
Maximum Overlap Area of a Convex Polyhedron
and a Convex Polygon Under Translation
Honglin Zhu #

Massachusetts Institute of Technology, Cambridge, MA, USA

Hyuk Jun Kweon #

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
Let P be a convex polyhedron and Q be a convex polygon with n vertices in total in three-dimensional
space. We present a deterministic algorithm that finds a translation vector v ∈ R3 maximizing the
overlap area |P ∩ (Q + v)| in O(n log2 n) time. We then apply our algorithm to solve two related
problems. We give an O(n log3 n) time algorithm that finds the maximum overlap area of three
convex polygons with n vertices in total. We also give an O(n log2 n) time algorithm that minimizes
the symmetric difference of two convex polygons under scaling and translation.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases computational geometry, shape matching, arrangement

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.61

Related Version Full Version: https://arxiv.org/abs/2301.02949

Acknowledgements This paper is the result of the MIT SPUR 2022, a summer undergraduate
research program organized by the MIT math department. The authors would like to thank the
faculty advisors David Jerison and Ankur Moitra for their support and the math department
for providing this research opportunity. We thank the anonymous referees for providing helpful
comments that increased the quality of this paper.

1 Introduction

Shape matching is an important topic in computational geometry, with useful applications
in areas such as computer graphics. In a typical problem of shape matching, we are supplied
two or more shapes, and we want to determine how much the shapes resemble each other.
More precisely, given a similarity measure and a set of allowed transformations, we want to
transform the shapes to maximize their similarity measure.

There are many candidates for the similarity measure, such as the Hausdorff distance
and the Fréchet distance between the boundaries of the shapes. We can also consider the
area/volume of overlap or of symmetric difference. The advantage to these is that they are
more robust against noise on the boundary of the shapes [6].

The maximum overlap problem of convex polytopes has been studied by many. In
dimension 2, de Berg et al. [6] give an O(n log n) time algorithm for finding a translation
maximizing the area of intersection of two convex polygons (where n denotes the total number
of vertices of the polygons). In dimension 3, Ahn et al. [1] give an O(n3 log4 n) expected
time algorithm finding the maximum overlap of two convex polyhedra under translation.
For the same problem, Ahn et al. [3] present an algorithm that runs in O(n log3.5 n) time
with probability 1− n−O(1) and an additive error. For d > 3, given two convex polytopes of
dimension d with n facets in total, Ahn et al. [3] give an algorithm that finds the maximum
overlap under translation in O(n⌊d/2⌋+1 logd n) time with probability 1−nO(1) and an additive
error.

© Honglin Zhu and Hyuk Jun Kweon;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 61; pp. 61:1–61:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:honglinz@mit.edu
https://orcid.org/0000-0002-4604-635X
mailto:kweon@mit.edu
https://orcid.org/0000-0002-3056-1306
https://doi.org/10.4230/LIPIcs.SoCG.2023.61
https://arxiv.org/abs/2301.02949
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Maximum Overlap of Polyhedron and Polygon

In the plane, when all rigid motions are allowed, Ahn et al. [4] give an approximate
algorithm that finds a rigid motion realizing at least 1 − ϵ times the maximal overlap in
O((1/ϵ) log n + (1/ϵ2) log(1/ϵ)) time. In dimension 3, Ahn et al. [2] present an approximate
algorithm that finds a rigid motion realizing at least 1 − ϵ times the maximal overlap in
O(ϵ−3n log3.5 n) with probability 1− n−O(1).

When considering the maximum overlap as a similarity measure, we obviously can only
allow area/volume-preserving transformations. However, we may want to allow scaling as a
transformation – two similar triangles are supposed to be very “similar,” though they may
have different sizes. In this case, the area of symmetric difference is a better measure of
similarity. Yon et al. [14] give an algorithm minimizing the symmetric difference of two
convex polygons under translation and scaling in O(n log3 n) expected time.

Our results
While many have studied the matching problem for two convex polytopes of the same
dimension, to our knowledge no one has examined the problem for polytopes of different
dimensions or matching more than two polytopes.

The main result in this paper is a deterministic algorithm for the problem of matching a
convex polyhedron and a convex polygon under translation in three-dimensional space.

▶ Theorem 1. Let P be a convex polyhedron and Q a convex polygon with n vertices in total.
We can find a vector v ∈ R3 that maximizes the overlap area |P ∩ (Q + v)| in O(n log2 n)
time.

We also present two applications of our algorithm to other problems in computational
geometry. First, we give a deterministic algorithm for maximizing the overlap of three convex
polygons under translations.

▶ Theorem 2. Let P , Q, R be three convex polygons with n vertices in total in the plane.
We can find a pair of translations (vQ, vR) ∈ R4 that maximizes the overlap area |P ∩ (Q +
vQ) ∩ (R + vR)| in O(n log3 n) time.

We also give a deterministic O(n log2 n) time algorithm for minimizing the symmetric
difference of two convex polygons under a homothety (a translation and a scaling), which is
an improvement to Yon et al.’s randomized algorithm [14].

▶ Theorem 3. Let P and Q be convex polygons with n vertices in total. Then we can find
a homothety φ that minimizes the area of symmetric difference |P \ φ(Q)|+ |φ(Q) \ P | in
O(n log2 n) time.

The main ingredient in the proof of Theorem 1 is a new technique we introduce which
generalizes Megiddo’s prune-and-search [13]. This allows us to efficiently prune among n

groups of m parallel lines.
Let S =

⋃n
i=1 Si be a union of n sets of O(m) parallel lines in the plane, none of which

are parallel to the x-axis, and suppose the lines in each Si are indexed from left to right.

▶ Lemma 4. In O(n) time, R2 can be partitioned into six regions R1, . . . , R6 by three lines,
and we can find six subsets SR1 , . . . , SR6 ⊂ S such that for each i ≤ 6, SRi contains all lines
intersecting the interior of Ri and |SRi | ≤ 17

18 |S|.

With this lemma, we can employ divide-and-conquer to obtain the following.

H. Zhu and H. J. Kweon 61:3

▶ Theorem 5. Suppose there is an unknown point p∗ ∈ R2 and we are given an oracle that
decides in time T the relative position of p∗ to any line in the plane. Then we can find the
relative position of p∗ to every line in S in O((T + n) log(mn)) time.

The omitted proofs can be found in the full version of this paper [12].

2 Preliminaries

Let P ⊂ R3 be a convex polyhedron and Q ⊂ R2 be a convex polygon with n vertices in
total. Throughout the paper, we assume that Q is in the xy-plane, and that the point
in P with minimal z coordinate is on the xy-plane. We want to find a translation vector
v = (x, y, z) ∈ R3 that maximizes the overlap area f(v) = |P ∩ (Q + v)|.

It is easy to observe that f(v) is continuous and piecewise quadratic on the interior of its
support. As noted in [6, 1, 3], f is smooth on a region R if P ∩ (Q + v) is combinatorially
equivalent for all v ∈ R, that is, if we have the same set of face-edge incidences between P

and Q. Following the convention of [1], we call the polygons that form the boundaries of
these regions the event polygons, and as in [6], we call the space of translations of Q the
configuration space. The arrangement of the event polygons partition the configuration space
into cells with disjoint interiors. The overlap function f(v) is quadratic on each cell. Thus,
to locate a translation maximizing f , we need to characterize the event polygons.

For two sets A, B ⊂ Rd, we write the Minkowski sum of A and B as

A + B := {a + b|a ∈ A, b ∈ B}.

We will make no distinction between the translation A + v and the Minkowski sum A + {v}
for a vector v. We also write A − B for the Minkowski sum of A with −B = {−b|b ∈ B}.
We categorize the event polygons into three types and describe them in terms of Minkowski
sums:

(I) When Q + v contains a vertex of P . For each vertex u of P , we have an event polygon
u−Q. There are O(n) event polygons of this type.

(II) When a vertex of Q + v is contained in a face of P . For each face F of P and each
vertex v of Q, we have an event polygon F − v. There are O(n2) event polygons of
this type.

(III) When an edge of Q + v intersects an edge of P . For each edge e of P and each edge e′

of Q, we have an event polygon e− e′. There are O(n2) event polygons of this type.

The reason that convexity is fundamental is due to the following standard fact, as noted
and proved in [6, 14].

▶ Proposition 6. Let P be a d′-dimensional convex polytope and let Q be a d-dimensional
convex polytope. Suppose d′ ≥ d. Let f(v) = Vol(P ∩ (Q + v)) be the volume of the overlap
function. Then, f(v)1/d is concave on its support supp(f) = {v|f(v) > 0}.

As in [5], we say a function f : R→ R is unimodal if it increases to a maximum value, possibly
stays there for some interval, and then decreases. It is strictly unimodal if it strictly increases
to the maximum and then strictly decreases. Furthermore, we say a function f : Rd → R is
(strictly) unimodal if its restriction to any line is (strictly) unimodal.

The following corollary of Proposition 6 allows us to employ a divide-and-conquer strategy
in our algorithm.

▶ Corollary 7 ([5]). For any line l parameterized by l = p + vt in Rd′ for v ≠ 0, the function
fl(t) = f(p + vt) is strictly unimodal.

SoCG 2023

61:4 Maximum Overlap of Polyhedron and Polygon

We also use the following two techniques in our algorithm.

▶ Lemma 8 ([11]). Let M be an m × n matrix of real numbers, where m ≤ n. If every
row and every column of M is in increasing order, then we say M is a sorted matrix. For
any positive integer k smaller or equal to mn, the k-th smallest entry of M can be found in
O(m log(2n/m)) time, assuming an entry of M can be accessed in O(1) time.

For our purposes, we will use this result in the weaker form of O(m + n).

▶ Lemma 9 ([8]). Given n hyperplanes in Rd and a region R ⊂ Rd, a (1/r)-cutting is
a collection of simplices with disjoint interiors, which together cover R and such that the
interior of each simplex intersects at most n/r hyperplanes. A (1/r)-cutting of size O(rd)
can be computed deterministically in O(nrd−1) time. In addition, the set of hyperplanes
intersecting each simplex of the cutting is reported in the same time.

3 Generalized two-dimensional prune-and-search

In this section, we prove Theorem 5, our generalization of Megiddo’s prune-and-search
technique [13]. This technique is of independent interest and can likely be applied to other
problems.

In [13], Megiddo proves the following:

▶ Theorem 10 ([13]). Suppose there exists a point p∗ ∈ R2 not known to us. Suppose further
that we have an oracle that can tell us for any line l ⊂ R2 whether p∗ ∈ l, and if p∗ /∈ l, the
side of l that p∗ belongs to. Let T be the running time of the oracle. Then given n lines in
the plane, we can find the position of p∗ relative to each of the n lines in O(n + T log n) time.

We are interested in a generalized version of Megiddo’s problem. Suppose, instead of
n lines, we are given n sets of parallel lines S1, S2, . . . , Sn, each of size O(m). In addition,
suppose the lines in each Si are indexed from left to right (assuming none of the lines are
parallel to the x-axis). Again, we want to know the position of p∗ relative to every line in
S =

⋃n
i=1 Si. Megiddo’s algorithm solves this problem in O(mn + T log(mn)) time, but we

want a faster algorithm for large m by exploiting the structure of S.
Without loss of generality, suppose that there are no lines parallel to the y-axis. For each

i between 1 and n, let Si = {l1
i , l2

i , . . . } where lj
i lies strictly to the left of lj+1

i for all vaild j.
Suppose that p∗ = (x∗, y∗) ∈ R2. To report our final answer, we need to provide, for each Si,
the two consecutive indices a and a + 1 such that p∗ lies strictly between la

i and la+1
i or the

single index a such that p∗ ∈ la
i .

In our algorithm, we keep track of a feasible region R containing P ∗, which is either the
interior of a (possibly unbounded) triangle or an open line segment if we find a line l that p∗

lies on. Together with R, we keep track of the 2n indices lower(i) and upper(i) such that
SR =

⋃n
i=1 SR

i = {lj
i |j ∈ (lower(i), upper(i)]} contains the set of lines intersecting R. In

the beginning, R = R2. Each step, we find O(1) lines to run the oracle on to find a new
feasible region R′ ⊂ R such that |SR′ | ≤ 17

18 |S
R| and recurse on R′. An outline is given in

Algorithm 3.1.
We will use the following well-known result:

▶ Lemma 11 ([10]). Suppose we are given n distinct real numbers with positive weights that
sum to 1. Then we can find the weighted median of these numbers in O(n) time.

Given SR and R, we want to find R′ ⊂ R to recurse on, as well as efficiently update SR′ .
Note that SR′ need not be exactly the set of lines intersecting the interior of R′; we only
need it to contain those lines and have size a constant fraction smaller than SR.

H. Zhu and H. J. Kweon 61:5

Algorithm 3.1 Pseudocode for Theorem 5.

input : A set S =
⋃n

i=1 Si = {lj
i } of O(mn) lines

output : A list of indices that indicate the position of p∗ to each Si

1 R←− R2

2 SR ←− S

3 while |SR| ≥ 18 do
4 Find O(1) lines to run the oracle on
5 Compute the piece R′ ⊂ R containing p∗

/* We guarantee that R′ intersects at most 17/18 of the lines that
intersect R */

6 Triangulate R′ with O(1) lines to run the oracle on
7 Update SR ←− SR′

8 end
9 Compute relative position of p∗ to the remaining lines in |SR| by brute force

Proof of Lemma 4. We write SR = S =
⋃n

i=1 Si = {lj
i }. We first find the weighted median

of the slopes of the lines in S, where the slope of the lines of Si is weighted by |Si|/|S|. This
can be done in O(n) time by Lemma 11.

If this slope is equal to the slope of some line in Si and |Si| ≥ 1
9 |S|, then we can simply

divide the plane using the median line of Si and the x-axis and the interior of each quadrant
will avoid at least 1/18 of the lines of S. The subsets SRi can be formed by removing either
half of the lines of Si.

Otherwise, at least 4/9 of the lines have slopes strictly greater than/less than the median
slope. Without loss of generality, we assume at least 4/9 of the lines have positive slope and
at least 4/9 of the lines have negative slope. Now let S+ =

⋃k
i=1 Si and S− =

⋃n
i=k+1 Si

denote the set of lines with positive/negative slope, respectively. We remove lines from the
larger of the two sets until they have the same size.

S1 S2 S3 S4

Figure 1 P1, P2 are P3 are represented by colors.

We partition S+ ∪ S− into O(n) subsets Pi each containing the same number of lines
from S+ and S− in the following way: going in lexicographical order by the indices of
the lines, we put a line from S1 and a line from Sk+1 into P1 until we exhaust one of
the sets (say it is Sk+1). Then, we move on to put a line from the remaining S1 and a
line from Sk+2 into P2 until we exhaust one of them, and so on. Each Pi is then of the
form {lb(i)

a(i), . . . , l
b(i)+|Pi|/2−1
a(i) , l

d(i)
c(i) , . . . , l

d(i)+|Pi|/2−1
c(i) }, and can be represented by the indices

(a(i), b(i)) and (c(i), d(i)) (see Figure 1). We can compute this partition in O(n) time. For
each Pi, we compute the intersection pi = (xi, yi) of the median line in Pi with positive slope
and the median line with negative slope, and assign pi a weight wi = |Pi|/(2|S+|). Then,

SoCG 2023

61:6 Maximum Overlap of Polyhedron and Polygon

the weights of the pi sum to 1. The significance of this is that the interior of each of the four
quadrants of the plane defined by x = xi and y = yi is avoided by at least 1/4 of the lines in
Pi, which is at least 2

9 wi of all the lines in |S|.

ℓ0

ℓ1

ℓ2

R1

R2

R3

R4

R5

R6

Figure 2 Dividing the plane into six regions.

We find the median point q0 = (xq, yq) of the pi’s by weight in x-coordinate in O(n)
time by Lemma 11. We have the line ℓ0 : x = xq0 . We then find the median point of
the pi’s to the left of ℓ0 and the median point of those to the right of ℓ0 by weight in
y-coordinates, respectively. Suppose these are q1 = (xq1 , yq1) and q2 = (xq2 , yq2). Then let
ℓ1 : y = yq1 and ℓ2 : y = yq2 . The three lines ℓ0, ℓ1, and ℓ2 partition the plane into six closed
regions R1, . . . , R6 as in Figure 2. By our construction, the weights of points in each of
R1, R2 ∪R3, R4 ∪R5, R6 sum to at least 1/4. Thus, the interiors of R5 ∪R6, R4, R3, R1 ∪R2
each avoids at least 2

9 ·
1
4 = 1

18 of all the lines in S. In particular, the interior of each Ri

intersects no more than 17/18 of the lines in S.
We show how to compute |SR1 |, and the others follow similarly. If pi ∈ R6, then the lines

in Pi with positive slope and to the right of pi avoid R1 ∪R2. We can remove these lines by
updating the indices of the associated set Sj or parallel lines. This updating takes O(1) time
for each pi and O(n) time in total. ◀

Applying Lemma 4 on SR, we obtain three lines on which we can run the oracle to get a
new feasible region Ri and a subset SRi . We then triangulate it with O(1) more oracle calls
to get R′ and set SR′ = SRi , in O(T + n) time total.

Proof of Theorem 5. After O(log mn) recursive iterations of Lemma 4, we arrive at a feasible
region whose interior intersects less than 18 lines in S, and we can finish by brute force.
Therefore, our algorithm runs in O((T + n) log(mn)) time. ◀

▶ Remark 12. A simpler and probably more practical algorithm for Lemma 4 is simply
choosing a random line from S+ and S− to intersect and run the oracle on the horizontal and
vertical line through the intersection. This method gives the same run time in expectation.

H. Zhu and H. J. Kweon 61:7

4 Maximum overlap of convex polyhedron and convex polygon

In this section, we give the algorithm that finds a translation v ∈ R3 maximizing the area of
overlap function f . Following the convention in [6], we call such a translation a goal placement.
In the algorithm, we keep track of a closed target region R which we know contains a goal
placement and decrease its size until for each event polygon F , either F ∩ interior(R) = ∅ or
F ⊃ R. Then, f is quadratic on R and we can find the maximum of f on R using standard
calculus. Thus, the goal of our algorithm is to efficiently trim R to eliminate event polygons
that intersect it.

In the beginning of the algorithm, the target region is the interior of the Minkowski sum
P −Q, where the overlap function is positive. By the unimodality of the overlap function,
the set of goal placements is convex. Thus, for a plane in the configuration space, either
it contains a goal placement, or all goal placements lie on one of the two open half spaces
separated by the plane. If we have a way of knowing which case it is for any plane, we
can decrease the size of our target region by cutting it with planes and finding the piece
to recurse. More precisely, we need a subroutine PlaneDecision that decides the relative
position of the set of goal placements to a plane S.

Whenever PlaneDecision reports that a goal placement is found on a plane, we can let
the algorithm terminate. Thus, we can assume it always reports a half-space containing a
goal placement.

As in Algorithm 4.1, we break down our algorithm into three stages.

Algorithm 4.1 Pseudocode for Theorem 1.
input : A convex polyhedron P ∈ R3 and a convex polygon Q ∈ R3 with n vertices

in total
output : A translation v ∈ R3 maximizing the area |P ∩ (Q + v)|

1 Locate a horizontal slice containing a goal placement that does not contain any
vertices of P and replace P by this slice of P

2 Find a “tube” D + ly whose interior contains a goal placement and intersects O(n)
event polygons, where D is a triangle in the xz-plane and ly is the y-axis

3 Recursively construct a (1/2)-cutting of the target region D + ly to find a simplex
containing a goal placement that does not intersect any event polygon

4.1 Stage 1
In the first stage of our algorithm, we make use of [6] to simplify our problem so that P can
be taken as a convex polyhedron with all of its vertices on two horizontal planes.

We sort the vertices of P by z-coordinate in increasing order and sort the vertices of Q

in counterclockwise order. Next, we trim the target region with horizontal planes (planes
parallel to the xy-plane) to get to a slice that does not contain any vertices of P .

▶ Lemma 13. In O(n log2 n) time, we can locate a strip R = {(x, y, z)|z ∈ [z0, z1]} whose
interior contains a goal placement and P has no vertices with z ∈ [z0, z1].

Proof. Starting with the median z-coordinate of the vertices of P , we perform a binary search
on the levels containing a vertex of P . For a horizontal plane S, [6, Theorem 3.8] allows us
to compute the maximum overlap of P ∩ S and Q under translation in O(n log n)-time. The

SoCG 2023

61:8 Maximum Overlap of Polyhedron and Polygon

Figure 3 The slice of P with z ∈ [z0, z1].

two planes S1 and S2 with the largest maximum values will be the bounding planes for the
slice containing a goal placement by the unimodality of f . Thus, by a binary search, we can
locate this slice in O(n log2 n) time. ◀

By Chazelle’s algorithm [7], the convex polyhedron P ′ = {(x, y, z) ∈ P |z ∈ [z0, z1]} can be
computed in O(n) time. From now on, we replace P with P ′ (see Figure 3). Without loss of
generality, assume z0 = 0 and z1 = 1.

The region in the configuration space where |P ∩(Q+v)| > 0 is the Minkowski sum P −Q.
Since P only has two levels P0 = {(x, y, z) ∈ P |z = 0} and P1 = {(x, y, z) ∈ P |z = 1} that
contain vertices, the Minkowski sum P −Q is simply the convex hull of (P0 −Q)∪ (P1 −Q),
which has O(n) vertices. We can compute P0 −Q and P1 −Q in O(n) time and compute
their convex hull in O(n log n) time by Chazelle’s algorithm [9].

4.2 PlaneDecision
With the simplification of the problem in Stage 1, we now show that the subroutine PlaneDe-
cision can be performed in O(n log n) time. Let S be a fixed plane in the configuration
space. We call a translation v that achieves maxv∈S f(v) a good placement. First, we can
compute the intersection of S with P −Q in O(n) time by Chazelle’s algorithm [7]. If the
intersection is empty, we just report the side of S containing P −Q. From now on assume
this is not the case.

The following lemma shows that PlaneDecision runs in the same time bound as the
algorithm that just finds the maximum of f on a plane.

▶ Lemma 14. Suppose we can compute maxv∈S f(v) for any plane S ⊂ R3 in time T , then
we can perform PlaneDecision for any plane in time O(T).

Proof. The idea is to compute maxv∈S′ f(v) for certain S′ that are perturbed slightly from
S to see in which direction relative to S does f increase.

We compute over an extension of the reals R[ω]/(ω3), where ω > 0 is smaller than any
real number. Let A > 0 be the maximum of f over a plane S. Let S+ and S− be the two
planes parallel to S that have distance ω from S. We compute A+ = maxv∈S+ f(v) and
A− = maxv∈S− f(v) in O(T) time. Since f is piecewise quadratic, A+ and A− as symbolic
expression will only involve quadratic terms in ω. Since f is strictly unimodal on P − Q,
there are three possibilities:
1. If A+ > A, then halfspace on the side of S+ contains the set of goal placements.
2. If A− > A, then halfspace on the side of S− contains the set of goal placements.
3. If A ≥ A+ and A ≥ A−, then A is the global maximum of f .
Thus, in O(T) time, we can finish PlaneDecision. ◀

H. Zhu and H. J. Kweon 61:9

Finding a good placement on S is similar to finding a goal placement on the whole
configuration space. S is partitioned into cells by the intersections of event polygons with S.
We need to find a region on S containing a good placement that does not intersect any event
polygons.

We present a subroutine LineDecision that finds, for a line l ⊂ S, the relative position
of the set of good placements on S to l.

▶ Proposition 15. For a line l ⊂ S, we can perform LineDecision in O(n) time.

P Q + l

Figure 4 The convex polyhedron I is formed by interesecting P and (Q + l).

Proof. First, we compute maxv∈l f(v) and a vector achieving the maximum. We parameterize
the line l by p + vt where t is the parameter and p, v ∈ R3. The horizontal cross-section
of I = P ∩ (Q + l) at height t has area f(p + vt). Since I is the intersection of two convex
polytopes with O(n) vertices (see Figure 4), Chazelle’s algorithm [7] computes I in O(n)
time. Then, [5, Theorem 3.2] computes the maximum cross-section in O(n) time.

Now, by the same argument and method as in the proof of Lemma 14, we can finish
LineDecision in O(n) time. In the case where maxv∈l f(v) = 0, we report the side of l

containing S ∩ (P −Q). ◀

Whenever our subroutine LineDecision reports a good placement is found on a line, we
can let the algorithm terminate. Thus, we can assume it always reports a half-plane of S

containing a good placement.
We now present PlaneDecision. If S is horizontal, then we only need to find the

maximum overlap of the convex polygons P ∩ S and Q using De Berg et al.’s algorithm [6],
which takes O(n log n) time. Thus, we assume S is non-horizontal.

Algorithm 4.2 Pseudocode for PlaneDecision.
input : A plane S ⊂ R3

output : A translation v ∈ S maximizing the area |P ∩ (Q + v)|
1 Compute S ∩ (P −Q) and set it to be our initial target region
2 Locate a strip on S containing a good placement whose interior intersects O(n) event

polygons
3 Recursively construct a (1/2)-cutting of the strip to find a triangle containing a good

placement that does not intersect any event polygon

As in Algorithm 4.2, we break down PlaneDecision into three steps. We have already
explained Step 1, where we compute S ∩ (P −Q), so we begin with Step 2.

SoCG 2023

61:10 Maximum Overlap of Polyhedron and Polygon

4.2.1 PlaneDecision: Step 2
We want to find a strip on S strictly between z = 0 and z = 1 that intersects O(n) event
polygons. Since there are no vertices of P with z-coordinate in the interval (0, 1), there are
no event polygons of type I in this range, and we will only need to consider event polygons
of type II and type III.

We look at the intersection points of S with the edges of the event polygons. These
edges come from the set {ei − vj |ei non-horizontal edge of P, vj vertex of Q}. Without loss
of generality, assume that S is parallel to the y-axis. We are interested in the z-coordinates
of the intersections, so we project everything into the xz-plane. Then, S becomes a line,
which we denote by lS , and each edge ei − vj becomes a segment whose endpoints lie on
z = 0 and z = 1. Suppose each edge ei projects to a segment si, and each vj projects to a
point xj on the x-axis. Then, we get O(n2) segments si − xj with endpoints on z = 0 and
z = 1, and the line lS that intersect them in some places.
▶ Lemma 16. In O(n log n) time, we can locate a strip R = {(x, y, z) ∈ S|z ∈ [z0, z1]} whose
interior contains a good placement and intersects none of the edges of the event polygons.

Figure 5 Projecting the configuration space onto the xz-plane. The projection of S is the magenta
line segment, and the projection of the strip R obtained form Lemma 16 is the cyan line segment.

Our current target region, the strip R we obtained from Lemma 16 (see Figure 5),
intersects few event polygons and we can compute them efficiently.
▶ Lemma 17. The interior of the region R intersects O(n) event polygons, and we can
compute them in O(n log n) time.

4.2.2 PlaneDecision: Step 3
Now we have a target region R as well as the O(n) intersections it makes with the event
polygons.
▶ Lemma 18. In O(n log n) time, we can find a region R′ ⊂ R containing a good placement
that does not intersect any of the O(n) event polygons.
Proof. We recursively construct a (1/2)-cutting of the target region. By Lemma 9, a (1/2)-
cutting of constant size can be computed in O(n) time. We perform LineDecision on the
lines of the cutting to decide on which triangle to recurse. After O(log n) iterations, we
have a target region R′ that intersects no event polygons. This procedure runs in O(n log n)
time. ◀

Finally, since the overlap function is quadratic on our final region R′, we can solve for
the maximum using standard calculus. After finding maxv∈S f(v) and a vector achieving
it O(n log n) time, by Lemma 14, we can perform PlaneDecision on S in the same time
bound.
▶ Proposition 19. For a plane S, we can perform PlaneDecision in O(n log n) time.

H. Zhu and H. J. Kweon 61:11

4.3 Stage 2
With the general PlaneDecision at our disposal, we now move on to Stage 2, the main
component of our algorithm. We project the entire configuration space and the event polygons
onto the xz-plane in order to find a target region D whose preimage D + ly intersects few
event polygons, where ly is the y-axis (see Figure 6).

(a) Projection of P (b) Projection of Q

(c) Projection of the configuration space, and the target region D

Figure 6 Projecting onto the xz-plane.

The non-horizontal edges of the event polygons project to segments on the strip 0 < z < 1
on the xz-plane. We characterize our desired region D in the following lemma.

▶ Lemma 20. For a region D that does not intersect any of the segments that are the
projections of the non-horizontal edges of the event polygons, the preimage D + ly intersects
O(n) event polygons.

Now it remains to efficiently find such a region D with D + ly containing a goal placement
and compute the O(n) event polygons that intersect its interior.

▶ Lemma 21. In O(n log2 n) time, we can find a triangle D in the xz-plane such that the
interior of D + ly contains a goal placement and intersects O(n) event polygons. We can
compute these O(n) event polygons in the same time bound.

Proof. The computation of D is a direct application of Theorem 5, where m = O(n). Calling
the oracle on a line l in the xz-plane is running the PlaneDecision algorithm on the plane
parallel to the y-axis that projects to l. We compute a triangle for each of the four groups
of segments, take their intersection, and triangulate the intersection using O(1) calls to
PlaneDecision. Thus, we can compute the desired triangle D in O(n log2 n) time.

To compute the event polygons intersecting the interior of D + ly is simple, since we
have shown in the proof of Lemma 20 that D intersects at most one projection of an event
polygon of each type in each of the four groups for a fixed vertex xj (for type II) or segment
si (for type III). Once we have D, we can compute these polygons by binary search on each
of the O(n) groups of O(n) non-intersecting segments to find the two between which R lies.
Also, the event polygons all have constant complexity so computing all of them takes linear

SoCG 2023

61:12 Maximum Overlap of Polyhedron and Polygon

time. We can recover the event polygons from their projections and compute the planes that
contain them in linear time. Thus, this entire process can be done in O(n log n) time. ◀

4.4 Stage 3
Now, we have a target region R = D + ly whose interior contains a goal placement, and we
have the O(n) event polygons that intersect it.

▶ Lemma 22. In O(n log2 n) time, we can find a region R′ ⊂ R containing a goal placement
that does not intersect any of the O(n) event polygons.

Proof. We recursively construct a (1/2)-cutting of the target region. By Lemma 9, a (1/2)-
cutting of constant size can be computed in O(n) time. We perform PlaneDecision on the
planes of the cutting to decide on which simplex to recurse. After O(log n) iterations, we
have a target region R′ that intersects no event polygons. This procedure runs in O(n log2 n)
time. ◀

Finally, since the overlap function is quadratic on our final region R′, we can solve for
the maximum using standard calculus. This concludes the proof of Theorem 1.

5 Maximum overlap of three convex polygons

Let P , Q, R be three convex polygons with n vertices in total in the plane. We want
to find a pair of translations (vQ, vR) ∈ R4 that maximizes the overlap area g(vQ, vR) =
|P ∩ (Q + vQ) ∩ (R + vR)|.

In this problem, the configuration space is four-dimensional. An easy extension of
Proposition 6 and Corollary 7 shows that the function of overlap area is again unimodal.
This time, we have four-dimensional event polyhedra instead of event polygons that divide
the configuration space into four-dimensional cells on which g(vQ, vR) is quadratic. We call
a hyperplane containing an event polyhedron an event hyperplane, and they are defined by
two types of events:

(I) When one vertex of P , Q + vQ or R + vR lies on an edge of another polygon. There
are O(n) groups of O(n) parallel event hyperplanes of this type.

(II) When an edge from each of the three polygons intersect at one point. There are O(n3)
event hyperplanes of this type.

To overcome the difficulty of dealing with the O(n3) event hyperplanes of type II, we
first prune the configuration space to a region intersecting no event hyperplanes of type I.
We then show that the resulting region only intersects O(n) event hyperplanes of type II.

Similar to Theorem 1, we want an algorithm HyperplaneDecision that computes, for a
hyperplane H ⊂ R4, the maximum max(vQ,vR)∈H g(vQ, vR) and the relative location of the
goal placement to H. In fact, we will only need to perform HyperplaneDecision on some
hyperplanes.

▶ Proposition 23. Suppose H is a hyperplane that satisfies one of the following three
conditions:
(1) H is orthogonal to a vector (x1, y1, 0, 0) for some x1, y1 ∈ R.
(2) H is orthogonal to a vector (0, 0, x2, y2) for some x2, y2 ∈ R.
(3) H is orthogonal to a vector (x1, y1,−x1,−y1) for some x1, y1 ∈ R.
Then, we can perform HyperplaneDecision on H in O(n log2 n) time.

H. Zhu and H. J. Kweon 61:13

Using Proposition 23, we can prune the configuration space to a region that intersects no
event hyperplanes of type I and O(n) event hyperplanes of type II.

▶ Proposition 24. We can compute a 4-polytope TP QR of complexity O(1) in O(n log3 n)
time such that
(1) the goal placement lies on TP QR,
(2) no hyperplane of type I intersects the interior of TP QR, and
(3) only O(n) event polyhedrons of type II passes through TP QR.
The hyperplanes of type II intersecting the interior of TP QR are obtained in the same time
bound. Furthermore, the 3-tuples of edges of P , Q and R defining the hyperplanes are also
obtained in the same time bound.

In the rest of the section, we fix TP QR as in Proposition 24. Moreover, let

f(vP , vQ) =
{
|P ∩ (Q + vQ) ∩ (R + vR)| if (vQ, vR) ∈ TP QR

0 otherwise.

▶ Proposition 25. Let S be any m-flat in the configuration space. In O(n) time, we can
find a point in S ∩ supp f , or report that S ∩ supp f is empty.

Proof. Notice that supp f is a convex 4-polytope whose face are hyperplanes of type I or
type II. Let H be a hyperplane of type II intersecting the interior of TP QR. Then H contains
a face of supp f if and only if a polygon P ∩Q is tangent to R in H ∩ TP QR. This can be
tested in constant time, so we can find all faces of supp f in O(n) time. Our problem become
a feasibility test of a linear programming of size O(n), which can be solved in O(n) time by
Megiddo’s algorithm [13]. ◀

Proof of Theorem 2. Take TP QR as in Proposition 24. Let

f(vP , vQ) =
{
|P ∩ (Q + vQ) ∩ (R + vR)| if (vQ, vR) ∈ TP QR

0 otherwise.

Then f is unimodal and the maximum of f is the goal placement. Given an m-flat S, we want
to compute the maximum of f on S in O(n logm−1) time by induction on m ∈ {1, 2, 3, 4}.

If m = 1, this can be done in O(n) time by Proposition 15. Assume that m > 1.
Then S ∩ TP QR can be computed in O(1) time. Given an (m − 1)-flat l ⊂ S, we can use
Proposition 25 and the perturbation method as in Lemma 14 to report the relative position
of the maximum over S. There are O(n) event hyperplane intersecting S ∩ TP QR. Thus, by
Lemma 9, we can recursively construct (1/2)-cuttings to give an O(n logm−1) time algorithm
to find the maximum of f on S. ◀

6 Minimum symmetric difference of two convex polygons under
homothety

A homothety φ : R2 → R2 is a composition of a scaling and a translation. Let λ > 0 be the
scaling factor and v be the translation vector of φ. Then

φ(A) = λA + v = {λp + v | p ∈ A}.

Define the symmetric difference of sets A, B ⊂ R2 to be

A△B :=(A ∪B) \ (A ∩B)
=(A \B) ∪ (B \A).

SoCG 2023

61:14 Maximum Overlap of Polyhedron and Polygon

Let P and Q be convex polygons with n vertices in total. We want to find a homothety
φ of Q that minimizes the area of symmetric difference

h(φ) = h(x, y, λ) = |P△φ(Q)|,

where φ(Q) = λQ + (x, y).
Yon et al. [14] consider a slightly more general problem, where they minimize the function

h(φ) = (2− 2κ)|P \ φ(Q)|+ 2κ|φ(Q) \ P |,

where κ ∈ (0, 1) is some constant. When κ = 1/2, this is the area of symmetric difference
function. They give a randomized algorithm that solves this problem in O(n log3 n) expected
time. We present a faster determinisitc algorithm by relating this problem to the polyhedron-
polygon matching problem and then applying a modified version of Theorem 1.

As in [14], we rewrite the objective function h(φ):

h(φ) = 2(1− κ)|P |+ 2κ|φ(Q)| − 2|P ∩ φ(Q)|
= 2(1− κ)|P |+ 2κ|Q|λ2 − 2|P ∩ φ(Q)|.

Thus, minimizing h(φ) is the same as maximizing f(φ) = |P ∩ φ(Q)| − cλ2, where c = κ|Q|.

Q C

Figure 7 Formation of the cone C.

Consider the cone C = {(x, y, λ)|λ ∈ [0, M], (x, y) ∈ λQ}, where M =
√
|P |/c (see Figure 7).

Then f is negative for λ > M so it is never maximized. We also put P into R3 by
P = {(x, y, 0)|(x, y) ∈ P}. Since f(x, y, λ) = |C ∩ (P + (−x,−y, λ))| − cλ2, the problem
reduces to maximizing the overlap area of the cone C and P under translation subtracted
by a quadratic function. To show that we can still use a divide-and-conquer strategy, we
identify a region where f is strictly unimodal.

▶ Lemma 26 ([14]). The closure D of the set {φ ∈ R3|f(φ) > 0} is convex. Furthermore,
f(x, y, λ) is strictly unimodal on D.

Proof. This follows from [14, Lemma 2.2] and [14, Lemma 2.7]. ◀

Although it is difficult to directly compute D, note that −P ⊂ D. With this observation, we
show that we can still find the relative position of the set of goal placements to certain planes
S in O(n log n) time with some modifications to LineDecision and PlaneDecision.

▶ Lemma 27. For any l ⊂ R3, we can compute maxφ∈l f(φ) or report it is a negative number
in O(n) time.

▶ Proposition 28. Let S ⊂ R3 be a plane. If S is horizontal or if S intersects the polygon
−P ⊂ D, then we can perform PlaneDecision on S in O(n log n) time.

H. Zhu and H. J. Kweon 61:15

▶ Theorem 29. Let P and Q be convex polygons with n vertices in total. Suppose κ ∈ (0, 1)
is a constant. We can find a homothety φ that minimizes

h(φ) = 2(1− κ)|P \ φ(Q)|+ 2κ|φ(Q) \ P |

in O(n log2 n) time.

Proof. We want to maximize f(x, y, λ) = |C ∩ (P + (−x,−y, λ))| − cλ2 over R3, where
c = κ|Q|. In order to apply our algorithm for Theorem 1, we need to show that we only run
PlaneDecision on horizontal planes and planes that intersect −P .

In the first stage (as outlined in Algorithm 4.1), we only run PlaneDecision on horizontal
planes.

In the second stage, we apply Theorem 5 to the O(n) groups of O(n) lines that are
the projections of the lines containing edges of event polygons on the xz-plane. Observe
that these lines all intersect the projection of −P on the xz-plane. In each recursive step
of our algorithm, we query a horizontal (parallel to the x-axis) line and a line that goes
“between” two lines in the O(n2) lines. The planes they represent both satisfy the condition
for Proposition 28. Then we run PlaneDecision O(1) more times to triangulate our feasible
region. Here, we make a small modification: instead of maintaining a triangular feasible
region, we maintain a trapezoidal one by making O(1) horizontal cuts to make the region a
trapezoid.

In the third stage, we have a “tube” and O(n) event polygons that intersect it. As
usual, we recursively construct a (1/2)-cutting by Lemma 9. Chazelle’s algorithm [8] picks
O(1) planes intersecting the target region as the cutting, along with O(1) extra planes to
triangulate each piece. All the planes containing the event polygons intersect −P , so we can
run PlaneDecision on them. Instead of triangulating our target region, it suffices to reduce
it to constant complexity. We do this by cutting it with O(1) horizontal planes such that
the remaining region only has vertices on two levels. Then, let e be any non-horizontal edge.
With O(1) planes through e, we can cut the target region into prisms and pyramids with
triangular bases. These planes all intersect −P since they are between the two faces of the
target region containing e, and the planes containing them intersect −P .

Therefore, with slight modifications to Theorem 1, we obtain a deterministic O(n log2 n)
algorithm for minimizing h(φ). ◀

Theorem 3 follows as a direct corollary of Theorem 29.

References
1 Hee-Kap Ahn, Peter Brass, and Chan-Su Shin. Maximum overlap and minimum convex

hull of two convex polyhedra under translations. Comput. Geom., 40(2):171–177, 2008.
doi:10.1016/j.comgeo.2007.08.001.

2 Hee-Kap Ahn, Siu-Wing Cheng, Hyuk Jun Kweon, and Juyoung Yon. Overlap of convex
polytopes under rigid motion. Comput. Geom., 47(1):15–24, 2014. doi:10.1016/j.comgeo.
2013.08.001.

3 Hee-Kap Ahn, Siu-Wing Cheng, and Iris Reinbacher. Maximum overlap of convex polytopes
under translation. Comput. Geom., 46(5):552–565, 2013. doi:10.1016/j.comgeo.2011.11.
003.

4 Hee-Kap Ahn, Otfried Cheong, Chong-Dae Park, Chan-Su Shin, and Antoine Vigneron.
Maximizing the overlap of two planar convex sets under rigid motions. Comput. Geom.,
37(1):3–15, 2007. doi:10.1016/j.comgeo.2006.01.005.

SoCG 2023

https://doi.org/10.1016/j.comgeo.2007.08.001
https://doi.org/10.1016/j.comgeo.2013.08.001
https://doi.org/10.1016/j.comgeo.2013.08.001
https://doi.org/10.1016/j.comgeo.2011.11.003
https://doi.org/10.1016/j.comgeo.2011.11.003
https://doi.org/10.1016/j.comgeo.2006.01.005

61:16 Maximum Overlap of Polyhedron and Polygon

5 David Avis, Prosenjit Bose, Thomas C. Shermer, Jack Snoeyink, Godfried Toussaint, and
Binhai Zhu. On the sectional area of convex polytopes. In Communication at the 12th Annu.
ACM Sympos. Comput. Geom., page C. Association for Computing Machinery, New York, NY,
1996.

6 Mark de Berg, Olivier Devillers, Marc van Kreveld, Otfried Schwarzkopf, and Monique Teillaud.
Computing the maximum overlap of two convex polygons under translations. In International
Symposium on Algorithms and Computation, pages 126–135. Springer, 1996.

7 Bernard Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra.
SIAM J. Comput., 21(4):671–696, 1992. doi:10.1137/0221041.

8 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom.,
9(2):145–158, 1993. doi:10.1007/BF02189314.

9 Bernard Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete Comput.
Geom., 10(4):377–409, 1993. doi:10.1007/BF02573985.

10 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT Press, Cambridge, MA, third edition, 2009.

11 Greg N. Frederickson and Donald B. Johnson. Generalized selection and ranking: sorted
matrices. SIAM J. Comput., 13(1):14–30, 1984. doi:10.1137/0213002.

12 Hyuk Jun Kweon and Honglin Zhu. Maximum overlap area of a convex polyhedron and a
convex polygon under translation, 2023. doi:10.48550/ARXIV.2301.02949.

13 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc.
Comput. Mach., 31(1):114–127, 1984. doi:10.1145/2422.322418.

14 Juyoung Yon, Sang Won Bae, Siu-Wing Cheng, Otfried Cheong, and Bryan T. Wilkinson.
Approximating convex shapes with respect to symmetric difference under homotheties. In
32nd International Symposium on Computational Geometry, volume 51 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 63, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016.

https://doi.org/10.1137/0221041
https://doi.org/10.1007/BF02189314
https://doi.org/10.1007/BF02573985
https://doi.org/10.1137/0213002
https://doi.org/10.48550/ARXIV.2301.02949
https://doi.org/10.1145/2422.322418

	1 Introduction
	2 Preliminaries
	3 Generalized two-dimensional prune-and-search
	4 Maximum overlap of convex polyhedron and convex polygon
	4.1 Stage 1
	4.2 PlaneDecision
	4.2.1 PlaneDecision: Step 2
	4.2.2 PlaneDecision: Step 3

	4.3 Stage 2
	4.4 Stage 3

	5 Maximum overlap of three convex polygons
	6 Minimum symmetric difference of two convex polygons under homothety

