (one prominent 1-dimensional class), which suggests the
data is a Klein bottle; the PD of the representation obtained using FibeRed, which matches the
original topology well; the PD of a representation using Isomap; the PD of a representation using
t-SNE. For Isomap and t-SNE, the PD is the same regardless of the field of coefficients.

Klein bottle from conformation space of cyclooctane. In this example, we reconstruct
the conformation space and energy landscape of the cyclooctane molecule using the dataset
of [27]. In [27], it is shown that the conformation space of cyclooctane consists of a 2-sphere
glued to a Klein bottle along two disjoint circles and a parametrization of the dataset is
given using Isomap and knowledge about how the data was generated.

By estimating the local dimension of the data, we first separate the Klein bottle part of
the dataset from the 2-sphere. In Figure 7, we embed the Klein bottle part of the data in
4D. We were not able to recover the right topology in R4 using any of LE, DM, LLE, HLLE,
LTSA, Isomap, or t-SNE. Meanwhile, UMAP is able to recover the right topology in R4. In
order to evaluate the 4D embeddings, we use the following distinguishing feature of the Klein
bottle K: with Z/2 coefficients we have dim(H1(K;Z/2)) = 2 and dim(H2(K;Z/2)) = 1,
while with Z/3 coefficients we have dim(H1(K;Z/3)) = 1 and dim(H2(K;Z/3)) = 0. In
Figure 8, we produce an efficient 2D parametrization of the conformation space of cyclooctane
without using a priori knowledge of how the data was generated.

The difficulty faced by metric-based algorithms in this example is that the Klein bottle
in high dimensional space has aspect ratio close to 1 (i.e., an isometric representation by a
fundamental domain such as the one Figure 8 (left) has commensurable height and width),
and thus it does not admit a simple isometric embedding in R4.
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Figure 8 Left: The output of FibeRed with the cut-unfold technique on the portion of the
conformation space belonging to the Klein bottle. Colored in red and green are the two circles that
glue the Klein bottle to the 2-sphere. Using this representation – a cylinder – we compute a new
circular coordinate, which we combine with the initial circular coordinate to get a fundamental
domain for the Klein bottle. Right: A 2D model of the conformation space of cyclooctane. The two
circles are two hemispheres of the 2D sphere and were obtained using Isomap. Points not colored in
grey indicate the gluings that have to be performed to recover the conformation space.

5 Discussion

We have presented a procedure to learn vector bundles from data and demonstrated that
it can be used to decouple the global topology from the local geometry in topologically
complex data. We showed with examples that this can be helpful for embedding topologically
complex data in low dimension, as well as for charting such data. We have also developed a
mathematical foundation for this point of view.

Limitations. The theory and methods presented in this paper assume that the data lives in
the total space of a vector bundle. There are two main ways in which real data can deviate
from these assumptions: (1) There are singularities in the data manifold and thus the base
map is not a vector bundle since fibers may have different dimensions; (2) the data contains
outliers and only a core subset of the data satisfies the assumptions. Two other important
caveats are that (3) the procedure assumes that a base map is given and that (4) success
depends on the first step of the procedure finding a good cover of the data. We comment on
these remarks below.

Future work. With respect to (1), the situation in which the fibers of the base map can
have different dimensions can be abstracted using the theory of stratified vector bundles [7, 6].
We believe that the main algorithm of Section 3 can be adjusted to account for different
local dimensions by allowing the cocycle Ω between patches with different dimension to be
a matrix in a Stiefel manifold instead of an orthogonal matrix. With respect to (2), our
procedures are robust with respect to limited amount of noise and the problem of devising
extensions robust to outliers is left as future work.

With respect to (3), there are several ways to obtain non-linear initial representations.
First, other cohomological coordinates besides circular coordinates have been developed
[35, 38]. Second, one could use standard non-linear representations, such as the ones learned
by Diffusion Maps [23, 13]. Third, one could use any of the lens functions [50, Section 4]
Mapper uses. Another interesting avenue for constructing coarse topological representations
is to build a graph on the data, simplify it while preserving part of its large scale topology,
and use a graph layout algorithm. Regarding (4), finding good covers of noisy data is an
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interesting problem in itself; we believe the approach presented in this paper can be made
more robust by developing a more nuanced subroutine for computing a cover.

Our approach depends on several constructions, some of which are known to be consistent
estimators. Addressing the consistency of the entire pipeline is left for future work.

Finally, FibeRed can be interpreted as principal component analysis relative to an initial
representation, as it works by linearly embedding the local coordinates of X that are not
already accounted by the initial map, in a way that is globally consistent and orthogonal to
the coordinates already accounted by the initial map. This suggests considering versions of
other popular dimensionality reduction algorithms relative to an initial representation.
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