
Godzilla Onions: A Skit and Applet to Explain
Euclidean Half-Plane Fractional Cascading
Richard Berger
Ursinus College Computer Science, Collegeville, PA, USA

Vincent Ha
Ursinus College Computer Science, Collegeville, PA, USA

David Kratz
Ursinus College Computer Science, Collegeville, PA, USA

Michael Lin
Ursinus College Computer Science, Collegeville, PA, USA

Jeremy Moyer
Ursinus College Computer Science, Collegeville, PA, USA

Christopher J. Tralie # Ñ

Ursinus College Mathematics And Computer Science, Collegeville, PA, USA

Abstract
We provide a skit and an applet to illustrate fractional cascading in the context of half-plane range
search for points in the Euclidean plane, which takes O(log N + h) output-sensitive time. In the
video, a group of news anchors struggles to find the correct data structure to efficiently send out
an early warning to the residents of Philadelphia who will be overtaken by a marching line of
Godzillas. After exploring several options, the group eventually settles on onions and fractional
cascading, only to discover that they themselves are in the line of fire! In the applet, we show step
by step details of preprocessing to build the onions with fractional cascading and the subsequent
query of the “Godzilla line” against the onion layers. Our video skit and applet can be found at
https://ctralie.github.io/GodzillaOnions/

2012 ACM Subject Classification Human-centered computing → Visualization toolkits; Theory of
computation → Randomness, geometry and discrete structures

Keywords and phrases convex hulls, onions, fractional cascading, visualization, d3

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.62

Category Media Exposition

Supplementary Material Software (Source Code): https://ctralie.github.io/GodzillaOnions/

1 Background

Given N points X in the Euclidean plane and a query line ℓ, a naive algorithm to determine
the points in X above ℓ would be to check each xi ∈ X in turn. However, this approach
takes O(N) time.

Alternatively, one can obtain an output-sensitive algorithm if one preprocesses X into
an “onions” data structure with a nested sequence of convex hulls from the outside to the
inside [2]. For NL onion layers, refer to the ith layer as Li, where i indexes the layers in
the order in which they are constructed, so L0 is the outermost layer. If there are h points
above the line, each onion layer Li can be queried with binary search in O(log N) time to
find the line segment with the closest slope to that of ℓ, and this line segment contains the
furthest point in that layer from ℓ. If this point is above the line in layer Li, one can walk to
the left and to the right to gather all points above the line in this layer. Overall, this takes

© Richard Berger, Vincent Ha, David Kratz, Michael Lin, Jeremy Moyer,
and Christopher J. Tralie;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 62; pp. 62:1–62:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ctralie@alumni.princeton.edu
https://www.ctralie.com
https://orcid.org/0000-0003-4206-1963
https://ctralie.github.io/GodzillaOnions/
https://doi.org/10.4230/LIPIcs.SoCG.2023.62
https://ctralie.github.io/GodzillaOnions/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


62:2 Godzilla Onions and Fractional Cascading

Figure 1 A screenshot from our Javascript d3 interface showing how each point in M0 has a
pointer to a point in L0 (the outer layer, duplicated on the right) and M1 (the second from the
outer cascaded layer, duplicated on the right) with the closest slope. Preprocessing and storing such
pointers allows quick traversal through the structure. Note also: the thickest line segment on the
left shows the particular line segment whose pointers the app is highlighting. The middle thick line
segments on the left show L0 and M1 in the context of the whole onion.

O(Nl log N + h) time. However, as we note in our video, there may be too many layers; in
particular, NL is Θ(N2/3) for points distributed uniformly and independently at random
within any bounded 2D region that contains a disc [3]. The ensuing O(N2/3 log N + h)
algorithm is still marginally better than the brute force O(N) approach, but one can do
better.

A superior output-sensitive algorithm relies on a more involved onion-based preprocessed
data structure that uses fractional cascading [4]. In addition to storing the layers Li, one
constructs parallel layers Mi. The last layer MNL

= LNL
. From there, one iteratively

constructs Mi as the union of Li and every other element of Mi+1, sorted by slope. Each
element in Mi also stores a pointer to the points in Li and Mi+1 with the nearest slope.
After preprocessing, one starts querying the fractionally cascaded onions by first searching
for the point in the outer M layer M0 with the slope closest to ℓ using binary search. Since
Mi only takes every other point in Mi+1, the number of points in ∪iMi is O(N), so the
binary search query on M0 takes O(log N) time. From there, one follows the pointer to L0
to extract all points at that layer that are above ℓ. Then, one follows the pointer to M1
and continues the process until getting to a layer with no points above ℓ. The preprocessed
pointers allow one to walk from layer to points above the line in the subsequent layer in
constant time, so the overall process takes only O(log N + h) time.

2 Applet Details

One of our major contributions is an applet to incrementally construct this rather intricate
data structure. To that end, we create an interactive applet using d3 in Javascript [1] to
construct and query and onions data structure on top of user selected points. We first show
the process of constructing the Li layers, which we color code. Then, we show how each Mi



R. Berger, V. Ha, D. Kratz, M. Lin, J. Moyer, and C. J. Tralie 62:3

is created by merging by slope Li and every other element of Mi+1. Once that is finished, we
show a few examples of pointers from M0 to L0 and M1 (Figure 1). Finally, the user queries
a “Godzilla line” ℓ, and the applet shows how to incrementally walk through the layers and
follow the pointers to obtain all of the points above ℓ.

References
1 Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents. IEEE

Transactions on Visualization and Computer Graphics, 17(12):2301–2309, 2011.
2 Bernard Chazelle. On the convex layers of a planar set. IEEE Transactions on Information

Theory, 31(4):509–517, 1985.
3 Ketan Dalal. Counting the onion. Random Structures & Algorithms, 24(2):155–165, 2004.
4 Leonidas Guibas and Bernard Chazelle. Fractional cascading: I. a data structuring technique.

Algorithmica, 1:133–162, 1986.

SoCG 2023


	1 Background
	2 Applet Details

