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Abstract
We study the decomposition of zero-dimensional persistence modules, viewed as functors valued in
the category of vector spaces factorizing through sets. Instead of working directly at the level of
vector spaces, we take a step back and first study the decomposition problem at the level of sets.

This approach allows us to define the combinatorial notion of rooted subsets. In the case of
a filtered metric space M , rooted subsets relate the clustering behavior of the points of M with
the decomposition of the associated persistence module. In particular, we can identify intervals in
such a decomposition quickly. In addition, rooted subsets can be understood as a generalization of
the elder rule, and are also related to the notion of constant conqueror of Cai, Kim, Mémoli and
Wang. As an application, we give a lower bound on the number of intervals that we can expect in
the decomposition of zero-dimensional persistence modules of a density-Rips filtration in Euclidean
space: in the limit, and under very general circumstances, we can expect that at least 25% of the
indecomposable summands are interval modules.
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1 Introduction

Multiparameter persistent homology is an active research area in topological data analysis.
The motivation is that in many datasets there are multiple parameters that deserve attention
in a multiscale analysis [11, 18, 31]. Concretely, when analyzing point clouds, we want to
consider the distances between points, but also potentially remove points of low density.

A central object of persistent homology is the persistence module, which tracks algebraically
how the topological features of the data change as we move through the parameter space.
In the single-parameter case, every persistence module decomposes into a collection of
intervals, called the persistence barcode [20], where each interval represents the lifetime of a
topological feature in the data. In the multiparameter setting, there is a generalized notion
of interval, which again represents the lifetime of a topological feature, but decomposing a
multiparameter persistence module into intervals is not always possible, and one might be
left with non-interval indecomposable persistence modules that lead to complications, both
theoretically [12,13,18,32] and computationally [1, 4, 23].
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7:2 Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets

Table 1 Number of intervals in the decomposition of zero-dimensional persistence modules for
density-Rips filtrations. We tried both clustered samples where the points were sampled by a
multivariate Gaussian distribution around 5 peaks, and uniform samples in the unit square. The
density parameter was computed via a Gaussian kernel density estimate (kde) or a random density
was assigned. The table shows the number of intervals for 5 independent test runs; for n points, the
module is interval-decomposable if the number of intervals is n. This only happens for one run.

100 points 500 points

Sample Densities Run 1 2 3 4 5 Run 1 2 3 4 5

clustered kde 100 98 95 98 98 474 487 478 479 479
uniform kde 88 88 86 88 86 444 447 433 453 457
clustered random 77 86 87 88 76 397 381 390 380 386
uniform random 76 79 75 75 70 376 361 366 355 377

In fact, the classification of such indecomposable persistence modules is thought to be
out of reach: certain involved posets are of wild representation type, even when accounting
for certain simplifications [2]. Moreover, infinite families of complicated indecomposable
persistence modules can be realized by simple geometric constructions [13], and, most recently,
it has been shown in [3] that multiparameter persistence modules are, generically, close to
being indecomposable, under the interleaving metric (we refer to [3] for a precise statement).

Still, the mentioned complications do not imply that the persistence modules that come
up in practice are close to indecomposable, or that they are not decomposable into intervals.
Indeed, is the decomposition of multiparameter persistence modules as badly behaved in
practice as we can expect in theory? The authors of [2] and those of [3] state similar questions.

As an initial test, we computed the decomposition of persistence modules for a standard
zero-dimensional construction, using a prototypical implementation of the algorithm by Dey
and Xin [23] (this implementation will be discussed in another paper). As we see in Table 1,
the assumption that persistence modules can be decomposed completely into intervals seems
to be false most of the time, at least in this setting. However, Table 1 also shows that in all
tested instances, most indecomposable summands are indeed intervals.

This begs the question whether we can provably expect many intervals in general. In
addition, knowledge of the intervals can greatly simplify and speed up computational tasks for
persistence modules: for instance, a popular way to analyze 2-parameter persistence modules
is by considering 1-dimensional restrictions, so-called slices, resulting in a parameterized
family of persistent barcodes [29,31, 33,34]. Every interval of the 2-dimensional persistence
module gives one bar in the barcode of the slice, by intersecting the slice with the interval.
Thus, by knowing the intervals, existing algorithms can focus on the non-interval “core” of
the problem, which is typically of much smaller size.

The practical problem of the described approach is that decomposing a multiparameter
persistence module is costly, despite ongoing efforts [23]. However, to leverage the knowledge
of intervals there is no need to compute a total decomposition, or to even identify all intervals.
It suffices to have a method to “peel off” intervals from a persistence module quickly. Thus,
we pose the question whether there exist methods that work very fast in practice and still
are capable of detecting many intervals.

Contributions. We focus on the case of zero-dimensional persistence modules. Already this
case is of practical interest because of its connection to hierarchical clustering methods (see
the Related work section below), and has received attention recently [2,10,14,34]. In this
context, we give some answers to the questions stated above:
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For a point cloud M , a nearest neighbor pair is a pair (x, y) ∈ M ×M such that y is the
nearest neighbor of x and x is the nearest neighbor of y (breaking ties with a fixed total
order). The theory we develop says that for a zero-dimensional persistence module of the
density-Rips bifiltration (for any density estimation function), there are at least as many
intervals as there are nearest neighbor pairs in M . These intervals are easily determined by
the nearest neighbor pairs, and we refer to them as NN-intervals. Since all nearest neighbor
pairs can be computed in O(n logn) time [19, 37], this yields a fast method to compute
all NN-intervals of the decomposition. Moreover, we can expect many NN-intervals: using
previous results on nearest neighbor graphs, we show that if M is sampled independently
from an arbitrary, almost continuous density function, at least a quarter of the summands in
the decomposition are intervals as n → ∞. To our knowledge, this is the first result proving
a non-constant lower bound on the number of intervals in a decomposition.

To arrive at this result, we use the following main idea: Instead of studying the decompo-
sition of the persistence module directly in the category of (graded) vector spaces, we work
in the category of persistent sets, whose objects can be interpreted as a two-parameter hierar-
chical clustering. The decomposition of a persistence module is governed by its idempotent
endomorphisms, so we look for idempotent endomorphisms not of persistence modules, but
of persistent sets, which are simpler. We show that such idempotent endomorphisms can be
translated into rooted subsets, which are subsets of points that get consistently merged with
a fixed point in the hierarchical clustering. Moreover, rooted subsets with a single element
correspond to intervals in the associated persistence module.

Instead of peeling off intervals from the persistence module, we peel off rooted subsets
from the persistent set. The advantage is that the remaining structure is still a hierarchical
clustering, and the process can be iterated.

Related work. Multiparameter persistent sets and zero-dimensional persistence modules,
as we will study them here, are related to a multiparametric approach to the clustering
problem first considered by Carlsson and Mémoli [16]. The need for multiple parameters,
density and scale, is justified by an axiomatic approach to clustering [15, 17, 28]. The
application of techniques from multiparameter persistence homology, like persistence modules
and interleavings, to this setting has attracted attention recently [2, 14,31,33,34].

Cai, Kim, Mémoli, and Wang [14] define a useful summary for zero-dimensional persistence
modules coming from density-Rips, called the elder-rule-staircode, inspired by the elder
rule [24]. They also introduce the related concept of constant conqueror, and they ask
whether a constant conqueror induces an interval in the decomposition of the associated
persistence module. We answer this question in the negative with Example 22, and, in
contrast, we show that a rooted generator, as introduced here, does induce an interval in the
decomposition (Corollary 13).

Brodzki, Burfitt, and Pirashvili [10] also study the decomposition of zero-dimensional
persistence modules. They identify a class of persistence modules, called semi-component
modules, that may appear as summands in the decomposition of zero-dimensional modules,
but that are still hard to classify. Their methods have been of great inspiration, and
in Theorem 24 we give another proof, within the theory we develop, of a theorem of theirs.

2 Preliminaries

Persistent sets and persistence modules. In what follows, we let P be a finite poset,
which we will view as a category. A persistence module (over P ) is a functor from P to
the category Vec of finite dimensional vector spaces, over a fixed field K. Such a functor

SoCG 2023



7:4 Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets

F : P → Vec associates to each grade p ∈ P a finite dimensional vector space Fp and to
each morphism p ≤ q in P a linear map Fp→q : Fp → Fq, in such a way that Fp→p = id
and composition is preserved. We see persistence modules as the objects of the functor
category VecP , where natural transformations are the morphisms. In this sense, a morphism
f : F → G of persistence modules is a family of maps {fp : Fp → Gp}p∈P such that for every
two p ≤ q the following diagram commutes

Fp Fq

Gp Gq.

Fp→q

fp fq

Gp→q

Similarly, a persistent set (over P ) is a functor from P to Set, the category Set of finite
sets, and morphisms of persistent sets are natural transformations as above.

We can obtain a persistence module from a persistent set by the application of the
linearization functor Set → Vec that takes each set to the free vector space generated by
it. This linearization functor induces a functor L : SetP → VecP by postcomposition.

From geometry to persistent sets. Let (M,d) be a finite metric space, and consider a
function f : M → R. We can understand f as an assignment of a density to each of the
points of M ; that is, a density estimation function [36]. We assume that f assigns lower
values to points of higher density. Following [14], we call the triple (M,d, f) an augmented
metric space. We construct a persistent set, the density-Rips persistent set of (M,d, f),
that tracks how the clustering of points of M changes as we change the density and scale
parameters, in a sense that we make precise shortly.

First, for a fixed scale parameter ε ≥ 0, we define the geometric graph of M at ε,
denoted by Gε(M), as the undirected graph on the vertex set M and edges (x, y) where
d(x, y) ≤ ε. The connected components of Gε(M), as ε goes from 0 to ∞, form the clusters
of the dendrogram obtained via the single-linkage clustering method.

To introduce the density, for each σ ∈ R we let Mσ := {x ∈ M | f(x) ≤ σ} ⊆ M be the
metric subspace of points with (co)density below σ. For any two σ ≤ σ′, Mσ ⊆ Mσ′ and by
taking each (ε, σ) to the graph Gε(Mσ), we obtain a functor G(M,f) : R≥0×R → Graph, where
the order in R≥0 × R is given by (ε, σ) ≤ (ε′, σ′) if and only if ε ≤ ε′ and σ ≤ σ′. We then
consider the connected components functor π0 : Graph → Set, that takes each graph to its
set of connected components. In this way, we obtain a functor π0 ◦ G(M,f) : R≥0 × R → Set.

▶ Remark 1. The linearized persistence module L(π0◦G(M,f)) : R≥0×R → Vec is isomorphic
to the persistence module obtained by applying zero-dimensional homology at graph level,
H0 ◦ G(M,f) : R≥0 × R → Vec. In this sense, the construction we have described is the
zero-dimensional level of the density-Rips filtration, which is standard in multiparameter
persistent homology (see [5, 18] and also [14]).

We can understand the functor π0◦G(M,f) : R≥0×R → Set as a persistent set S : P → Set
indexed by a finite grid P ⊆ R≥0 × R in the following way. We consider the set of distances
D := {d(x, y) | x, y ∈ M} and densities T := {f(x) | x ∈ M}, and define a finite grid
P := D × T ⊂ R≥0 × R. Finally, we define the persistent set S : P → Set by taking each
(ε, σ) ∈ P to (π0 ◦ G(M,f))(ε,σ), and similarly for the morphisms.

▶ Definition 2. Let (M,d, f) be an augmented metric space. We define its density-Rips
persistent set as the functor S : P → Set, constructed as above.
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Decomposition of persistence modules. We can study persistence modules via their
decomposition. For two persistence modules F and G their direct sum F⊕G is the persistence
module given by taking direct sums pointwise, (F ⊕G)p = Fp ⊕Gp. A persistence module is
indecomposable if F ∼= F1 ⊕ F2 implies that either F1 = 0 or F2 = 0. Since persistence
modules are actual modules (see, for instance, [8, Lemma 2.1]), by the Krull-Schmidt theorem,
a decomposition of a persistence module F = F1 ⊕F2 ⊕ . . . Fn into indecomposable summands
is unique up to permutation and isomorphism of the summands.

Let I be a non-empty connected subposet of a poset P such that for any two i, j ∈ I and
any l ∈ P , if i ≤ l ≤ j then l ∈ I. The interval module supported on I, I(I) : P → Vec,
is the indecomposable (by, e.g. [7, Proposition 2.2]) persistence module given by

I(I)p =
{
K, if p ∈ I,
0, otherwise,

with internal maps I(I)p→q =
{

id, if p, q ∈ I,
0, otherwise.

If P is a totally ordered set, every persistence module over P decomposes as a direct sum of
interval modules [6], but such a nice decomposition does not exist in general for other posets.

Decomposition and endomorphisms. A direct sum X = X1 ⊕X2 of persistence modules
is characterized up to isomorphism by morphisms ιi : Xi → X and πi : X → Xi for i = 1, 2
such that πi ◦ ιi = idXi

and ι1 ◦ π1 + ι2 ◦ π2 = idX (see, for instance, [30]). In this case,
for each i = 1, 2, the maps ιi and πi induce an endomorphism φi := ιi ◦ πi of X. Such an
endomorphism φi : X πi−→ Xi

ιi−→ X is also split:

▶ Definition 3. In any category, we say that an endomorphism φ : X → X is split if there
exists an object Y and a factorization φ : X π−→ Y

ι−→ X such that π ◦ ι = idY .

We will use the following standard fact about split endomorphisms (proof in the full version):

▶ Lemma 4. Let φ : X → X be a split endomorphism that has two factorizations X π−→ Y
ι−→

X and X π′

−→ Y ′ ι′

−→ X with π ◦ ι = idY and π′ ◦ ι′ = idY ′ . Then Y and Y ′ are isomorphic.

Every split endomorphism φ : X π−→ Y
ι−→ X is also idempotent, meaning that φ ◦φ = φ.

Moreover, in our categories of interest, namely persistent sets SetP and persistence modules
VecP , every idempotent endomorphism splits through its image, see below. In these two
categories, we define the image of a morphism f , img f , by taking the image pointwise, that
is, (img f)p = fp(Sp). The following two lemmas are standard (proof in the full version).

▶ Lemma 5. Let φ : X → X be an idempotent endomorphism in VecP or SetP . Then f

splits through its image: there exists a factorization f : X π−→ imgφ ι−→ X with π ◦ ι = idimg φ.

▶ Lemma 6. Let F : P → Vec be a persistence module, and let φ : F → F be an idempotent
endomorphism. Then F decomposes as img(idF − φ) ⊕ imgφ.

3 Endomorphisms of persistent sets and rooted subsets

As seen above, the decomposition of a persistence module is intimately related to its
idempotent endomorphisms. Our main idea is that, when studying the decomposition of
persistence modules of the form LS, for a persistent set S : P → Set, we look for idempotent
endomorphisms of S and study their image under the linearization functor L.

SoCG 2023
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▶ Definition 7. Given a persistent set S, a generator is a pair (px, x) with x ∈ Spx such
that x is not in the image of any morphism Sq→px

for any q < px. When it is clear, we will
often suppress the grade px from the notation, and directly write that x ∈ Spx

is a generator.
There is an induced preorder on the generators of S: for two generators x ∈ Spx and

y ∈ Spy
we say that (px, x) ≤ (py, y) if and only if px ≤ py. This relation might not be

antisymmetric, and so in general the preordered set of generators is not a poset.

Generators are useful because an endomorphism φ of a persistent set S : P → Set is
uniquely determined by the image of its generators: for each z ∈ Sq we have φq(z) =
Spx→q ◦ φpx

(x) for some generator x ∈ Spx
, by the commutativity property.

In linear algebra, an idempotent endomorphism can be thought as a projection onto its
image, that is, onto its fixed points. This point of view and the concept of generators above
motivates the following definition, which plays a fundamental role in our work.

▶ Definition 8. A rooted subset A is a non-empty subset of the generators of S such that
there exists an idempotent endomorphism φ of S whose set of generators that are not fixed is
precisely A. If a rooted subset is a singleton, A = {x}, we say that x is a rooted generator.

▶ Remark 9. In the case of an augmented metric space (M,d, f) and its density-Rips persistent
set S of Definition 2 there exists a bijection between the points of M and the generators of
S. A point x ∈ M first appears in the graph G0(Mf(x)), where x is always its own connected
component. In what follows, we will often identify a point x ∈ M with its generator x ∈ Spx

.
In this sense, we can understand an endomorphism of S as an endomorphism of the set of
points that is compatible with the connected components of all graphs Gε(Mσ).

We are especially interested in persistent sets obtained from (augmented) metric spaces,
and our objective is to relate rooted generators to the geometry of these objects. Considering
an augmented metric space (M,d, f) and its density-Rips persistent set, Proposition 10 below
characterizes rooted generators by the clustering behavior of the points of M .

▶ Proposition 10. Let (M,d, f) be an augmented metric space and consider a point x ∈ M .
If there exist some other point y ∈ M such that
1. f(y) ≤ f(x) (i.e. y is “denser” than x), and
2. whenever x is in a cluster of more than one point, y ∈ M is in the same cluster: for

every Gε(Mσ), if x is path-connected to some other point then x is path-connected to y,
then the generator (px, x) of the density-Rips persistent set S of M is a rooted generator.

Conversely, if x is a rooted generator of S, then there exists a point y ∈ M that satisfies
conditions 1 and 2 above.

Proof. Before going into the proof, recall that, by the way we construct S and the inclusion
P ↪→ R≥0 ×R, for each q ∈ P there is an associated graph Gε(Mσ), for some (ε, σ) ∈ R≥0 ×R.
Each element z ∈ Sq is a connected component of this graph Gε(Mσ), and the generators
x ∈ Spx

such that Spx→q(x) = z are precisely the points in that connected component.
The first part follows from Proposition 11 below, which proves it in more generality.
For the converse, let φ be an idempotent of S whose only generator that is not fixed

is x ∈ Spx . This means that there exists a generator y ∈ Spy , different from x, such that
φpx

(x) = Spy→px
(y). And clearly φpz

(z) = z for any other generator z ∈ Spz
. From the fact

that φpx
(x) = Spy→px

(y) we deduce that f(y) ≤ f(x), since py ≤ px in P . To see that the
second condition holds, pick a q ≥ px and suppose that there exists a generator w ∈ Spw

such
that Spx→q(x) = Spw→q(w). This means that in the graph Gε(Mσ) associated to q both x

and w are in the same connected component, and we claim that y is also in this component.
Indeed, by the definition of φ we have Spx→q ◦ φpx

(x) = Spy→q(y) = Spw→q(w). ◀
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▶ Proposition 11. Let (M,d, f) be an augmented metric space. If for a set of points A ⊂ M

there exists a point y ̸∈ A such that for every x ∈ A, f(y) ≤ f(x) and for each Gε(Mσ) either:
x is path-connected to y, or
the set of points that are path-connected to x is contained in A,

then the set of generators {(px, x) | x ∈ A} is a rooted subset in the density-Rips persistent
set S of M .

Proof. To show that A is a rooted subset, we need to define an appropriate idempotent φ of
S. Recalling that an endomorphism is uniquely determined by the image of its generators,
we define φ by setting

φpx
(x) =

{
Spy→px

(y), if x ∈ A,

x, otherwise,
(1)

for every generator x ∈ Spx . We need to show that φ is indeed well-defined, which means
that the image of z ∈ Sq, φq(z) = Spx→q ◦ φpx

(x), is the same no matter the generator
x ∈ Spx we choose. Fix a q ∈ P and a z ∈ Sq, and consider the set G of generators whose
image in Sq is z, G := {(px, x) | px ≤ q, Spx→q(x) = z}.

Then, to check that φ is well-defined, for every two (px, x), (pw, w) ∈ G it must hold that

Spx→q ◦ φpx
(x) = Spw→q ◦ φpw

(w). (2)

If both (px, x) and (pw, w) are not in A, or if both (px, x) and (pw, w) are in A, then Equa-
tion (2) above trivially holds, by the way we have defined φ in Equation (1).

Thus, the only interesting case is that only one of (px, x) or (pw, w) is in A. Say that
(px, x) ∈ A and (pw, w) ̸∈ A. Then, by assumption both x and w need to be path-connected
to y at the graph Gε(Mσ) associated to q, which means that, as desired,

Spx→q ◦ φpx(x) = Spy→q(y) = Spw→q(w) = Spw→q ◦ φpw (w).

Now, φ is idempotent, because for every x ∈ A we have φ2
px

(x) = φpx
(Spy→px

(y)) =
Spy→px(φpy (y)) = Spy→px(y). And it is clear that the only generators that are not fixed by
φ are those in A. We conclude that, effectively, A is a rooted subset. ◀

Decomposition induced by rooted subsets. As we have seen, rooted subsets are related
to the clustering behavior of the points. They are also related to the decomposition of the
linearized persistence module: they induce summands.

▶ Theorem 12. Let φ be an idempotent endomorphism of a persistent set S. Then the
persistence module LS decomposes into

img(idLS − Lφ) ⊕ L(imgφ).

Proof. Since φ is idempotent, Lφ is idempotent. By Lemma 6, this induces a decomposition

LS ∼= img(id − Lφ) ⊕ img Lφ.

It is left to show that img Lφ ∼= L(imgφ). Applying Lemma 5 to Lφ, we have a factorization
Lφ : LS π−→ img Lφ ι−→ LS with π ◦ ι = id. Applying Lemma 5 again, this time to φ, we
have a factorization φ : S π′

−→ imgφ ι′

−→ S with π′ ◦ ι′ = id. Now, split endomorphisms are

SoCG 2023



7:8 Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets

preserved by every functor: in the diagram LS Lπ′

−−→ L(imgφ) Lι′

−−→ LS it holds Lι′ ◦Lπ′ = Lφ
and Lπ′ ◦ Lι′ = id. Thus, the endomorphism Lφ splits in two ways:

img Lφ

LS LS

L(imgφ),

∼=

ιπ

Lπ′ Lι′

where the middle arrow exists and is an isomorphism by Lemma 4, finishing the proof. ◀

Combining the above theorem with the Krull-Schmidt theorem, we obtain the following:

▶ Corollary 13. A rooted subset of a persistent set S induces a summand in the decomposition
of LS. A rooted generator x ∈ Spx

induces an interval summand, and all other summands
can be obtained by decomposing L(imgφ), where φ is the endomorphism associated to x.

This allows to iteratively peel off intervals of a persistence module of the form LS: find a
rooted generator of S, with associated idempotent φ, and continue considering imgφ instead
of S. In the setting of an augmented metric space (M,d, f) and its density-Rips persistent
set, the intervals that are peeled off are easily interpretable through the clustering behavior
of the points M , by Proposition 10. Moreover, the conditions we describe actually happen in
practice, as we see in Section 5.

Neighborly rooted points. In fact, certain points of an augmented metric space (M,d, f)
can be seen to be rooted by looking at the nearest neighbors, which will be useful in Section 5.
In what follows we fix a total order on M compatible with the order induced by f . Recall
that the nearest neighbor of x is the element x′ ̸= x of minimum distance to x, where ties
have been broken by the fixed total order on M .

▶ Definition 14. Let (M,d, f) be an augmented metric space. An element x is neighborly
rooted if its nearest neighbor y ∈ M satisfies f(y) ≤ f(x).

▶ Lemma 15. With the notation as above, if a point x ∈ M is neighborly rooted then x is a
rooted generator in the density-Rips persistent set of (M,d, f).

Proof. It is clear that the nearest neighbor of x satisfies the conditions of Proposition 10. ◀

▶ Remark 16. We can identify all neighborly rooted points in the time it takes to solve the
all-nearest-neighbor problem. Naturally, the all-nearest-neighbor problem can be solved in
O(n2), where n is the number of points, by checking all possible pairs. When the points are
in Euclidean space, the running time can be improved to O(n logn) time [19,37].

Two notable intervals in the decomposition. The concept of rooted generators allows us
to prove that, in certain cases, we can find at least two intervals in the decomposition of
LS, as in Theorem 18 below. We first prove Theorem 17, which has already appeared in
[10, Theorem 5.3], where the proof method is to directly construct an endomorphism of the
persistence module, as we also do after composing with the linearization functor.

▶ Theorem 17. Let S be a persistent set. Suppose that the preordered set of generators of S
has a bottom ⊥ (that is, one has ⊥ ≤ x for any other generator x). Then the decomposition
of LS consists of at least one interval, induced by ⊥.
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Proof. Let ⊥ ∈ Sp⊥ be a bottom and let x ∈ Spx be a generator of S. Since ⊥ ∈ Sp⊥ is a
bottom, we have p⊥ ≤ px. We can define an idempotent φ : S → S by φpx

(x) = Sp⊥→px
(⊥)

for every generator x ∈ Spx
of S. This endomorphism is well-defined and its image has only

one generator, namely ⊥, and thus L(imgφ) is isomorphic to an interval module. ◀

▶ Theorem 18. Let (M,d, f) be an augmented metric space, and let S : P → Set be its
density-Rips persistent set, as in Definition 2. If |M | ≥ 2 then the decomposition of LS into
indecomposable summands consists of at least two intervals.

Proof. Consider a point ⊤ ∈ M of maximal function value, that is, f(⊤) ≥ f(x) for any
other x ∈ M . Let y be the nearest neighbor of ⊤. Since Mf(⊤) = Mσ for any σ ≥ f(⊤), it is
clear that ⊤ and its nearest neighbor y satisfy the conditions of Proposition 10, and thus ⊤
is a rooted generator, yielding the first interval. For the second interval, we note that there
is at least one point ⊥ ∈ M of minimal density value and apply Theorem 17. ◀

▶ Example 19. Not every summand of an indecomposable decomposition can be obtained
by taking rooted subsets and applying Corollary 13. As an example, consider the augmented
metric space given by six points {x0, . . . , x5} in the plane as in Figure 1. Note that x4 and x5
are rooted in the associated density-Rips persistent set, and that they can be peeled off. After
peeling, we obtain a persistent set S : P → Set with P := {0, 2, 3, 4} × {0, 1, 2, 3, 4, 5} ⊂ R2,
which we describe in Figure 2. This example is an adaptation of [14, Example 4.12], which is
introduced in the context of conquerors that we discuss in Section 4.

x0 x4 x1

x2x5x3

33

2 2

2 2

Figure 1 The augmented metric space (M, d, f) of Example 19, with f(xi) = i. These are six
points {x0, . . . , x5} in the plane, where the distances are given by the numbers next to each line.

We claim that the persistence module LS : P → Vec decomposes into four summands, all
of them interval modules. We denote these summands by I0, I1, I2 and I3, where each Ii is
associated to the generator (pi, xi) of S, where pi = (0, i) ∈ P . For each i = 0, . . . , 3, we set
(Ii)p = 0 for any p < pi and (Ii)pi

= K, and we define ιi : Ii → LS by

(ι0)p0(1) = [x0], (ι1)p1(1) = [x1] − [x0],
(ι2)p2(1) = [x2] − [x1], (ι3)p3(1) = [x3] − [x0] + [x1] − [x2].

The support of each Ii are the grades p ≥ pi such that ((LS)pi→p ◦ (ιi)pi
)(1) is not zero. It

can be seen that these maps induce a decomposition LS ∼= I0 ⊕ I1 ⊕ I2 ⊕ I3.
However, no subset of the generators other than {x1, x2, x3} is rooted because each of

the connected components given by {x1, x0}, {x1, x2}, {x2, x3}, and {x0, x3} appear in S.

4 Rooted generators as a generalization of the elder rule

Single-parameter case. We now suppose that the poset P is a finite totally ordered poset.
In this setting, the theory of rooted generators allows us to recover the elder rule [24] (see
also [22] and [14]).
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ε = 4 x0 x0 x1 x0 x1
x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

ε = 3 x0 x0 x1 x0 x1
x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

ε = 2 x0 x0 x1 x0 x1
x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

ε = 0 x0 x0 x1 x0 x1
x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

σ
=

0
σ

=
1

σ
=

2
σ

=
3

σ
=

4
σ

=
5

Figure 2 The persistent set S : P → Set of Example 19 obtained by taking the density-Rips
persistence set of Figure 1 and removing x4 and x5. Each node in the grid represents a partition of
the xi, where xi and xj are in the same partition if they are not separated by a line. The arrows are
the functions that send the partition of xi in one node to the partition of xi in the other.

▶ Proposition 20. Let P be a finite totally ordered poset and let S : P → Set be a persistent
set. Suppose that S has at least two generators and that S⊤ is a singleton, where ⊤ is the
maximum element of P . Then every maximal generator (in the preorder of Definition 7) is
rooted.

Proof. Let x ∈ Spx
be a maximal generator, and define

Ix := {q ∈ P | q ≥ px and, for any other generator w ∈ Spw
, Spw→q(w) ̸= Spx→q(x)}.

Since px ∈ Ix, Ix is not empty, and we can consider the set U ⊂ P of upper bounds of Ix.
Moreover, since S⊤ = {∗} and there are at least two generators by assumption, the set U \ Ix

is not empty. Let α be the least element in U \ Ix. By construction of Ix and U \ Ix, there is
a generator y ∈ Spy

such that Spy→α(y) = Spx→α(x). Now, since x is maximal, it holds that
py ≤ px, and we can define an idempotent φ : S → S by φpx(x) = Spy→px(y), and φpz (z) = z

for any other generator z ∈ Spz
. Such an idempotent is well-defined by the way we have

defined α: if there is any other generator w ∈ Spw
such that Spw→q(w) = Spx→q(x) then

α ≤ q and also Spy→q(y) = Spx→q(x). We conclude that x is rooted, as desired. ◀

Thus, when P is a total order, we can decompose any persistence module LS by peeling off
rooted generators, following Theorem 12 and by iteratively considering maximal generators.

Relation to constant conquerors. Let (M,d, f) be an augmented metric space. Cai, Kim,
Mémoli and Wang [14] define the concept of a constant conqueror as follows. First, define an
ultrametric on M : u(x, x′) := min{ε ∈ [0,∞) | x and x′ are path-connected in Gε(M)}.

Now fix a total order ≺ on M and let x ∈ M be a non-minimal element with respect to
this order. A conqueror of x in M is another point x′ ∈ M such that (1) x′ ≺ x, and (2) for
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any x′′ with x′′ ≺ x one has u(x, x′) ≤ u(x, x′′). Given a function f : M → R, a conqueror
function of a non-minimal x ∈ M , with respect to ≺, is a function cx : [f(x),∞) → M

that sends each σ to a conqueror of x in Mσ. For the minimal element ⊥ of M we define
c⊥ : [f(⊥),∞) → M to be the constant function at ⊥.

Also, in the same paper [14], given a point x ∈ M , and assuming that f : M → R is
injective, the authors define the staircode of x as the set given by

Ix := {(ε, σ) ∈ R≥0 × R | x ∈ Mσ and x is the oldest in [x](ε,σ)},

where [x](ε,σ) is the set of points that are path-connected to x in Gε(Mσ) and being the
“oldest” means f(x) < f(x′) for any other x′ ∈ [x](ε,σ). The authors also define an analogous
notion when f is not injective, which we do not reproduce here.

Finally, the authors ask the following question:

▶ Question 21. Let (M,d, f) be an augmented metric space. If x ∈ M has a constant
conqueror function, is the interval module supported by Ix a summand of its density-Rips
persistence module?

If we replace constant conqueror by rooted generator then the answer is yes, by Corollary 13.
The next example shows that the same cannot hold as originally stated in the question above.

▶ Example 22. Consider the subset M of R given by the points x0 = 0, x1 = 7.5, x2 = 3
and x3 = 5. Under the metric induced by the Euclidean distance on R, M is a metric space,
and can be made into an augmented metric space by defining f(xi) = i, see Figure 3.

x0 x2 x3 x1

3 2 2.5
M

Figure 3 The augmented metric space (M, d, f) of Example 22, with M ⊂ R and f(xi) = i.

σ = 3 x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

σ = 2 x0 x1
x2

x0 x1
x2

x0 x1
x2

x0 x1
x2

x0 x1
x2

x0 x1
x2

σ = 1 x0 x1 x0 x1 x0 x1 x0 x1 x0 x1 x0 x1

σ = 0 x0 x0 x0 x0 x0 x0

ε
=

0
ε
=

2
ε
=

2.5

ε
=

3
ε
=

4.5

ε
=

7.5

Figure 4 We picture the density-Rips persistent set of Figure 3.
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σ = 3 K2 K2 K 0 0 0

σ = 2 K2 K2 K2 K 0 0

σ = 1 K K K K K 0

σ = 0 0 0 0 0 0 0

ε
=

0
ε
=

2
ε
=

2.5

ε
=

3
ε
=

4.5

ε
=

7.5

(1 1)

(1 0)
(1 1)

(
1
0

) (
1
0

) (
1
0

)

Figure 5 An indecomposable persistence module F : P → Vec, as referenced in Example 22.

Consider the only total order ≺ on M compatible with f , x0 ≺ x1 ≺ x2 ≺ x3. The
point x1 has a constant conqueror: x0 is the only candidate, and it is clear that, for every
i = 1, . . . , 3 and x′ ≺ x1, ui(x1, x0) ≤ ui(x1, x

′), where ui is the ultrametric of Mi, precisely
because x0 is the only point that satisfies x′ ≺ x1.

Let S : P → Set be the density-Rips persistent set constructed from the augmented metric
space (M,d, f). Here, P is the subposet of R2 given by {0, 2, 2.5, 3, 4.5, 7.5} × {0, 1, 2, 3},
where the first coordinate represents the distances and the second coordinate the densities.
We picture S in Figure 4. Now we proceed to decompose LS. First, note that x3 is a
rooted generator, and consider an associated idempotent φ : S → S. By Theorem 12, there
is an interval I := img(idLS − Lφ) in the decomposition, and we can continue considering
the persistent set imgφ. In imgφ, x0 is a minimal generator. By Theorem 17 (and its
proof) there is an idempotent ψ : imgφ → imgφ such that I ′ := img Lψ is an interval.
Applying Theorem 12 again, we obtain a decomposition of LS of the form

I ⊕ I ′ ⊕ img(idL img φ − Lψ).

By direct computation, it can be seen that img(idL img φ −Lψ) is isomorphic to the persistence
module described in Figure 5. Moreover, this persistence module is indecomposable, which
can be checked by looking at its endomorphisms: a persistence module F is indecomposable if
and only if every endomorphism of F is either nilpotent or an isomorphism (see [9], and [10]).

Note that x1 is not a rooted generator in LS. In M1, x1 is its own connected component
during ε ∈ [0, 7.5), until x0 joins the connected component. And in M3 it is by itself during
ε ∈ [0, 2.5) and then joins the connected component of x3, which is not connected to x0 at
that point. Similarly, x2 is not rooted.

▶ Remark 23. Note that in Condition (2) of the definition of conqueror, we require that x′′ ≺ x.
This requirement measures part of the difference between constant conqueror function and
rooted generator for augmented metric spaces. If we drop this requirement, denoting the
resulting concept by conqueror∗, we suppose that f is injective, and that ≺ is compatible
with the order induced by f , then a non-minimal, with respect to ≺, point x ∈ M has a
constant conqueror∗ function if and only if x is a rooted generator, as in Proposition 10.
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5 A lower bound on the number of expected intervals

We apply the theory we have developed to the study of how a typical decomposition of a
persistence module coming from density-Rips might look like. In particular, suppose we
sample independently n points from a common density function f(x) in Rd, obtaining a
finite metric space M ⊂ Rd. We can then consider the augmented metric space (M,dM , f),
where f , rather than being an estimated density, is the true underlying density function.
This setting resembles actual practice, but is more suitable to theoretical study. Let S
be the density-Rips persistent set of M . Then, how many intervals can we expect in the
decomposition of LS? The following theorem says that, under very general conditions on f ,
regardless of d, and as n goes to infinity, we can at least expect 25% of the summands to be
intervals.

▶ Theorem 24. Let X1, . . . , Xn be i.i.d. points taking values in Rd, sampled from a common
density function f(x) that is continuous almost everywhere with respect to the Lebesgue
measure.

Consider the finite augmented metric space (M = {X1, . . . , Xn}, dM , f), where dM is
induced by the Euclidean metric in Rd, and let S be its density-Rips persistent set.

Let In be the random variable that counts the number of intervals in the indecomposable
decomposition of LS, and let Sn be the random variable that counts the total number of
summands in the same decomposition. We have

lim inf
n→∞

E
[
In

Sn

]
≥ c(d), (3)

where c(d) is a constant that depends on d, and c(1) = 1
3 , c(2) ≈ 0.31 and c(d) ↓ 1

4 as d → ∞.

The rest of the section is dedicated to proving this theorem. The nearest neighbor graph of
a metric space plays a fundamental role.

▶ Definition 25. The nearest neighbor graph of M is the directed graph on M given by
the directed edges of the form (x, x′), where x′ is the nearest neighbor of x.

Now, we are interested in estimating the number of neighborly rooted elements, as
in Definition 14, as they induce an interval in the decomposition of LS. However, in general
being neighborly rooted depends on f . To do without the condition on f we have:

▶ Lemma 26. Let (M,dM , f) be an augmented metric space and let S be its density-Rips
persistent set. There are at least as many intervals in the indecomposable decomposition of
LS as 2-cycles in the nearest neighbor graph of M .

Proof. We can assume without loss of generality that |M | ≥ 2. Let G be the nearest
neighbor graph of M . The only cycles in this graph are precisely the 2-cycles, and each
weakly connected component of G contains exactly one 2-cycle (see [25]).

Let C1, . . . , Ck be the weakly connected components of G. Fix i ∈ {1, . . . , k}, and let
x, y ∈ M be such that (x, y) and (y, x) is the 2-cycle in Ci. Either f(y) ≤ f(x) or f(x) ≤ f(y),
and either x is neighborly rooted, y is neighborly rooted, or both are neighborly rooted. Say
x is neighborly rooted, and define an endomorphism φi : S → S by setting

(φi)pz
(z) =

{
Spy→px

(y), if x = z,
z, otherwise,

for every generator z ∈ Spz . Such an endomorphism is well-defined as shown in Proposition 10.
Constructing, for each i, an idempotent φi as above, it is clear that we can iteratively

peel off the associated intervals, yielding the desired conclusion. ◀
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Naturally, the number of 2-cycles is half the number of points that are the nearest neighbor
of its nearest neighbor. The problem of estimating the probability for a point to be the
nearest neighbor of its nearest neighbor, assuming a random point process, has been studied
by multiple authors (see [21,25,26,27,35]).

In our case, when we have X1, . . . , Xn i.i.d. points in Rd sampled from a common density
function f under the conditions of Theorem 24, by [27, Theorem 1.1], and letting Ni,n denote
the probability event that Xi is the nearest neighbor of its nearest neighbor, we have

lim
n→∞

P(Ni,n) = b(d), (4)

where b(d) is the volume of a unit d-sphere divided by the volume of the union of two unit
spheres with centers at distance 1. In fact, b(1) = 2

3 , b(2) ≈ 0.621, and b(d) ↓ 1
2 as d → ∞

(see [35, Table 2]), and we define c(d) := b(d)
2 .

We are now ready to finish the proof of Theorem 24 at the start of the section. Apply-
ing Lemma 26 and the linearity of expectation, it holds

E[In] ≥ E
[

n∑
i=1

I(Ni,n)
2

]
=

n∑
i=1

E[I(Ni,n)]
2 =

n∑
i=1

P(Ni,n)
2 ,

where I(Ni) is the indicator random variable of Ni,n. By Equation (4) we have

lim inf
n→∞

E
[
In

n

]
≥ b(d)

2 = c(d).

Finally, noting that the number of summands in the decomposition is bounded by the number
of points, Sn ≤ n (see full version), Equation (3) of Theorem 24 follows, finishing the proof.

6 Discussion

Although we have focused our attention to augmented metric spaces and density-Rips,
rooted subsets can be applied to other persistent sets. Of special interest for us is the
degree-Rips filtration [5] of a metric space, where we filter by the degree of the vertices in the
underlying geometric graphs. To accommodate this situation, one could modify condition 1
of Proposition 10 to take into account the evolution of the degrees, rather than the density.
We leave an in-depth treatment of this case for future work.

We have seen, both in our lower bound of Section 5 and in preliminary experimental
evaluation, that we can expect to find many intervals in the decomposition of those persistence
modules coming from geometry, at least in the cases considered here. This is in contrast
to the purely algebraic setting, where, in light of recent developments [2, 3], looking for a
decomposition might fall short.
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