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Abstract
An order-preserving square in a string is a fragment of the form uv where u ̸= v and u is order-
isomorphic to v. We show that a string w of length n over an alphabet of size σ contains O(σn)
order-preserving squares that are distinct as words. This improves the upper bound of O(σ2n) by
Kociumaka, Radoszewski, Rytter, and Waleń [TCS 2016]. Further, for every σ and n we exhibit a
string with Ω(σn) order-preserving squares that are distinct as words, thus establishing that our
upper bound is asymptotically tight. Finally, we design an O(σn) time algorithm that outputs all
order-preserving squares that occur in a given string and are distinct as words. By our lower bound,
this is optimal in the worst case.
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1 Introduction

A natural definition of repetitions in strings is that of squares, which are fragments of the
form uu, where u is a string. The study of repetitions in strings goes back at least to the
work of Thue from 1906 [28], who constructed an infinite square-free word over the ternary
alphabet. Since then, multiple definitions of repetitions have been proposed and studied, with
the basic question being focused on analyzing how many such repetitions a string of length
n can contain. Of course, any even-length fragment of the string an is a square, therefore
we would like to count distinct squares. Using a combinatorial result of Crochemore and
Rytter [5], Fraenkel and Simpson [10] proved that a string of length n contains at most 2n

distinct squares (also see a simpler proof by Ilie [17]). They also provided an infinite family
of strings of length n with n− o(n) distinct squares. For many years, it was conjectured that
the right upper bound is actually n. Interestingly, a proof of the conjecture for the binary
alphabet would imply it for any alphabet [24]. Very recently, after a series of improvements
on the upper bound [7,18,23,27], the conjecture has been finally resolved by Brlek and Li [1],
who showed an upper bound of n− σ + 1, where σ is the size of the alphabet.

For many of the applications, it seems more appropriate to work with different definitions
of equality, giving us different notions of squares. Three interesting examples are (1) Abelian
squares [6, 8, 9, 16, 19–21,26] (also called Jumbled squares) are of interest in natural language
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13:2 Order-Preserving Squares in Strings

processing applications and in other domains where the classifications strongly depend on
feature sets distribution, as opposed to feature sequences distributions. (2) Parameterized
squares [20] are considered in applications for finding identical sections of code. (3) Order-
preserving squares [4,13,20] could be used in applications of stock price analysis and musical
melody matching.

The combinatorial properties of the three types of squares were studied by Kociumaka
et al. [20]. Given a string of length n over an alphabet of size σ, first the authors bounded
the number of abelian squares that are distinct as words by Θ(n2). Second, bounded the
number of parameterized squares that are distinct as words by O((σ!)2n) and bounded the
number of nonequivalent parameterized squares (see definition within) by O(σ!n). Third, the
authors provided O(σ2n) bound for the number of order-preserving squares that are distinct
as words.

From an algorithmic perspective, various algorithms were proposed for computing abelian
squares and order-preserving squares in a string of length n. Cummings and Smyth [6]
proposed an Θ(n2) time algorithm for computing all substrings that consist of a concatenation
of two or more abelian-equivalent substrings. Kociumaka et al. [21] proposed an algorithm for
computing the longest, the shortest, and the number of all abelian squares in O(n2/ log2 n)
time using linear space. Gourdel et al. [13] proved that all nonshiftable order-preserving
squares (see definition within) can be computed in O(n log n) time. Additionally, Crochemore
et al. [4] proposed the incomplete order-preserving suffix tree (see details within), denoted
by T , that enables order-preserving pattern matching queries in time proportional to the
pattern length. The suffix tree T can be constructed in O(n log log n) expected time and
O(n log2 log n/ log log log n) worst-case time. Moreover, the authors proved that using T , all
occurrences of order-preserving squares can be computed in O(n log n + occ) time, where
occ is the total number of occurrences of order-preserving squares. Note that, the number
of all occurrences of order-preserving squares might be unreasonably high. In particular,
every regular square is considered to be an order-preserving square, hence an contains Θ(n2)
occurrences of order-preserving squares. Henceforth, a more natural approach is to generate
only order-preserving squares that are distinct as words.

Our results. In this paper, we focus on order-preserving squares. Same-length strings u and
v over an ordered alphabet are order-isomorphic, denoted u ≈ v, when the order between the
characters at the corresponding positions is the same in u and v. For example, the strings
u = acb and v = azd are order-isomorphic, assuming a < b < c < d < z. In this paper,
order-preserving squares are strings of the form uv, where u ≈ v and additionally u ̸= v.

The main result of our paper is that the number of order-preserving squares in a string
of length n over an alphabet of size σ is O(σn). This improves the bound of O(σ2n) by
Kociumaka et al. [20]. We stress that in our definition of an order-preserving square, we
require that u ̸= v, while Kociumaka et al. [20] counted fragments of the form uv, where
u ≈ v, that are distinct as words. We believe that our definition is more natural in the
context of this paper. At the same time, by the result of Brlek and Li [1] a string of length
n contains less than n fragments of the form uu that are distinct as words, thus our result
implies that the number of fragments uv such that u ≈ v that are distinct as words is also
O(σn). We complement our upper bound by designing, for each σ, an infinite family of
strings of length n over an alphabet of size σ containing Θ(σn) such fragments. We begin
with describing the lower bound in Section 3, and then present the upper bound in Section 4.

▶ Theorem 1. The number of order-preserving squares in a string of length n over an
alphabet of size σ is O(σn), and this bound is asymptotically tight even if we only consider
order-preserving squares that are distinct as words.
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Next, we design an algorithm for reporting all order-preserving squares in a given string of
length n over an alphabet of size σ inO(σn) time, which (by our lower bound) is asymptotically
optimal in the worst case. We again stress that in our definition of an order-preserving
square, we require that u ̸= v. However, all fragments of the form uu that are distinct as
words can be reported in O(σn) time using the algorithm of Gusfield and Stoye [14]1. Thus,
for σ = o(log n), this resolves one of the open questions by Crochemore et al. [4], who asked
if there is an o(n log n) time algorithm for finding the longest order-preserving square. This
is described in Section 5.

▶ Theorem 2. All order-preserving squares in a string of length n over an alphabet of size σ

can be found in O(σn) time.

High-level description of our techniques. For the lower bound, first, we consider the
increasing string w = 123 . . . n where σ = n. Clearly, any even-length fragment is an
order-preserving square thus producing the maximum number, i.e. Ω(n2) = Ω(σn), of
order-preserving squares in a string of length n. To decrease the size of the alphabet σ, we
replace w with a non-decreasing string w = 11 . . . 122 . . . 2 . . . σσ . . . σ, where each character
is repeated the same number of times. We exhibit Ω(σn) order-preserving squares in w that
are distinct as words. See Section 3 for more details.

For the upper bound, we build on the insight by Kociumaka et al. [20], where the high-level
strategy is to consider each suffix of w separately. For each suffix and an alphabet character,
they considered the leftmost occurrence of this character within the suffix. Thus, there are
at most σ leftmost occurrences in each suffix. For a fixed suffix, they considered all of its
prefixes as possible order-preserving squares uv. Next, they showed that, because u ̸= v, the
order-preserving square uv is defined by a pair (or pairs) of leftmost occurrences such that
one occurrence belongs to u, and the other one belongs to v at the same relative position,
where the length of uv is twice the difference between the leftmost occurrences. For example,
let acbadxyz be the suffix, then the pair of positions 2 and 5 are leftmost occurrences defining
the order-preserving square acbadx of length 6 that is a prefix of the given suffix. Note
that, also 3 and 6 are leftmost occurrences defining the same order-preserving square acbadx.
Thus, as a result, they upper bounded the number of order-preserving squares being a prefix
of the considered suffix by

(
σ
2
)
, so

(
σ
2
)
n in total.

In this paper, we adopt a similar approach, by separately upper bound the number of
order-preserving squares that are prefixes of a suffix of the input string w. However, our goal
is to show that there are only O(σ) such prefixes, so O(σn) in total. To this end, we first
partition the order-preserving squares into groups. Let Ok the set of all order-preserving
squares uv such that 2k ≤ |uv| < 2k+1. Similarly, we partition the leftmost occurrences into
groups. Let Lk the set of all leftmost occurrences i such that 2k ≤ i < 2k+1. Now, our
strategy is to show that if |Ok| is larger than some fixed constant then |Ok| = O(|Lk−2|). The
structure of the argument is as follows. We first observe that two order-preserving squares
uv and u′v′ imply that |u| −∆, where ∆ = |u′| − |u|, is a so-called order-preserving border
of u. We write u = b1b2 . . . bf bf+1, where |b1| = |b2| = . . . |bf | = ∆ and |bf+1| < ∆, and by
carefully choosing uv and u′v′ from Ok conclude that b2 contains a leftmost occurrence and
f is proportional to |Ok|. Then, we argue that b2 containing a leftmost occurrence implies

1 They only claim O(n) time for fixed alphabets, however a closer look at the algorithm reveals that there
are 3 phases: the first phase takes O(n) time (Theorem 6 and Lemma 7), the second phase also takes
O(n) time (Section 4), and the third phase takes O(σn) time (Lemma 11). Additionally, the algorithm
assumes that the suffix tree is constructed in O(n) time, for larger alphabets this increases to O(σn).
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13:4 Order-Preserving Squares in Strings

that, in fact, every bj contains a leftmost occurrence, and thus |Ok| = O(|Lk−2|). Summing
this over all k, and separately considering all k such that |Ok| is less than the fixed constant,
we are able to conclude that

∑
k |Ok| =

∑
kO(|Lk|) < O(σ). See Section 4 for more details.

To obtain an efficient algorithm for reporting all order-preserving squares, we apply the
order-preserving suffix tree as defined by Crochemore et al. [4]. This structure allows us to
check if w[i..i + 2ℓ− 1] is an order-preserving square by checking if the LCA of two leaves is
at string depth at least ℓ. First, we need to show how to construct the order-preserving tree
in O(σn) time. Second, we extend the above reasoning to efficiently generate only O(σn)
fragments that are then tested for being an order-preserving square in constant time each.
While the underlying argument is essentially the same as when bounding the number of
order-preserving squares, it needs to be executed differently for the purpose of an efficient
implementation. See Section 5 for more details.

2 Preliminaries

Let Σ = {1, . . . , σ} be a fixed finite alphabet of size σ. Let |s| denote the length of a
string s. For a string s, the character at position i of s is denoted by s[i], and s[i..j] is the
fragment of s starting at position i and ending at position j. We call two strings u and v

order-isomorphic, denoted by u ≈ v, when |u| = |v| and, for each i, j, we have u[i] ≤ u[j] if
and only if v[i] ≤ v[j]. The concatenation of two strings u and v is denoted by uv. A string
of the form uv is called an order-preserving square, or op-square, when u ≠ v and u ≈ v. We
call u its left arm and v its right arm. We stress that a regular square, that is, a string of
the form xx, is not an op-square. Two op-squares uv and u′v′ are distinct as words if and
only if uv ̸= u′v′.

A trie is a rooted tree, with every edge labeled with a single character and edges outgoing
from the same node having distinct labels. A node u of a trie represents the string obtained
by reading the labels on the path from the root to u. A compacted trie is obtained from a
trie by replacing maximal paths consisting of nodes with exactly one child with single edges
labeled by the concatenation of the labels of the edges on the path. A suffix tree T of a
string w is a compacted trie whose leaves correspond to the suffixes of w$. The string depth
of a node u of T is the length of the string that it corresponds to. An explicit node of T is
simply a node of T . An implicit node of T is a node of the non-compacted trie corresponding
to T , or in other words a location on an edge of T .

Next, we need some definitions specific to order-isomorphism. Following Kubica et
al. [22], we call b an op-border of a string s[1..n] when s[1..b] ≈ s[n − b + 1..n]. Following
Gourdel et al. [13] (and Matsuoka et al. [25]), we call p an (initial) op-period of s[1..n]
when s = b1b2 . . . bf bf+1 with |b1| = |b2| = . . . = |bf | = p and |bf+1| < p (so f = ⌊n/p⌋),
b1 ≈ b2 ≈ . . . ≈ bf and b1[1..|bf+1|] ≈ b2[1..|bf+1|] ≈ . . . ≈ bf [1..|bf+1|] ≈ bf+1. b1, b2, . . . , bf

are called the blocks defined by p in s, while bf+1 (possibly empty) is called the incomplete
block. While in the classical setting p is a period of s[1..n] if and only if n− p is a border of
s[1..n], in the order-preserving setting, we only have an implication in one direction. For
example, the string aficdgbeh has an op-period 3 while 6 is not its op-border.

▶ Proposition 3. If b is an op-border of s[1..n] then n− b is an initial op-period of s[1..n].

Proof. Let p = n − b and f = ⌊n/p⌋. We represent s[1..n] as s = b1b2 . . . bf bf+1 with
|b1| = |b2| = . . . = |bf | = p and |bf+1| < p. By b being an op-border of s[1..n], we
have s[1..b] ≈ s[n − b + 1..n], so s[1..n − p] ≈ s[p + 1..n]. We observe that s[1..n − p] =
b1b2 . . . bf−1bf [1..|bf+1|] and s[p + 1..n] = b2b3 . . . bf bf+1. Then, b1b2 . . . bf−1bf [1..|bf+1|] ≈
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b2b3 . . . bf bf+1 implies bi ≈ bi+1, for every i = 1, 2, . . . , f−1, and bi[1..|bf+1|] ≈ bi+1[1..|bf+1|],
for every i = 1, 2, . . . , f . Hence, we obtain b1 ≈ b2 ≈ b3 ≈ . . . ≈ bf−1 ≈ bf and b1[1..|bf+1|] ≈
b2[1..|bf+1|] ≈ . . . ≈ bf [1..|bf+1|] ≈ bf+1, so p = n − b is indeed an initial op-period of
s[1..n]. ◀

Due to Proposition 3, if b is an op-border of s[1..n] then s[1..n] = b1b2 . . . bf bf+1, where
b1b2 . . . bf [1..|bf+1|] ≈ b2b3 . . . bf bf+1, |b1| = |b2| = . . . = |bf | = n− b and |bf+1| < p (so f =
⌊n/(n− b)⌋), b1 ≈ b2 ≈ . . . ≈ bf and b1[1..|bf+1|] ≈ b2[1..|bf+1|] ≈ . . . ≈ bf [1..|bf+1|] ≈ bf+1.
We will say that these blocks are defined by b.

3 Lower Bound

Recall that Σ = {1, . . . , σ}. We define a string w = 11 . . . 122 . . . 2 . . . σσ . . . σ, that is, a
concatenation of σ blocks, each consisting of k repetitions of the same character. We note
that |w| = σk. For i = 1, 2, . . . , ⌊σ/2⌋, we consider all fragments of w of length 2ik starting
at positions j = 1, 2, . . . , |w| − 2ik + 1. For j = 1 mod k, the fragment is a concatenation of
2i blocks, each block consisting of k repetitions of the same character. For j ̸= 1 mod k, the
fragment starts with r ∈ [1, k − 1] repetitions of the same character, then 2i− 1 blocks, each
block consisting of k repetitions of the same character, and finally ℓ = k − r repetitions of
the same character. See Figure 1.

11111222223333344444555556666677777

Figure 1 The red box corresponds to an op-square of length 10 containing 3 different characters.
The blue box corresponds to an op-square of length 20 containing 5 different characters.

Each such fragment is an op-square. For j = 1 mod k, both the left and the right arm consist
of i blocks consisting of k repetitions of character c, c + 1, . . . , c + i − 1. For j ̸= 1 mod k,
both the left and the right arm consist of first r repetitions of character c, then i− 1 blocks
consisting of k repetitions of characters c + 1, c + 2, . . . , c + i−2, and then finally ℓ repetitions
of character c + i− 1. Thus, the left and the right arm are always order-isomorphic. Further,
for every choice of i and the starting position we obtain a different word, as two such
fragments of the same length either start with different characters or differ in the length of
the first block of the same character.

Now, we analyze the number of such op-squares in w. By considering every 1 ≤ i ≤ ⌊σ/2⌋
and starting position 1, 2, . . . , |w| − 2ik + 1, we obtain that the number of op-squares in w is
at least:

⌊σ/2⌋∑
i=1

(|w| − 2ik + 1) =
⌊σ/2⌋∑
i=1

(σk − 2ik + 1) = ⌊σ/2⌋ · (σk − k(⌊σ/2⌋+ 1) + 1)

≥ ⌊σ/2⌋ · (k(⌈σ/2⌉ − 1) + 1).

For σ ≥ 3, this is at least σ2k/12 = σn/12 for any k. For σ = 1, 2, we additionally assume
k ≥ 2 and count op-squares of the form 12i, there are ⌊k/2⌋ ≥ n/6 ≥ σn/12 of them. Thus,
in either case for every k ≥ 2 we obtain a string of length n = kσ over Σ containing σn/12
op-squares that are distinct as words.

▶ Theorem 4. For any alphabet Σ = {1, 2, . . . , σ}, there exists an infinite family of strings
of length n = kσ over Σ containing Ω(σn) op-squares distinct as words.

CPM 2023



13:6 Order-Preserving Squares in Strings

4 Upper bound

Our goal in this section is to upper bound the number of op-squares in a given string w of
length n over the alphabet Σ = {1, . . . , σ}. Recall that uv is an op-square when u ̸= v and
u ≈ v. We will show that this number is O(σn). As explained in the introduction, by the
result of Brlek and Li [1], the number of regular squares, that is, fragments of the form uu

that are distinct as words, is less than n. Thus, our result in fact allows us to upper bound
the number of fragments of the form uv, where u ≈ v, that are distinct as words by O(σn).

We consider each suffix of w separately. For each suffix w[i..n], we will upper bound the
number of prefixes of w[i..n] that are op-squares by O(σ). Therefore, to avoid cumbersome
notation in the remaining part of this section we will assume that we have a string s of length
m over the alphabet Σ = {1, . . . , σ}, and we want to upper bound the number of op-squares
uv that are prefixes of s by O(σ). See Figure 2.

⋮

𝑠 = 𝑎1𝑎2𝑎3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯𝑎𝑚

Figure 2 Green prefixes of s are op-squares.

Kociumaka et al. [20] observed that every op-square uv that is a prefix of s can be obtained
as follows (recall that in our definition u ̸= v). We call position i a leftmost occurrence and
s[i] a leftmost character when s[j] ̸= s[i] for every j < i. Then, there exists i and j such that
both i and j are leftmost occurrences, where i belongs to u and j belongs to v, and further
|u| = j − i. More formally:

▶ Proposition 5 ([20, Lemma 4.2 and Corollary 4.3]). We can construct an injective function g

mapping op-squares that are prefixes of s to 2-element subsets of the alphabet as follows. We
choose the smallest i belonging to v such that s[i] = a does not occur in u, and let s[i−|u|] = b

be its counterpart in u, then set g(uv) = {a, b}. Both i and i− |u| are leftmost occurrences.

We split all op-squares that are prefixes of s into groups. Let Ok denote the group of
op-squares that are prefixes of s having length at least 2k and at most 2k+1 − 1:

▶ Definition 6. Ok = {uv |u ̸= v and u ≈ v and 2k ≤ |uv| < 2k+1} for 0 ≤ k ≤ log m.

In other words, we split s into consecutive ranges of exponentially increasing lengths, such
that the k-th range is of length 2k−1, starts at position 2k and ends at position 2k+1 − 1 in s

(where 0 ≤ k ≤ log m and the final range may not be complete when m < 2k+1 − 1). Then,
the set Ok consists of op-squares that end in the k-th range. See Figure 3.

The number of op-squares uv that are prefixes of s is
∑log m

k=0 |Ok|. In order to upper
bound the sum, we will separately upper bound the size of each group. We first need some
propositions.

▶ Proposition 7. For any {uv, u′v′} ∈ Ok such that |u| < |u′| and ∆ = |u′| − |u|, |u| −∆ is
an op-border of both u and v.
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⋮

[2𝑘 , 2𝑘+1)[2,4)

𝑠 = 𝑎1𝑎2𝑎3⋯𝑎2𝑘−1 ⋯⋯𝑎2𝑘⋯⋯⋯⋯⋯⋯𝑎2𝑘+1⋯𝑎𝑚

[2𝑘+1, 𝑚]

Figure 3 Green prefixes of s are op-squares ending in the k-th range. The red line illustrates the
ranges.

Proof. Because u ≈ v it is enough to show that |u| − ∆ is an op-border of u. By the
assumption that both uv and u′v′ are op-squares we have:

u[1..|u| −∆] = u′[1..|u| −∆] ≈ v′[1..|u| −∆] = v[∆ + 1..|u|] ≈ u[∆ + 1..|u|].

See Figure 4. ◀

𝑢𝑣

𝑢′𝑣′
∆

Figure 4 The green lines correspond to uv and u′v′. The blue line corresponds to u[1..|u| − ∆].
The orange line corresponds to u[∆ + 1..|u|]. The purple line corresponds to v[∆ + 1..|u|].

In the remaining part of this section, we will often consider {uv, u′v′} ∈ Ok such that
|u| < |u′| and ∆ = |u′| − |u|. Then, by Proposition 7, we know that |u| −∆ is an op-border
of u, and thus by Proposition 3 ∆ is an initial op-period of u. Hence, u can be represented
as a concatenation of f = ⌊|u|/∆⌋ blocks b1, b2, . . . , bf and one incomplete block bf+1, where
|b1| = |b2| = . . . = |bf | = ∆ and |bf+1| < ∆, such that b1b2 . . . bf [1..|bf+1|] ≈ b2b3 . . . bf bf+1,
b1 ≈ b2 ≈ . . . ≈ bf and b1[1..|bf+1|] ≈ b2[1..|bf+1|] ≈ . . . ≈ bf [1..|bf+1|] ≈ bf+1. See Figure 5.
For brevity, in the remaining part of the paper we will describe this situation by saying that
{uv, u′v′} ∈ Ok define blocks b1, b2, . . . , bf , bf+1.

𝑢𝑣

𝑢′𝑣′
∆

𝑏𝑓+1𝑏1 𝑏𝑓⋯

Figure 5 Blocks defined by {uv, u′v′} in u.

▶ Proposition 8. If |Ok| ≥ 3 then there exist {uv, u′v′, u′′v′′} ∈ Ok such that 0 < |u′| −
|u|, |u′′| − |u′| < 2k/(|Ok| − 2).

Proof. The length of every op-square in Ok belongs to [2k, 2k+1), thus the length of its left arm
falls within [2k−1, 2k). Let Ok = {u1v1, u2v2, . . . , uℓvℓ} with |u1| < |u2| < . . . < |uℓ|. Then,
for some i ∈ {1, 2, . . . , ⌊(ℓ−1)/2⌋} we must have |u2i+1| < |u2i−1|+2k−1/⌊(ℓ−1)/2⌋ (as other-
wise we would have uℓ ≥ u1 +2k−1). The sought op-squares are u2i−1v2i−1, u2iv2i, u2i+1v2i+1
because:

CPM 2023



13:8 Order-Preserving Squares in Strings

|u2i| − |u2i−1|, |u2i+1| − |u2i| < |u2i+1| − |u2i−1| < 2k−1/⌊(ℓ− 1)/2⌋
≤ 2k−1/(ℓ/2− 1) = 2k/(|Ok| − 2). ◀

With all the propositions in hand, we are now ready for the technical lemmas. Our goal
is to upper bound

∑
k |Ok| by the number of leftmost occurrences. To this end, we need to

show that, if some Ok is large then there are many leftmost occurrences in some range. This
will be done by applying the following reasoning to the three op-squares chosen by applying
Proposition 8. In the following, whenever we refer to a leftmost occurrence in block b we
mean a leftmost occurrence falling within the positions in block b.

▶ Lemma 9. If |Ok| ≥ 3 then for any {uv, u′v′, u′′v′′} ∈ Ok where |u| < |u′| < |u′′| such that
{uv, u′v′} defines b1, . . . , bf , bf+1 and {u′v′, u′′v′′} defines b′

1, . . . , b′
f , b′

f+1 there is a leftmost
occurrence in block bj such that j ̸= 1 or there is a leftmost occurrence in block b′

j′ such that
j′ ̸= 1.

Proof. Let ∆ = |u′| − |u| be the length of every block bj and ∆′ = |u′′| − |u′| be the length
of every block b′

j . By Proposition 5, we know that there must be a leftmost occurrence i

that falls within u′ and its corresponding leftmost occurrence i + |u′| that falls within v′. If
s[i] belongs to a block b′

j with j ≠ 1 then we are done. Thus, we assume that i belongs to b′
1.

We claim that the leftmost occurrence i + |u′| falls within v. To verify this, we calculate:

i + |u′| ≤ ∆′ + |u′| = |u′′| − |u′|+ |u′| = |u′′| < 2k ≤ |uv|.

We have established that i+ |u′| is a leftmost occurrence and falls within v. Thus, s[i′] ̸= s[i+
|u′|] for every i′ ∈ [1, i+ |u′|). Because u ≈ v, this then implies that s[i′−|u|] ̸= s[i+ |u′|−|u|]
for every i′ ∈ [|u|+ 1, i + |u′|). Thus, i + |u′| − |u| is also a leftmost occurrence. We claim
that s[i + |u′| − |u|] cannot belong to b1. To verify this, we calculate:

i + |u′| − |u| ≥ 1 + |u′| − |u| = 1 + ∆.

Thus, we have found a leftmost occurrence i + |u′| − |u| that falls within u and belongs to a
block bj with j ̸= 1. See Figure 6. ◀

𝑢𝑣

𝑢′𝑣′

𝑏1

𝑏1
′

𝑢′′𝑣′′
𝑠[𝑖] 𝑠[𝑖 + |𝑢′|]

𝑠[𝑖 + |𝑢′|]𝑠[𝑖 + 𝑢′ − |𝑢|]

𝑏2

Figure 6 The red points correspond to the leftmost occurrences considered in the proof of
Lemma 9.

Next, we show that if {uv, u′v′} ∈ Ok define blocks b1, b2, . . . , bf , bf+1 such that there is
a leftmost occurrence in block bj for some j ̸= 1 then, in fact, there is a leftmost occurrence
in every block bj . This reasoning is done in two steps.

▶ Lemma 10. Let b be an op-border of u = s[1..|u|] that defines blocks b1, b2, . . . , bf , bf+1,
and assume that there is a leftmost occurrence in block bj , for some j ∈ [1, f + 1]. Then there
is a leftmost occurrence in every block b1, b2, . . . , bj.
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Proof. Let ∆ = |b1| = |b2| = . . . = |bf | and |bf+1| < ∆. By induction, it is enough to
show that if there is a leftmost occurrence in block bj for some j ≥ 2 then there is a
leftmost occurrence in block bj−1. Let i be a leftmost occurrence that belongs to bj . Then
u[i′] ̸= u[i] for every i′ ∈ [1, i). Because b1b2 . . . bf−1bf [1..|bf+1|] ≈ b2b3 . . . bf bf+1, this
implies u[i′ − ∆] ̸= u[i − ∆] for every i′ ∈ [∆ + 1, i). But then i − ∆ is also a leftmost
occurrence, and it belongs to bj−1 as required. See Figure 7. ◀

𝑏1 𝑏𝑗

∆

𝑏𝑓+1

𝑢[𝑖]∆ ∆

𝑢 ⋯

Figure 7 Each red point corresponds to a leftmost character at the same relative position in
every block b1, b2, . . . , bj .

▶ Lemma 11. Let b be an op-border of u = s[1..|u|] that defines blocks b1, b2, . . . , bf , bf+1,
and assume that there is a leftmost character in block b2. Then there is a leftmost occurrence
in every block b1, b2, . . . , bf .

Proof. Let ∆ = |b1| = |b2| = . . . |bf | and |bf+1| < ∆. By assumption, there is a leftmost
character s[i] in block b2, where i ∈ [∆ + 1, 2∆]. Our goal is to show that there is a leftmost
occurrence in every block b1, b2, . . . , bf .

Because b1b2 . . . bf [1..|bf+1|] ≈ b2b3 . . . bf bf+1, each position x ∈ [1..∆] satisfies exactly
one of the following possibilities:
1. s[x + p ·∆] is the same, for all integers p ∈ [0, f),
2. s[x + p ·∆] < s[x + (p + 1) ·∆] for all integers p ∈ [0, f − 1),
3. s[x + p ·∆] > s[x + (p + 1) ·∆] for all integers p ∈ [0, f − 1).
Note that i0 = i−∆ satisfies (2) or (3), because s[i] is different than s[1], s[2], . . . , s[i− 1], so
in particular s[i−∆] ̸= s[i]. By reversing the order of the alphabet, it is enough to establish
the lemma assuming that i0 satisfies (2). To this end, we choose some positions i1, i2, . . . , iℓ

in b1 as follows. Let C be the set of characters that appear in b1. The position i1 ∈ [1, ∆]
is chosen so that s[i1] is the strict successor of s[i0] in C, then i2 ∈ [1, ∆] is chosen so that
s[i2] is the strict successor of s[i1] in C, and so on. If there are multiple choices for the next
ij ∈ [1, ∆] then we take the smallest. We stop when one of the following two possibilities
holds:
(a) s[iℓ+1] is not defined, i.e. s[iℓ] is the largest character in b1.
(b) iℓ+1 satisfies (1) or (3).
Notice that, by definition, the positions i0, i1, . . . , iℓ all satisfy (2). Further, s[i0] is a leftmost
character because s[i] is a leftmost character, so s[i′] ̸= s[i] for every i′ ∈ [1, i), and b1 ≈ b2
so s[i′ −∆] ̸= s[i −∆] for every i′ ∈ [∆ + 1, i). Next, we note that s[i1], . . . , s[iℓ] are all
leftmost characters because we are always choosing the smallest ij such that s[ij ] is equal to
a specific character, for j = 1, 2, . . . , ℓ.

We summarize the situation so far. For every integer p ∈ [0, f), the fragment s[iℓ + p ·∆]
belongs to block bp+1, and we want to show that it is a leftmost character. We know that
s[iℓ] is a leftmost character, thus by b1 ≈ bp+1 we obtain that s[iℓ + p ·∆] does not occur
earlier in bp+1. We need to establish that it also does not occur earlier in b1, b2, . . . , bp. We
separately consider the two possible cases (a) and (b).
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(a) s[iℓ+1] is not defined, i.e. s[iℓ] is the largest character in b1. We know that iℓ satisfies (2),
so s[iℓ] < s[iℓ + ∆] < . . . < s[iℓ + (p− 1) ·∆] < s[iℓ + p ·∆]. For all integers q ∈ [0, p), by
b1 ≈ bq+1 we obtain that s[iℓ +q ·∆] is the largest character in bq+1. So in fact s[iℓ +p ·∆]
is larger than all characters in the whole block bq+1, for every integer q ∈ [0, p), making
iℓ + p ·∆ a leftmost occurrence.

(b) iℓ+1 is defined and satisfies (1) or (3), so s[iℓ+1] ≥ s[iℓ+1+∆] ≥ . . . ≥ s[iℓ+1+(p−1)·∆] ≥
s[iℓ+1 + p ·∆]. See Figure 8. We know that iℓ satisfies (2), so s[iℓ] < s[iℓ + ∆] < . . . <

s[iℓ + (p − 1) · ∆] < s[iℓ + p · ∆]. Recall that s[iℓ+1] is a strict successor of s[iℓ]
in b1. Thus, for every i′ ∈ [1, ∆] we have that s[i′] does not belong to the interval
(s[iℓ], s[iℓ+1]). Because we have b1 ≈ bq+1, for every integer q ∈ [0, p), this implies
s[i′ + q ·∆] does not belong to the interval (s[iℓ + q ·∆], s[iℓ+1 + q ·∆]). As observed
earlier, s[iℓ + q ·∆] < s[iℓ + p ·∆] and s[iℓ+1 + q ·∆] ≥ s[iℓ+1 + p ·∆]. We conclude
that, for every i′ ∈ [1, ∆], we have that s[i′ + q · ∆] does not belong to the interval
[s[iℓ + p ·∆], s[iℓ+1 + p ·∆]) (the interval is non-empty, as both positions belong to the
same block bq, and by bq+1 ≈ b1 we have that s[iℓ+1 + q · ∆] is a strict successor of
s[iℓ + q ·∆] in bq). In particular, s[i′ + q ·∆] ̸= s[iℓ + p ·∆], so s[iℓ + p ·∆] does not occur
in bq+1, making it a leftmost character.

Hence, for every integer p ∈ [0, f), position iℓ + p ·∆ is a leftmost occurrence. ◀

𝑏1 𝑏2 𝑏𝑓+1
𝑠

⋯𝑏3

𝑠[𝑖ℓ+1]
𝑠[𝑖ℓ+1 + 𝑝 ∙ ∆]

𝑠[𝑖ℓ]

𝑠[𝑖ℓ + 𝑝 ∙ ∆]

Figure 8 The red points correspond to s[iℓ+1], ..., s[iℓ+1 + p · ∆]. The blue points correspond to
s[iℓ], ..., s[iℓ + p · ∆]. The black arrow illustrates the character’s axis.

By combining the above lemmas we obtain the following conclusion.

▶ Lemma 12. If |Ok| ≥ 3 then for any {uv, u′v′, u′′v′′} ∈ Ok where |u| < |u′| < |u′′|
such that {uv, u′v′} defines b1, . . . , bf , bf+1 and {u′v′, u′′v′′} defines b′

1, . . . , b′
f , b′

f+1 there is
a leftmost occurrence in every block b1, b2, . . . , bf or there is a leftmost occurrence in every
block b′

1, b′
2, . . . , b′

f ′ .

Proof. Recall that by Proposition 7, |u′|− |u| is an op-border of u = s[1..|u|] while |u′′|− |u′|
is an op-border of u′ = s[1..|u′|]. By Lemma 10 there is a leftmost occurrence in block b2 or
in block b′

2. Then, by Lemma 11 applied either to the blocks b1, b2, . . . , bf , bf+1 defined by
the op-border |u′| − |u| or the blocks b′

1, b′
2, . . . , b′

f ′ , b′
f ′+1 defined by the op-border |u′′| − |u′|,

there is a leftmost occurrence in every block b1, b2, . . . , bf or in every block b′
1, b′

2, . . . , b′
f ′ . ◀

We are now ready to upper bound
∑

k |Ok| by the number of leftmost characters. We
will show that, if some Ok is large then there are many leftmost characters in some range.
To this end, we define groups of leftmost occurrences. Let Lk be the set of the leftmost
occurrences i such that i ∈ [2k, 2k+1):

▶ Definition 13. Lk = {i | i ∈ [2k, 2k+1) ∧ ∀j∈[1,i)s[i] ̸= s[j]} for 0 ≤ k ≤ log m.
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Note that the groups are disjoint, i.e. Lk ∩ Lk′ = ∅ for any k and k′. Thus
∑log m

k=0 |Lk| ≤ σ.
With this definition in hand, we are ready to show the main technical lemma.

▶ Lemma 14. The number of op-squares that are prefixes of s is O(σ).

Proof. To establish the lemma we want to connect |Ok| with |Lk|, and then sum over all
possible values of k. k = 0, 1 will be considered separately, and for larger k we apply different
arguments for |Ok| ≥ 11 and |Ok| ≤ 10.

We first consider k ≥ 2 such that |Ok| ≥ 11. In particular, when |Ok| ≥ 3, so by
Proposition 8, there exist {uv, u′v′, u′′v′′} ∈ Ok such that 0 < |u′| − |u|, |u′′| − |u′| <

2k/(|Ok| − 2). By Lemma 12, for any {uv, u′v′, u′′v′′} ∈ Ok where |u| < |u′| < |u′′| such
that {uv, u′v′} defines b1, . . . , bf , bf+1 in u and {u′v′, u′′v′′} defines b′

1, . . . , b′
f ′ , b′

f ′+1 in u′

either there is a leftmost occurrence in every block b1, b2, . . . , bf or there is a leftmost
occurrence in every block b′

1, b′
2, . . . , b′

f ′ In either case, we have found {uv, u′v′} ∈ Ok with
0 < ∆ < 2k/(|Ok| − 2), where ∆ = |u′| − |u|, such that {uv, u′v′} defines b1, . . . , bf , bf+1
with f = ⌊|u|/∆⌋ and there is a leftmost occurrence in every block b1, b2, . . . , bf . We want
to establish a lower bound on the number of leftmost occurrences in Lk−2. To this end, it is
enough to show a lower bound on the number of blocks bi that are fully contained in the
range [2k−2, 2k−1). Recall that |u| ∈ [2k−1, 2k), and u = b1b2 . . . bf bf+1. Thus, the fragment
u[2k−2..2k−1 − 1] consists of a suffix (possibly empty) of some bj , then bj+1, bj+2, . . . , bj+ℓ,
and then a prefix of bj+ℓ+1 (where bj+ℓ+1 might be the incomplete block bf+1 that should
not be counted in the lower bound). Thus, the number of blocks bi that are fully contained
in the range [2k−2, 2k−1) is at least ⌊2k−2/∆⌋ − 1. See Figure 9. Combining this with the
upper bound on ∆, we obtain the following inequality:

|Lk−2| ≥
⌊

2k−2

∆

⌋
− 1 ≥ 2k−2

∆ − 2 >
|Ok| − 2

4 − 2 = |Ok| − 10
4 .

Using the assumption |Ok| ≥ 11, we conclude that |Lk−2| > |Ok|/44. Hence:∑
k≥2:|Ok|≥11

|Ok| <
∑
k≥2

44 · |Lk−2| ≤ 44
∑

k

|Lk| ≤ 44 · σ.

[2𝑘−1, 2𝑘)

𝑏1 𝑏𝑓+1

∆

𝑢

[2𝑘−2, 2𝑘−1)

𝑏𝑗+1

⋯

⋯
𝑏𝑗+ℓ+1⋯ ⋯ ⋯

Figure 9 The orange line corresponds to the suffix of bj . The blue line corresponds to the prefix
of bj+ℓ+1. The red line illustrates the ranges.

Next, we consider k ≥ 2 such that |Ok| ≤ 10. Of course, we have the trivial upper bound∑
k:|Ok|≤10 |Ok| ≤

∑log m
k=0 10 = O(log m). As in the previous case, we want to use the leftmost

occurrences to improve the bound. Recall that, by Proposition 5, every op-square uv ∈ Ok

is defined by a pair of leftmost occurrences i and j, where i belongs to u and j belongs to
v. Because |uv| ∈ [2k, 2k+1), we conclude that j falls within the range [2k−1 + 1, 2k+1), so
must belong to Lk−1 ∪ Lk. Hence, the set Ok can be non-empty only when Lk−1 or Lk is
non-empty. Hence:
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∑
k≥2:|Ok|≤10

|Ok| ≤
∑

k≥2:|Ok|>0

10 ≤
∑

k≥2:|Lk−1|>0

10 +
∑

k≥2:|Lk|>0

10

≤ 10
∑
k≥2
|Lk−1| + 10

∑
k≥2
|Lk| ≤ 20σ.

To upper bound
∑

k |Ok|, we split the sum into three parts. For k = 0, 1, we have |O0| ≤ 1
and |O1| ≤ 2. Then, for k ≥ 2 we separately consider all k with |Ok| ≥ 11 and |Ok| ≤ 10
and plug in the above upper bounds. Overall, we obtain:∑

k

|Ok| ≤ 1 + 2 + 44 · σ + 20 · σ = O(σ).

Thus, the number of op-squares that are prefixes of s is O(σ). ◀

We conclude the section with the main theorem.

▶ Theorem 15. The number of op-squares in a string w of length n over an alphabet of size
σ is O(σn).

Proof. We consider each suffix of w separately. For each suffix w[i..n], we apply Lemma 14
to conclude that the number of op-squares that are prefixes of w[i..n] is upper bounded by
O(σ). Thus, summing over all i we obtain that the number of op-squares in w is O(σn). ◀

5 Algorithm

In this section, we describe the algorithm that reports all occurrences of op-squares in a
string w[1..n] over an alphabet of size σ in O(σn) time.

The high-level idea of the algorithm is to generate O(σn) candidates for op-squares and
then test each of them in constant time, see the pseudocode in Algorithm 1. To this end, we
first describe a mechanism for checking if w[i..i + ℓ− 1] ≈ w[i + ℓ..i + 2ℓ− 1] in constant time.
This can be implemented with an LCA query on the order-preserving suffix tree of w, as
explained in [3]. However, we need to explain how to construct this structure in O(σn) time.

Order-preserving suffix tree. Following [3], for a string w[1..n] we define code(w) as
(ϕ(w, 1), ϕ(w, 2), . . . , ϕ(w, n)), where ϕ(w, i) = (prev<(w, i), prev=(w, i)) and prev<(w, i) =
|{k < i : w[k] < w[i]}|, prev=(w, i) = |{k < i : w[k] = w[i]}|. We observe that code(w) =
code(w′) if and only if w ≈ w′. Then, the order-preserving suffix tree of w[1..n] is the
compacted trie of all strings of the form code(w[i..n])$, for i = 1, 2, . . . , n. It is easy to see
that w[i..i+ ℓ−1] ≈ w[i+ ℓ..i+2ℓ−1] if and only if the lowest common ancestor of the leaves
corresponding to code(w[i..n])$ and code(w[i + ℓ..n])$ is at string depth at least ℓ. Therefore,
assuming that we have already built the order-preserving suffix tree of w[1..n], such a test
can be implemented in constant time after O(n) preprocessing for LCA queries [15]. It
remains to explain how to construct the order-preserving suffix tree. We stress that while
[3] does provide an efficient O(n log n/ log log n) time construction algorithm (in fact, the
full version [4] further improves the time complexity to O(n

√
log n)), such complexity is

incompatible with our goal. Due to the lack of space, the proof is moved to the appendix.

▶ Lemma 16. Given a string w[1..n] over an alphabet of size σ, we can construct its
order-preserving suffix tree in O(σn) time and space.

The main part of the algorithm is efficiently generating O(σn) candidates for op-squares.
Then, each of them is tested in constant time as explained above, assuming the preprocessing
from Lemma 16.
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Algorithm 1 Report all occurrences of op-squares in a string w[1..n] over an alphabet of
size σ in O(σn) time.

1 Preprocess w[1..n] for retrieving the characters of any code(w[i..n])$
2 Construct the order-preserving suffix tree T

3 Preprocess T for LCA queries
4 i← n

5 while i > 0 do
6 s← w[i..n]
7 Retrieve the leftmost occurrences x1, x2, ...xt in s

8 foreach xj that is the smallest or the largest of its group Lk do
9 s′ ← s[1..2k−1]

10 foreach fragment s[y..y + 2k−1 − 1] ≈ s′ such that xj ∈ [y, y + 2k−1 − 1] do
11 Store s[1..2(y − 1)] as a candidate in R[xj ][k][i]
12 end
13 end
14 foreach candidate s[1..2(y − 1)] in R[xj ][k][i] do
15 v1 ← the leaf corresponding to code(w[i..n])$ in T

16 v2 ← the leaf corresponding to code(w[i + (y − 1)..n])$ in T

17 if the string depth of LCAT (v1, v2) is at least y − 1 then
18 Report s[1..2(y − 1)− 1] as an op-square
19 end
20 end
21 i← i− 1
22 end

Leftmost occurrences. As in the proof of the O(σn) upper bound on the number of op-
squares, we will consider the suffixes of the input string w[1..n] one-by-one. For i = n, n−
1, . . . , 1 in this order, let s = w[i..n] be the currently considered suffix, and x1 < x2 < . . . < xt

be the leftmost occurrences in s. By spending O(σ) time per each suffix, we can assume that
the positions x1, x2, . . . , xt are known, as after moving from w[i..n] to w[i − 1..n] we only
have to insert the new leftmost occurrence i− 1 and possibly remove the previous leftmost
occurrence i′ such that w[i− 1] = w[i′] (unless w[i− 1] has not been seen before), which can
be done in O(t) = O(σ) time. By Proposition 5, every prefix of s that is an op-square can be
obtained by choosing two leftmost characters at positions xq and xj , where q < j, and setting
the length of the possible square to be 2(xj −xq). This gives us O(σ2) candidates for prefixes
that could be op-squares. However, our goal is to generate only O(σ) such candidates. To
achieve this goal, we first provide some combinatorial properties in Lemma 17, Lemma 18,
and Proposition 19.

Recall that all leftmost occurrences are partitioned into groups L0, L1, . . .. Next, we show
that it is enough to consider xj that is the smallest or the largest element in its group.

▶ Lemma 17. Consider an op-square s[1..2ℓ]. Then there exists q < j such that the leftmost
occurrences xq and xj satisfy xj − xq = ℓ, xj ∈ [ℓ + 1, 2ℓ] and xj is either the smallest or the
largest element of its group.

The proof is described in the appendix. Figure 10 illustrates the scenario of the lemma.
To generate the candidates, we iterate over all j such that xj is the smallest or largest

element of its group Lk. Consider q < j such that xj − xq = ℓ and xj ∈ [ℓ + 1, 2ℓ] for an op-
square s[1..2ℓ]. Then, because xj ∈ [2k, 2k+1), ℓ ≥ 2k−1. To avoid clutter, let s′ = s[1..2k−1].
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[2𝑘+1, 2𝑘+2)

𝑠

[2𝑘 , 2𝑘+1)
⋯
⋯

𝑠[𝑥j]

𝑠[1. . 2ℓ]
𝑠[ℓ + 1. . 2ℓ]

𝑠[𝑥j]

Figure 10 The op-square s[1..2ℓ] is colored in green. The red points are the two possibilities for
s[xj ]. s[ℓ + 1..2ℓ] is colored in blue. The red line illustrates the ranges.

Because s[1..2ℓ] is assumed to be an op-square, we have s[ℓ..ℓ + 2k−1− 1] ≈ s′. This suggests
the following natural strategy to generate the candidates: we iterate over all fragments
s[y..y + 2k−1 − 1] such that xj ∈ [y, y + 2k−1 − 1] and s′ ≈ s[y..y + 2k−1 − 1], and output
s[1..2(y − 1)] as a possible op-square (as explained earlier, each such candidate is then
tested in constant time). See Figure 11. We first bound the number of such fragments by
O(1 + |Lk−2|), and then explain how to generate them in the same time complexity.

[2𝑘 , 2𝑘+1)

𝑠

[2𝑘−1, 2𝑘)
⋯
⋯

𝑠[𝑥j]

𝑠[1. . 2ℓ]
𝑠[𝒴. . 𝒴 + 2𝑘−1 − 1]

𝑠[𝒴]𝑠′

Figure 11 The op-square s[1..2ℓ], the fragment s[y..y + 2k−1 − 1], and s are colored in green,
blue, and black, respectively. s′ is colored in orange. The red line illustrates the ranges.

▶ Lemma 18. The number of fragments s[y..y + 2k−1 − 1] such that xj ∈ [y, y + 2k−1 − 1]
and s′ ≈ s[y..y + 2k−1 − 1] is upper bounded by O(1 + |Lk−2|).

The proof of the lemma relies on showing that ℓ′ is an op-border of s′ and thus we can define
blocks of length ∆ = 2k−1 − ℓ′ in s′ and then apply Lemma 10 and Lemma 11 to achieve the
desired bound. The full proof is described in the appendix. Hence, for every k such that Lk is
non-empty, we generate O(1+|Lk−2|) candidates. The overall number of candidates generated
by following the above strategy is

∑
k:Lk ̸=∅O(1 + |Lk−2|) = O(σ +

∑
k |Lk−2|) = O(σ) as

promised. It remains to show how to access all fragments s[y..y + 2k−1 − 1] such that
xj ∈ [y, y + 2k−1 − 1] and s′ ≈ s[y..y + 2k−1 − 1] in time proportional to their number.

Accessing candidates. We will solve a more general problem, and show how to ensure that,
when considering s = w[i..n], for every leftmost occurrence xj in s we have access to a list of all
fragments s[y..y+2k−1−1] such that xj ∈ [y, y+2k−1−1] and s[1..2k−1−1] ≈ s[y..y+2k−1−1],
where 2k ≤ xj < 2k+1. We call this list the result for i and xj .

Recall that s = w[i..n], and we consider i = n, n − 1, . . . , 1 in this order. When we
consider s = w[i..n], position i becomes a leftmost occurrence and remains to be so until we
reach s = w[previ..n] such that w[i] = w[previ] (possibly, it is a leftmost occurrence till the
very end of the scan). We can calculate previ for every i in O(σn) time by maintaining a list
of leftmost occurrences as described earlier. We say that a position i is k-active at position
i′ when i′ ∈ [previ, i] and 2k ≤ i − i′ + 1 < 2k+1. We observe that, as we consider longer
and longer suffixes of w, position i is first 0-active, then 1-active, and so on until it becomes
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ki-active, and then it is never active again. Further, indices i′ such that i is k-active at i′

form a contiguous range [begini,k, endi,k] (the length of each such range is 2k, except possibly
for k = ki when it is shorter). The total length of these ranges is small as shown below.

▶ Proposition 19.
∑

i,k:k≤ki
2k = O(σn)

Proof. For k ≥ 1 we can upper bound 2k by 2·|[begini,k−1, endi,k−1]|. Then the sum becomes:∑
i,k:k≤ki

2k = n + 2 ·
∑

i,k:1≤k≤ki

|[begini,k−1, endi,k−1]| ≤ n + 2 ·
∑

i,k:k≤ki

|[begini,k, endi,k]|.

We observe that every position i′ ∈ [begini,k, endi,k] in the suffix w[i..n] corresponds to the
relative position i− i′ + 1 being a leftmost occurrence in the suffix w[i′..n]. Because there
are at most σ leftmost characters in any suffix w[i′..n], this allows us to upper bound the
sum by O(σn). ◀

Storing candidates. This allows us to physically store the results as follows. For every
leftmost occurrence x, we have an array indexed by k ≤ ki, denoted R[x]. Each entry of this
array is an array indexed by i′ ∈ [begini,k, endi,k], denoted R[x][k]. Finally, each entry of
that array, denoted R[x][k][i′], is a pointer to a list of ys such that x ∈ [y, y + 2k−1 − 1] and
w[i′..i′ + 2k−1− 1] ≈ w[y..y + 2k−1− 1] (note that it is a pointer to a list and not its physical
copy). The arrays allow us to access the result for every xj , k ≤ kxj

and i′ in constant time,
by retrieving the pointer R[xj ][k][i′] (where we first verify that i′ ∈ [begini,k, endi,k]). The
total length of all arrays R[x] is only O(σn) by Proposition 19. Further, the total length of
all lists of occurrences that we need to prepare (assuming that we store every R[x][k][i] as a
pointer to such a list and not their physical copies) is also O(σn) by the following argument.
Consider i and k ≤ ki. Then, we need a list of positions y such that i ∈ [y, y + 2k−1 − 1]
and w[y..y + 2k−1 − 1] is order-isomorphic to a specific string s′. Thus, we can partition all
positions y such that i ∈ [y, y + 2k−1 − 1] into groups corresponding to order-isomorphic
fragments w[y..y + 2k−1 − 1], and then store a pointer to the appropriate list (possibly
null, if there is no y). The total number of positions y, over all i and k ≤ ki, is O(σn) by
Proposition 19, which bounds the total length of all the lists.

Generating candidates. It remains to describe how to efficiently calculate the results. This
requires partitioning all fragments w[y..y +2k−1−1] such that i ∈ [y, y +2k−1−1] and k ≤ ki

into order-isomorphic groups, and finding for every i, k ≤ ki, i′ ∈ [begini,k, endi,k] a pointer
to the list of fragments w[y..y + 2k−1− 1] with i ∈ [y, y + 2k−1− 1] that are order-isomorphic
to w[i′..i′ + 2k−1 − 1]. Both steps can be implemented with the order-preserving suffix tree
that is preprocessed in O(n) time and space for computing a (deterministic) fingerprint
of any code(w[x..x + 2ℓ − 1]) in constant time. Here, a fingerprint is meant as an integer
consisting of O(log n) bits, denoted fingerprintℓ(x), such that fingerprintℓ(x) = fingerprintℓ(x′)
iff code(w[x..x + 2ℓ − 1]) = code(w[x′..x′ + 2ℓ − 1]) (or equivalently w[x..x + 2ℓ − 1] ≈
w[x′..x′ + 2ℓ − 1]). We first describe such a mechanism and then provide a more detailed
description of how to apply it. The proof of the following lemma directly follows from prior
work [11,12] and is described in the appendix.

▶ Lemma 20. A compacted trie on n leaves can be preprocessed in O(n) time, so that for
any leaf u and integer k we can query in constant time for a O(log n)-bit fingerprint of the
ancestor of u at string depth 2k.
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We apply Lemma 20 on the order-preserving suffix tree. This allows us to calculate
any fingerprintℓ(x) with the required properties in constant time. Now consider any i and
k ≤ ki. We first compute fingerprintk−1(y) for every y such that i ∈ [y, y + 2k−1 − 1]. This
takes O(2k) time. Next, we compute fingerprintk−1(i′) for every i′ ∈ [begini,k, endi,k], also in
O(2k) time because |[begini,k, endi,k]| ≤ 2k−1. We sort all fingerprints and partition them
into groups corresponding to order-isomorphic fragments. We need to implement this step in
O(2k) time as well. To this end, we observe that we need to sort O(2k) integers consisting of
O(log n) bits, which can be done with radix sort in O(2k + n) time. To avoid paying O(n)
for each i and k ≤ ki, we observe that this is an offline problem, and all sets corresponding
to different i and k ≤ ki can be sorted together. In more detail, we sort tuples of the form
(i, ki, fingerprintℓ(y), y) and (i, ki, fingerprintℓ(i′), i′). The total number of all tuples is O(σn)
by Lemma 19 and, as each of them can be treated as an integer consisting of O(log n) bits,
they can be sorted in O(σn + n) = O(σn) time. Then, we extract the results for each
i and k ≤ ki from the output. For each i and k ≤ ki, we consider every group of equal
fingerprints. From each group, we first create a list containing all positions y corresponding
to fingerprintk−1(y) belonging to the group. Then, for every fingerprintk−1(i′) belonging to
the group we store a pointer to this list. Overall, this takes O(σn) time and allows us to
compute all the results in the same time complexity.

6 Open Problems

An interesting follow-up to our results is first bounding the number of order-preserving
squares that are not order-isomorphic, and then designing an algorithm that reports all
such squares. In addition, investigating the bounds for parameterized squares is of interest.
Moreover, we are not aware of an algorithm reporting parameterized squares in a string,
hence, designing such an algorithm is desired.
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A Missing Proofs

▶ Lemma 16. Given a string w[1..n] over an alphabet of size σ, we can construct its
order-preserving suffix tree in O(σn) time and space.

Proof. As explained in [3], the order-preserving suffix tree of w[1..n] can be constructed
using the general framework of Cole and Hariharan [2] for constructing a suffix tree for a
quasi-suffix collection of strings w1, w2, . . . , wn. The running time of their algorithm is O(n)
with almost inverse exponential failure probability, assuming that one can access the j-th
character of any wi in constant time. The mechanism for accessing the j-th character of wi

is called the character oracle. In this particular application, the string wi = ϕ(w[i..n])$. We
will first describe how to implement a constant-time character oracle for such strings, and
then explain why randomization is not needed in our setting.
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We need to implement a new character oracle that returns ϕ(w[i..n], j), for any i, j,
in constant time after O(σn) time and space preprocessing. This requires being able to
calculate prev<(w[i..n], j) and prev=(w[i..n], j) in constant time. To this end, we define a
two-dimensional array cnt[i, x] = |{k : k < i, w[k] < x}|, for i = 0, 1, . . . , n and x = 0, 1, . . . , σ.
All entries in this array can be computed in O(σn) total time and space. Then, we can
calculate any prev<(w[i..n], j) and prev=(w[i..n], j) as follows:

prev<(w[i..n], j) = cnt[i + j − 2, w[i + j − 1]]− cnt[i− 1, w[i + j − 1]]
prev=(w[i..n], j) =(cnt[i + j − 2, w[i + j − 1]]− cnt[i + j − 2, w[i + j − 1]− 1])

− (cnt[i− 1, w[i + j − 1]]− cnt[i− 1, w[i + j − 1]− 1]).

To remove randomization, we observe that its only source in the algorithm of Cole and
Hariharan is the need to maintain, for each explicit node of the current tree, a dictionary
indexed by the next character on an outgoing edge. If we could show that there are at most
O(σ) such edges, then the dictionary could be implemented as a simple list, increasing the
construction time to O(σn), which is within our claimed bound.

Consider a non-leaf node v of the current tree. It corresponds to a proper prefix of
some code(w[i..n])$, which by the definition of code(.) is equal to code(w[i..j]), for some
j. Let c1 < c2 < . . . < ck be the distinct characters of w[i..j], and denote by occx the
number of occurrences of cx in w[i..j]. Now consider an edge outgoing from v, and let
code(w[i′..j′ + 1]) correspond to the first node (implicit or explicit) after v there. We know
that code(w[i′..j′]) = code(w[i..j]), so the distinct characters of w[i′..j′] are c′

1 < c′
2 < . . . < c′

k

with occx being the number of occurrences of c′
x in w[i′..j′]. Then, we analyze the possible

values of (prev<(w[i′..j′ + 1], j′ − i′ + 2), prev=(w[i′..j′ + 1], j′ − i′ + 2)), that is, the first
character on the considered edge. The first number is always equal to

∑x−1
y=1 cy, for some

x ∈ [1, k + 1]. Then, the second number is either 0 or occx. Thus, overall we have only
2k ≤ 2σ possible first characters, which bounds the degree of any v by O(σ). ◀

▶ Lemma 17. Consider an op-square s[1..2ℓ]. Then there exists q < j such that the leftmost
occurrences xq and xj satisfy xj − xq = ℓ, xj ∈ [ℓ + 1, 2ℓ] and xj is either the smallest or the
largest element of its group.

Proof. By Proposition 5, we know that there is a leftmost character in s[ℓ + 1..2ℓ]. Choose
the largest k such that 2k ≤ ℓ (so 2k+1 > ℓ). Consider two ranges [2k, 2k+1) and [2k+1, 2k+2)
corresponding to groups Lk and Lk+1, respectively. Because 2k ≤ ℓ and 2k+1 > ℓ, we have
2k < ℓ + 1, 2k+1 ∈ [ℓ + 1, 2ℓ] and 2ℓ < 2k+2. Consequently, the fragment s[ℓ + 1..2ℓ] can
be represented as the concatenation of a suffix of s[2k..2k+1) and a prefix of s[2k+1..2k+2).
The leftmost occurrence that falls within s[ℓ + 1..2ℓ] belongs to the suffix or the prefix. See
Figure 10. If it falls within the suffix, the largest element of Lk belongs to [ℓ + 1, 2ℓ]. If it
falls within the prefix, the smallest element of Lk+1 belongs to [ℓ + 1, 2ℓ]. Let xj ∈ [ℓ + 1, 2ℓ]
be the corresponding leftmost occurrence. To complete the proof we need to establish
that there exists q < j such that xj − xq = ℓ. The character s[xj ] is distinct from all
s[1], s[2], . . . , s[xj − 1], and by s[1..ℓ] ≈ s[ℓ + 1..2ℓ] we obtain that s[xj − ℓ] is distinct from
all s[1], s[2], . . . , s[xj − ℓ − 1]. Thus, the position xj − ℓ is a leftmost occurrence, hence
xj − ℓ = xq for some q < j as required. ◀

▶ Lemma 18. The number of fragments s[y..y + 2k−1 − 1] such that xj ∈ [y, y + 2k−1 − 1]
and s′ ≈ s[y..y + 2k−1 − 1] is upper bounded by O(1 + |Lk−2|).



P. Gawrychowski, S. Ghazawi, and G. M. Landau 13:19

Proof. Consider all such fragments s[y1..y1 + 2k−1 − 1], s[y2..y2 + 2k−1 − 1], . . . , s[yt..yt +
2k−1 − 1]. Because xj ∈ [yz, yz + 2k−1 − 1] for every z = 1, 2, . . . , t, either t = 1 or by the
pigeonhole principle there exists z such that yz+1 − yz < 2k−1/(t− 1). If t = 1 then we are
done. Otherwise, let ℓ′ = |s[yz+1..yz + 2k−1 − 1]|. By assumption, s′ ≈ s[yz..yz + 2k−1 − 1]
and s′ ≈ s[yz+1..yz+1 + 2k−1 − 1], so by the transitivity of ≈ also s[yz..yz + 2k−1 − 1] ≈
s[yz+1..yz+1 + 2k−1 − 1]. We conclude that s′[1..ℓ′] ≈ s′[yz+1 − yz + 1..2k−1], or in other
words ℓ′ is an op-border of s′. Let b1, b2, . . . , bf , bf+1 be the blocks defined by ℓ′ in s′ =
s[1..|s′|] = w[i..i + |s′| − 1], where each block is of length ∆ = 2k−1 − ℓ′. See Figure 12.
Recall that xj is a leftmost occurrence in s = w[i..n], and by the definition of yz and yz+1
we have xj ∈ [yz+1, yz + 2k−1− 1]. Then, by s′[1..ℓ′] ≈ s′[yz+1− yz + 1..2k−1] we obtain that
xj − yz + 1 ∈ [yz+1− yz + 1, 2k−1] is also a leftmost occurrence in s = w[i..n]. Hence, we have
a leftmost occurrence in block bj , for some j ≥ 2. This allows us to apply Lemma 10 and
then Lemma 11 to conclude that there is a leftmost occurrence in every block b1, b2, . . . , bf .
We calculate a lower bound on how many of these leftmost occurrences fall within the range
[2k−2, 2k−1):⌊

2k−2

∆

⌋
− 1 >

2k−2

2k−1 − ℓ′ − 2

= 2k−2

2k−1 − (yz + 2k−1 − yz+1) − 2 = 2k−2

yz+1 − yz
− 2

>
2k−2

2k−1/(t− 1) − 2 = (t− 5)/2.

For t < 6, we are done as the number of fragments is O(1). Otherwise, we obtain that
|Lk−2| ≥ (t− 5)/2 ≥ t/12, thus t = O(1 + |Lk−2|) always holds as claimed. ◀

[2𝑘 , 2𝑘+1)

𝑠

[2𝑘−1, 2𝑘)
⋯
⋯

𝑠[𝒴z+1]

𝑠[𝒴𝑧. . 𝒴𝑧 + 2𝑘−1 − 1]

𝑠[𝒴𝑧] 𝑠[𝑥j]

𝑠[𝒴𝑧+1. . 𝒴𝑧+1 + 2𝑘−1 − 1]

ℓ′
𝑠′

∆

𝑏1 𝑏𝑓

Figure 12 s, s′, s[yz..yz + 2k−1 − 1], and s[yz+1..yz+1 + 2k−1 − 1] are colored in black, orange,
blue, and green, respectively. The red line illustrates the ranges.

▶ Lemma 20. A compacted trie on n leaves can be preprocessed in O(n) time, so that for
any leaf u and integer k we can query in constant time for a O(log n)-bit fingerprint of the
ancestor of u at string depth 2k.

Proof. This follows by applying the method used to solve the substring fingerprint problem
mentioned in [11, Lemma 14]. Following the description in the full version [12, Lemma 12],
a compacted trie on n leaves can be preprocessed in O(n) time so that we can locate the
(implicit or explicit) node corresponding to the ancestor at string depth 2k of a given leaf in
constant time. If the sought node is implicit (and does not explicitly exist in the compacted
trie) we retrieve the edge that contains it. Next, if the node is explicit then we return its
identifier. If the node is implicit then we return the identifier of the edge that contains it.
Thus, the required range of identifiers is [2n]. ◀
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