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Abstract
A finite point set in Rd is in general position if no d + 1 points lie on a common hyperplane. Let
αd(N) be the largest integer such that any set of N points in Rd with no d+2 members on a common
hyperplane, contains a subset of size αd(N) in general position. Using the method of hypergraph
containers, Balogh and Solymosi showed that α2(N) < N5/6+o(1). In this paper, we also use the
container method to obtain new upper bounds for αd(N) when d ≥ 3. More precisely, we show that
if d is odd, then αd(N) < N

1
2 + 1

2d
+o(1), and if d is even, we have αd(N) < N

1
2 + 1

d−1 +o(1).
We also study the classical problem of determining the maximum number a(d, k, n) of points

selected from the grid [n]d such that no k + 2 members lie on a k-flat. For fixed d and k, we show
that

a(d, k, n) ≤ O
(

n
d

2⌊(k+2)/4⌋ (1− 1
2⌊(k+2)/4⌋d+1 )

)
,

which improves the previously best known bound of O
(

n
d

⌊(k+2)/2⌋

)
due to Lefmann when k + 2 is

congruent to 0 or 1 mod 4.
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1 Introduction

A finite point set in Rd is said to be in general position if no d + 1 members lie on a common
hyperplane. Let αd(N) be the largest integer such that any set of N points in Rd with no
d + 2 members on a hyperplane, contains αd(N) points in general position.

In 1986, Erdős [8] proposed the problem of determining α2(N) and observed that a simple
greedy algorithm shows α2(N) ≥ Ω(

√
N). A few years later, Füredi [10] showed that

Ω(
√

N log N) < α2(N) < o(N),

where the lower bound uses a result of Phelps and Rödl [20] on partial Steiner systems, and the
upper bound relies on the density Hales-Jewett theorem [11, 12]. In 2018, a breakthrough was
made by Balogh and Solymosi [3], who showed that α2(N) < N5/6+o(1). Their proof was based
on the method of hypergraph containers, a powerful technique introduced independently by
Balogh, Morris, and Samotij [1] and by Saxton and Thomason [24], that reveals an underlying
structure of the independent sets in a hypergraph. We refer interested readers to [2] for a
survey of results based on this method.
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In higher dimensions, the best lower bound for αd(N) is due to Cardinal, Tóth, and Wood
[5], who showed that αd(N) ≥ Ω((N log N)1/d), for every fixed d ≥ 2. For upper bounds,
Milićević [18] used the density Hales-Jewett theorem to show that αd(N) = o(N) for every
fixed d ≥ 2. However, these upper bounds in [18], just like that in [10], are still almost linear
in N . Our main result is the following.

▶ Theorem 1. Let d ≥ 3 be a fixed integer. If d is odd, then αd(N) < N
1
2 + 1

2d +o(1). If d is
even, then αd(N) < N

1
2 + 1

d−1 +o(1).

Our proof of Theorem 1 is also based on the hypergraph container method. A key ingredient
in the proof is a new supersaturation lemma for (k + 2)-tuples of the grid [n]d that lie on a
k-flat, which we shall discuss in the next section. Here, by a k-flat we mean a k-dimensional
affine subspace of Rd.

We also study the classical problem of determining the maximum number of points
selected from the grid [n]d such that no k + 2 members lie on a k-flat. The key ingredient
of Theorem 1 mentioned above can be seen as a supersaturation version of this Turán-type
problem. When k = 1, this is the famous no-three-in-line problem raised by Dudeney [7] in
1917: Is it true that one can select 2n points in [n]2 such that no three are collinear? Clearly,
2n is an upper bound as any vertical line must contain at most 2 points. For small values of
n, many authors have published solutions to this problem obtaining the bound of 2n (e.g.
see [9]), but for large n, the best known general construction is due to Hall et al. [13] with
slightly fewer than 3n/2 points.

More generally, we let a(d, k, r, n) denote the maximum number of points from [n]d such
that no r points lie on a k-flat. Since [n]d can be covered by nd−k many k-flats, we have
the trivial upper bound a(d, k, r, n) ≤ (r − 1)nd−k. For certain values d, k, and r fixed and
n tends to infinity, this bound is known to be asymptotically best possible: Many authors
[22, 4, 17] noticed that a(d, d − 1, d + 1, n) = Θ(n) by looking at the modular moment curve
over a finite field Zp; In [21], Pór and Wood proved that a(3, 1, 3, n) = Θ(n2); Very recently,
Sudakov and Tomon [25] showed that a(d, k, r, n) = Θ(nd−k) when r > dk.

We shall focus on the case when r = k + 2 and write a(d, k, n) := a(d, k, k + 2, n).
Surprisingly, Lefmann [17] (see also [16]) showed that a(d, k, n) behaves much differently
than Θ(nd−k). In particular, he showed that

a(d, k, n) ≤ O
(

n
d

⌊(k+2)/2⌋

)
.

Our next result improves this upper bound when k + 2 is congruent to 0 or 1 mod 4.

▶ Theorem 2. For fixed d and k, as n → ∞, we have

a(d, k, n) ≤ O
(

n
d

2⌊(k+2)/4⌋ (1− 1
2⌊(k+2)/4⌋d+1 )

)
.

For example, we have a(4, 2, n) ≤ O(n 16
9 ) while Lefmann’s bound in [17] gives us a(4, 2, n) ≤

O(n2), which coincides with the trivial upper bound. In particular, Theorem 2 tells us that,
if 4 divides k + 2, then a(d, k, n) only behaves like Θ(nd−k) when d = k + 1. This is quite
interesting compared to the fact that a(3, 1, n) = Θ(n2) proved in [21]. Lastly, let us note
that the current best lower bound for a(d, k, n) is also due to Lefmann [17], who showed that
a(d, k, n) ≥ Ω

(
n

d
k+1 −k− k

k+1

)
.

For integer n > 0, we let [n] = {1, . . . , n}, and Zn = {0, 1, . . . , n − 1}. We systemically
omit floors and ceilings whenever they are not crucial for the sake of clarity in our presentation.
All logarithms are in base two.
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2 (k + 2)-tuples of [n]d on a k-flat

In this section, we establish two lemmas that will be used in the proof of Theorem 1.
Given a set T of k + 2 points in Rd that lie on a k-flat, we say that T is degenerate if there

is a subset S ⊂ T of size j, where 3 ≤ j ≤ k + 1, such that S lies on a (j − 2)-flat. Otherwise,
we say that T is non-degenerate. We establish a supersaturation lemma for non-degenerate
(k + 2)-tuples of [n]d.

▶ Lemma 3. For real number γ > 0 and fixed positive integers d, k, such that k is even and
d − 2γ > (k − 1)(k + 2), any subset V ⊂ [n]d of size nd−γ spans at least Ω(n(k+1)d−(k+2)γ)
non-degenerate (k + 2)-tuples that lie on a k-flat.

Proof. Let V ⊂ [n]d such that |V | = nd−γ . Set r = k
2 + 1 and Er =

(
V
r

)
to be the collection

of r-tuples of V . Notice that the sum of a r-tuple from V belongs to [rn]d. For each v ∈ [rn]d,
we define

Er(v) = {{v1, . . . , vr} ∈ Er : v1 + · · · + vr = v}.

Then for T1, T2 ∈ Er(v), where T1 = {v1, . . . , vr} and T2 = {u1, . . . , ur}, we have

v1 + · · · + vr = v = u1 + · · · + ur,

which implies that T1 ∪ T2 lies on a common k-flat. Let

E2r =
⋃

v∈[rn]d

⋃
T1,T2∈Er(v)

{T1, T2}.

Hence, for each {T1, T2} ∈ E2r, T1 ∪ T2 lies on a k-flat. Moreover, by Jensen’s inequality, we
have

|E2r| =
∑

v∈[rn]d

(
|Er(v)|

2

)
≥ (rn)d

(∑
v

|Er(v)|
(rn)d

2

)
= (rn)d

(
|Er|/(rn)d

2

)
≥ |Er|2

4(rn)d
.

Since k and d are fixed and r = k
2 + 1 and |V | = nd−γ ,

|Er|2 =
(

|V |
r

)2
=
(

|V |
(k/2) + 1

)2
≥ Ω(n(k+2)(d−γ)).

Combining the two inequalities above gives

|E2r| ≥ Ω(n(k+1)d−(k+2)γ).

We say that {T1, T2} ∈ E2r is good if T1 ∩ T2 = ∅, and the (k + 2)-tuple (T1 ∪ T2) is
non-degenerate. Otherwise, we say that {T1, T2} is bad. In what follows, we will show that at
least half of the pairs (i.e. elements) in E2r are good. To this end, we will need the following
claim.

▷ Claim 4. If {T1, T2} ∈ E2r is bad, then T1 ∪ T2 lies on a (k − 1)-flat.

Proof. Write T1 = {v1, . . . , vr} and T2 = {u1, . . . , ur}. Let us consider the following cases.

Case 1. Suppose T1 ∩ T2 ̸= ∅. Then, without loss of generality, there is an integer j < r such
that

v1 + · · · + vj = u1 + · · · + uj ,

SoCG 2023
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where v1, . . . , vj , u1, . . . , uj are all distinct elements, and vt = ut for t > j. Thus |T1 ∪ T2| =
2j + (r − j). The 2j elements above lie on a (2j − 2)-flat. Adding the remaining r − j points
implies that T1 ∪ T2 lies on a (j − 2 + r)-flat. Since r = k

2 + 1 and j ≤ k
2 , T1 ∪ T2 lies on a

(k − 1)-flat.

Case 2. Suppose T1 ∩ T2 = ∅. Then T1 ∪ T2 must be degenerate, which means there is a
subset S ⊂ T1 ∪ T2 of j elements such that S lies on a (j − 2)-flat, for some 3 ≤ j ≤ k + 1.
Without loss of generality, we can assume that v1 ̸∈ S. Hence, (T1 ∪ T2) \ {v1} lies on a
(k − 1)-flat. On the other hand, we have

v1 = u1 + · · · + ur − v2 − · · · − vr.

Hence, v1 is in the affine hull of (T1 ∪ T2) \ {v1} which implies that T1 ∪ T2 lies on a
(k − 1)-flat. ◀

We are now ready to prove the following claim.

▷ Claim 5. At least half of the pairs in E2r are good.

Proof. For the sake of contradiction, suppose at least half of the pairs in E2r are bad. Let
H be the collection of all the j-flats spanned by subsets of V for all j ≤ k − 1. Notice that if
S ⊂ V spans a j-flat h, then h is also spanned by only j + 1 elements from S. So we have

|H| ≤
k−1∑
j=0

|V |j+1 ≤ knk(d−γ).

For each bad pair {T1, T2} ∈ E2r, T1 ∪ T2 lies on a j-flat from H by Claim 4. By the
pigeonhole principle, there is a j-flat h with j ≤ k − 1 such that at least

|E2r|/2
|H|

≥ Ω(n(k+1)d−(k+2)γ)
2knk(d−γ) = Ω(nd−2γ)

bad pairs from E2r have the property that their union lies in h. On the other hand, since
h contains at most nk−1 points from [n]d, h can correspond to at most O(n(k−1)(k+2)) bad
pairs from E2r. Since we assumed d − 2γ > (k − 1)(k + 2), we have a contradiction for n

sufficiently large. ◀

Each good pair {T1, T2} ∈ E2r gives rise to a non-degenerate (k + 2)-tuple T1 ∪ T2 that
lies on a k-flat. On the other hand, any such (k + 2)-tuple in V will correspond to at most(

k+2
r

)
good pairs in E2r. Hence, by Claim 5, there are at least

|E2r|
2

/(
k + 2

r

)
= Ω(n(k+1)d−(k+2)γ)

non-degenerate (k + 2)-tuples that lie on a k-flat, concluding the proof. ◀

In the other direction, we will use the following upper bound.

▶ Lemma 6. For real number γ > 0 and fixed positive integers d, k, ℓ, such that ℓ < k + 2,
suppose U, V ⊂ [n]d satisfy |U | = ℓ and |V | = nd−γ , then V contains at most n(k+1−ℓ)(d−γ)+k

non-degenerate (k + 2)-tuples that lie on a k-flat and contain U .
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Proof. If U spans a j-flat for some j < ℓ − 1, then by definition no non-degenerate (k + 2)-
tuple contains U . Hence we can assume U spans a (ℓ−1)-flat. Observe that a non-degenerate
(k + 2)-tuple T , which lies on a k-flat and contains U , must contain a (k + 1)-tuple T ′ ⊂ T

such that T ′ spans a k-flat and U ⊂ T ′. Then there are at most n(k+1−ℓ)(d−γ) ways to add
k + 1 − ℓ points to U from V to obtain such T ′. After T ′ is determined, there are at most
nk ways to add a final point from the affine hull of T ′ to obtain T . So we conclude the proof
by multiplication. ◀

3 The container method: Proof of Theorem 1

In this section, we use the hypergraph container method to prove Theorem 1. We follow the
method outlined in [3]. Let H = (V (H), E(H)) denote a (k + 2)-uniform hypergraph. For
any U ⊂ V (H), its degree δ(U) is the number of edges containing U . For each ℓ ∈ [k + 2],
we use ∆ℓ(H) to denote the maximum δ(U) among all U of size ℓ. For parameter τ > 0, we
define the following quantity

∆(H, τ) = 2(k+2
2 )−1|V (H)|

(k + 2)|E(H)|

k+2∑
ℓ=2

∆ℓ(H)
τ ℓ−12(ℓ−1

2 ) .

Then we have the following hypergraph container lemma from [3], which is a restatement
of Corollary 3.6 in [24].

▶ Lemma 7. Let H be a (k + 2)-uniform hypergraph and 0 < ϵ, τ < 1/2. Suppose that
τ < 1/(200 · (k + 2) · (k + 2)!) and ∆(H, τ) ≤ ϵ/(12 · (k + 2)!). Then there exists a collection
C of subsets (containers) of V (H) such that
1. Every independent set in H is a subset of some C ∈ C;
2. log |C| ≤ 1000 · (k + 2) · ((k + 2)!)3 · |V (H)| · τ · log(1/ϵ) · log(1/τ);
3. For every C ∈ C, the induced subgraph H[C] has at most ϵ|E(H)| many edges.

The main result in this section is the following theorem.

▶ Theorem 8. Let k, r be fixed integers such that r ≥ k ≥ 2 and k is even. Then for any
0 < α < 1, there are constants c = c(α, k, r) and d = d(α, k, r) such that the following
holds. For infinitely many values of N , there is a set V of N points in Rd such that no
r + 3 members of V lie on an r-flat, and every subset of V of size cN

r+2
2(k+1) +α contains k + 2

members on a k-flat.

Before we prove Theorem 8, let us show that it implies Theorem 1. In dimensions d0 ≥ 3
where d0 is odd, we apply Theorem 8 with k = r = d0 − 1 to obtain a point set V in Rd with
the property that no d0 +2 members lie on a (d0 −1)-flat, and every subset of size cN

1
2 + 1

2d0
+α

contains d0 + 1 members on a (d0 − 1)-flat. By projecting V to a generic d0-dimensional
subspace of Rd, we obtain N points in Rd0 with no d0 + 2 members on a common hyperplane,
and no cN

1
2 + 1

2d0
+α members in general position.

In dimensions d0 ≥ 4 where d0 is even, we apply Theorem 8 with k = d0 −2 and r = d0 −1
to obtain a point set V in Rd with the property that no d0 + 2 members on a (d0 − 1)-flat,
and every subset of size cN

1
2 + 1

d0−1 +α contains d0 members on a (d0 − 2)-flat. By adding
another point from this subset, we obtain d0 + 1 members on a (d0 − 1)-flat. Hence, by
projecting to V a generic d0-dimensional subspace of Rd, we obtain N points in Rd0 with no
d0 + 2 members on a common hyperplane, and no cN

1
2 + 1

d0−1 +α members in general position.
This completes the proof of Theorem 1.

SoCG 2023
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Proof of Theorem 8. We set d = d(α, k, r) to be a sufficiently large integer depending on α,
k, and r. Let H be the hypergraph with V (H) = [n]d and E(H) consists of non-degenerate
(k + 2)-tuples T such that T lies on a k-flat. Let C0 = [n]d, C0 = {C0}, and H0 = H. In
what follows, we will apply the hypergraph container lemma to H0 to obtain a family of
containers C1. For each C1

j ∈ C1, we consider the induced hypergraph H1
j = H[C1

j ], and we
apply the hypergraph container lemma to it. The collection of containers obtained from all
H1

j will form another collection of containers C2. We iterate this process until each container
in Ci is sufficiently small, and moreover, we will only produce a small number of containers.
As a final step, we apply the probabilistic method to show the existence of the desired point
set. We now flesh out the details of this process.

We start by setting C0 = [n]d, C0 = {C0}, and set H0 = H[C0] = H. Having obtained
a collection of containers Ci, for each container Ci

j ∈ Ci with |Ci
j | ≥ n

k
k+1 d+k, we set

Hi
j = H[Ci

j ]. Let γ = γ(i, j) be defined by |V (Hi
j)| = nd−γ . So, γ ≤ d

k+1 − k. We set
τ = τ(i, j) = n− k

k+1 d+γ+α and ϵ = ϵ(i, j) = c1n−α, where c1 = c1(d, k) is a sufficiently large
constant depending on d and k. Then we can verify the following condition.

▷ Claim 9. ∆(Hi
j , τ) ≤ ϵ/(12 · (k + 2)!).

Proof. Since |V (Hi
j)| = nd−γ , γ ≤ d

k+1 − k, and d is sufficiently large, Lemma 3 implies that
|E(Hi

j)| ≥ c2n(k+1)d−(k+2)γ for some constant c2 = c2(d, k). Hence, we have

|V (Hi
j)|

|E(Hi
j)|

≤ nd−γ

c2n(k+1)d−(k+2)γ
= 1

c2nkd−(k+1)γ
.

On the other hand, by Lemma 6, we have

∆ℓ(Hi
j) ≤ n(d−γ)(k+1−ℓ)+k for ℓ < k + 2,

and obviously ∆k+2(Hi
j) ≤ 1.

Applying these inequalities together with the definition of ∆, we obtain

∆(Hi
j , τ) =

2(k+2
2 )−1|V (Hi

j)|
(k + 2)|E(Hi

j)|

k+2∑
ℓ=2

∆ℓ(Hi
j)

τ ℓ−12(ℓ−1
2 )

≤ c3

nkd−(k+1)γ

(
k+1∑
ℓ=2

n(k+1−ℓ)(d−γ)+k

τ ℓ−1 + 1
τk+1

)

=
k+1∑
ℓ=2

c3

τ ℓ−1n(ℓ−1)d−k−ℓγ
+ c3

τk+1nkd−(k+1)γ
,

for some constant c3 = c3(d, k). Let us remark that the summation above is where we
determined our τ and γ. In order to make the last term small, we choose τ = n− k

k+1 d+γ+α.
Having determined τ , in order for the first term in the summation to be small, we choose
γ ≤ d

k+1 − k.
By setting ϵ = c1n−α with c1 = c1(d, k) sufficiently large, we have

∆(Hi
j , τ) ≤ c3

(
k+1∑
ℓ=2

n− ℓ−1
k+1 d+γ+k−(ℓ−1)α + n−(k+1)α

)
≤ c3kn−α + c3n−(k+1)α

<
ϵ

12(k + 2)! .

This verifies the claimed condition. ◀
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Given the condition above, we can apply Lemma 7 to Hi
j with chosen parameters τ and

ϵ. Hence we obtain a family of containers Ci+1
j such that

|Ci+1
j | ≤ 2103(k+2)((k+2)!)3|V (Hj

i
)|τ log(1/ϵ) log(1/τ)

≤ 2c4n
d

k+1 +α log2 n,

for some constant c4 = c4(d, k). In the other case where |Ci
j | < n

k
k+1 d+k, we just define

Ci+1
j = {Ci

j}. Then, for each container C ∈ Ci+1
j , we have either |C| < n

k
k+1 d+k or

|E(H[C])| ≤ ϵ|E(Hi
j)| ≤ ϵi|E(H)|. After applying this procedure for each container in Ci,

we obtain a new family of containers Ci+1 =
⋃

Ci
j such that

|Ci+1| ≤ |Ci|2c4n
d

k+1 +α log2 n ≤ 2(i+1)c4n
d

k+1 +α log2 n.

Notice that the number of edges in Hi
j shrinks by a factor of c1n−α whenever i increases

by one, while on the other hand, Lemma 3 tells us that every large subset C ⊂ [n]d induces
many edges in H. Hence, after at most t ≤ c5/α iterations, for some constant c5 = c5(d, k),
we obtain a collection of containers C = Ct such that: each container C ∈ C satisfies
|C| < n

k
k+1 d+k; every independent set of H is a subset of some C ∈ C; and

|C| ≤ 2(c5/α)c4n
d

k+1 +α log2 n.

Before we construct the desired point set, we make the following crude estimate.

▷ Claim 10. The grid [n]d contains at most O(n(r+1)d+2r) many (r + 3)-tuples that lie on a
r-flat.

Proof. Let T be an arbitrary (r + 3)-tuple that spans a j-flat. There are at most n(j+1)d

ways to choose a subset T ′ ⊂ T of size j + 1 that spans the affine hull of T . After this T ′ is
determined, there are at most n(r+2−j)j ways to add the remaining r + 2 − j points from the
j-flat spanned by T ′. Then the total number of (r + 3)-tuples that lie on a r-flat is at most

r∑
j=1

n(j+1)d+(r+2−j)j ≤
r∑

j=1
n(j+1)d+(r+2−j)r ≤ rn(r+1)d+2r,

since we can assume d > r. ◀

Now, we randomly select a subset of [n]d by keeping each point independently with
probability p. Let S be the set of selected elements. Then for each (r + 3)-tuple T in S

that lies on an r-flat, we delete one point from T . We denote the resulting set of points by
S′. By the claim above, the number of (r + 3)-tuples in [n]d that lie on a r-flat is at most
c6n(r+1)d+2r for some constant c6 = c6(r). Therefore,

E[|S′|] ≥ pnd − c6pr+3n(r+1)d+2r.

By setting p = (2c6)− 1
r+2 n− r

r+2 (d+2), we have

E[|S′|] ≥ pnd

2 = Ω(n
2(d−r)

r+2 ).

Finally, we set m = (c7/α)n
d

k+1 +2α for some sufficiently large constant c7 = c7(d, k, r).
Let X denote the number of independent sets of size m in S′. Using the family of containers

SoCG 2023
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C, we have

E[X] ≤ |C| ·
(

n
k

k+1 d+k

m

)
pm

≤
(

2(c5/α)c4n
d

k+1 +α log2 n

)(
en

k
k+1 d+kp

m

)m

≤
(

2(c5/α)c4n
d

k+1 +α log2 n

)(
c8α

n
k

k+1 d+k · n− r
r+2 (d+2)

n
d

k+1 +2α

)m

≤
(

2(c5/α)c4n
d

k+1 +α log2 n

)(
c8αn

2(k−r−1)d
(k+1)(r+2) +k− 2r

r+2 −2α
)(c7/α)n

d
k+1 +2α

,

for some constant c8 = c8(d, k, r). Since r ≥ k, 0 < α < 1, and d is large, for n sufficiently
large, we have

c8αn
2(k−r−1)d
(k+1)(r+2) +k− 2r

r+2 −2α < 1/2.

Hence, we have E[X] ≤ o(1) as n tends to infinity. Notice that |S′| is exponentially
concentrated around its mean by Chernoff’s inequality. Therefore, some realization of S′

satisfies: |S′| = N = Ω(n2(d−r)/(r+2)); S′ contains no (r + 3)-tuples on a r-flat; and H[S′]
does not contain an independent set of size

m = (c7/α)n
d

k+1 +2α ≤ cN
r+2

2(k+1) + (r+2)r
2(k+1)(d−r) + r+2

d 2α ≤ cN
r+2

2(k+1) +α,

for some constant c = c(α, d, k, r). Here we assume d is sufficiently large so that

(r + 2)r
2(k + 1)(d − r) + r + 2

d
2α ≤ α.

This completes the proof. ◀

4 Avoiding non-trivial solutions: Proof of Theorem 2

In this section, we will give a proof of Theorem 2. Let V ⊂ [n]d such that there are no k + 2
points that lie on a k-flat. In [17], Lefmann showed that |V | ≤ O

(
n

d
⌊(k+2)/2⌋

)
. To see this,

assume that k is even and consider all elements of the form v1 + · · · + v k
2 +1, where vi ̸= vj

and vi ∈ V . All of these elements are distinct, since otherwise we would have k + 2 points on
a k-flat. In other words, the equation(

x1 + · · · + x k
2 +1

)
−
(

x k
2 +2 + · · · + xk+2

)
= 0,

does not have a solution with {x1, . . . , x k
2 +1} and {x k

2 +2, . . . , xk+2} being two different
( k

2 + 1)-tuples of V . Therefore, we have
( |V |

k
2 +1

)
≤ (kn)d, and this implies Lefmann’s bound.

More generally, let us consider the equation

c1x1 + c2x2 + · · · + crxr = 0, (1)

with constant coefficients ci ∈ Z and
∑

i ci = 0. Here, the variables xi takes value in Zj . A
solution (x1, . . . , xr) to equation (1) is called trivial if there is a partition P : [r] = I1 ∪· · ·∪It,
such that xj = xℓ if and only if j, ℓ ∈ Ii, and

∑
j∈Ii

cj = 0 for all i ∈ [t]. In other words,
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being trivial means that, after combining like terms, the coefficient of each xi becomes zero.
Otherwise, we say that the solution (x1, . . . , xr) is non-trivial. A natural extremal problem
is to determine the maximum size of a set A ⊂ [n]d with only trivial solutions to (1). When
d = 1, this is a classical problem in additive number theory, and we refer the interested
reader to [23, 19, 15, 6].

By combining the arguments of Cilleruelo and Timmons [6] and Jia [14], we establish the
following theorem.

▶ Theorem 11. Let d, r be fixed positive integers. Suppose V ⊂ [n]d has only trivial solutions
to each equation of the form

c1 ((x1 + · · · + xr) − (xr+1 + · · · + x2r)) = c2 ((x2r+1 + · · · + x3r) − (x3r+1 + · · · + x4r)) ,

(2)

for integers c1, c2 such that 1 ≤ c1, c2 ≤ n
d

2rd+1 . Then we have

|V | ≤ O
(

n
d

2r (1− 1
2rd+1 )

)
.

Notice that Theorem 2 follows from Theorem 11. Indeed, when k + 2 is divisible by 4,
we set r = (k + 2)/4. If V ⊂ [n]d contains k + 2 points {v1, . . . , vk+2} that is a non-trivial
solution to (2) with xi = vi, then {v1, . . . , vk+2} must lie on a k-flat. Hence, when k + 2 is
divisible by 4, we have

a(d, k, n) ≤ O

(
n

d
(k+2)/2

(
1− 1

(k+2)d/2+1

))
.

Since we have a(d, k, n) < a(d, k − 1, n), this implies that for all k ≥ 2, we have

a(d, k, n) ≤ O

(
n

d
2⌊(k+2)/4⌋

(
1− 1

2⌊(k+2)/4⌋d+1

))
.

In the proof of Theorem 11, we need the following well-known lemma (see e.g. [6]Lemma 2.1
and [23]Theorem 4.1). For U, T ⊂ Zd and x ∈ Zd, we define

ΦU−T (x) = {(u, t) : u − t = x, u ∈ U, t ∈ T}.

▶ Lemma 12. For finite sets U, T ⊂ Zd, we have

(|U ||T |)2

|U + T |
≤
∑

x∈Zd

|ΦU−U (x)| · |ΦT −T (x)|.

Proof of Theorem 11. Let d, r, and V be as given in the hypothesis. Let m ≥ 1 be an
integer that will be determined later. We define

Sr = {v1 + · · · + vr : vi ∈ V, vi ̸= vj},

and a function

σ :
(

V

r

)
→ Sr, {v1, . . . , vr} 7→ v1 + · · · + vr.

Notice that σ is a bijection. Indeed, suppose on the contrary that

v1 + · · · + vr = v′
1 + · · · + v′

r

SoCG 2023
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for two different r-tuples in V . Then by setting (x1, . . . , xr) = (v1, . . . , vr), (xr+1, . . . , x2r) =
(v′

1, . . . , v′
r), (x2r+1, . . . , x3r) = (x3r+1, . . . , x4r) arbitrarily, and c1 = c2 = 1, we obtain a

non-trivial solution to (2), which is a contradiction. In particular, we have |Sr| =
(|V |

r

)
.

For j ∈ [m] and w ∈ Zd
j , we let

Uj,w = {u ∈ Zd : ju + w ∈ Sr}.

Notice that for fixed j ∈ [m], we have∑
w∈Zd

j

|Uj,w| =
∑

w∈Zd
j

|{v ∈ Sr : v ≡ w mod j}| = |Sr|.

Applying Jensen’s inequality to above, we have∑
w∈Zd

j

|Uj,w|2 ≥ |Sr|2/jd. (3)

For i ≥ 0, we define

Φi
Uj,w−Uj,w

(x) = {(u1, u2) ∈ ΦUj,w−Uj,w (x) : |σ−1(ju1 + w) ∩ σ−1(ju2 + w)| = i}.

It’s obvious that these sets form a partition of ΦUj,w−Uj,w
(x). We also make the following

claims.

▷ Claim 13. For a fixed x ∈ Zd, we have∑
j∈[m]

∑
w∈Zd

j

|Φ0
Uj,w−Uj,w

(x)| ≤ 1,

Proof. For the sake of contradiction, suppose the summation above is at least two, then
we have (u1, u2) ∈ Φ0

Uj,w−Uj,w
(x) and (u3, u4) ∈ Φ0

Uj′,w′ −Uj′,w′ (x) such that either (u1, u2) ̸=
(u3, u4) or (j, w) ̸= (j′, w′).

Let s1, s2, s3, s4 ∈ Sr such that s1 = ju1 +w, s2 = ju2 +w, s3 = j′u3 +w′, s4 = j′u4 +w′

and write σ−1(si) = {vi,1, . . . , vi,r}. Notice that u1 − u2 = x = u3 − u4. Putting these
equations together gives us

j′((v1,1 + · · · + v1,r) − (v2,1 + · · · + v2,r)) = j((v3,1 + · · · + v3,r) − (v4,1 + · · · + v4,r)). (4)

It suffices to show that (4) can be seem as a non-trivial solution to (2). The proof now falls
into the following cases.

Case 1. Suppose j ̸= j′. Without loss of generality we can assume j′ > j. Notice that
(u1, u2) ∈ Φ0

Uj,w−Uj,w
(x) implies

{v1,1, . . . , v1,r} ∩ {v2,1, . . . , v2,r} = ∅.

Then after combining like terms in (4), the coefficient of v1
1 is at least j′ − j, which means

this is indeed a non-trivial solution to (2).

Case 2. Suppose j = j′, then we must have s1 ̸= s3. Indeed, if s1 = s3, we must have w = w′

(as s1 modulo j equals s3 modulo j′) and s2 = s4 (as j′(s1 − s2) = j(s3 − s4)). This is a
contradiction to either (u1, u2) ̸= (u3, u4) or (j, w) ̸= (j′, w′).

Given s1 ̸= s3, we can assume, without loss of generality, v1,1 ̸∈ {v3,1, . . . , v3,r}. Again,
we have {v1,1, . . . , v1,r} ∩ {v2,1, . . . , v2,r} = ∅. Hence, after combining like terms in (4), the
coefficient of v1

1 is positive and we have a non-trivial solution to (2). ◀
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▷ Claim 14. For a finite set T ⊂ Zd, and fixed integers i, j ≥ 1, we have

∑
w∈Zd

j

∑
x∈Zd

|Φi
Uj,w−Uj,w

(x)| · |ΦT −T (x)| ≤ |V |2r−i|T |.

Proof. The summation on the left-hand side counts all (ordered) quadruples (u1, u2, t1, t2)
such that (u1, u2) ∈ Φi

Uj,w−Uj,w
(t1 − t2). For each such a quadruple, let s1, s2 ∈ Sr such that

s1 = ju1 + w and s2 = ju2 + w.

There are at most |V |2r−i ways to choose a pair (s1, s2) satisfying |σ−1(s1) ∩ σ−1(s2)| = i.
Such a pair (s1, s2) determines (u1, u2) uniquely. Moreover, (s1, s2) also determines the
quantity

t1 − t2 = u1 − u2 = s1 − w

j
− s2 − w

j
= 1

j
(s1 − s2).

After such a pair (s1, s2) is chosen, there are at most |T | ways to choose t1 and this will also
determine t2. So we conclude the claim by multiplication. ◀

Now, we set T = Zd
ℓ for some integer ℓ to be determined later. Notice that Uj,w + T ⊂

{0, 1, . . . , ⌊rn/j⌋ + ℓ − 1}d, which implies

|Uj,w + T | ≤ (rn/j + ℓ)d. (5)

By Lemma 12, we have

|Uj,w|2||T |2

|Uj,w + T |
≤
∑

x∈Zd

|ΦUj,w−Uj,w
(x)| · |ΦT −T (x)|.

Summing over all j ∈ [m] and w ∈ Zd
j , and using Claims 13 and 14, we can compute

∑
j∈[m]

∑
w∈Zd

j

|Uj,w|2||T |2

|Uj,w + T |
≤
∑

j∈[m]

∑
w∈Zd

j

∑
x∈Zd

|ΦUj,w−Uj,w
(x)| · |ΦT −T (x)|

=
∑

x∈Zd

∑
j∈[m]

∑
w∈Zd

j

(
|Φ0

Uj,w−Uj,w
(x)| +

r∑
i=1

|Φi
Uj,w−Uj,w

(x)|
)

|ΦT −T (x)|

≤
∑

x∈Zd

|ΦT −T (x)|
∑

j∈[m]

∑
w∈Zd

j

|Φ0
Uj,w−Uj,w

(x)| +
∑

j∈[m]

r∑
i=1

|V |2r−iℓd

≤
∑

x∈Zd

ΦT −T (x) +
∑

j∈[m]

r−1∑
i=1

|V |2r−iℓd

≤ ℓ2d + rm|V |2r−1ℓd,

SoCG 2023
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On the other hand, using (3) and (5), we can compute∑
j∈[m]

∑
w∈Zd

j

|Uj,w|2||T |2

|Uj,w + T |
≥
∑

j∈[m]

∑
w∈Zd

j

|Uj,w|2ℓ2d

(rn/j + ℓ)d

≥
∑

j∈[m]

|Sr|2ℓ2d

jd(rn/j + ℓ)d

=
∑

j∈[m]

|Sr|2ℓ2d

(rn + jℓ)d

≥ m|Sr|2ℓ2d

(rn + mℓ)d
,

Combining the two inequalities above gives us
m|Sr|2ℓ2d

(rn + mℓ)d
≤ ℓ2d + rm|V |2r−1ℓd

=⇒ |Sr|2 ≤ (rn + mℓ)d

m
+ r|V |2r−1 (rn + mℓ)d

ℓd
.

By setting m = n
d

2rd+1 and ℓ = n1− d
2rd+1 , we get(

|V |
r

)2
= |Sr|2 ≤ cnd− d

2rd+1 + c|V |2r−1n
d2

2rd+1 ,

for some constant c depending only on d and r. We can solve from this inequality that

|V | = O
(

n
d

2r (1− 1
2rd+1 )

)
,

completing the proof. ◀

5 Concluding remarks

1. One can consider a generalization of the quantity αd(N). We let αd,s(N) be the largest
integer such that any set of N points in Rd with no d + s members on a hyperplane, contains
αd,s(N) points in general position. Hence, αd(N) = αd,2(N). Following the arguments in
our proof of Theorem 1 with a slight modification, we show the following.

▶ Theorem 15. Let d, s ≥ 3 be fixed integers. If d is odd and 2d+s−2
2d+2s−2 < d−1

d , then
αd,s(N) ≤ N

1
2 +o(1). If d is even and 2d+s−2

2d+2s−2 < d−2
d−1 , then αd,s(N) ≤ N

1
2 +o(1).

For example, when we fix d = 3 and s ≥ 5, we have αd,s(N) ≤ N
1
2 +o(1). In the other

direction, it is easy to show that αd,s(N) ≥ Ω(N1/d) for any fixed d, s ≥ 2 (see [8]).

▶ Problem 16. Are there fixed integers d, s ≥ 3 such that αd,s(N) ≤ o(N 1
2 )?

2. We call a subset V ⊂ [n]d an m-fold Bg-set if V only contains trivial solutions to the
equations

c1x1 + c2x2 + · · · + cgxg = c1x′
1 + c2x′

2 + · · · + cgx′
g,

with constant coefficients ci ∈ [m]. We call 1-fold Bg-sets simply Bg-sets. By counting
distinct sums, we have an upper bound |V | ≤ O(n

d
g ) for any Bg-set V ⊂ [n]d.

Our Theorem 11 can be interpreted as the following phenomenon: by letting m grow as
some proper polynomial in n, we have an upper bound for m-fold Bg-sets, where g is even,
which gives a polynomial-saving improvement from the trivial O(n

d
g ) bound. We believe this

phenomenon should also hold without the parity condition on g.
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