
Constructing Concise Convex Covers via Clique
Covers
Mikkel Abrahamsen #

University of Copenhagen, Denmark

William Bille Meyling #

University of Copenhagen, Denmark

André Nusser #

University of Copenhagen, Denmark

Abstract
This work describes the winning implementation of the CG:SHOP 2023 Challenge. The topic of the
Challenge was the convex cover problem: given a polygon P (with holes), find a minimum-cardinality
set of convex polygons whose union equals P . We use a three-step approach: (1) Create a suitable
partition of P . (2) Compute a visibility graph of the pieces of the partition. (3) Solve a vertex clique
cover problem on the visibility graph, from which we then derive the convex cover. This way we
capture the geometric difficulty in the first step and the combinatorial difficulty in the third step.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Combinatorial algorithms

Keywords and phrases Convex cover, Polygons with holes, Algorithm engineering, Vertex clique
cover

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.66

Category CG Challenge

Supplementary Material
Software: https://github.com/willthbill/ExtensionCC

archived at swh:1:rev:ad78739911ab5733f600d4fbcb08acae6d69e115
Text (Thesis): https://github.com/willthbill/ExtensionCC/blob/main/bachelorthesis.pdf

Funding Mikkel Abrahamsen: Supported by Starting Grant 1054-00032B from the Independent
Research Fund Denmark under the Sapere Aude research career programme. Part of BARC,
supported by the VILLUM Foundation grant 16582.
William Bille Meyling: Supported by Starting Grant 1054-00032B from the Independent Research
Fund Denmark under the Sapere Aude research career programme.
André Nusser : Part of BARC, supported by the VILLUM Foundation grant 16582.

Acknowledgements We want to thank the CG:SHOP 2023 organizers and the other participants
(especially Guilherme Dias da Fonseca) for creating such a fun challenge and for helpful comments
on our write-up. We also want to thank Martin Aumüller and Rasmus Pagh for access and help
with using their server. Finally, we want to thank Darren Strash for quick and last-minute support
using the ReduVCC implementation.

1 Introduction

Covering a polygon with the minimum number of convex pieces is a fundamental problem in
computational geometry and the problem chosen for the CG:SHOP 2023 Challenge. In this
problem we are given a polygon P (potentially with holes) and we have to find a smallest
possible set of convex polygons whose union equals P . This problem is NP-hard [3] and
was later shown to be even ∃R-complete [1]. Note that in the Challenge, all coordinates of
the solutions had to be rational, and then the decision problem is not even known to be
decidable. Thus, it is not expected that there exists any fast algorithm that always finds

© Mikkel Abrahamsen, William Bille Meyling, and André Nusser;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 66; pp. 66:1–66:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:miab@di.ku.dk
https://orcid.org/0000-0003-2734-4690
mailto:williambillemeyling@gmail.com
mailto:annu@di.ku.dk
https://orcid.org/0000-0002-6349-869X
https://doi.org/10.4230/LIPIcs.SoCG.2023.66
https://github.com/willthbill/ExtensionCC
https://archive.softwareheritage.org/swh:1:rev:ad78739911ab5733f600d4fbcb08acae6d69e115;origin=https://github.com/willthbill/ExtensionCC;visit=swh:1:snp:0aa44031a90cb9a938231e8a1cfa581a4b7d2932
https://github.com/willthbill/ExtensionCC/blob/main/bachelorthesis.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 Constructing Concise Convex Covers via Clique Covers

the optimal solution. Likewise, we are aware of no previously described algorithm which is
fast in practice. In this 5th CG:SHOP Challenge, there were a total of 22 teams who signed
up, out of which 18 submitted solutions. Our team – named DIKU (AMW) – obtained the
highest total score, despite finding fewer smallest solutions than the runner-up [4], as we
achieved significantly smaller solutions on many of the largest Challenge instances. See [5]
for a survey about the Challenge.

Our algorithm consists of three steps. In the first step (see Section 2.1), the aim is to
capture the geometry of the problem. We do this by partitioning the input polygon P into
triangles. Note that the corners of these triangles do not have to be corners of P but can be
Steiner points. In the second step (see Section 2.2), we move from the geometric structure to
a combinatorial structure. We do this by computing a visibility graph G of the partition,
with each triangle corresponding to a vertex and an edge is inserted for two vertices only
if the convex hull of the corresponding triangles lies within P (i.e., the convex hull would
be a valid piece of the convex cover). Finally, in the third step (see Section 2.3), we solve
a combinatorial problem: we find a vertex clique cover (VCC) of G with small cardinality.
Recall that a vertex clique cover is a set of cliques in G, for which each vertex in G appears
in one of the cliques. When possible, we use the convex hull H of the triangles of a clique C

as a piece of our convex cover. However, H may intersect holes of P , which makes H an
invalid piece. This happens rarely for the Challenge instances, but in that case we split C

into smaller cliques. For us, the main insights and highlights of our approach are:
1. Assembling the pieces and the cover at the same time (instead of first deciding on the

pieces and then assembling the cover) allows for great flexibility and adaptivity.
2. Reduction to a fundamental graph problem allows for usage of a powerful set of already

existing tools.
3. As we can arbitrarily choose a partition in the first step of the algorithm, our approach is

very adaptive with respect to input structure and instance size (simpler partitions can be
chosen for larger instances).

2 Algorithm

In this section we describe our algorithmic approach to solve the convex cover problem.

2.1 Partition
First, we partition the polygon. While our approach in principle works with any kind of
partition, for simplicity we only used partitions consisting of triangles. Recall that the goal
of the partition is to obtain triangles from which we can later assemble good pieces for a
convex cover and that the corners of these triangles are not restricted to lie on the corners of
P . In fact, to obtain good solutions one often needs Steiner points.

The simplest partition that we use is a Delaunay triangulation. We prefer a Delaunay
triangulation over an arbitrary triangulation because it leads to fat triangles, which we
intuitively assume to create better pieces for the convex cover. The main issues of using a
Delaunay triangulation of P as partition are that its vertices are restricted to the corners of
P and that the pieces can be too coarse to merge into convex pieces. See Figure 6 for an
example for which this leads to a suboptimal cover. Thus, the question is: which Steiner
points should we introduce to obtain better solutions?

Consider a directed edge e of P and suppose that the interior of P is to the left of e. We
define the extension of e to be the maximal directed segment s such that e ⊆ s ⊆ P ; see
Figure 1 (middle). Note that a piece Q of a convex cover can contain an interior point of

M. Abrahamsen, W. Bille Meyling, and A. Nusser 66:3

Figure 1 Left: Polygon P (left), extensions of P (middle), and extension partition of P (right).

Figure 2 For the set of green triangles (left), every pairwise convex hull is contained in P (middle),
but the convex hull of all the green triangles is not (right).

e only if Q does not contain a point to the right of s. Thus, intuitively it make sense to
include pieces of the cover that are bounded by s. This intuition is captured by the extension
partition, which is the constrained Delaunay triangulation of the extensions of all edges of P ;
see Figure 1 (right).

2.2 Visibility Graph
In order to create a convex cover, we first want to understand which triangles we can
potentially combine to form pieces for the cover. Given a partition P of the polygon P and
two triangles p, q ∈ P, we say that q is fully visible from p if every point in p sees all of q

and partially visible if every point in p sees some point in q. We define the visibility graph
G = (P, E), which contains an edge pq if the convex hull of p ∪ q is contained in P . We can
compute G naively by checking for each pair p, q ∈ P whether its convex hull is contained
in P . However, the running time Ω(|P|2) renders this impractical. A simple observation
comes in handy here: For any triangles q ∈ P fully visible from p ∈ P, there exists a path
from p to q in the dual graph1 of P using only vertices that correspond to triangles that are
partially visible from p. Thus, instead of checking all pairwise visibilities, we can simply
perform a BFS on the dual graph, only using partially visible triangles and stop exploring on
triangles that are not partially visible. While this significantly reduces the running time in
practice, it can still be too expensive. For further speedup, we resort to building a subgraph
of G by only exploring fully visible triangles in the BFS. To speed up the visibility graph
construction, we engineered fast visibility checks that we do not further describe here.

2.3 Compute Cover
We employ the following three steps to compute a convex cover using the visibility graph.

1 The dual graph of a partition is defined as follows: the vertex set consists of the triangles of the partition
and there is an edge between two vertices iff the two corresponding triangles touch.

SoCG 2023

66:4 Constructing Concise Convex Covers via Clique Covers

h
H

H1

H2

H1

H2

h′

H2,1

H2,2

Figure 3 Fixing an invalid clique: All visible triangles form the initial piece H that we then split
into pieces H1 and H2 using the half-plane h (left). As H2 still contains a hole, we again split it into
pieces H2,1 and H2,2 using half-plane h′ (right). The result is the valid pieces H1, H2,1, and H2,2.

Figure 4 Extension partition with suboptimal clique cover (left), the corresponding convex cover
(middle), and a convex cover without the unnecessary green polygon (right).

Compute Vertex Clique Cover: We first compute a vertex clique cover (VCC) on the visi-
bility graph. The problem of finding a minimum VCC is one of Karp’s classical NP-hard
problems, and there exists no n1−ε-approximation algorithm for any ε > 0 unless P = NP.
However, there exist implementations that compute small solutions on practical instances.
Namely, Chalupa [2] presented a randomized clique-growing approach that was subse-
quently used as a subroutine by Strash and Thompson [8] in their state-of-the-art solver
ReduVCC that uses sophisticated reduction rules with a branch-and-reduce approach.

Fix Cover: Recall that a clique C corresponds to a set of triangles that are pairwise fully
visible. We would like to use the convex hull H of the triangles as a piece in our convex
cover, but H may not be contained in P ; see Figure 2 for a simple example. While
this rarely happens on the Challenge instances (see Section 3.3), we nonetheless have to
post-process such pieces to obtain a feasible convex cover.
First, note that the only way a piece H can be invalid is by containing a hole of P ; in
particular, it is not possible that H intersects the unbounded region of the complement of
P . We fix an invalid piece H as follows: Pick any hole h that invalidates H and consider
an arbitrary half-plane whose boundary intersects h. Now partition the triangles of C

according to whether they intersect the half-plane or not. This creates two new pieces,
which both do not intersect the hole h and which partition the remaining holes in H. We
apply this procedure recursively to the new pieces (always reducing the number of holes
intersected by these pieces by at least one) until all newly created pieces are valid; see
Figure 3. We omit the proof of correctness of this procedure due to space constraints.

Make Cover Minimal: At this point, we may end up with a non-minimal cover, i.e., there
may exist redundant pieces; see Figure 4. To make the solution minimal, we iterate over
the pieces and remove them from the cover if their removal does not invalidate it.

M. Abrahamsen, W. Bille Meyling, and A. Nusser 66:5

Figure 5 The smallest instances of some of the Challenge instance types. From left to right and
top to bottom, these are: cheese, maze, octa, iso, fpg, srpg_mc.

SoCG 2023

66:6 Constructing Concise Convex Covers via Clique Covers

Figure 6 The Delaunay triangulation (top left) and the resulting cover of size 27 (top right). The
extension partition (bottom left) and the resulting cover of size 23 (bottom right).

3 Evaluation

3.1 Implementation and Data
The competition code is written in C++ and compiled using GCC 11.3 with -O3 optimization
turned on. We use CGAL [9] for all geometric primitives with a Kernel that uses a number
type that saves numbers as fractions and performs exact computations. For the partitioning
and to construct the visibility graph, we use the triangulation, visibility, and convex hull
packages of CGAL [6, 7, 10]. To compute the vertex cover, we use ReduVCC [8]. We show
different types of instances of the problem set in Figure 5.

3.2 Examples
An important part of our approach is the choice of the partition. In particular, while the
Delaunay triangulation is fast to compute, the extension partition creates partitions with
significantly more pieces and thus slows down our approach. To justify this kind of partition,
it must lead to significantly better solutions. Figure 6 shows a cover of the same instance using
the Delaunay partition and the extension partition – one can clearly see that the extension
partition better adapts to the geometry of the input polygon. Unfortunately, extension

M. Abrahamsen, W. Bille Meyling, and A. Nusser 66:7

Figure 7 Part of a polygon with multiple long concave chains. While the cover using a Delaunay
triangulation almost exclusively creates pieces adjacent to only two concave chains (left), local
triangulation allows for creation of pieces that contain parts of all three concave chains (right).

partitions can lead to a blow-up of the partition size that makes the approach practically
infeasible for some instances. This blow-up happens when many extensions intersect. We
circumvent this issue by computing restricted extension partitions in two different ways.
1. We want to preserve extensions locally. Thus, we only choose a subset of the extensions

favoring short extensions. We either only insert extensions below a certain length, or we
randomly sample extensions inversely proportional to their length.

2. Some Challenge instances have long concave chains on the boundary of P . Note that the
midpoint of each edge of such a chain has to be part of a distinct piece in the convex
cover. To allow for creation of pieces that combine segments from multiple concave chains,
we locally triangulate long concave chains instead of creating extensions; see Figure 7.

3.3 Experiments
For this section, we selected a subset of the instances for more thorough experiments and
subsequently only refer to these. See the sizes and types in the plots of Figure 8. Recall that
we compute an intermediate, potentially infeasible solution via a vertex clique cover that is
subsequently fixed. We argue above that we expect that only few cliques have to be fixed on
practical instances. Indeed, on all except the cheese instances, the solution size increased
by at most 6 pieces when fixing cliques, while most small instances did not have any invalid
clique. However, the largest increase in solution size was for the largest cheese instances with
an increase of 110 pieces. Our algorithm may create redundant cliques that are removed in a
post-processing step, so it is interesting to consider how much this post-processing reduces
the size of the solution. This decrease in pieces is very much dependent on the instance:
While for octa the maximal decrease was 2 pieces, it was 83 pieces for cheese instances and
all larger cheese instances saw significant improvements.

For the competition and our experiments we used a server with two Intel Xeon E5-2690 v4
CPUs with 14 cores (28 threads) each, and a total of 504GB RAM. All reported running
times are single-threaded. The bottleneck of our approach is the visibility graph computation
discussed in Section 2.2. To better understand the trade-off between running time, memory
usage, and solution quality with respect to the choice of partition, we conduct experiments
comparing Delaunay triangulation and extension partition; see Figure 8. The extension
partition introduces a large overhead in running time and memory consumption compared to
the Delaunay triangulation, but it reduces the solution size by a significant fraction. While
for the extension partition the visibility graph computation clearly dominates the running
time, for the Delaunay triangulation it only makes up 32.8% of the running time on average.

SoCG 2023

66:8 Constructing Concise Convex Covers via Clique Covers

24 60 82 83 14
2

50
8

11
25

14
68

20
12

65
16

65
68

98
53

11
62

3
15

29
6

52
74

7
63

78
6

10
79

90
10

93
60

Number of vertices of polygon

10 2

10 1

100

101

102

103

104

105
Se

co
nd

s
Computation time (excluding clique cover)

fpg
maze
iso
octa
cheese
srpg_mc

24 60 82 83 14
2

50
8

11
25

14
68

20
12

65
16

65
68

98
53

11
62

3
15

29
6

52
74

7
63

78
6

10
79

90
10

93
60

Number of vertices of polygon

10 1

100

101

102

M
em

or
y

(G
B)

Memory usage (including clique cover)
fpg
maze
iso
octa
cheese
srpg_mc

24 60 82 83 14
2

50
8

11
25

14
68

20
12

65
16

65
68

98
53

11
62

3
15

29
6

52
74

7
63

78
6

10
79

90
10

93
60

Number of vertices of polygon

101

102

103

104

Nu
m

be
r o

f p
ie

ce
s i

n
so

lu
tio

n

Solution size
fpg
maze
iso
octa
cheese
srpg_mc

24 60 82 83 14
2

50
8

11
25

14
68

20
12

65
16

65
68

98
53

11
62

3
15

29
6

52
74

7
63

78
6

10
79

90
10

93
60

Number of vertices of polygon

102

103

104

105

106

107

108

109

Nu
m

be
r o

f e
dg

es

Number of edges in visibility graph
fpg
maze
iso
octa
cheese
srpg_mc

Figure 8 Experiments with the Delaunay triangulation (left bars) and the extension partition
(right bars) as underlying partitions for a selected set of instances. We measure the running time
(top left; thin bars showing the running time of the visibility graph computation), memory usage
(top right), solution size (bottom left), and number of edges in the visibility graph (bottom right).

References
1 Mikkel Abrahamsen. Covering polygons is even harder. In Symposium on Foundations of

Computer Science (FOCS), pages 375–386, 2021. doi:10.1109/FOCS52979.2021.00045.
2 David Chalupa. Construction of near-optimal vertex clique covering for real-world networks.

Comput. Informatics, 34(6):1397–1417, 2015. URL: http://www.cai.sk/ojs/index.php/cai/
article/view/1276.

3 Joseph C. Culberson and Robert A. Reckhow. Covering polygons is hard. J. Algorithms,
17(1):2–44, 1994. doi:10.1006/jagm.1994.1025.

4 Guilherme D. da Fonseca. Shadoks approach to convex covering. In Symposium on Com-
putational Geometry (SoCG), volume 258, 2023. URL: https://pageperso.lis-lab.fr/
guilherme.fonseca/CGSHOP23conf.pdf.

5 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Minimum coverage
by convex polygons: The CG:SHOP Challenge 2023, 2023. arXiv:2303.07007.

6 Michael Hemmer, Kan Huang, Francisc Bungiu, and Ning Xu. 2D visibility computation.
In CGAL User and Reference Manual. CGAL Editorial Board, 5.5.2 edition, 2023. URL:
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgVisibility2.

7 Susan Hert and Stefan Schirra. 2D convex hulls and extreme points. In CGAL User and
Reference Manual. CGAL Editorial Board, 5.5.2 edition, 2023. URL: https://doc.cgal.org/
5.5.2/Manual/packages.html#PkgConvexHull2.

https://doi.org/10.1109/FOCS52979.2021.00045
http://www.cai.sk/ojs/index.php/cai/article/view/1276
http://www.cai.sk/ojs/index.php/cai/article/view/1276
https://doi.org/10.1006/jagm.1994.1025
https://pageperso.lis-lab.fr/guilherme.fonseca/CGSHOP23conf.pdf
https://pageperso.lis-lab.fr/guilherme.fonseca/CGSHOP23conf.pdf
https://arxiv.org/abs/2303.07007
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgVisibility2
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgConvexHull2
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgConvexHull2

M. Abrahamsen, W. Bille Meyling, and A. Nusser 66:9

8 Darren Strash and Louise Thompson. Effective data reduction for the vertex clique cover
problem. In Symposium on Algorithm Engineering and Experiments (ALENEX), pages 41–53,
2022. doi:10.1137/1.9781611977042.4.

9 The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.5.2 edition,
2023. URL: https://doc.cgal.org/5.5.2/Manual/packages.html.

10 Mariette Yvinec. 2D triangulations. In CGAL User and Reference Manual. CGAL Editorial
Board, 5.5.2 edition, 2023. URL: https://doc.cgal.org/5.5.2/Manual/packages.html#
PkgTriangulation2.

SoCG 2023

https://doi.org/10.1137/1.9781611977042.4
https://doc.cgal.org/5.5.2/Manual/packages.html
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgTriangulation2
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgTriangulation2

	1 Introduction
	2 Algorithm
	2.1 Partition
	2.2 Visibility Graph
	2.3 Compute Cover

	3 Evaluation
	3.1 Implementation and Data
	3.2 Examples
	3.3 Experiments

