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Abstract
For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its
incident edges, represented by the labels of their other endpoints. The extended rotation system
(ERS) of the drawing is the collection of the rotations of all vertices and crossings. A drawing is
simple if each pair of edges has at most one common point. Gioan’s Theorem states that for any
two simple drawings of the complete graph Kn with the same crossing edge pairs, one drawing can
be transformed into the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3).
This operation refers to the act of moving one edge of a triangular cell formed by three pairwise
crossing edges over the opposite crossing of the cell, via a local transformation.

We investigate to what extent Gioan-type theorems can be obtained for wider classes of graphs.
A necessary (but in general not sufficient) condition for two drawings of a graph to be transformable
into each other by a sequence of triangle flips is that they have the same ERS. As our main result,
we show that for the large class of complete multipartite graphs, this necessary condition is in fact
also sufficient. We present two different proofs of this result, one of which is shorter, while the other
one yields a polynomial time algorithm for which the number of needed triangle flips for graphs
on n vertices is bounded by O(n16). The latter proof uses a Carathéodory-type theorem for simple
drawings of complete multipartite graphs, which we believe to be of independent interest.

Moreover, we show that our Gioan-type theorem for complete multipartite graphs is essentially
tight in the following sense: For the complete bipartite graph Km,n minus two edges and Km,n

plus one edge for any m, n ≥ 4, as well as Kn minus a 4-cycle for any n ≥ 5, there exist two simple
drawings with the same ERS that cannot be transformed into each other using triangle flips. So
having the same ERS does not remain sufficient when removing or adding very few edges.
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1 Introduction

Gioan’s Theorem states that any two simple drawings of the complete graph Kn in which
the same pairs of edges cross can be transformed into each other (up to strong isomorphism)
via a sequence of triangle flips. Informally, a triangle flip is the act of moving one edge of a
triangular cell formed by three pairwise crossing edges over the opposite crossing of the cell;
see Figure 1 for an illustration of this operation and Section 2 for the formal definition.

Figure 1 A sketch of a triangle flip.

Gioan’s Theorem can be seen as a generalization of results on pseudolines by Ringel [29]
from 1955 and Roudneff [30] from 1988 to simple drawings of Kn. Gioan’s conference
paper [15] from 2005 contained a proof sketch only. A full proof was first published in 2017
by Arroyo, McQuillan, Richter, and Salazar [4], who also coined the name “Gioan’s Theorem”.
In 2021, Schaefer [31] generalized Gioan’s Theorem to slightly sparser graphs, namely, simple
drawings of Kn minus any non-perfect matching. A full version of Gioan’s proof [16] finally
appeared in 2022.

A priori it is not clear how to generalize Gioan’s Theorem beyond Schaefer’s result. For
transforming drawings of general graphs via triangle flips, it is not sufficient to only have the
same crossing edge pairs. We should also consider the rotation of a vertex or edge crossing,
which is defined as the cyclic order of emanating edges. For example, Figure 2 shows two
simple drawings of the complete bipartite graph K3,3 with the same crossing edge pairs and
the same rotations of vertices, but different rotations of the crossings involving b1r3. Observe
that triangle flips do not change the rotations of crossings or vertices. A take-away from
this observation is that for a Gioan-type theorem to hold, the rotations of all crossings and
vertices must be the same in both drawings. A concept capturing exactly this necessity is the
extended rotation system. The extended rotation system (ERS) of a drawing of a graph is the
collection of the rotations of all vertices and crossings. In this light, one of the contributions
of Gioan’s Theorem is that for drawings of the complete graph, having the same crossing
edge pairs is equivalent to having the same ERS (up to global inversion) [15, 16]. This fact
has been first stated by Gioan [15]; the first published proofs are by Kynčl [22, 23]. An
analogous statement for Kn minus any non-perfect matching has been shown by Schaefer [31].
For complete multipartite graphs, this equivalence does not hold; see again Figure 2.

As our main result, we show that having the same ERS is sufficient to transform simple
drawings of complete multipartite graphs into each other via triangle flips. We thus obtain a
Gioan-type theorem for a large class of graphs that includes the before studied graphs, namely
complete graphs [4, 15, 16, 31] and complete graphs minus a non-perfect matching [31].

▶ Theorem 1. Let D1 and D2 be two simple drawings of a complete multipartite graph on
the sphere S2 with the same ERS. Then there is a sequence of triangle flips that transforms
D1 into D2.
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b1 b2

r1 r2 r3

b3 b1 b2

r1 r2 r3

b3

Figure 2 Two simple drawings of K3,3 with the same crossing edge pairs and same rotations at
all vertices but different rotations at all crossings involving the edge b1r3 and hence different ERSs.

We also show that Theorem 1 is essentially tight in the sense that having the same ERS
does not remain sufficient when removing or adding very few edges.

▶ Theorem 2. For any m, n ≥ 3 and Km,n minus any two edges, there exist two simple
drawings with the same ERS that cannot be transformed into each other using triangle
flips. The same holds for any n ≥ 5 and Kn minus any four-cycle C4, as well as for
any m ≥ 4, n ≥ 1 and Km,n plus one edge between vertices in the bipartition class of size m.

The first part of Theorem 2 implies that an analogue to Schaefer’s generalization of
Gioan’s Theorem for Kn minus a non-perfect matching cannot be achieved for complete
bipartite graphs, not even for Km,n minus a matching of size two. Note that Km,n with m ≥ 4
and n ≥ 1 is a subgraph of Kn+m minus a 4-cycle. Hence, the second part of Theorem 2
implies that – perhaps counterintuitively – the set of graphs for which a Gioan-type theorem
holds is not closed under adding edges. From the proof of Theorem 2 it follows that Theorem 1
cannot be extended to any graph that contains a K5 minus a four-cycle C4 or a K3,2 minus
two edges incident to the same vertex of the smaller partition class, as an induced subgraph.

We present two different proofs of Theorem 1. Our first proof uses a similar approach as
the proof of Gioan’s Theorem by Schaefer [31]. His proof heavily relies on a (plane) spanning
star as a basis for transforming one drawing into the other. While plane spanning stars
exist in any simple drawing of Kn, also minus a non-perfect matching, this is in general
not the case for complete multipartite graphs. However, any simple drawing of a complete
multipartite graph G contains a plane spanning tree [2]. We show that for drawings of G

with the same ERS, such a plane spanning tree can be used for transforming one drawing
into the other. The resulting proof is shorter and probably more elegant than the second
proof. But it does not directly yield a polynomial time transformation algorithm, as it is
still an open question [2] whether a plane spanning tree can be found in polynomial time.

Our second proof yields a polynomial time algorithm for the transformation. It uses
a similar approach as the proof of Gioan’s Theorem by Arroyo, McQuillan, Richter, and
Salazar [4]. Several ingredients of their proof are known properties of drawings of complete
graphs or follow directly from such properties, while it was unknown whether analogous
statements hold for drawings of other graphs. Hence, for our proof we discover a number
of useful, fundamental properties of simple drawings of complete multipartite graphs. For
example, we establish a Carathéodory-type theorem for them.

The classic Carathéodory Theorem states that if a point p ∈ R2 lies in the convex hull
of a set A ⊂ R2 of n ≥ 3 points, then there exists a triangle spanned by points of A that
contains p. In the terminology of drawings, if a point p lies in a bounded cell of a straight-line
drawing D of Kn in R2, then there exists a 3-cycle C in D so that p lies in the bounded cell
of C. This statement has been generalized to simple (not necessarily straight-line) drawings
of Kn [6, 7]. However, it clearly does not generalize to arbitrary (non-complete) graphs;
consider for example a simple drawing of a path with self-intersections that forms a bounded

SoCG 2023



6:4 Drawings of Complete Multipartite Graphs up to Triangle Flips

cell. A natural question is, for which classes of graphs this statement, or a variation of it,
holds. We show that it holds for complete multipartite graphs if in addition to 3-cycles –
which might not exist in those graphs – we also allow 4-cycles to contain p.

▶ Theorem 3 (Carathéodory-type theorem for simple drawings of complete multipartite graphs).
Let D be a simple drawing of a complete multipartite graph G in the plane. For every point p

in a bounded cell of D, there exists a cycle C of length three or four in D such that p is
contained in a bounded cell of C. This statement is tight in the sense that it may not hold
for G minus one edge.

Number of triangle flips. Schaefer [31, Remark 3.3] showed that for Kn, polynomially many
triangle flips are sufficient and gave an upper bound of O(n20) for the number of required
flips. Using a different approach in our second proof of Theorem 1, we show an upper bound
of O(n16) triangle flips for complete multipartite graphs on n vertices. We further present
drawings which, regardless of the approach, require at least Ω(n6) triangle flips.

Motivation and related work. Originally, rotation systems were invented to investigate
embeddings of graphs on higher-genus surfaces [17]. Nowadays they are widely used to
represent drawings of graphs in the plane and to derive their structural properties. Gioan’s
Theorem implies that for simple drawings of complete graphs, the set of crossing pairs of edges
determines the drawing’s ERS. Conversely, for drawings of complete graphs, the rotation
system determines which pairs of edges cross [22, 27]. These relations are crucial in the study
of simple drawings of complete graphs, their generation and enumeration [1, 22, 24].

For non-complete graphs, the literature on rotation systems for simple drawings is rather
sparse. Besides the recent work of Schaefer [31], we are only aware of work by Cardinal and
Felsner [8], who investigate the realization of complete bipartite graphs as outer drawings.
The main reason why there are no further results on rotation systems beyond drawings of
complete graphs is the lack of known properties in these cases. Our work contributes towards
the generalization of rotation systems to drawings of wider graph classes, not only by the
main statement but also due to the structural results obtained along the way.

We note that rotation systems of drawings also play a role in a wider context. For example,
they are crucial in a recent breakthrough result devising an algorithm for the subpolynomial
approximation of the crossing number for non-simple drawings of general graphs [10].

The study of triangle flips has a long history in several different contexts. In addition to
the mentioned work on Gioan’s Theorem [4, 15, 16, 31], this in particular includes work on
arrangements of pseudolines [14, 29, 30, 32], knot theory [3, 20, 21, 25, 28, 35, 36], as well as
on transforming curves on compact oriented surfaces [9].

Outline. In Section 2, we mainly state definitions, introduce notation, and give a charac-
terization of complete multipartite graphs. In Sections 3 and 4 we sketch the proofs of the
Carathéodory-type Theorem 3 and Theorem 2, respectively. Section 5 is devoted to proving
Theorem 1, where the first proof is given nearly fully, and the second one is shortly sketched
to explain the algorithm. In Section 6 we present bounds on the required number of triangle
flips derived from the second proof. We conclude the paper with open questions in Section 7.

2 Definitions and preliminaries

A graph G = (V, E) is multipartite if its vertex set V can be partitioned into k nonempty
subsets V1, . . . , Vk, for some k ∈ N, such that each Vi, for i ∈ {1, . . . , k}, induces an
independent set in G, that is, no two vertices in Vi are adjacent. A complete multipartite
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graph G = (V, E) contains all edges outside of the independent sets, that is, we have
E = {vivj : vi ∈ Vi ∧ vj ∈ Vj ∧ 1 ≤ i < j ≤ k}. For a multiset {n1, . . . , nk} of natural
numbers, there is a unique (up to isomorphism) complete multipartite graph Kn1,...,nk

with |Vj | = nj , for all j ∈ {1, . . . , k}. Note that both the empty graph on n vertices
(with k = 1 and n1 = n) and the complete graph Kn (with k = n and n1 = · · · = nk = 1)
are complete multipartite graphs. We also have the following useful characterization, whose
proof is an easy graph-theoretic exercise.

▶ Lemma 4. A graph G = (V, E) is complete multipartite if and only if for every edge uv ∈ E

and every vertex w ∈ V \ {u, v} we have uw ∈ E or vw ∈ E (or both).

Drawings. A drawing γ of a graph G = (V, E) is a geometric representation of G by points
and curves on an oriented surface S. More precisely, every vertex v of G is mapped to a
point γv on S and every edge uv of G is mapped to a simple (that is, continuous and not
self-intersecting) curve γuv on S with endpoints γu and γv, such that: (1) any two vertices
are mapped to distinct points (γu = γv =⇒ u = v, for all u, v ∈ V ), (2) no vertex is mapped
to the relative interior of an edge (γuv ∩ γw = ∅, for all uv ∈ E and w ∈ V \ {u, v}), and
(3) every pair of curves γe, γf , for e ≠ f , intersects in at most finitely many points, each of
which is either a common endpoint or a proper, transversal crossing.

In this paper, we consider drawings on the sphere S2, except for a few places – specified
explicitly – where we consider drawings in the plane R2. All our graphs and drawings are
labeled. Hence, we often identify vertices and edges with their geometric representation in a
drawing. Any subgraph H of G induces a subdrawing γ[H] that is obtained by restricting γ

to the vertices and edges of H. For a graph F , an F -subdrawing of γ is a subdrawing γ[H]
that is induced by some subgraph H of G that is isomorphic to F . A drawing partitions
S into vertices (endpoints) and crossings of the curves {γe : e ∈ E}, edge fragments (the
connected components of the curves {γe : e ∈ E} after removing all vertices and crossings),
and cells (the connected components of S after removing all vertices, crossings, and edge
fragments). For a cell C we denote by ∂C the boundary of C. A cell that is bounded by
exactly three edge fragments is called a tricell.

The class of drawings of a graph is vast and for many purposes too rich to be directly
useful. To begin with, it is not clear in general how to represent a drawing using a finite
amount of space. Two natural approaches to address this concern are to (1) further restrict
the class of drawings or (2) study drawings on a much coarser level, up to some notion of
isomorphism. In this work, we use a combination of both of these approaches.

Simple drawings. An example for the first approach are straight-line drawings in the
Euclidean plane (also known as geometric graphs), where the geometry of an edge is uniquely
determined by the location of its endpoints; see the Handbook of Discrete and Computational
Geometry [34, Chapter 10] and references therein. In this work, we consider a more general
class of drawings, which appear in the literature as simple drawings [11], good drawings [5, 12],
topological graphs [26], simple topological graphs [22], and even just as drawings [18]. In a
simple drawing, every pair of edges has at most one point in common, either a common
endpoint or a proper crossing. Additionally, we may assume that no three edges meet
at a common point. Simple drawings are a combinatorial/topological generalization of
straight-line drawings. If the graph G has n vertices, then every simple drawing of G has
O(n4) crossings, edge fragments, and cells. Simple drawings are also important for crossing
minimization because all crossing-minimal drawings are simple [33].

SoCG 2023
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Figure 3 Two drawings of K3,3 that have same ERS but are not strongly isomorphic (because
ux crosses vy and wz in different order). The shaded tricell is an invertible triangle.

Strong isomorphism. An example for the second approach is the notion of strong isomor-
phism for drawings, defined as follows. Two drawings γ and η of a graph G = (V, E) are
strongly isomorphic, denoted by γ ∼= η, if there exists an orientation-preserving homeomor-
phism1 of S that maps γ to η, that is, γv 7→ ηv, for all v ∈ V , and γe 7→ ηe, for all e ∈ E. A
combinatorial formulation, which is equivalent for connected drawings, can be obtained as
follows [22]: (1) the same pairs of edges cross (this is called weak isomorphism); (2) the order
of crossings along each edge is the same; and (3) at each vertex and crossing the rotation,
that is, the clockwise circular order of incident edges, is the same (see next paragraph for
more details). The notion of strong isomorphism encapsulates basically everything that can
be said about a drawing from a topological or combinatorial point of view: the order of edges
around vertices and cells, which pairs of edges cross, and in which order the crossings appear
along an edge. For our purposes, we consider strongly isomorphic drawings to be equivalent.

Extended rotation systems. A coarser notion of equivalence can be obtained by requiring
two drawings to have the same rotation system, which is the collection of the rotations of
all vertices. Property (3) in the above-mentioned combinatorial description uses a slightly
stronger notion of equivalence, where also the rotations at crossings are the same in both
drawings. More formally, the rotation of a crossing χ is the clockwise cyclic order of the
four vertices of the crossing edge pair which is induced by the cyclic order of edge fragments
around χ. (In other words, the rotation of a crossing χ is the rotation of an additional
degree-4 vertex vχ obtained by splitting the crossing edge pair at χ and replacing χ by vχ.)
The extended rotation system (ERS) of a drawing is the collection of rotations of all vertices
and crossings. Any two strongly isomorphic drawings have the same ERS [22]. But the
converse is not true in general, as the example in Figure 3 demonstrates.

Crossing triangles. In fact, the only difference between the two drawings in Figure 3 with
respect to strong isomorphism stems from the tricell formed by the triple ux, vy, wz of
pairwise crossing edges, which is shaded gray in the figure: In the left drawing, this cell lies to
the right of the oriented edge ux, whereas in the right drawing, it lies to the left of ux. Given
a simple drawing, a tricell ∆ in the subdrawing of three pairwise crossing edges e1, e2, e3 is
called a crossing triangle; the three edges e1, e2, e3 are said to span ∆. Note that every edge
triple in a simple drawing spans at most one crossing triangle. The following lemma shows
that the crossing triangles are well-defined for complete multipartite graphs. It follows from
the proof of Theorem 1, but can also be shown directly (and with a much shorter proof).

1 Strong isomorphism can also be defined for unlabeled drawings; then a mapping for the vertex sets
is needed. The homeomorphism is sometimes not required to be orientation-preserving; then, e.g.,
mirror-images of drawings are also considered to be strongly isomorphic.
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▶ Lemma 5. In every simple drawing of a complete multipartite graph, the set of edge triples
that span crossing triangles is uniquely determined by the ERS.

Invertible triangles and triangle flips. To formally define the triangle flip operation, globally
fix an orientation π of the edges of the abstract graph G. This orientation can be arbitrary,
but once we fix the graph, we also fix its orientation. With this orientation π, we can assign
every crossing triangle a parity as follows. The parity of a crossing triangle ∆ in a drawing
is the parity (odd or even) of the number of bounding edges of ∆ such that ∆ lies to the
left of the edge (when going along the edge according to its orientation). See Figure 3 for
two drawings with even (left) and odd (right) parity of the crossing triangle. A crossing
triangle ∆ in a drawing γ is invertible if there exists another simple drawing γ′ ≠ γ of the
same graph G with the same edge orientation π and with the same ERS in which ∆ appears
with the opposite parity. We will show that any invertible triangle in a drawing of a complete
multipartite graph is empty of vertices.

Locally redrawing the edges of an empty crossing triangle and thereby changing its parity
is an elementary operation to transform a given drawing, say, the one in Figure 3 (left),
into a new drawing, such as the one in Figure 3 (right). Up to strong isomorphism, there is
a unique way for the redrawing. This operation is referred to as triangle flip [4], triangle
mutation [15], slide move [31], homotopy move [9, 20], or Reidemeister move of Type 3, where
the latter name has been extensively used2 in knot theory [3, 21, 25, 28, 35, 36].

Triangle flip graphs. Based on the triangle flip as an elementary operation, we can define a
meta graph whose vertices are drawings and whose edges correspond to triangle flips. We fix
a graph G and consider all simple drawings of G on S up to strong isomorphism; these are
the vertices of the triangle flip graph T (G). Any two such drawings γ, η are connected by
an edge in T (G) if η can be obtained from γ by a single triangle flip. As triangle flips are
reversible, edges are symmetric. So we consider T (G) as an undirected graph.

Observe that a triangle flip does not change the rotation of any vertex or crossing, only
the order of crossings along the edges changes. Therefore only drawings that have the same
ERS can be in the same component of T (G). In general, the flip graph T (G) may be
disconnected. Consider, for instance, the two drawings of a path depicted in in Figure 4. As
neither drawing contains any crossing triangle, both are isolated vertices in T (G).

a

c

e

b

d

f

a

c

e

b

d

f

Figure 4 Two drawings of a path with the same ERS, but the order of crossings along the edge cd

differs, thus, the drawings are not strongly isomorphic. Neither drawing contains any tricell to flip.

3 A Carathéodory-type theorem for complete multipartite graphs

This section is devoted to a proof outline of the Carathéodory-type Theorem 3. The
corresponding statement for simple drawings of Kn, which is a direct generalization of the

2 albeit in the context of knots also an above/below relationship among the curves is relevant
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classic theorem for convex sets in R2, was shown by Balko, Fulek, and Kynčl [6]. A simpler
proof was given later by Bergold, Felsner, Scheucher, Schröder, and Steiner [7], whose proof
idea we follow.

Sketch of Proof. If G is empty or a star K1,n, then the statement is vacuously true. So
we assume that G is neither, and thus every pair of distinct vertices u, v ∈ V with uv /∈ E

has at least two distinct common neighbors. By studying a minimal counter-example we
prove Theorem 3 by contradiction. To that aim, we consider a simple drawing D of G and a
point p, such that the following holds: (1) p is in a bounded cell of D, (2) p is not contained
in a bounded cell of any induced Ci-subdrawing of D, for i ∈ {3, 4}, and (3) when removing
any vertex from D, the point p lies in the unbounded cell.

Let a be a vertex of G, and let O be the smallest set of edges incident to a such that
removal of all edges of O from D puts p into the unbounded cell of the resulting drawing D−.
Then in D− one can draw a simple curve P from p to the interior of the unbounded cell
of D so that P does not intersect any vertex or edge of D−. Subject to this constraint, we
select P to minimize the number of crossings with edges of D. We show that we can assume
every edge in O crosses P exactly once. Finally we consider an edge ab ∈ O, which crosses P

in a point pab, and analyze two cases depending on whether ab crosses another edge between
a and pab or not. We show that in both cases, p is contained in a bounded cell of an induced
Ci-subdrawing of D, for i ∈ {3, 4}.

r1

r2

b3 bmb...b2b1

rnr...r3

p

Figure 5 Drawing of Km,n minus one edge (r2b1, drawn dashed), based on Figure 6. The point p

lies in a bounded cell, but in no Ci, for i ∈ {3, 4, 5}.

To see that the theorem may not hold if we remove one edge from G, consider the simple
drawing of Km,n, m, n ≥ 2, depicted in Figure 5. When removing the edge b1r2, the point p

still lies in a bounded cell, but any cycle that encloses p has at least six vertices. ◀

4 Theorem 1 is essentially tight

Theorem 2 implies that Theorem 1 is essentially tight: The removal or addition of very few
edges may yield a graph for which the theorem does not hold. This implies that the class of
graphs for which this Gioan-type theorem holds is not closed under the operation of taking
(non-induced) subgraphs or supergraphs. We sketch the proof of Theorem 2 by depicting the
drawings we use to show tightness.

Each of Figures 6–9 contains two simple drawings of a graph with the same ERS. In all
of them, the crossing order along b1r1 differs between the two drawings. This order cannot
be changed via triangle flips because the edges crossing b1r1 in different orders are pairwise
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non-crossing. Figures 6 and 7 cover the case of Km,n minus two adjacent or disjoint edges,
Figure 8 is an extension of Figure 6 to Km minus a 4-cycle, and Figure 9 shows subdrawings
of Figure 8 that form a Km−1,n+1 plus one edge.

r1

r2

r3
b3 bm. . .b2b1

rn. . .r4

r2

r3

b3 bm. . .b2b1

rn. . .r4

r1

Figure 6 Two drawings of Km,n minus two adjacent edges b1r2 and b1r3 (drawn as dashed lines)
that have the same ERS but cannot be transformed into each other via triangle flips.

r1

r2

b1

b2

b3
b4, . . .r3, . . .

r1

r2

b1

b2

b3

b4, . . .r3, . . .

Figure 7 Two drawings of Km,n minus two independent edges b2r1 and b1r2 (drawn dashed) that
have the same ERS but cannot be transformed into each other via triangle flips.

r1

r2

r3
b3 bmb...b2b1

rnr...r4

r2

r3

b3 bmb...b2b1

rnr...r4

r1

Figure 8 Two drawings of Km minus a 4-cycle (drawn dashed) that have the same ERS, but
cannot be transformed into each other via triangle flips.

We remark that also two simple drawings with the same ERS that cannot be transformed
into each other via triangle flips exist for any graph that contains (1) a K5 minus a 4-cycle,
or (2) a K2,3 minus two edges sharing a vertex in the bipartition class of cardinality two
(where the list of induced subgraphs is not exhaustive). This can be shown by choosing
appropriate subdrawings in the construction from Figure 8.
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r1

r2

r3
b3 bmb...b2b1

rnr...r4

r2

r3

b3 bmb...b2b1

rnr...

r1

Figure 9 Two drawings of Km−1,n+1 plus one edge (b1r1) that cannot be transformed into each
other via triangle flips.

5 A Gioan-type theorem for complete multipartite graphs

In this section, we present our two proofs of Theorem 1 and include a short algorithmic
discussion of the second one.

5.1 First proof of Theorem 1
For our first proof of Theorem 1, we use the same general approach as Schaefer [31]. To
closely follow the lines of Schaefer, we also use homeomorphisms in this proof.

Proof. Let G be a complete multipartite graph, and let D1 and D2 be two simple drawings
of G on S2 with the same ERS. Let R = {r1, r2, . . . , rn} be a maximal independent set in G

and let B = {b1, b2, . . . , bm} denote the set of the remaining vertices. Note that the graph
on the vertex set R ∪ B together with all edges with an endpoint in R and one in B forms a
complete bipartite graph Kn,m, and the set R is an independent set in G while B might not
necessarily be an independent set.

By [2], the subdrawing of D1 spanned by this Kn,m contains a spanning tree T which is
drawn crossing-free in this subdrawing and hence also in D1. As D1 and D2 have the same
crossing edge pairs, T is drawn crossing-free in D2 as well. Since the rotation systems of D1
and D2 are the same by assumption, the drawings of T in D1 and D2 are homeomorphic.
Thus there exists a drawing D :∼= D1 with the following properties.
1. The drawing of T is the same for both drawings D and D2, implying that also the vertex

locations are the same in both drawings.
2. Considering the set of the vertices and edges of D and D2 together as the combined

drawing of D and D2, we denote the cyclical order of edges in D and D2 emanating from
a vertex as combined rotation at that vertex. For each edge e of G (not in T ) and each
vertex v of e, the two drawings of e are consecutive in the combined rotation at v.

3. For each edge e of G, the two drawings of e are either identical or have only finitely many
points in common (two are its endpoints and the others are proper crossings).

Our goal is to change D via triangle flips (and orientation-preserving homeomorphisms)
until we obtain D = D2. Since the vertex locations in both drawings are the same, we can
speak about two drawings of an edge, one in D, and one in D2, being the same or not. As in
Schaefer’s proof, we iteratively reduce the number of edges that are drawn differently in D

and D2. Let E= be the set of edges whose drawings in D and D2 are the same. Initially, E=
contains at least all edges of T . If E= contains all edges of G then we are done.
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So suppose that this is not the case and consider an edge e that is drawn differently in D

and D2. Let e1 and e2 denote the curves representing e in D and D2, respectively. Since D

and D2 have the same ERS, e1 and e2 cross the same edges of T and they do so with the
same crossing rotations. Moreover, the following lemma implies that they also cross those
edges in the same order. The lemma can be proven relying on Lemma 4 and using a case
distinction for drawings with six vertices.

▶ Lemma 6. Let D be a simple drawing of a complete multipartite graph G on S2 and let
vw be an edge of G. Then for any pair of adjacent or disjoint edges crossed by vw, the ERS
of D determines the order in which vw crosses them.

Hence e1 and e2 are equivalent with respect to the drawing of T (which is the same in D

and D2), that is, e1 has the same sequence of directed crossings with T as e2. Let Γ = e1 ∪ e2
be the (not necessarily simple) closed curve formed by e1 and e2. A lens in Γ is a cell of Γ
whose boundary is formed by exactly two edge fragments of Γ, where one is from e1 and one
is from e2. Next, consider the drawing DT of T plus the drawings e1 and e2 of e. A lens
of Γ is called empty if it contains no vertices of T (and hence also no vertices of G) in its
interior. With the next lemma, we show that Γ forms an empty lens. This lemma is a special
case of a result of Hass and Scott on intersecting curves on surfaces [19, Lemma 3.1], which
is also known as the bigon criterion [13, Section 1.2.4]. Schaefer [31, Lemma 3.2] gives an
elementary proof in the planar (or spherical) case when the plane spanning tree T is a star.
However, he only uses that the star is a spanning subdrawing that is crossing-free and that
e1 and e2 are equivalent with respect to the star. Thus, we can follow the proof line by line
to obtain the result for any plane spanning tree T .

▶ Lemma 7 ([13, 19, 31]). Let D1 and D2 be two simple drawings of a graph on S2 that
contain the same crossing-free drawing DT of a spanning tree T as a subdrawing. Let e be an
edge for which the drawings e1 and e2 differ, but are equivalent with respect to DT . Then
Γ = e1 ∪ e2 forms an empty lens.

Let L be an empty lens of Γ, which is formed by the edge fragments γ1 of e1 and γ2 of e2,
respectively. Each of the two points of γ1 ∩ γ2 is either an endpoint or a crossing between e1
and e2. Recall that, in the combined drawing of D and D2, e1 and e2 are consecutive in the
combined rotation at each of their endpoints. Hence, independent of whether the points of
γ1 ∩ γ2 are crossings or endpoints, γ2 is what Schaefer calls a “homotopic detour of γ1 on e1”.
We next need his detour lemma, which we restate here using slightly different terminology
(and for drawings on the sphere instead of in the plane).

▶ Lemma 8 (detour lemma [31, Lemma 2.1]). Let γ2 be a homotopic detour of the arc γ1 on
the edge e1 in a simple drawing of a graph. Let F be the set of edges which cross γ2 at least
twice. Then we can apply a sequence of triangle flips and homeomorphisms of the sphere S2

so that in the resulting drawing, γ1 is routed arbitrarily close to γ2, without intersecting it.
The triangle flips and homeomorphisms only affect a small open neighborhood of the region
bounded by γ1 ∪ γ2, and only edges in F and the γ1 part of e1 are redrawn.

Note that the set F of edges that are affected by the transformation is disjoint from E=,
because any edge of E= is identical in D and D2 and hence intersects γ2 at most once.

If at least one of the points of γ1 ∩ γ2 is a crossing, then after applying the detour lemma,
we can redraw e1 (via a homeomorphism) to have at least one fewer crossing with e2 and
repeat the process of applying Lemmas 7 and 8 with the redrawn edge.
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If none of the points of γ1 ∩ γ2 is a crossing, then e1 ∪ e2 is a simple closed curve and
γ1 = e2 is a homotopic detour of γ2 = e1. Hence, after one final application of Lemma 8, we
can redraw e1 to be identical to e2. With this step, e2 is added to E= and we have reduced
the number of edges differing between D and D2 by one.

Repeating this process for the remaining differing edges we obtain two identical drawings.
Omitting the homeomorphisms, the process yields a sequence of triangle flips for transforming
D1 into D2 (up to strong isomorphism), which completes the proof of the theorem. ◀

5.2 Second Proof of Theorem 1
Our second proof of Theorem 1, which we briefly outline here, uses the same general framework
as the proof of Gioan’s Theorem by Arroyo, McQuillan, Richter, and Salazar [4].

Sketch of Proof. We consider two simple drawings D1 and D2 of a complete (multipartite)
graph G = (V, E) with the same ERS, and one of them, say D := D1, is iteratively transformed
to become “more similar” to the other. Similarity is measured using a subgraph X of G for
which we demand as an invariant that the induced subdrawings D[X] and D2[X] are strongly
isomorphic. In each iteration, we will add one edge to X and then perform a sequence of
triangle flips in D so as to reestablish the invariant.

Initially, we establish the invariant in the following way. As in the first proof, we consider
an independent set R ⊆ V of vertices such that G contains a complete bipartite subgraph
between R and B := V \ R. If G is complete, then R contains a single vertex only; in general,
it may contain several vertices. We then pick one vertex r0 ∈ R and start by taking X to be
the maximal induced substar of G centered at r0 (which includes all vertices of B). Then
the invariant holds because both drawings have the same rotation system by assumption.

We then consider the (possibly) remaining vertices of R in an arbitrary order. Let r ∈ R

be the next vertex to be considered. First, we show that the position of r in the induced –
strongly isomorphic, by the invariant – subdrawings D[X] and D2[X] is consistent, that is,
the vertex r lies in the same (according to isomorphism) face of these drawings. (The proof
of this statement uses the Carathéodory-type Theorem 3.)

We add the edges incident to r one by one to X. When adding an edge rb to X to
obtain X ′ = X ∪ {rb}, the drawings D[X ′] and D2[X ′] may not be strongly isomorphic
because the edge rb may cross other edges in a different order in both drawings. We consider
a sort of overlay O of both drawings D[X ′] and D2[X ′], in which the two versions of rb

together form a closed curve Γ with O(|V (X ′)|4) self-crossings, where |V (X ′)| is the number
of vertices of X ′. In Γ, we can identify a nice substructure, which we refer to as a free lens,
and show that it always exists. A lens in Γ is free if it does not contain any vertex of O; it
may contain edge crossings, though. Each such edge crossing corresponds to an invertible
triangle in D. Invertible triangles are empty of vertices not only of the vertices in X but
also of the (possibly) not yet considered vertices of R. Hence, the edges of D that cross an
invertible triangle ∆ behave similarly to a collection of pseudolines inside ∆, except that not
all pairs need to cross. Let m be the number of edges that cross ∆. Using a classic sweeping
algorithm by Hershberger and Snoeyink [32, Lemma 3.1], all m edges can be “swept” out of ∆
via triangle flips in D, where the total number of flips is bounded by O(m3). After these flips,
∆ has become a crossing triangle and can be flipped in D. Processing all invertible triangles
inside a selected free lens in this fashion effectively destroys this lens. And after iteratively
destroying all free lenses, the resulting drawing D[X ′] is strongly isomorphic to D2[X ′].

After all vertices in R and the complete bipartite subgraph of G between R and B have
been added to X, we add the remaining edges (the ones with both endpoints in B) in exactly
the same fashion as described above. ◀
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While the outline of the above proof mostly follows the one for Kn [4], its core challenges
lie in the proofs of several statements, whose analogues are known for Kn but not for complete
multipartite graphs. Among others, these include the arguments about the existence of a
free lens and that invertible triangles are empty.

Algorithmic complexity. The above proof yields an algorithm that can be implemented
using standard computational geometry data structures. Its runtime is polynomial in the
size of the input and the number of performed triangle flips.

6 On the number of triangle flips

The flip distance between two different drawings of a complete multipartite graph with
the same ERS is the minimum number of triangle flips that are required to transform one
drawing into the other. This section is devoted to obtain bounds on the flip distance.

For an upper bound, Schaefer [31, Remark 3.3] showed that any two simple drawings
of Kn with the same rotation system can be transformed into each other with at most O(n20)
triangle flips. Using our second proof of Theorem 1, we can obtain an upper bound of O(n16)
on the flip distance between two simple drawings of any complete multipartite graph with n

vertices and the same ERS (and thus also for such drawings of Kn).

▶ Theorem 9. Let D1 and D2 be two simple drawings of a complete multipartite graph G

on S2 with n vertices and with the same ERS. Then D1 can be transformed into D2 via a
sequence of O(n16) triangle flips, obtained via the algorithm in the second proof of Theorem 1.

Proof. We analyze the number of flips performed through the second proof of Theorem 1.
Recall that in this proof, we iteratively consider the edges of G. We perform flips in a
drawing D (initially set to D1) so that the subdrawings of D and D2 induced by the already
considered edges become (strongly) isomorphic.

When considering a new edge e, we imagine to add both versions of it (the one from D

and the one from D2) to the already isomorphic subdrawing X of D and D2. In the full
version, we show that this can be done such that in the combined drawing, the two copies
of e have O(|V (X)|4) = O(n4) crossings, where |V (X)| is the number of vertices of X.

Let C be the closed curve formed by the two copies of e. In order to transform D to
make the drawing of e in D isomorphic to the one in D2, we iteratively resolve a free lens
of C. At every iteration, we reduce the number of crossings of C, except for the very last
iteration (i.e, for the very last lens). Hence, the number of lenses we need to resolve when
processing e is bounded by O(n4) as well. To resolve a free lens, we need to flip all inverted
triangles in this lens that have e as an edge, of which there are at most O(n4) many. For one
inverted triangle ∆ intersected by m = O(n2) edges, this can be done with O(m3) = O(n6)
flips. Hence resolving one free lens can be achieved with O(n4) · O(n6) = O(n10) flips.

Repeating this for all lenses of C and for each of the O(n2) edges of G, we obtain an
upper bound of O(n2) · O(n4) · O(n10) = O(n16) for the total number of triangle flips. ◀

▶ Theorem 10. Let G be a multipartite graph G with n vertices that contains two vertex-
disjoint subgraphs each forming a Km,m for some m = Θ(n). Then G admits two drawings
D1 and D2 with the same ERS that have flip distance Ω(n6).

Proof idea. To transform the two drawings of Kn in Figure 10 into each other, each of the
Θ(n2) edges bidj needs to be moved over the Θ(n4) crossings formed by edges akcℓ, yielding
the Ω(n6) lower bound. An according example of two drawings of a Km,m can be obtained
by disregarding all edges aibj and cidj . ◀
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A A

B B

C C

D D
d1
d2

dn/4

...

c1 c2 cn/4. . .

b1
b2

bn/4

...

a1 an/4. . .a1 a2 an/4

b1
b2

bn/4

...

c1 c2 cn/4. . .

d1
d2

dn/4

...

. . .

D1 D2

a2

Figure 10 Two simple drawings of Kn with the same ERS whose flip distance is Ω(n6).

7 Conclusion & open questions

We have shown that Gioan’s Theorem holds for complete multipartite graphs (Theorem 1),
extending previous results [4, 15, 16, 31]. Further, we have shown that the class of graphs
for which an analogue statement holds is not closed under addition or removal of edges
(Theorem 2). We also provide several obstructions such that Gioan’s Theorem does not hold
for any graph that contains any of these obstructions as a substructure. However, the list of
obstructions is probably incomplete. A full characterization of graphs for which a Gioan-type
statement for drawings with the same ERS holds remains open.

▶ Question 1. Can we completely characterize all graphs for which a Gioan-type theorem
holds for drawings with the same ERS?

Further, having the same ERS is not the only necessary condition for a Gioan-type
statement to hold. Another example of such a condition is that incident or disjoint edges
must have the same crossing orders over all drawings. The constructions in the proof of
Theorem 2 rely on violating this condition.

▶ Question 2. Can we characterize all graphs for which a Gioan-type theorem holds for
classes of drawings which fulfill (subsets of) obviously necessary conditions?

In Section 3, we have proven a Carathéodory-type theorem for simple drawings of complete
multipartite graphs with the same ERS (Theorem 3). It would be interesting to know for
which further classes of graphs a similar statement is true.

Naturally, we would also like to narrow or even close the gap between the lower bound
of Ω(n6) and the upper bound of O(n16) for the flip distance, obtained in Section 6.

▶ Question 3. What is the worst case flip distance between two simple drawings of a complete
multipartite graph on n vertices with a given ERS?
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