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Abstract
Morphisms are widely studied combinatorial objects that can be used for generating infinite families
of words. In the context of Information theory, injective morphisms are called (variable length)
codes. In Data compression, the morphisms, combined with parsing techniques, have been recently
used to define new mechanisms to generate repetitive words. Here, we show that the repetitiveness
induced by applying a morphism to a word can be captured by a compression scheme based on the
Burrows–Wheeler Transform (BWT). In fact, we prove that, differently from other compression-
based repetitiveness measures, the measure rbwt (which counts the number of equal-letter runs
produced by applying BWT to a word) strongly depends on the applied morphism. More in detail,
we characterize the binary morphisms that preserve the value of rbwt(w), when applied to any
binary word w containing both letters. They are precisely the Sturmian morphisms, which are
well-known objects in Combinatorics on words. Moreover, we prove that it is always possible to
find a binary morphism that, when applied to any binary word containing both letters, increases
the number of BWT-equal letter runs by a given (even) number. In addition, we derive a method
for constructing arbitrarily large families of binary words on which BWT produces a given (even)
number of new equal-letter runs. Such results are obtained by using a new class of morphisms
that we call Thue–Morse-like. Finally, we show that there exist binary morphisms µ for which it is
possible to find words w such that the difference rbwt(µ(w)) − rbwt(w) is arbitrarily large.
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1 Introduction

The Burrows–Wheeler transform (BWT) is a reversible permutation of words, introduced
in the Data compression field [5]. Such a transformation allows one to boost the effect
of the run-length encoding with respect to the original word in input [27]. Due to its

© Gabriele Fici, Giuseppe Romana, Marinella Sciortino, and Cristian Urbina;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gabriele.fici@unipa.it
https://orcid.org/0000-0002-3536-327X
mailto:giuseppe.romana01@unipa.it
https://orcid.org/0000-0002-3489-0684
mailto:marinella.sciortino@unipa.it
https://orcid.org/0000-0001-6928-0168
mailto:crurbina@dcc.uchile.cl
https://orcid.org/0000-0001-8979-9055
https://doi.org/10.4230/LIPIcs.CPM.2023.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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myriad virtues, some of the well-known compressed text-indexes for pattern matching [11, 13]
and the most used alignment tools in Bioinformatics [23, 21] are based on the BWT. The
performance of the BWT is related to the repetitions of factors in the word, which is why
the number of equal-letter runs of the BWT, denoted by rbwt, is considered as a measure of
repetitiveness [29]. Much attention has recently paid to the measure rbwt both for its crucial
role in designing compressed indexing data structures for highly repetitive texts [13, 16, 30]
and for its combinatorial properties [25, 14].

In Combinatorics on words, morphisms are a fundamental tool for generating repetitive
sequences, with multiple applications. For instance, injective morphisms, known as codes,
are widely used in the fields of Information theory, Data compression, and Cryptography [2].
Recently, morphisms have been used in conjunction with copy-paste mechanisms to define
novel compressors and repetitiveness measures, called NU-systems [32]. Informally speaking,
a morphism is a mechanism that transforms each letter in a given input word into a
corresponding image word, thus producing an output that is likely to contain longer repeated
factors. The relationship between morphisms and the measure rbwt has been studied in the
context of a subclass of infinite words generated by morphisms, i.e., the purely morphic
words [4, 12].

Here, we focus the impact of morphism application on the number of BWT equal-letter
runs of finite words.

In Section 3, we prove that a binary morphism is cyclic (i.e., the images of both letters
are powers of the same word) if and only if the image of every word under this morphism
has the same number of BWT equal-letter runs, regardless of the input word. We also prove
other results relating morphisms and words sharing the same Parikh vector (i.e., having the
same number of occurrences of each letter), which can be of independent interest.

Then, in Section 4 we find a novel characterization of Sturmian morphisms [3, 28] in
terms of BWT equal-letter runs: they are exactly the binary morphisms that preserve
the number of BWT equal-letter runs of every binary word containing both letters of the
alphabet. This characterization is interesting from a combinatorial point of view, because
Sturmian morphisms are a widely studied subject [3, 28]. It also builds another bridge
between Combinatorics on words and Data compression.

Further, in Section 5 we show a wide class of morphisms, which we call Thue–Morse-like
morphisms, that increase the number of BWT equal-letter runs by 2 on every binary word
containing both letters of the alphabet. Moreover, for each even number 2k, we can find
a wide class of binary morphisms, obtained by composing Sturmian and Thue–Morse-like
morphisms, that increase the BWT equal-letter runs of every binary words by exactly 2k.
Note that this is exhaustive for the binary alphabet. In fact, unless considering powers of a
single letter, every binary word has an even number of BWT equal-letter runs. In addition,
we can use the aforementioned morphisms to construct arbitrarily large families of binary
words having all the same number of BWT equal-letter runs, for every fixed (even) number,
and converging to an infinite aperiodic word.

At the other end of the spectrum, in Section 6 we show that there are binary morphisms
(in particular, the so-called period-doubling morphism) that can highly increase the number
of BWT equal-letter runs of binary words. We show that the increase in the number of BWT
equal-letter runs can be Ω(

√
n), where n is the length of the original word. In Section 7,

we show that this degree of increase cannot occur in other relevant reachable repetitiveness
measures, like the size of the Lempel–Ziv parsing [9, 22], or the size g of the smallest
deterministic context-free grammar generating the word [18].

We conclude in Section 8 with some final remarks, and some open questions and
conjectures.
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2 Preliminaries

Basic terminology

Let Σ = {a1, a2, . . . , aσ} be a finite sorted set of letters a1 < a2 < · · · < aσ, which we call an
alphabet. A finite word w = w[1]w[2] · · ·w[|w|] is any finite sequence of letters where w[i] ∈ Σ,
for i ∈ [1, |w|], and |w| is the length of the word. We denote by alph(w) the set of the letters
of Σ appearing in w. The empty word, denoted by ε, is the unique word of length 0. The set
of all finite words (resp. all finite words of positive length) over the alphabet Σ is denoted
by Σ∗ (resp. Σ+). If u = u[1] · · ·u[n] and v = v[1] · · · v[m] are words, the concatenation
uv of u and v is uv = u[1] · · ·u[n]v[1] · · · v[m]. We use the notation w[i, j] to denote the
word w[i]w[i + 1] · · ·w[j], which we call a factor of w. If i > j, then we assume w[i, j] = ε.
A factor of w is proper if it is different from w itself. The factor w[i, j] is called a prefix
when i = 1, and a suffix when j = n. We denote by Πk

i=1wi the concatenation of the words
w1, w2, . . . , wk in that order. We denote by wk the concatenation of the word w with itself k

times. A rotation of the word w = w[1]w[2] · · ·w[n] is a word of the form w[i + 1, n]w[1, i],
for some 1 ≤ i ≤ n, obtained by shifting i letters cyclically. We denote by R(w) the multiset
of all the |w| rotations of w. A factor of any word in R(w) is called a circular factor of w. A
word is primitive if w = uk implies k = 1, or equivalently, if it cannot be written as uv for
some non-empty words u and v such that uv = vu. A primitive word of length n has exactly
n distinct rotations. If w is a binary word over the alphabet {a, b}, the complement of w, i.e.,
the word obtained by replacing all the a’s of w by b’s and all the b’s by a’s, is denoted by w.
If w = w[1] · · ·w[n], the reverse of w is the word wR = w[n] · · ·w[1]. Given a word w ∈ Σ∗

and a ∈ Σ, we denote by |w|a the number of occurrences of a in w. The run-length encoding
of a word w, denoted by rle(w), is a sequence of pairs (ci, li) with ci ∈ Σ and li > 0, such
that w = cl1

1 cl2
2 · · · clr

r and ci ̸= ci+1. The length |rle(w)| is the number of equal-letter runs
in w. The Parikh vector of w, denoted as P (w), is the σ-tuple (|w|a1 , . . . , |w|aσ ). Given two
words u and v having the same length, the Hamming distance between u and v, denoted
as dH(u, v), is the number of positions at which the corresponding letters in u and v are
different. An infinite word x = x[1]x[2]x[3] · · · is a non-ending sequence of elements of the
alphabet Σ. An infinite word x is ultimately periodic if there exist u ∈ Σ∗ and v ∈ Σ+ such
that x = uvvv · · · ; it is called periodic when u = ε; aperiodic if it is not ultimately periodic.
If there is no ambiguity, finite words are simply called words.

Morphisms

Let Σ and Γ be two alphabets. A morphism is a map µ from Σ∗ to Γ∗ such that µ(uv) =
µ(u)µ(v) for all words u, v ∈ Σ∗. Therefore, a morphism µ can be defined by specifying its
action on the letters of Σ and can be denoted as µ ≡ (µ(a1), . . . , µ(aσ)). When Σ = Γ = {a, b},
µ is called a binary morphism. A morphism µ is called prolongable on a letter a ∈ Σ if
µ(a) = au for some u ∈ Σ+. If for all a ∈ Σ it holds that µ(a) ̸= ε, then the morphism
µ is called non-erasing. From now on, we will consider non-erasing morphisms, unless
stated explicitly otherwise. If there exists k such that |µ(a)| = k for every a ∈ Σ, then the
morphism is called k-uniform. A 1-uniform morphism is called a coding. Given a morphism
µ prolongable on some letter a ∈ Σ, the family of words {a, µ(a), . . . , µi(a), . . .} are prefixes
of a unique infinite word µ∞(a) = limi→∞ µi(a), that is a fixed point of µ. Such an infinite
word is then called purely morphic. An infinite word is morphic if it is obtained by applying
a coding to a purely morphic word. A morphism µ is cyclic if there exists z ∈ Γ∗ such that
µ(a) ∈ z∗, for each a ∈ Σ. Otherwise, it is called acyclic. Note that the fixed point of a
cyclic morphism is periodic. In the case of a binary morphism, it is known that µ is cyclic if
and only if µ(ab) = µ(ba).

CPM 2023
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Sturmian words and Sturmian morphisms

Let Σ = {a, b}. A word w ∈ Σ∗ is called balanced if the difference of the number of a’s (or,
equivalently, b’s) in every two factors of the same length of w is at most 1. An infinite word
x is balanced if every finite factor of x is balanced. A finite word w is circularly balanced if
each word in R(w) is balanced.

An infinite word over Σ = {a, b} is a Sturmian word if it has exactly n + 1 distinct factors
of length n for every n ≥ 0. The theory of Sturmian words is very well studied (see [24] for a
reference). For example, the following characterization is well known.

▶ Theorem 1. An infinite word over Σ = {a, b} is Sturmian if and only if it is balanced and
aperiodic.

A class of Sturmian words, called characteristic Sturmian words, can be constructed by
using finite words, called standard Sturmian words, defined recursively as follows. Given
an infinite sequence of integers (d0, d1, d2, . . .), with d0 ≥ 0, di > 0 for all i > 0, called
directive sequence, the associated standard Sturmian words are defined by s0 = b, s1 = a,
and si+1 = s

di−1
i si−1, for i ≥ 1. A characteristic Sturmian word is the limit of an infinite

sequence of standard Sturmian words, i.e., s = limi→∞ si. Note that standard Sturmian
words are finite words also appearing as extremal case for several algorithms and data
structures [19, 7, 26, 37].

A Sturmian morphism is a morphism that maps infinite Sturmian words to infinite
Sturmian words. Some combinatorial characterizations of Sturmian morphisms have been
proved in [3]. In particular, a binary morphism µ is Sturmian if and only if it is acyclic
and balanced (i.e., it maps balanced words to balanced words). Berstel and Séébold [3] also
proved the following characterization:

▶ Theorem 2. An acyclic morphism µ is Sturmian if and only if it is locally Sturmian, that
is, there exists a Sturmian word s such that µ(s) is Sturmian.

Let us denote the following morphisms:

E :
{

a 7→ b

b 7→ a
φ :

{
a 7→ ab

b 7→ a
φ̃ :

{
a 7→ ba

b 7→ a

The morphism φ is called the Fibonacci morphism, since its fixed point is the Fibonacci
word abaababaabaababaab · · · . The monoid {E, φ, φ̃}∗ generated by E, φ, and φ̃, by using
the composition operator ◦, is known as the Sturm monoid. The following theorem, proved
in [28], shows the combinatorial structure of Sturmian morphisms.

▶ Theorem 3. A morphism is Sturmian if and only if it belongs to {E, φ, φ̃}∗.

Burrows–Wheeler transform

The Burrows–Wheeler transform (BWT) of a word w, denoted by bwt(w), is a permutation
of w obtained by sorting all its rotations in lexicographical order and then concatenating the
last symbol of each rotation. The original word can be recovered if one stores the position
where it appears in the list of sorted rotations. If a word is highly repetitive, the number of
equal-letter runs of the BWT tends to be small. In fact, Kempa and Kociumaka have shown
that rbwt is never too far from the size of the Lempel-Ziv parsing, a widely used repetitiveness
measure [16]. Hence applying run-length encoding to the BWT is very effective. Because
of this, the value rbwt(w) = |rle(bwt(w))| that counts the number of BWT-runs of w, i.e.,
equal-letter runs of bwt(w), is used as a measure for capturing the repetitiveness of the word
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w. To understand the particularities of the BWT of a word w, sometimes it is useful to think
about the BWT-matrix of the sorted rotations of w. It is not difficult to see that, when w is
a word such that alph(w) = {a, b}, then rbwt(w) is an even number.

The Burrows–Wheeler transform is strictly related to the notions of balance, Sturmian
word and morphism, as shown in the following proposition.

▶ Proposition 4. Let w be a word such that alph(w) = {a, b}. Then the following are
equivalent:
1. w is circularly balanced;
2. w ∈ R(sℓ), for some standard Sturmian word s and for some ℓ > 0;
3. rbwt(w) = 2;
4. w = (µ(a))ℓ for a Sturmian morphism µ and for some ℓ > 0.

Proof. The equivalence of 1, 2 and 3 is in [26, 35]. The equivalence with 4 is in [8] (see also
Proposition 10 in [34]). ◀

3 Morphisms and sorted rotations of words

We start by introducing some definitions regarding the rotations of morphic images of words.

▶ Definition 5. Let µ : Σ∗ 7→ Γ∗ be a morphism. Then, we define the multisets

Iµ(w) = {µ(w′) |w′ ∈ R(w)}
Sµ(w) = {vµ(w′)u |u, v ∈ Γ+, uv = µ(a) for some a ∈ Σ, and aw′ ∈ R(w)}.

The multiset Iµ(w) corresponds to the rotations of µ(w) obtained by applying µ to the
rotations of w. The multiset Sµ(w) corresponds to all the remaining rotations of µ(w). We
refer to the multiset Iµ(w) as the I-rotations of µ(w), and to the multiset Sµ(w) as the
S-rotations of µ(w). These two multisets could have elements that end up being equal, as we
show in the following example.

▶ Example 6. Let µ ≡ (a, bab), which is an acyclic binary morphism. Then, ab is primitive
but µ(ab) = abab is not. Moreover, Iµ(w) = {abab, baba} = Sµ(w).

We now prove some combinatorial properties of words having the same Parikh vector. By
using such properties, we prove that, in the case of the binary alphabet, the lexicographic
order among the rotations of a given word is either preserved or reversed, after a morphism
is applied. This is a key point to show that the number of BWT-runs cannot decrease after
the application of a binary morphism. This is no longer true for larger alphabets.

The following lemma shows that distinct words having the same Parikh vector must have
Hamming distance of at least 2.

▶ Lemma 7. Let w1, w2 ∈ Σ∗ be such that w1 ̸= w2 and P (w1) = P (w2). Then,
dH(w1, w2) ≥ 2.

Proof. By definition of dH , we have that dH(w1, w2) = 0 if and only if w1 = w2. So, let us
suppose by contradiction that dH(w1, w2) = 1. Then, there exist two finite words u, v ∈ Σ∗

and two distinct indices i < j ∈ [1, σ] such that w1 = uaiv and w2 = uajv. It follows that
the Parikh vectors of w1 and w2 are respectively

P (w1) = (|u|a1 + |v|a1 , . . . , |u|ai
+ |v|ai

+ 1, . . . , |u|aj
+ |v|aj

, . . . , |u|aσ
+ |u|aσ

)

and

P (w2) = (|u|a1 + |v|a1 , . . . , |u|ai + |v|ai , . . . , |u|aj + |v|aj + 1, . . . , |u|aσ + |u|aσ ).

Thus, we obtain that the P (w1) ̸= P (w2), a contradiction. ◀

CPM 2023



10:6 On the Impact of Morphisms on BWT-Runs

Since all the words in the same conjugacy class share the same Parikh vector, we can
derive the following

▶ Corollary 8. Let w ∈ Σ∗ be a word. Then, for every word w′ ∈ R(w) such that w′ ̸= w,
one has dH(w, w′) ≥ 2.

Here, we introduce and study new properties of some classes of morphisms, which are
related to the number of BWT-runs.

▶ Definition 9. A morphism µ is abelian order-preserving if for every pair of distinct words
x and y having the same Parikh vector, it holds that x < y ⇐⇒ µ(x) < µ(y).

A morphism µ is abelian order-reversing if for every pair of distinct words x and y having
the same Parikh vector, it holds that x < y ⇐⇒ µ(x) > µ(y).

In general, a morphism can be neither abelian order-preserving nor abelian order-reversing:

▶ Example 10. A cyclic morphism is trivially not abelian order-preserving nor abelian
order-reversing. The acyclic morphism µ ≡ (b, a, c) is also neither of them. This can be
verified on the rotations of the word abc.

However, all acyclic morphisms with a binary domain are either abelian order-preserving
or abelian order-reversing, as we show in the following lemma.

▶ Lemma 11. Let µ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then, µ is either abelian
order-preserving or abelian order-reversing.

Proof. Let µ ≡ (α, β) be an acyclic morphism (i.e., αβ ̸= βα). For the proof, we assume
that |α| ≤ |β|, and the other case is treated symmetrically. Factorize µ as (α, β) = (α, αkv),
where k ≥ 0 is as big as possible. This factorization is unique, and α is not a prefix of v,
otherwise, k is not as big as possible. Also, v ̸= ε and v ̸= α because the morphism µ is
acyclic. Let x = uaz1 and y = ubz2 be two distinct binary words with the same Parikh vector.
Note that a b has to appear in z1, since otherwise x has fewer b’s than y. Let z1 = atbz′

1
for some t ≥ 0 and z′

1 ∈ {a, b}∗. We can write x = uaatbz′
1. Then, µ(x) = µ(u)αkααtvµ(z′

1)
and µ(y) = µ(u)αkvµ(z2). We proceed by case analysis.

If v is not a prefix of α, then the order between µ(x) and µ(y) depends only on the order
between α and v. The reason is that µ(x) and µ(y) share a common prefix µ(u)αk, followed
by α and v respectively, which differ at some position from left to right. Hence, if α < v, we
obtain x < y ⇐⇒ µ(x) < µ(y); if v < α, then we obtain x < y ⇐⇒ µ(x) > µ(y).

If v is a proper prefix of α and k > 0, rewrite µ(y) = µ(u)αkvαz′
2. We can do this

because y has to have at least one letter after ub and both images α and β start with α

(in the case of β because k > 0). We note that the common prefix µ(u)αk is followed by
αv in µ(x) (αv is a prefix of αα), and by vα in the case of µ(y). The order between µ(x)
and µ(y) is then completely determined by the order between αv and vα. This happens
because αv and vα are words of the same length which must be distinct, as implied by the
inequality αβ = ααkv ̸= βα = αkvα. Hence, if αv < vα, we obtain x < y ⇐⇒ µ(x) < µ(y);
if vα < αv, then we obtain x < y ⇐⇒ µ(x) > µ(y).

No other case is possible. By construction, α is not a prefix of v. Also, α ̸= v, so if v is a
prefix of α, it has to be a proper prefix. If this is the case, as |α| ≤ |αkv| and |v| < |α|, k has
to be at least 1. ◀

Using Lemma 11 we can easily derive the following corollary.
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▶ Corollary 12. Let w be a binary word and let µ be an acyclic morphism. Then, for all pairs
of rotations u, v of w, either u < v ⇐⇒ µ(u) < µ(v) (when µ is abelian order-preserving),
or u < v ⇐⇒ µ(u) > µ(v) (when µ is abelian order-reversing).

We introduce new measures to study how the action of a morphism affects the BWT-runs.

▶ Definition 13. Let µ be a morphism and w a word. We define

∆+
µ (w) = rbwt(µ(w))− rbwt(w)

and

∆×
µ (w) = rbwt(µ(w))

rbwt(w) .

Acyclic binary morphisms cannot decrease the number of BWT-runs of any word.

▶ Theorem 14. Let µ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then ∆+
µ (w) ≥ 0 for every

w ∈ {a, b}∗.

Proof. Let µ ≡ (α, β). Since rbwt(w) = rbwt(wm) for every w ∈ Σ∗ and m > 1, let us
assume that w is primitive. For the proof, we assume that |α| ≥ |β|, and the other case
is treated symmetrically. First, let us consider the case where β is not a suffix of α. Let
moreover x ∈ Σ∗ be the longest common suffix between α and β. It follows that there exist
α′, β′ ∈ Σ+ such that α = α′x and β = β′x, and that the last symbol of α′ is different
from the last of β′ (otherwise x would be longer). Let Rx(µ(w)) denote the multiset of
rotations of µ(w) with x as a prefix. Note that if x = ε, then Rx(µ(w)) = Iµ(w). Since x

appears in both α and β, it follows that |Rx(µ(w))| ≥ |w|. Specifically, for each i ∈ [1, |w|],
there exists ti ∈ Rx(µ(w)) such that ti = xµ(w[i + 1, |w|] · w[1, i − 1])v, where v is either
α′ or β′, depending on whether w[i] is a or b respectively. The lexicographical order of
these |w| rotations of µ(w) with the same prefix correspond to the lexicographical order of
the rotations in Iµ(w), since by Corollary 8 the words

⋃|w|
i=1{µ(w[i + 1, |w|] · w[1, i − 1])}

must differ in at least one position. By Corollary 12 this is either in the same or in the
reverse order with respect to the sorting of the rotations of w. Thus, there exists an injective
coding λ : {a, b}∗ 7→ Σ′∗ ⊆ Σ such that either λ(bwt(w)) or λ(bwt(w)R) is a subsequence of
bwt(µ(w)), and therefore rbwt(µ(w)) ≥ rbwt(w).

Let us now consider the case where β is suffix of α. Then, there exists a primitive word
u ∈ Σ+ and two integers p ≥ q ≥ 1 such that β = uq, and α = α′up, with α′ ∈ Σ+ that does
not have u as suffix. Note that α′ ̸= ε, otherwise we would have αβ = upuq = uqup = βα,
i.e. µ would not be acyclic. Let x be the longest common suffix between α′ and u. If x ̸= α′,
from analogous arguments to the case where β is not a suffix of α, we have at least rbwt(w)
equal-letter runs in Rxup(µ(w)). Otherwise, if x = α′, let us consider the word y ∈ Σ+ such
that u = yx. We can then consider the longest common suffix x′ between xy and yx, which
must be a proper suffix (otherwise u would not be primitive), and apply the same reasoning
over the set Rx′xup(µ(w)) and the thesis follows. ◀

The following example shows that Theorem 14 does not hold in the case of larger
alphabets.

▶ Example 15. Consider the acyclic morphism µ ≡ (b, a, c). Then, bwt(bcba) = bcab and
bwt(µ(bcba)) = bwt(acab) = cbaa.

An immediate consequence of Theorem 14 is the following.

CPM 2023
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▶ Corollary 16. Let µ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then, ∆×
µ (w) ≥ 1, for every

w ∈ {a, b}∗.

The following theorem provides a characterization of cyclic morphisms in terms of the
number of BWT-runs.

▶ Theorem 17. A morphism µ : {a, b}∗ 7→ Σ∗ is cyclic if and only if there exists k > 0 such
that rbwt(µ(w)) = k for all w ∈ {a, b}∗.

Proof. If µ ≡ (α, β) is cyclic then there exists a primitive word u ∈ Σ∗ such that α = up

and β = uq, for some p, q ≥ 0. Therefore, for each word w ∈ {a, b}∗, we have rbwt(µ(w)) =
rbwt(up·|w|a+q·|w|b) = rbwt(u). The other implication is a consequence of Theorem 14. In fact,
by contraposition for each k > 0 we can find a word w such that rbwt(w) > k (for instance, the
i-th Thue–Morse finite word such that i > k

2 [4]), which leads to rbwt(µ(w)) ≥ rbwt(w) > k

as well. ◀

4 Binary morphisms preserving rbwt

This section is devoted to characterizing binary morphisms such that the number of BWT
equal-letter runs is preserved after the action of the morphism on any binary word. First, we
show with an example that this property is not trivial.

▶ Example 18. Let θ ≡ (ab, aa) be the period-doubling morphism. It can be verified that
∆+

θ (ab) = 0, ∆+
θ (aab) = 2, and ∆+

θ (aaabbaabab) = 4.

Next, we show that every Sturmian morphism fixes the number of BWT-runs. From the
definition of E, φ, and φ̃, and by Lemma 11, we derive the following.

▶ Lemma 19. Let w ∈ {a, b}∗ be a binary word. Then, for all pairs of rotations u and v of
w, and for each χ ∈ {E, φ, φ̃}, it holds that u < v if and only if χ(u) > χ(v).

We prove that the number of BWT-runs is preserved by the morphisms that are the
generators of the Sturmian morphisms. Note that from the following lemma a method can
be derived to construct bwt(µ(w)) starting from bwt(w), for every Sturmian morphism µ and
every binary word w.

▶ Lemma 20. Let w ∈ {a, b}∗ be a binary word with |alph(w)| = 2. Then, for all χ ∈
{E, φ, φ̃}, one has rbwt(w) = rbwt(χ(w)). More in detail, one has bwt(E(w)) = bwt(w)R

and bwt(φ(w)) = bwt(φ̃(w)) = bwt(w)R · a|w|a .

Proof. Since for each word w and each integer k > 0 we have rbwt(w) = rbwt(wk), let us
assume that w is a primitive word. From Lemma 19, the case χ = E is trivial: in fact, from
it follows that bwt(E(w)) = bwt(w)R, and therefore rbwt(w) = rbwt(E(w)).

For the case χ = φ one can observe that every b that occurs in φ(w) is obtained from
φ(a), and therefore it is always preceded by an a. Thus, the rotations of φ(w) left to cover
are all those starting with an a, which therefore must also start with either φ(a) or φ(b). By
Lemma 19, and by observing that φ(a) ends with a b and φ(b) ends with an a, we have that
bwt(φ(w)) = bwt(w)R · a|w|a . Thus, we need to check if the run of a’s at the end merges
with the last symbol of bwt(w)R. This is equivalent to checking that the first symbol of
bwt(w) is a b, and by contradiction if the first rotation in lexicographical order is ua for
some u ∈ {a, b}n−1, then au is a conjugate of w and au < ua for each binary word w, a
contradiction.
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For the case χ = φ̃, one can see for any binary word w = w1w2 · · ·wn we have that
φ(w) = φ(w1w2 · · ·wn) = av1av2 · · · avn, where for each i ∈ [1, n] we have vi = b if wi = a, or
vi = ε if wi = b. On the other hand, for the same word w we have φ̃(w) = φ̃(w1w2 · · ·wn) =
v1av2 · · · avna, where analogously to the previous case vi = b if wi = a, or vi = ε if wi = b.
One can notice that φ(w) and φ̃(w) are conjugate, and the thesis follows. ◀

A graphical interpretation of Lemma 20 is shown in Figure 1.

M(w)

aabba b

abaab b

abbab a

baabb a

babaa b

bbaba a

M(φ(w))

a.a.ab.a.ab.a b.
a.ab.a.ab.ab. a.
a.ab.ab.a.a.a b.
ab.a.a.ab.a.a b.
ab.a.ab.ab.a. a.
ab.ab.a.a.ab. a.
b.a.a.ab.a.ab. a

b.a.ab.ab.a.a. a

b.ab.a.a.ab.a. a

M(φ̃(w))

a. a.a.ba.a.ba. b

a. a.ba.a.ba.b a.
a. a.ba.ba.a.a. b

a. ba.a.a.ba.a. b

a. ba.a.ba.ba. a.
a. ba.ba.a.a.b a.
b a.a.a.ba.a.b a.
b a.a.ba.ba.a. a.
b a.ba.a.a.ba. a.

Figure 1 From left to right, the BWT-matrix for the words w = abbaba, φ(w), and φ̃(w)
respectively. For M(φ(w)) and M(φ̃(w)), we separate with dots the images of symbols from w. The
rotations in bold of M(φ(w)) and M(φ̃(w)) correspond to the words in Iφ(w) and Iφ̃(w) respectively.
The block of rotations in gray at the end of both M(φ(w)) and M(φ̃(w)) are in correspondence
of the equal-letter run of a’s of length |w|a, which occurs for every w ∈ {a, b}∗. One can see that
bwt(φ(w)) = bwt(φ̃(w)) = bwt(w)R · a|w|a .

The following theorem shows a new characterization of Sturmian morphisms.

▶ Theorem 21. Let µ be a binary morphism. Then, the following are equivalent:
1. ∆+

µ (w) = 0 for every word w with |alph(w)| = 2;
2. µ is a Sturmian morphism.

Proof. By Theorem 3 and Lemma 20, all Sturmian morphisms preserve the number of
BWT-runs. Conversely, suppose that µ preserves the number of BWT-runs. By Theorem 17,
such a morphism must be acyclic. Let s = lim si be a characteristic Sturmian word. For
every i, the word µ(si) has 2 runs in its BWT, hence it is circularly balanced (Proposition 4).
Let us consider the word µ(s) = lim µ(si). It is balanced and aperiodic, since it is obtained
by applying an acyclic morphism to a Sturmian word [6]. Then, µ(s) is Sturmian by using
Theorem 1, whence µ is a Sturmian morphism by applying Theorem 2. ◀

5 Binary morphisms increasing rbwt by a constant

The next step after characterizing Sturmian morphisms as those fixing BWT equal-letter runs
on binary words, is to find other binary morphisms that increase the number of BWT-runs
always by the same fixed constant. Remind that if such a constant exists, it has to be an
even integer because the BWT of any binary word starts with b and ends with a.

We show that for every k > 0, we can find a morphism increasing the BWT-runs of any
binary word by exactly 2k. We do so by showing a family of binary morphisms that increase
the BWT-runs always by 2, which then we can compose as we want. This family is formed by
binary morphisms that are similar to the famous Thue–Morse morphism τ ≡ (ab, ba). The
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structure of the BWT of Thue–Morse words has been studied before and it is well understood
[4, 10]. We generalize such results by showing how to derive bwt(µ(w)) from bwt(w) for every
Thue–Morse-like morphism µ and every binary word w.

▶ Definition 22. A binary morphism is Thue–Morse-like if it has the form τp,q ≡ (abp, baq)
for some p, q > 0.

We prove the following proposition, which is crucial to obtain the main result of this
section. Figure 2 highlights the key aspects of the proof.

▶ Proposition 23. For every binary word w such that alph(w) = {a, b}, the I-rotations of
τp,q(w) are contiguous in the BWT-matrix of τp,q(w), and their last letters spell bwt(w).

Proof. Let w be a binary word of length n such that alph(w) = {a, b}. Observe that
τp,q ≡ (abp, baq) is abelian order-preserving, so the I-rotations of τp,q(w) maintain their
relative order. Because τp,q(a) ends with b and τp,q(b) ends with a, if we consider only the
I-rotations of τp,q(w) and take the last letter of each, we obtain bwt(w), which starts with a

and ends with b. It remains to show that all the I-rotations of τp,q(w) are contiguous in its
BWT-matrix.

If p > 1, each S-rotation starting with a, has to start either with aib for some 2 ≤ i ≤ q+1,
or with abaq, and both of these prefixes are smaller than abp. If p = 1, an S-rotation starting
with a is smaller than the word a(baq)n−1baq−1, which is smaller than a rotation having
(ab)iba as a prefix for some 0 < i < n. The I-rotations that start with a have prefixes of
such type. In both cases, we obtain that the S-rotations starting with a are smaller than the
I-rotations starting with a. A symmetric argument shows that S-rotations starting with b

are greater than the I-rotations starting with b. Thus, the I-rotations are contiguous and the
thesis holds. ◀

Now we are ready to show that Thue–Morse-like morphisms increase the number of
BWT-runs of binary words always by 2.

▶ Lemma 24. For every binary word w such that alph(w) = {a, b}, it holds that

bwt(τp,q(w)) = b|w|ba(q−1)|w|b · bwt(w) · b(p−1)|w|aa|w|a ,

and that rbwt(τp,q(w)) = rbwt(w) + 2.

Proof. We show that the block of bwt(τp,q(w)) that corresponds to the S-rotations starting
with the letter a is equal to b|w|ba(q−1)|w|b . If q = 1, all the S-rotations starting with a end
with the letter b. If q > 1, the only S-rotations that start with a and end with b have as
a prefix either aq+1b or aqbaq. The smallest S-rotation starting with a and ending with a

starts with aqbpab or aqbpba. Hence, S-rotations starting with a and ending with b appear
before those ending with a.

It follows that the block of bwt(τp,q(w)) defined by the S-rotations starting with a spells
b|w|ba(q−1)|w|b , because of their order, and because each of these rotations is in correspondence
with some specific a inside τp,q(b) for some specific b of w. Only one of these a’s per image
produces a rotation ending with b, and the other q − 1 a’s yield rotations ending with a.

Showing that the block of bwt(τp,q(w)) corresponding to the S-rotations starting with
the letter b equals b(p−1)|w|aa|w|a is handled symmetrically.

By using Proposition 23, we obtain

bwt(τp,q(w)) = b|w|ba(q−1)|w|b · bwt(w) · b(p−1)|w|aa|w|a .

As bwt(w) starts with a and ends with b, we have that rbwt(τp,q(w)) = rbwt(w) + 2, and the
thesis holds. ◀
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a . . . b

... BWT-matrix(w) x

b . . . a

τp,q≡(abp,baq)
==========⇒

p,q>1

aq+1bp . . . b
... Block 1

...
aqbaq . . . b

aqbp . . . a
... Block 2

...
abaq . . . a

abp . . . a

... Block 3 x

baq . . . b

babp . . . b
... Block 4

...
bpaq . . . b

bpabp . . . a
... Block 5

...
bp+1aq . . . a

Figure 2 Scheme showing the action of a Thue–Morse-like morphism τp,q ≡ (abp, baq) with
p, q > 1 on a binary word w with alph(w) = {a, b}. At the left is the BWT-matrix of w. At the right
is the BWT-matrix of τp,q(w). The cases where p = 1 or q = 1 are similar with Block 2 or Block 4
omitted.

As a consequence of Theorem 21 and Lemma 24, we obtain the following corollary.

▶ Corollary 25. Given a non-negative even integer 2t, there exists a binary morphism µ such
that ∆+

µ (w) = 2t and ∆×
µ (w) ≤ t + 1, for every word w with |alph(w)| = 2.

Proof. We can construct the morphism µ ∈ ({E, φ, φ̃}∪{(abp, baq) | p, q > 0})∗ such that µ is
obtained by composing, in any order, exactly t morphisms taken in the set {(abp, baq) | p, q >

0} and an arbitrary number of Sturmian morphisms. By Theorem 21 and Lemma 24, it holds
that ∆+

µ (w) = 2t. The value of the function ∆×
µ (w) = (rbwt(w)+2t)/rbwt(w) = 1+2t/rbwt(w)

is maximized when rbwt(w) = 2. This maximum is ∆×
µ (w) = t + 1. ◀

We conclude this section by showing a simple algorithm that allows us to construct an
arbitrarily large family of words w1, w2, . . . with exactly 2t BWT-runs each. In Algorithm 1,
a morphism µ such that ∆+

µ (w) = 2(t − 1) for every binary word is required. Note that
Corollary 25 assures that such a morphism exists.

Moreover, each word wi is a prefix of the next word wi+1, so that the infinite word
w = limi→∞ wi is well defined, and it is aperiodic. This is given because it holds for the
(implicit) standard Sturmian words si for i ∈ [1, k] being used, which are circularly balanced
(i.e., rbwt(w) = 2 on them, as reported in Proposition 4), and their limit is a characteristic
Sturmian word, which is aperiodic.
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Algorithm 1 Algorithm for constructing words with 2t BWT-runs.

Require: A morphism µ with ∆+
µ (w) = 2(t− 1). A sequence of positive integers d1, . . . , dk.

Ensure: A sequence of words w1, w2, . . . , wk where rbwt(wi) = 2t for any 1 ≤ i ≤ k.
w−1 ←− µ(b)
w0 ←− µ(a)
for i ∈ [1, k] do

wi ←− wdi
i−1wi−2

end for
return w1, . . . , wk

6 Morphisms with an unbounded increase on rbwt

There exist morphisms that do not behave as well as Sturmian and Thue–Morse-like
morphisms with respect to rbwt. If we consider an alphabet of size greater than 2, we
can always find a morphism µ such that the values ∆+

µ (w) and ∆×
µ (w) are arbitrarily large.

▶ Lemma 26. Let Σ = {c1, . . . , ck, a, b} with k ≥ 1. Let φ ≡ (ab, a) be the Fibonacci
morphism. Then, rbwt(w) = k + 3 if w belongs to {φ2i(a)c1c2 · · · ck | i ≥ 1}.

Proof. We prove the result by induction on k ≥ 1. Observe that the words φ2i(a) for i ≥ 1
are Fibonacci words ending with the letter a. It is known that in these words, if we append
the letter c1 smaller than a at the end, then the number of runs becomes 4 [31, Theorem 11].
For the inductive step, suppose that rbwt(φ2i(a)c1 . . . ck−1) = k + 2. When appending ck at
the end, the rotations that do not start with ck keep their relative order, and the rotation
that originally ended with ck−1 now ends with ck. Hence, they define the same number of
runs as before. The rotation starting with ck can be found after the rotation starting with
ck−1, which does not end with b, and before the first rotation starting with a, which ends
with b. Hence, the number of runs increases by 1. Thus, rbwt(φ2i(a)c1 . . . ck) = k + 3. ◀

▶ Lemma 27. Let Σ = {c1, . . . , ck, a, b} with k ≥ 1. Let φ ≡ (ab, a) be the Fibonacci
morphism, and µ ≡ (c1, c2, . . . , ck, ab, a) be a morphism on the alphabet Σ. Then, rbwt(w) =
Ω(log n) for every w ∈ {µ(φ2i(a)c1c2 · · · ck) | i ≥ 1}.

Proof. The morphism µ maps a Fibonacci word ending with a having c1 . . . ck appended at
the end, to the next Fibonacci word, which ends with b, having c1 . . . ck appended at the
end. For k = 1, it is known that the number of runs in this family is Ω(log n) [15]. In a
similar way to Lemma 26, it is possible to prove by induction that appending ck at the end
of µ(φ2i(a)c1c2ck−1) adds 2 runs when k = 2 and exactly 1 new run when k > 2. ◀

▶ Proposition 28. For each alphabet Σ with size greater than 2 there exist a morphism µ,
satisfying that for every k, there is a word w ∈ Σ∗ such that ∆+

µ (w) ≥ k and ∆×
µ (w) ≥ k.

Proof. This is immediate from Lemma 26 together with Lemma 27. ◀

Finding examples like the previous ones for binary morphisms is trickier, but at least in
the case of ∆+

µ , it is possible. An example of a binary morphism for which the value ∆+
µ (w)

can be arbitrarily large is the period-doubling morphism denoted by θ and defined by the
rules θ(a) = ab and θ(b) = aa.

▶ Lemma 29. Let θ be the period-doubling morphism. For any positive integer k there exist
a word w such that ∆+

θ (w) > k.
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Proof. W.l.o.g assume that k > 2. For i ∈ [2, k] define the words

si = abia · ui and ei = abia · uR
i , where ui = a2k−ibai−2.

We say that si is a starting factor, and ei is an ending factor. Observe that si (resp. ui) is
always smaller than ei (resp. uR

i ). Moreover, it holds that if i < j, then ui < uj < uR
j < uR

i .
We define the word wk = (Πk

i=2siei)ak and show that ∆+
θ (wk) = 2k. Figure 3 shows the

structure of both BWTs and highlights the increase in the number of runs.

a . . . . . . b
...

...
... x

a bkauR
k . . . a

ba a2kb . . . a
...

...
... y

ba bb . . . a

b2a u2 . . . a

b2a u3 . . . ab
...

...
...

...
b2a uk . . . abk−2

b2a uR
k . . . abk−2

...
...

...
...

b2a uR
3 . . . ab

b2a uR
2 . . . a

...
...

...
...

bka uk . . . a

bka uR
k . . . a

θ≡(ab,aa)========⇒
reverse order

b . . . . . . a

ab . . . . . . aa
...

...
... x

ab θ(bkauR
k ) . . . ab

(aa)b . . . . . . a

(aa)ab θ(a2kb) . . . ab
...

...
... y

(aa)ab θ(bb) . . . ab

(aa)2b . . . . . . a

(aa)2ab θ(u2) . . . ab

(aa)2ab θ(u3) . . . aa
...

...
...

...
(aa)2ab θ(uk) . . . aa

(aa)2ab θ(uR
k ) . . . aa

...
...

...
...

(aa)2ab θ(uR
3 ) . . . aa

(aa)2ab θ(uR
2 ) . . . ab

(aa)3b . . . . . . a
...

...
...

...
(aa)kb . . . . . . a

(aa)kab θ(uk) . . . ab

(aa)kab θ(uR
k ) . . . ab

Figure 3 To the left is the BWT-matrix of wk. To the right is the BWT-matrix of θ(wk), here
displayed in reverse order. Each gray row represents a block of rotations from Sθ(wk) starting with
the same prefix, highlighted in the first column. Each one of these block except the first one yields 2
extra runs on bwt(θ(wk)). The words x and y correspond to the concatenation of the last letters of
blocks of the BWT-matrix of wk whose form is unknown, but do not play a role in the increase on
rbwt(θ(wk)).

Consider the rotations of wk starting with bia with 1 < i ≤ k. The left shift of the
unique rotation starting with the i-th starting factor, and the left shift of the unique rotation
starting with the i-th ending factor, are the smallest and greater, respectively. Both of them
end with the letter a. The remaining rotations starting with bia (if any) have to end with b

because in them the prefix bia corresponds to a suffix of a longer run of b’s followed by an a.
In the case of the rotations of wk starting with ba, the one starting in the last b of ek, has

bakak as a prefix, so it is the smallest of them. Also, this rotation is preceded by the factor
abkaak−2, which ends in a. The greatest rotation starting with ba is the one starting with
the b preceding e2, which is followed by abb and preceded also by an a. In the case of the
rotations of wk starting with a, the smallest of them ends with the letter b as in any binary
word. The greatest is the rotation starting with abkauR

k which is preceded by the letter a.
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With the general structure of the BWT of wk in mind, now we analyse the BWT of
θ(wk). The morphism θ is order-reversing and all the I-rotations of θ(wk) start with the
letter a. S-rotations of θ(wk) starting with the letter b are always preceded by an a, and
it is easy to see that this run of a’s merges with the last a in the greatest I-rotation. The
S-rotations starting with an a have an even number of a’s before the first b appears, and also
end with the letter a. This implies that they appear grouped after all the I-rotations of the
form (aa)iab for some 1 ≤ i ≤ k, and before all the I-rotations starting with (aa)i−1ab. As
the smallest and greatest rotations of each of these blocks of I-rotations end with b (because
of the action of θ), it follows that the group of S-rotations starting with (aa)ib increases the
number of runs of the BWT of θ(wk) by 2 with respect to the BWT of wk. This happens for
1 ≤ i ≤ k, so the overall increase in rbwt after applying the morphism θ is exactly 2k. ◀

From the lemma above we can deduce that there are binary morphisms that can greatly
increase the number of BWT-runs of some words. We define the sensitivity of BWT-runs
to morphism application in a similar way to how Akagi et al. define the sensitivity of
repetitiveness measures to edit operations [1].

▶ Definition 30. The BWT additive sensitivity and BWT multiplicative sensitivity for a
morphism µ are respectively, the functions

ASµ(n) = max
w∈Σn

(∆+
µ (w)) and MSµ(n) = max

w∈Σn
(∆×

µ (w))

▶ Proposition 31. Let θ be the period-doubling morphism. It holds that ASθ(n) = Ω(
√

n).

Proof. The length of the words wk in Lemma 29 is n = Θ(k2). We showed that ∆+
θ (wk) =

2k = Θ(
√

n) on these words. For values of n in between |wk| and |wk+1|, it is easy to see
that for the word wkaj for 0 < j < |wk+1| − |wk|, it still holds that ∆+

θ (wkaj) = 2k, as none
of the key aspects of the proof of Lemma 29 changes. Thus, the claim is true. ◀

7 On the impact of morphisms on other repetitiveness measures

Morphisms behave very differently when other repetitiveness measures are considered. For a
general survey on repetitiveness measures see [29]. For instance, any morphism µ increases
the size of the Lempel-Ziv parsing [22] of any word by at most an additive constant depending
only on µ. This holds for any alphabet size, as shown by Constantinescu and Ilie [9, Lemma 8].

▶ Lemma 32. Let µ : Σ∗ → Γ∗ be any morphism. For every word w, it holds that
z(µ(w)) ≤ z(w) + k where k is a constant depending only on µ.

The result of Constantinescu and Ilie can easily be extended to the LZ parsing without
overlaps [22], the optimal (not the greedy) LZ-end parsing [20], and bidirectional macro-
schemes [38]. We can show a similar result for the measure g(w) defined as the size of the
smallest deterministic context-free grammar generating only w [18]. This can be further
generalized to the size of the smallest run-length context-free grammar [33], and also to the
size of the smallest collage system [17].

▶ Lemma 33. Let µ : Σ∗ → Γ∗ be any (possible erasing) morphism. For every word w, it
holds that g(µ(w)) ≤ g(w) + k where k is a constant depending only on µ.

Proof. Given a deterministic context-free grammar G of size |G| generating w, we construct
a grammar generating µ(w). For each occurrence of a terminal symbol a in any rule of the
grammar, replace it with a new non-terminal Aa. For each terminal symbol add the rule
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Aa → µ(a). The size of the resulting grammar is g′ ≤ |G|+ k where k =
∑

a∈Σ |µ(a)|. Let G

be the smallest grammar generating w, and then the thesis holds. If the resulting grammar
has erasing rules, we can delete them, and replace the occurrences of those erasing variables
in other variables by ε. We repeat this recursively. The size of the resulting grammar can
only decrease, so the thesis still holds. ◀

If for some fixed measure and morphism, this morphism increases the value of the measure
always by at most a fixed constant, then we can derive an easy upper bound for the family
of words obtained by iterating that morphism.

▶ Proposition 34. Let ρ be a repetitiveness measure and µ be a morphism. Suppose that for
every word w it holds that ρ(µ(w)) ≤ ρ(w) + k for a constant k depending only on ρ and µ.
Then, ρ = O(i) in the family {µi(w) | i ≥ 0}.

Proof. Let k′ = ρ(µ(w)). We show by induction that ρ(µi(w)) ≤ ki + k′ for any i ≥ 1. For
i = 1, clearly ρ(µ(w)) ≤ k + k′. Let i > 1 and suppose the claim is true for i − 1. Then,
ρ(µi(w)) ≤ ρ(µi−1(w)) + k ≤ (k(i− 1) + k′) + k ≤ ki + k′. ◀

The families on the proposition above are known as D0L-sequences [36]. As a direct
consequence of Lemma 33 and Proposition 34, it holds that all repetitiveness measures
upper-bounded by g are O(i) on the family of words belonging to a fixed D0L-sequence. In
fact, the result we obtain is even more general because we can apply any morphism to words
obtained from a D0L-sequence increasing the size of the grammar only by a fixed constant.

▶ Proposition 35. For every (possibly erasing) morphisms µ and λ, and every word w, it
holds that g = O(i) in the family {λ ◦ µi(w) | i ≥ 0}.

Proof. By Lemma 33 and Proposition 34, it holds that g(µi(w)) = O(i) for every (possibly
erasing) morphism µ. By Lemma 33, one has g(λ ◦ µi(w)) ≤ g(µi(w)) + k for every (possibly
erasing) morphism λ, and a constant k depending on λ. Thus, g(λ ◦ µi(w)) = O(i). ◀

It is unknown if an analogous result is true for rbwt. In fact, even for the restricted case
of purely morphic words, this is known to hold only for the binary case [12].

8 Conclusions and further work

In this work, we have studied the impact of morphism application on the number of BWT
equal-letter runs of finite words.

Firstly, we characterized Sturmian morphisms as the binary morphisms preserving the
number of BWT-runs for all words w such that |alph(w)| = 2. Besides being interesting on
its own, when this characterization is in conjunction with the rest of our results, it allows
us to construct binary words with any possible number of BWT-runs, and morphisms with
known behavior. This can have practical applications, for instance, in experimentation. In
fact, we showed an infinite family of binary morphisms called Thue–Morse-like morphisms,
which increase the number of BWT-runs of binary words by 2. As a consequence, we have
extended the results of Brlek et al. [4] on the number of BWT-runs of words generated by
iterating the composition of the Fibonacci morphism with the Thue–Morse morphism to
any composition of Sturmian morphisms and Thue–Morse-like morphisms. Also, we are
able to construct infinite sequences of words of increasing length, having all exactly 2k

BWT-runs, and converging to an aperiodic infinite word at their limit. While the result on
Sturmian morphisms is a complete characterization, it is unknown if the compositions of
Thue–Morse-like and Sturmian morphisms are the only binary morphisms increasing the
number of BWT-runs exactly by 2. The following question is left open.
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▶ Question 36. What is a sufficient and necessary condition for a binary morphism µ, to
have ∆+

µ (w) ≤ 2k (where k > 0) for every binary word w?

We showed that when the alphabet size of the domain is σ > 2, the values ∆+
µ (w) and

∆×
µ (w) can be arbitrarily large for some morphisms. In the case of the binary alphabet, we

went further and showed that there exists morphisms where ASµ(w) = Ω(
√

n). We plan to
extend such a result by studying morphisms where all the images of letters are primitive
words. On the other hand, it is unknown if the value ∆×

µ (w) can be unbounded for some
morphism µ with binary domain. We conjecture that this is not the case.

▶ Conjecture 37. For every morphism µ : {a, b}∗ 7→ Σ∗, we can find a constant k such that
∆×

µ (w) ≤ k, for every word w ∈ {a, b}∗.

If Conjecture 37 were true, the following conjecture on images of standard Sturmian
words would also be true.

▶ Conjecture 38. For every morphism µ : {a, b}∗ 7→ Σ∗ and every sequence of standard
Sturmian words (si)i∈N, it holds that rbwt(µ(si)) = Θ(1).

Finally, we showed that the impact of morphism application on BWT-runs, is quite
different from the impact of morphisms on other repetitiveness measures based on popular
compression schemes, like context-free grammars and LZ factorizations. In these measures,
the additive increase after morphism application is bounded by a constant depending only
on the morphism and the measure. This raises the following question, which is true in the
case of smallest grammars and (some) variants of the LZ parsing, but unknown in the case
of BWT equal-letter runs.

▶ Question 39. Does it hold that rbwt(w) = O(i) when w ∈ {λ ◦µi(a) | i ≥ 0}, for every pair
of morphisms µ : {a, b}∗ 7→ {a, b}∗ and λ : {a, b}∗ → Σ∗?

We are working on proving or refuting these questions and conjectures. In the future,
we plan to study how to extend the results on morphism fixing BWT-runs, and morphisms
increasing BWT-runs by a fixed natural number, to alphabets of size greater than 2.
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