
Linear-Time Computation of Cyclic Roots and
Cyclic Covers of a String
Costas S. Iliopoulos #

Department of Informatics, King’s College London, London, UK

Tomasz Kociumaka #

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Jakub Radoszewski #

Institute of Informatics, University of Warsaw, Poland

Wojciech Rytter #

Institute of Informatics, University of Warsaw, Poland

Tomasz Waleń #

Institute of Informatics, University of Warsaw, Poland

Wiktor Zuba #

CWI, Amsterdam, The Netherlands

Abstract
Cyclic versions of covers and roots of a string are considered in this paper. A prefix V of a string S

is a cyclic root of S if S is a concatenation of cyclic rotations of V . A prefix V of S is a cyclic cover
of S if the occurrences of the cyclic rotations of V cover all positions of S. We present O(n)-time
algorithms computing all cyclic roots (using number-theoretic tools) and all cyclic covers (using
tools related to seeds) of a length-n string over an integer alphabet. Our results improve upon
O(n log log n) and O(n log n) time complexities of recent algorithms of Grossi et al. (WALCOM
2023) for the respective problems and provide novel approaches to the problems. As a by-product,
we obtain an optimal data structure for Internal Circular Pattern Matching queries that generalize
Internal Pattern Matching and Cyclic Equivalence queries of Kociumaka et al. (SODA 2015).

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases cyclic cover, cyclic root, circular pattern matching, internal pattern matching

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.15

Funding Jakub Radoszewski: Supported by the Polish National Science Center, grant no. 2018/31/D/
ST6/03991.
Tomasz Waleń: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
Wiktor Zuba: Supported by the Netherlands Organisation for Scientific Research (NWO) through
Gravitation-grant NETWORKS-024.002.003.

1 Introduction

Cyclic strings have many real-world applications, such as in bioinformatics [2, 3, 17, 19] and
image processing [1, 27, 28, 29]. In particular, they are used for detecting DNA viruses with
circular structures [30, 31]. In particular, cyclic strings were studied in the context of circular
pattern matching [10, 14, 23, 24].

In this paper, we investigate the complexity of two problems related to cyclic strings.
The first one is a cyclic variant of the problem of computing the roots of a string S, i.e.,
strings U such that S = Uk for some integer k. The second one is a cyclic variant of the
problem of computing the covers of a string S, i.e., strings C whose occurrences cover the

© Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń,
and Wiktor Zuba;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:costas.iliopoulos@kcl.ac.uk
https://orcid.org/0000-0003-3909-0077
mailto:tomasz.kociumaka@mpi-inf.mpg.de
https://orcid.org/0000-0002-2477-1702
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
mailto:rytter@mimuw.edu.pl
https://orcid.org/0000-0002-9162-6724
mailto:walen@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309
mailto:wiktor.zuba@cwi.nl
https://orcid.org/0000-0002-1988-3507
https://doi.org/10.4230/LIPIcs.CPM.2023.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Linear-Time Computation of Cyclic Roots and Cyclic Covers of a String

whole string S. The standard roots of a string can be easily computed in linear time using a
folklore algorithm. Moore and Smyth [25, 26] gave a linear-time algorithm computing all
standard covers of a string. However, the cyclic versions of these problems are more difficult.

We say that a string V is a (cyclic) rotation of a string U if there exist strings X and
Y such that U = XY and V = Y X. A string U has a circular occurrence in a string T at
position i if a rotation of U has a (standard) occurrence in T at position i.1 By CircOcc(U, T)
we denote the set of circular occurrences of U in T . Moreover, we denote

Covered(U, T) =
⋃

i∈CircOcc(U,T)

[i . . i + |U |).

▶ Definition 1. A string U is a cyclic cover of a string S if Covered(U, S) = [0 . . |S|).
A string U is a cyclic root of a string S if S = U1 · · · Uk, where each Ui is a cyclic shift of U .

Note that if U is a cyclic root (cyclic cover) of S, then the prefix S[0 . . |U |) is also a cyclic
root (cyclic cover, respectively) of S.

▶ Example 2. The lengths of the cyclic roots of the Thue–Morse word abbabaabbaababba
are 2, 4, 8, 16.

a b a a b a b a a a a b a b a a
a b a a b

a a b a b
b a b a a

a a b a b
b a b a a

Figure 1 The string abaab is a cyclic cover of the string abaababaaaababaa.

▶ Example 3. The string ab is a cyclic cover of each Fibonacci string of length at least 2,
e.g., of the string Fib5 = abaababa. (See [13] for a definition of Fibonacci strings and their
properties.) However, it is not a cyclic root of any Fibonacci string longer than 2. Another
example of a cyclic cover of a string is illustrated in Figure 1.

We consider the following problems.

CyclicRoots
Input: A string S of length n.
Output: The lengths of all cyclic roots of S.

CyclicCovers
Input: A string S of length n.
Output: The lengths of all cyclic covers of S.

Our results

We show linear-time algorithms for both problems. We assume the word-RAM model of
computation and that the string S is over an integer alphabet {0, . . . , nO(1)}.

1 We assume that the positions of a string T are numbered 0 through |T | − 1, where |T | is the length of T .

C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 15:3

Previous results

Recently, Grossi et al. [16] presented an O(n log log n)-time algorithm for CyclicRoots
(named cyclic factorization there) and an O(n log n)-time algorithm for CyclicCovers.
▶ Remark 4. A completely different problem of covering a cyclic string with a standard string
cover was considered in [11, 12]. Another different problem also known under the name
“cyclic covers”, related to the shortest superstring problem, was considered in [4, 5, 6].

Our approach

In the case of cyclic covers, we use a recursive algorithm whose general structure partially
resembles the structure of the linear-time algorithm for computing seeds from [21]. For this,
we need to explore combinatorics of circular occurrences, which is different from that of
standard occurrences. The “working horse” of the algorithm (non-recursive parts) is the
computation of long cyclic covers, which is based on an efficient implementation of internal
circular pattern matching queries. Such queries require to find all circular occurrences of one
substring of a text in another substring; the set of occurrences can be represented compactly
if the ratio of lengths of the two strings is constant. An auxiliary contribution of our paper is
an optimal implementation of these queries (constant-time after linear-time preprocessing).

Also in the case of cyclic roots we use internal queries on strings. Our algorithm is based
on number-theoretic tools and fast internal queries for cyclic equivalence, which ask if two
substrings of a given string are rotations of each other [20, 22].

Notations

For a string S, by S[0], . . . , S[|S| − 1] we denote its respective letters. By S[i . . j) we denote
a substring S[i] · · · S[j − 1]; similarly, we define substrings S[i . . j], S(i . . j] and S(i . . j). We
say that p is a period of a string S if S[i] = S[i + p] holds for all i ∈ [0 . . |S| − p). By
per(S), we denote the smallest period of S, called the period of S. For a string S and integer
x ∈ [0 . . |S|), by rotx(S) we denote the rotation S[x . . |S|) · S[0 . . x) of S obtained from S by
moving the prefix of S of length x to the end.

A length-m string P has an occurrence in a string T at position i if T [i . . i + m) = P . By
Occ(P, T) we denote the set of starting positions of occurrences of P in T .

2 Internal Circular Pattern Matching and CyclicCovers in O(n log n)
Time

We introduce the following generalization of Internal Pattern Matching queries from [22].

Simple Internal Circular Pattern Matching Queries (Simple InternalCPM)
Input: A string S of length n.
Queries: Given two substrings P and T of S such that |T | ≤ 2|P |, report the leftmost
and the rightmost circular occurrence of P in T .

▶ Remark 5. If we know how to compute the leftmost circular occurrence, then the rightmost
circular occurrence can be computed analogously (it suffices to reverse the strings).

The theorem below can be obtained using the methods from [7, 8]. We give its proof in
Section 6.

▶ Theorem 6. The Simple InternalCPM queries can be answered in O(1) time after
O(n)-time preprocessing.

CPM 2023

15:4 Linear-Time Computation of Cyclic Roots and Cyclic Covers of a String

▶ Remark 7. In Section 6, we obtain a version of the queries in which a constant-sized
representation of all circular occurrences is computed in constant time (still if |T | ≤ 2|P |).

Below, we apply Simple InternalCPM queries to a version of the CyclicCovers
problem that is used in our O(n)-time algorithm for CyclicCovers. The following lemma
generalizes [16, Lemma 13]; in this section, it will be applied in a simpler setting.

▶ Lemma 8. After O(n)-time preprocessing of a string S of length n, for any substrings C

and W of S, we can test if C is a cyclic cover of W in O(|W |/|C|) time.

Proof. Let p = |C| and m = |W |. Consider substrings Vi equal to W [ip . . (i + 2)p) for
i ∈ [0 . . ⌊m/p⌋−1) and W [ip . . m) for i = ⌊m/p⌋−1. For each substring Vi, we use a Simple
InternalCPM query to compute the leftmost and the rightmost circular occurrence of C.
Then, we check whether these occurrences, interpreted as occurrences in W , collectively cover
all positions in W . The time complexity is O(m/p) after the preprocessing of Theorem 6. ◀

Lemma 8 implies a simple O(n log n)-time algorithm for the CyclicCovers problem.

▶ Corollary 9. The CyclicCovers problem can be solved in O(n log n) time.

Proof. We apply Lemma 8 for W = S iterating with C over all non-empty prefixes of S.
The total time complexity is O(n +

∑n
i=1

n
i) = O(n log n). ◀

3 Quasi-Covers

We reduce our problem to the computation of the substrings called quasi-covers; see Figure 2.

▶ Definition 10. A string V is a quasi-cover of a substring W of the string S if V is a prefix
of S and a cyclic cover of a substring Y = W [i . . j) such that i < |V | and j > |W | − |V |.

S : a a b b c b c b a a b a b a b a a a c b a b

Y

W

Figure 2 Example of a quasi-cover aab of the substring W of S. By definition, V is a prefix of
the whole string S. Observe that aab is not a cyclic cover of W .

Henceforth, we fix the string S and consider quasi-covers of its substrings. Let W be a
substring and I be an interval, I ⊆ [1 . . |W |]. We denote by Q-CoversI(W) the set of all
lengths of quasi-covers of substring W with lengths in I. Furthermore, for k ∈ [1 . . |W |] we
denote

Q-Covers(W) = Q-Covers[1. .|W |](W), Q-Covers≤k(W) = Q-Covers[1. .k](W),

Q-Covers>k(W) = Q-Covers(k. .|W |](W), Q-Coversk(W) = Q-Covers[k. .k](W).

A prefix of S is its cyclic cover if and only if it is a quasi-cover of S and a rotation of a
suffix of S. We use the following queries (generalized by Simple InternalCPM queries):

C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 15:5

Cyclic Equivalence Queries (CycEq)
Input: A string S of length n.
Queries: Given two substrings U and V of S, check if V is a rotation of U .

▶ Theorem 11 ([20, 22]). The CycEq queries can be answered in O(1) time after O(n)-time
preprocessing.

Using CycEq queries, we can compute in O(n) time all prefixes which are rotations of
the corresponding suffixes of the string. This yields the following observation.

▶ Observation 12. The CyclicCovers problem for a string S reduces in linear time to the
computation of Q-Covers(S).

We will later show how the set Q-Covers(S) can be computed based on recursive calls
to Q-Covers(W) for substrings W of S.

3.1 Quasi-Covers and Substring Complexity
The substring complexity of a length-m string W is a function that maps each length
k ∈ [1 . . m] to the number |SUBk(W)| of distinct length-k substrings of W . We further define
βk(W) = |SUBk(W)| + k − 1. The term k − 1 is added because the sequence (|SUBk(W)|)m

k=1
does not need to be monotone in general; the resulting sequence (βk(W))m

k=1 is now non-
decreasing and its monotonicity will be useful later. For a string family S, let us denote by
∥S∥ the sum of lengths of strings in S.

▶ Observation 13. Let V be a quasi-cover of a substring W of S. If a substring W ′ of W

satisfies |W ′| ≥ 2|V | − 1, then V is a quasi-cover of W ′.

▶ Lemma 14. Given a length-m substring W and an integer k ∈ [1 . . m], we can compute in
O(m) time a family Gk(W) of substrings of W such that ∥Gk(W)∥ ≤ βk(W) and

Q-Covers≤⌈k/4⌉(W) =
⋂

W ′∈Gk(W)

Q-Covers≤⌈k/4⌉(W ′).

Proof. It was shown in [21] that one can construct in linear time a string family, denoted
in [21] as COMPRt, such that ∥COMPRt∥ ≤ β2t−1(W) and the strings in COMPRt contain
all length-t substrings of W . First, we reformulate the corresponding fact from [21] taking
Gk(W) = COMPR⌈k/2⌉.

▷ Claim 15 ([21, Lemma 5.4, proof of Lemma 5.3 and proof of Theorem 9 (“Computing S”)]).
Given k ∈ [1 . . m], we can compute in O(m) time a string family Gk(W) such that

∥Gk(W)∥ ≤ βk(W) and SUB⌈k/2⌉(W) =
⋃

W ′∈Gk(W)

SUB⌈k/2⌉(W ′).

The next claim turns out to be similar to [21, Lemma 2.2].

▷ Claim 16. If t ∈ [1 . . m], then

Q-Covers≤⌈t/2⌉(W) =
⋂

W ′∈SUBt(W)

Q-Covers≤⌈t/2⌉(W ′).

CPM 2023

15:6 Linear-Time Computation of Cyclic Roots and Cyclic Covers of a String

Proof. We prove two inclusions separately.

(⊆) If V is a quasi-cover of W of length at most ⌈t/2⌉ and W ′ ∈ SUBt(W), then Observation 13
implies that V is a quasi-cover of W ′.

(⊇) Assume that V is a quasi-cover of all W ′ ∈ SUBt(W) and |V | = ℓ ≤ ⌈t/2⌉. Consider a
position i ∈ [ℓ−1 . . m−ℓ] and a substring W ′ = W (i−ℓ . . i+ℓ). Note that V is a quasi-cover
of W ′ (this follows from Observation 13 because W ′ is a substring of some length-t substring
of W). Thus, there is a circular occurrence of V in W that covers the middle position of W ′.
Interpreted as a circular occurrence of V in W , it covers position i of W . ◁

The thesis follows directly from the two claims above, taking t = ⌈k/2⌉ in the second
claim. ◀

▶ Lemma 17. If a string W has a quasi-cover V of length |V | ≥ 2k, then

|SUBk+1(W)| ≤ 1
2 |W | + 3

2 |V |.

Proof. First, we show the following claim (cf. Figure 3).

▷ Claim 18. If a string Y has a cyclic cover V of length |V | ≥ 2k, then |SUBk+1(Y)| ≤
1
2 (|Y | + |V |).

Proof. We denote by CSUBk+1(V) the set of distinct length-(k + 1) substrings of all rotations
of V ; note that |CSUBk+1(V)| ≤ |V |.

For each i ∈ CircOcc(V, Y), let us mark positions j ∈ [i . . i + |V | − k); observe that if a
position j is marked, then Y [j . . j + k] ∈ CSUBk+1(V).

Y

I1 I2

length-(k + 1) substrings

rotations of V

Figure 3 A string V is a cyclic cover of a string Y and |V | ≥ 2k. Each length-(k + 1) substring
starting in I1 belongs to CSUBk+1(V), but length-(k + 1) substrings starting in I2 do not need to
belong to CSUBk+1(V). The interval I1 of marked positions is of size at least k, whereas the interval
|I2| of unmarked positions is of size at most k.

Let Y ′ be the prefix of Y of length |Y |− |V |. We partition Y ′ into inclusion-wise maximal
intervals of marked positions and inclusion-wise maximal intervals of unmarked positions.
Each interval I2 of unmarked positions is preceded by an interval I1 of marked positions,
where |I1| ≥ |V | − k ≥ k ≥ |I2| (otherwise, V would not be a cyclic cover of Y).

Hence, at most half of positions of Y ′ are unmarked, which is (|Y | − |V |)/2. Each length-
(k +1) substring starting at marked position belongs to CSUBk+1(V). Hence, |SUBk+1(Y)| ≤
(|Y | − |V |)/2 + |CSUBk+1(V)| ≤ (|Y | + |V |)/2. ◁

If V is a quasi-cover of W then V is a cyclic cover of Y = W [i . . j) with i < |V | and
j > m − |V |. We have, due to inequality 1

2 (|W | − |Y |) < |V |,

|SUBk+1(W)| ≤ |SUBk+1(Y)| + |W | − |Y | < |SUBk+1(Y)| + 1
2 (|W | − |Y |) + |V |.

Now, Claim 18 implies |SUBk+1(Y)| ≤ 1
2 (|Y |+|V |) and thus |SUBk+1(W)| ≤ 1

2 |W |+ 3
2 |V |. ◀

C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 15:7

▶ Example 19. Let {a1, a2, . . . , a2k−1}, {b1, b2, . . . , b2k}, {c1, c2, . . . , c2k−1} be disjoint sets,
and

X = a1a2 · · · a2k−1, V1 = b1b2 · · · bk, V2 = bk+1bk+2 · · · b2k, Y = c1c2 · · · c2k−1.

Then V = V1V2 is a quasi-cover of W = X V1 V2 V2 V1 Y , with |V | = 2k and |W | = 8k − 2.
All length-(k + 1) substrings of W are different. Hence:

|SUBk+1(W)| = |W | − k = 1
2 |W | + 3

2 |V | − o(|W |).

We use the following crucial property of quasi-covers.

▶ Lemma 20 (Work-Reduction Lemma). For a length-m substring W and k ∈ [0 . . m), if
βk+1(W) > 5

6 m, then

Q-Covers[2k. .⌊m/6⌋](W) = ∅.

Proof. The proof is by contradiction. Suppose that V ∈ Q-Covers[2k. .⌊m/6⌋](W) and V

is a cyclic cover of Y = W [i . . j) with i < |V | and j > m − |V |. Due to Lemma 17 and
inequality k ≤ |V |/2,

|SUBk+1(W)| + k ≤ 1
2 |W | + 3

2 |V | + 1
2 |V | = 1

2 |W | + 2|V | ≤ 1
2 m + 2 · m

6 = 5
6 m.

This contradicts our assumption that βk+1(W) = |SUBk+1(W)| + k > 5
6 m. ◀

4 Solution to CyclicCovers Problem

Our algorithm is recursive; its non-recursive parts correspond to (simple) fast computation
of length-limited cyclic covers. We say that an interval I = [a . . b] of positive integers is
balanced if b = O(a).

▶ Lemma 21. After O(n)-time preprocessing, for a balanced interval I = [a . . b] and a
length-m substring W , the set Q-CoversI(W) can be computed in O(m) time.

Proof. We consider each length ℓ ∈ I separately. Let C = S[0 . . ℓ). We use two Simple
InternalCPM queries to check if C has a circular occurrence starting within the first ℓ

positions of W and a circular occurrence ending within the last ℓ positions of W . If any
of these two conditions does not hold, C is not a quasi-cover of W . Otherwise, we use
Lemma 8 to check if C is a cyclic cover of the substring of W spanned by the first and the
last circular occurrence of C in W that were discovered in the previous step. The total
time complexity is O(

∑
i∈I

m
i) = O(

∑
i∈I

m
a) = O(m · |I|/a) = O(m · b/a) = O(m), after

O(n)-time preprocessing in Theorem 6 and Lemma 8. ◀

Our solution is based on Lemmas 14, 20, and 21. We use a recursive approach that was
initially developed for seeds computation; see [21].

▶ Theorem 22. The CyclicCovers problem can be solved in O(n) time.

Proof. We run the recursive function ComputeQuasiCovers (Algorithm 1) initially for W = S.

Correctness. In the base case, where β1(W) > 5
6 m, there are more than 5

6 m different letters
in W , and then Lemma 20 implies Q-Covers≤⌊m/6⌋(W) = ∅.

In the recursive step, we reduce the computation of quasi-covers to the ones with lengths
in two balanced intervals, J1 = (⌈k/4⌉ . . 2k) and J2 = (⌊m/6⌋ . . m], and the ones (the set Q)
with sufficiently small lengths (at most ⌈k/4⌉). By Lemmas 14 and 20, the algorithm returns
precisely the set Q-Covers(W).

CPM 2023

15:8 Linear-Time Computation of Cyclic Roots and Cyclic Covers of a String

Algorithm 1 ComputeQuasiCovers(W).

Input: A substring W of length m.
Output: The set Q-Covers(W) of lengths of quasi-covers of W .
Compute βℓ(W) for all ℓ ∈ [1 . . m]
if β1(W) > 5

6 m then ▶ see Lemma 20
return Q-Covers(⌊m/6⌋. .m](W) ▶ (⌊m/6⌋ . . m] is a balanced interval

k := max
{

ℓ ∈ [1 . . m] : βℓ(W) ≤ 5
6 m

}
Let Gk(W) be the set of fragments as in Lemma 14
foreach string W ′ ∈ Gk(W) do

QW ′ := ComputeQuasiCovers(W ′) ▶ Recursive call
Q :=

⋂
W ′∈Gk(W) QW ′ ∩ [1 . . ⌈k/4⌉] ▶ Q = Q-Covers≤⌈k/4⌉(W) (Lemma 14)

J1 := (⌈ k
4 ⌉ . . 2k), J2 := (

⌊
m
6

⌋
. . m] ▶ J1, J2 are balanced intervals

return Q ∪ Q-CoversJ1(W) ∪ Q-CoversJ2(W) ▶ Q-Covers[2k. .⌊m/6⌋](W) = ∅

Complexity. To bound the running time, denote by T (m) the maximum number of op-
erations performed by the algorithm for a substring W of length m. The sequence βi(W)
for a length-m substring W of S can be computed in O(m) time [21, Lemma 5.1]. Due to
Lemmas 14 and 21,

T (m) = O(m) +
∑

i

T (mi), where
∑

i

mi ≤ 5
6 m.

This recurrence yields T (m) = O(m).
Due to Observation 12, the CyclicCovers problem can be reduced in linear time to the

computation of all quasi-covers. Finally, Lemma 21 requires O(n)-time preprocessing of S.
This completes the proof. ◀

5 Solution to CyclicRoots Problem

We denote by σ0(n) =
∑

p|n 1 the number of divisors of n and by σ1(n) =
∑

p|n p the sum of
divisors of n. We use the following known estimations: σ0(n) = 2O(log n/ log log n) [18, §18.1]
and σ1(n) = O(n log log n) [18, §22.9]. They directly imply the following fact.

▶ Fact 23.
σ0(n) = o(

√
n/ log n) and log σ0(n) = O(log n/ log log n)

σ1(n) =
∑

p|n
n
p = O(n log log n)

Using CycEq queries (Theorem 11), we derive the following subroutine:

▶ Observation 24. After linear-time preprocessing of a string S, we can test if S[0 . . p) is a
cyclic root of a substring W of S in O(|W |/p) time.

In particular, in [16] the CyclicRoots problem was solved in O(σ1(n)) = O(n log log n)
time (cf. Fact 23) by using n

p CycEq queries for each divisor p of n.
Let us now develop an O(n)-time solution. We reduce testing if S[0 . . p) is a cyclic root of

the whole text to testing if S[0 . . p) is a cyclic root of each substring F in a suitably chosen
family F of substrings.

C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 15:9

The intuition behind this improvement is as follows. It turns out that the asymptotic
upper bound on σ1(n) significantly depends on a few largest divisors. In the O(n log log n)-
time algorithm, this corresponds to the smallest lengths p of the candidate cyclic root. Hence,
for small p, we will adopt a different approach.

The factorization of S into length-q substrings, for q | n, will be called the q-factorization.

▶ Observation 25. If S has a cyclic root of length p, then its (k · p)-factorization F contains
at most pk distinct substrings, consequently the number of distinct factors in F is at most
min

(
pk, n

k·p

)
.

Thus, if the number of different factors in the (k · p)-factorization is greater than pk, then
we know that S does not have a cyclic root of length p.

Otherwise, if k is small enough, the number of different substrings in the (k·p)-factorization
will be smaller than n/(k · p), and we can check each of them using CycEq queries in O(k)
time. On the other hand, if k is large enough, then the O(n/(k · p)) work spent on computing
the factorization will be much less than O(n/p).

Algorithm 2 CyclicRoot(S, p): Does S have a cyclic root of length p | n?

k := max(⌊ 1
2 logp n⌋, 1)

Let S = S1S2, where |S2| = n mod (k · p)
F := all distinct factors in the (k · p)-factorization of S1 ▶ O(n/(k · p)) time [15]
if |F| > pk then return NO ▶ Observation 25
if |S2| > 0 then F := F ∪ {S2} ▶ |F| = O

(
min

(
pk, n

k·p

))
foreach F ∈ F do ▶ O(k · |F|) = O(

√
n log n) time

if S[0 . . p) is not a cyclic root of F then return NO ▶ Observation 24

return YES

▶ Theorem 26. The CyclicRoots problem can be solved in O(n) time.

Proof. We use Algorithm 2. After O(n)-time preprocessing, all different substrings in F can
be found in O(n/(k · p)) time using deterministic substring hashing [15]. By Observation 24,
after O(n)-time preprocessing, we can test in O(k) time for each F ∈ F if S[0 . . p) is its
cyclic root; this sums up to O(k · min(n

k·p , pk)) time. For k = max(⌊ 1
2 logp n⌋, 1), we have

n
k·p = O

(
n log p
p log n

)
and k·min

(
pk, n

k·p

)
= O

(
p

1
2 logp n · logp n + min

(
p, n

p

))
= O(

√
n log n).

Thus, after O(n)-time preprocessing, all calls to the algorithm CyclicRoot(S, p) for all divisors
p of n work in total time

O(A(n) + B(n)), where A(n) =
∑
p|n

n log p
p log n and B(n) =

∑
p|n

√
n · log n.

Estimating B(n). By Fact 23, we have

B(n) =
√

n log n ·
∑
p|n

1 =
√

n log n · σ0(n) = o(n).

CPM 2023

15:10 Linear-Time Computation of Cyclic Roots and Cyclic Covers of a String

Estimating A(n). We partition the underlying sum into elements that do not exceed σ0(n)
and the remaining elements. The former is bounded from above, due to Fact 23, as:∑

p|n
p≤σ0(n)

n log p

p log n
≤

∑
p|n

n log σ0(n)
p log n

= log σ0(n)
log n

∑
p|n

n

p
= O

(
1

log log n
· σ1(n)

)
= O(n).

The latter sum is bounded from above by:∑
p|n

p>σ0(n)

n log p

p log n
≤

∑
p|n

n

σ0(n) = n

σ0(n)
∑
p|n

1 = n

σ0(n) · σ0(n) = n.

This concludes the complexity analysis of the algorithm. ◀

6 InternalCPM via PILLAR Model

6.1 PILLAR Model
We use the so-called PILLAR model that was introduced in [9]. In this model, we assume that
the following primitive queries can be performed efficiently, where the argument strings are
represented as substrings of strings in a given collection X :

Extract(U, ℓ, r): Retrieve the substring U [ℓ . . r).
LCP(U, V), LCPR(U, V): Find the length of the longest common prefix/suffix of U and V .
IPM(U, V): Assuming that |V | < 2|U |, compute the starting positions of all exact
occurrences of U in V , expressed as an arithmetic sequence. If the sequence has at least
three terms, its difference equals per(U).
Access(U, i): Retrieve the letter U [i].
Length(U): Compute the length |U | of the string U .

The runtime of algorithms in this model can be expressed in terms of the number of
primitive PILLAR operations. The following result combines several known techniques to
obtain constant-time implementations of all PILLAR operations in the standard setting.
Efficient implementations of the PILLAR operations in other settings, including a dynamic
and a compressed setting, are also known; cf. [9].

▶ Theorem 27 ([9, Theorem 7.2]). After an O(n)-time preprocessing of a collection of strings
of total length n over an integer alphabet, each PILLAR operation can be performed in O(1)
time.

6.2 Interval Chains and PairMatch problem
For an integer set A and an integer r, let A ⊕ r = {a + r : a ∈ A}. An interval chain is a
set of the form I ∪ (I ⊕ q) ∪ (I ⊕ 2q) ∪ · · · ∪ (I ⊕ aq) for an interval I and non-negative
integers a and q. In particular, a single interval is an interval chain (with a = 0).

First, we introduce an auxiliary operation PairMatch. Denote by PairMatch(T, P, i, j)
the set of all circular occurrences of P in T such that position i in T is aligned with position
j in P (see also Figure 4):

PairMatch(T, P, i, j) = {p ∈ (i−m . . i] : T [p . . p+m) = rotx(P), i−p = (j−x) mod m}.

In particular PairMatch(T, P, i, 0) is the set of circular occurrences of P such that the
leftmost position of P is aligned with position i in T .

C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 15:11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

7 8 9 10 11 12 0 1 2 3 4 5 6
j

p i

Figure 4 Let us put original numbers in positions of the pattern P ; they are moved after rotation
of P . Assume that p = 9 is a position of a circular occurrence of P in T such that p ∈ Occ(rot7(P), T).
Then, in particular, p ∈ PairMatch(T, P, 17, 2). In this case, x = 7 and i − p = 8 = (j − x) mod 13.
We also have p ∈ PairMatch(T, P, 15, 0).

The following lemma is a consequence of [7, Lemma 10], where the PILLAR model was
not used explicitly. A similar fact was shown in [16, Lemmas 5 and 6]. We include its proof
for completeness.

▶ Lemma 28. For any given i, j, the set PairMatch(T, P, i, j), represented as a union of
at most two intervals, can be computed in O(1) time in the PILLAR model.

Proof. First we explain how to compute PairMatch(T, P, i, 0). Let p(i) = LCP(T [i . .], P)
and s(i) = LCPR(T [. . i), P). If p(i)+s(i) ≥ m, an interval [i−s(i) . . i+p(i)−m] of starting
positions of circular occurrences of P in T is reported; otherwise the answer is an empty set.

In general PairMatch(T, P, i, j) can be computed using (at most) two queries of the
type PairMatch(T, P, i′, 0), for i′ = i − j and i′ = i − j + m. A respective query is asked
only if i′ ∈ [0 . . n − m). The resulting intervals need to be intersected with (i − m . . i] to
ensure that the circular occurrence contains position i. ◀

6.3 Internal CPM

The circular pattern matching problem is formally defined as follows.

Circular Pattern Matching (CPM)
Input: A text T of length n and a pattern P of length m.
Output: All positions in T where circular occurrences of P start.

We will show an efficient solution in the PILLAR model of CPM in the case when the
lengths of the pattern and of the texts are similar. The algorithm below applies the results
of [7, 8]. These results considered the approximate CPM problem with k ≥ 1 mismatches
or edits. In the proof of the following theorem, we show that they can be adapted to the
case of the exact CPM problem, obtaining an even simpler algorithm. The main idea of the
algorithm is illustrated in Figure 7.

▶ Theorem 29. If n ≤ 2m, the answer to the CPM problem, represented as a union of O(1)
interval chains, can be computed in O(1) time in the PILLAR model.

Proof. Let P = P1P2, where |P1| = ⌊m/2⌋. Each circular occurrence of P in T implies a
standard occurrence of at least one of P1 and P2 in T . Henceforth, we assume that it implies
an occurrence of P1; the remaining case can be treated symmetrically.

Let A = Occ(P1, T). As |T | ≤ 4|P1| + 3, a representation of A consisting of O(1)
arithmetic sequences can be computed using O(1) IPM queries by the so-called standard trick.
We consider each of the arithmetic sequences B separately.

CPM 2023

15:12 Linear-Time Computation of Cyclic Roots and Cyclic Covers of a String

Nonperiodic case. If an arithmetic sequence B contains at most two occurrences, then we
ask a query PairMatch(T, P, i, 0) for each i ∈ B. The resulting intervals contain positions
of all circular occurrences of P in T that imply an occurrence of P1 in T at a position i ∈ B,
and possibly some other circular occurrences of P in T (that imply an occurrence of P2).

Periodic case. Assume now that an arithmetic sequence B contains at least three elements.
As already mentioned, its difference is q := per(P1).

Let i be any element of B. We compute the largest index iL < i and the smallest index
iR > i such that

T [iL] ̸= T [iL + q] (or iL = −1), T [iR] ̸= T [iR − q] (or iR = |T |).

Let Q = P2P1P2 and j = |P2|. Similarly (see Figure 5), we compute the largest index jL < j

and the smallest index jR > j such that

Q[jL] ̸= Q[jL + q] (or jL = −1), Q[jR] ̸= Q[jR − q] (or jR = |Q|).

The indices iL, iR, jL, jR, which can be called misperiods, can be computed using a constant
number of LCP and LCPR queries on T and P .

P2 P1 P2
∗

jL jR

∗
iL

∗
iR

P1

P1

P1

P1
T

Figure 5 Misperiods iL, iR, jL; in this case, there is no misperiod jR.

We consider two cases:

Case (1). The cyclic occurrence is an occurrence of a rotation of P that is a length-m
substring of Q(jL . . jR); the occurrence is contained within a substring T (iL . . iR) in the
text. Both strings in scope are periodic with period q; it only matters if the periods are
synchronized. Let

X = (jL . . jR − m] and Z = (iL . . iR − m].

The set X consists of the positions in Q where a rotation of P contained in Q(jL . . jR) starts.
The set Z ′ := {z ∈ Z : ∃x∈X z ≡ x (mod q)} consists of the starting positions of circular
occurrences of P contained in T (iL . . iR). By the following claim, the set Z ′ can be computed
in O(1) time.

▷ Claim 30 ([7, Lemma 7]). Let X and Z be intervals and q be a positive integer. The
set Z ′ := {z ∈ Z : ∃x∈X z ≡ x (mod q)}, represented as a disjoint union of at most three
interval chains, can be computed in O(1) time.

Case (2). In this case, two misperiods, one in T and one in P , need to be synchronized. It
suffices to take the union of results of a PairMatch(T, P, iL, |P1| + jL) query if neither of
iL, jL equals −1 and of a PairMatch(T, P, iR, jR − |P2|) query if iR ̸= |T | and jR ̸= |P |.

Overall, the result is a union of O(1) intervals and interval chains and can be computed
in O(1) time in the PILLAR model using Lemma 28 and Claim 30. ◀

C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 15:13

a b a a a a b a a a a a a b a a a a b a a a a b a a a a b a a a a

P2 P1 P2

*

Figure 6 The interval X (shaded box) represents the starting positions of the rotations of
P = (aabaa)4aa contained in Q(jL . . jR) = Q(8 . . 33). Five copies of X (two of them partial)
constitute the output set Z′ (the shaded boxes in Figure 7).

q q

T b
*

b
*

0 5 10 15 20 25 30 35 40

a a b a a a a b a a a a b a a a a b a a a a b a a a a b a a a a b a a a a b a a a a b a a

Figure 7 The starting positions of the circular occurrences of the pattern P = (aabaa)4aa in
the text T form two intervals ([1 . . 1] and [19 . . 20]) and one interval chain I, I ⊕ q, I ⊕ 2q, where
I = [4 . . 6] and q = 5.

We introduce the following generalization of IPM queries.

Internal Circular Pattern Matching Queries (InternalCPM)
Input: A string S of length n.
Queries: Given two substrings P and T of S such that |T | ≤ 2|P |, report all the
starting positions of all circular occurrences of P in T .

Combining Theorems 27 and 29, we obtain the following result, which generalizes Theorem 6.

▶ Theorem 31. The answer to an InternalCPM query, represented as a union of O(1)
interval chains, can be computed in O(1) time after O(n)-time preprocessing.

7 Final Remarks

We took a recursive approach proposed in the computation of seeds and adjusted it to the
case of cyclic covers. Despite the similarity, several major changes were necessary due to
circularity. We hope that such a recursive approach can be used in other problems on strings.

We also demonstrated the importance of a new tool in computations on cyclic strings:
internal circular pattern matching queries. Hopefully, they could be used for other problems
related to cyclic substrings.

References
1 Lorraine A. K. Ayad, Carl Barton, and Solon P. Pissis. A faster and more accurate heuristic

for cyclic edit distance computation. Pattern Recognition Letters, 88:81–87, 2017. doi:
10.1016/j.patrec.2017.01.018.

2 Lorraine A. K. Ayad and Solon P. Pissis. MARS: improving multiple circular sequence alignment
using refined sequences. BMC Genomics, 18(1):86, 2017. doi:10.1186/s12864-016-3477-5.

CPM 2023

http://dx.doi.org/10.1016/j.patrec.2017.01.018
http://dx.doi.org/10.1016/j.patrec.2017.01.018
http://dx.doi.org/10.1186/s12864-016-3477-5

15:14 Linear-Time Computation of Cyclic Roots and Cyclic Covers of a String

3 Carl Barton, Costas S. Iliopoulos, Ritu Kundu, Solon P. Pissis, Ahmad Retha, and Fatima
Vayani. Accurate and efficient methods to improve multiple circular sequence alignment. In
Evripidis Bampis, editor, Experimental Algorithms, SEA 2015, volume 9125 of Lecture Notes
in Computer Science, pages 247–258. Springer, 2015. doi:10.1007/978-3-319-20086-6_19.

4 Bastien Cazaux, Rodrigo Cánovas, and Eric Rivals. Shortest DNA cyclic cover in compressed
space. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer,
editors, 2016 Data Compression Conference, DCC 2016, pages 536–545. IEEE, 2016. doi:
10.1109/DCC.2016.79.

5 Bastien Cazaux and Eric Rivals. A linear time algorithm for shortest cyclic cover of strings.
Journal of Discrete Algorithms, 37:56–67, 2016. doi:10.1016/j.jda.2016.05.001.

6 Bastien Cazaux and Eric Rivals. The power of greedy algorithms for approximating Max-
ATSP, Cyclic Cover, and superstrings. Discrete Applied Mathematics, 212:48–60, 2016.
doi:10.1016/j.dam.2015.06.003.

7 Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Circular pattern
matching with k mismatches. Journal of Computer and System Sciences, 115:73–85, 2021.
doi:10.1016/j.jcss.2020.07.003.

8 Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski, Solon P. Pissis,
Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba. Approximate circular pattern matching. In
Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual
European Symposium on Algorithms, ESA 2022, volume 244 of LIPIcs, pages 35:1–35:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.35.

9 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate
pattern matching: A unified approach. In Sandy Irani, editor, 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, pages 978–989. IEEE, 2020. doi:10.1109/
FOCS46700.2020.00095.

10 Kuei-Hao Chen, Guan-Shieng Huang, and Richard Chia-Tung Lee. Bit-parallel algorithms
for exact circular string matching. The Computer Journal, 57(5):731–743, March 2013.
doi:10.1093/comjnl/bxt023.

11 Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech Rytter, Juliusz
Straszyński, Tomasz Waleń, and Wiktor Zuba. Shortest covers of all cyclic shifts of a string.
Theoretical Computer Science, 866:70–81, 2021. doi:10.1016/j.tcs.2021.03.011.

12 Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech Rytter, Juliusz
Straszýnski, Tomasz Waleń, and Wiktor Zuba. Linear-time computation of shortest covers of
all rotations of a string. In Hideo Bannai and Jan Holub, editors, 33rd Annual Symposium on
Combinatorial Pattern Matching, CPM 2022, volume 223 of LIPIcs, pages 22:1–22:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CPM.2022.22.

13 Maxime Crochemore, Thierry Lecroq, and Wojciech Rytter. 125 Problems in Text Algorithms:
With Solutions. Cambridge University Press, 2021.

14 Kimmo Fredriksson and Szymon Grabowski. Average-optimal string matching. Journal of
Discrete Algorithms, 7(4):579–594, 2009. doi:10.1016/j.jda.2008.09.001.

15 Paweł Gawrychowski. Pattern matching in Lempel-Ziv compressed strings: Fast, simple, and
deterministic. In Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms - ESA
2011 - 19th Annual European Symposium, volume 6942 of Lecture Notes in Computer Science,
pages 421–432. Springer, 2011. doi:10.1007/978-3-642-23719-5_36.

16 Roberto Grossi, Costas S. Iliopoulos, Jesper Jansson, Zara Lim, Wing-Kin Sung, and Wiktor
Zuba. Finding the cyclic covers of a string. In Chun-Cheng Lin, Bertrand M. T. Lin, and
Giuseppe Liotta, editors, Algorithms and Computation - 17th International Conference and
Workshops, WALCOM 2023, volume 13973 of Lecture Notes in Computer Science, pages
139–150. Springer, 2023. doi:10.1007/978-3-031-27051-2_13.

http://dx.doi.org/10.1007/978-3-319-20086-6_19
http://dx.doi.org/10.1109/DCC.2016.79
http://dx.doi.org/10.1109/DCC.2016.79
http://dx.doi.org/10.1016/j.jda.2016.05.001
http://dx.doi.org/10.1016/j.dam.2015.06.003
http://dx.doi.org/10.1016/j.jcss.2020.07.003
http://dx.doi.org/10.4230/LIPIcs.ESA.2022.35
http://dx.doi.org/10.1109/FOCS46700.2020.00095
http://dx.doi.org/10.1109/FOCS46700.2020.00095
http://dx.doi.org/10.1093/comjnl/bxt023
http://dx.doi.org/10.1016/j.tcs.2021.03.011
http://dx.doi.org/10.4230/LIPIcs.CPM.2022.22
http://dx.doi.org/10.1016/j.jda.2008.09.001
http://dx.doi.org/10.1007/978-3-642-23719-5_36
http://dx.doi.org/10.1007/978-3-031-27051-2_13

C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 15:15

17 Roberto Grossi, Costas S. Iliopoulos, Robert Mercas, Nadia Pisanti, Solon P. Pissis, Ahmad
Retha, and Fatima Vayani. Circular sequence comparison: algorithms and applications.
Algorithms for Molecular Biology, 11:12, 2016. doi:10.1186/s13015-016-0076-6.

18 Godfrey H. Hardy and Edward M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, 1960.

19 Costas S. Iliopoulos, Solon P. Pissis, and M. Sohel Rahman. Searching and indexing
circular patterns. In Mourad Elloumi, editor, Algorithms for Next-Generation Sequen-
cing Data, Techniques, Approaches, and Applications, pages 77–90. Springer, 2017. doi:
10.1007/978-3-319-59826-0_3.

20 Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis,
University of Warsaw, October 2018. URL: https://www.mimuw.edu.pl/~kociumaka/files/
phd.pdf.

21 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. A linear-time algorithm for seeds computation. ACM Transactions on Algorithms,
16(2):27:1–27:23, 2020. doi:10.1145/3386369.

22 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal
pattern matching queries in a text and applications. In Piotr Indyk, editor, Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages
532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

23 M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, 2005. URL:
http://www.cambridge.org/gb/knowledge/isbn/item1172552/?site_locale=en_GB.

24 Andrés Marzal, Ramón Mollineda, Guillermo Penis, and Enrique Vidal. Cyclic string matching:
Efficient exact and approximate algorithms. In Dechang Chen and Xiuzhen Cheng, editors,
Pattern Recognition and String Matching, pages 477–497. Springer US, Boston, MA, 2002.
doi:10.1007/978-1-4613-0231-5_19.

25 Dennis W. G. Moore and William F. Smyth. An optimal algorithm to compute all the covers
of a string. Information Processing Letters, 50(5):239–246, 1994. doi:10.1016/0020-0190(94)
00045-X.

26 Dennis W. G. Moore and William F. Smyth. A correction to "An optimal algorithm to
compute all the covers of a string". Information Processing Letters, 54(2):101–103, 1995.
doi:10.1016/0020-0190(94)00235-Q.

27 Vicente Palazón-González and Andrés Marzal. On the dynamic time warping of cyclic sequences
for shape retrieval. Image Vision Computing, 30(12):978–990, 2012. doi:10.1016/j.imavis.
2012.08.012.

28 Vicente Palazón-González and Andrés Marzal. Speeding up the cyclic edit distance using
LAESA with early abandon. Pattern Recognition Letters, 62:1–7, 2015. doi:10.1016/j.
patrec.2015.04.013.

29 Vicente Palazón-González, Andrés Marzal, and Juan Miguel Vilar. On hidden Markov
models and cyclic strings for shape recognition. Pattern Recognition, 47(7):2490–2504, 2014.
doi:10.1016/j.patcog.2014.01.018.

30 Michael J. Tisza, Diana V. Pastrana, Nicole L. Welch, Brittany Stewart, Alberto Peretti,
Gabriel J. Starrett, Yuk-Ying S. Pang, Siddharth R. Krishnamurthy, Patricia A. Pesavento,
David H. McDermott, et al. Discovery of several thousand highly diverse circular DNA viruses.
eLife, 9:e51971, 2020. doi:10.7554/eLife.51971.

31 Edward K. Wagner, Martinez J. Hewlett, David C. Bloom, and David Camerini. Basic
Virology, volume 3. Blackwell Science Malden, MA, 1999.

CPM 2023

http://dx.doi.org/10.1186/s13015-016-0076-6
http://dx.doi.org/10.1007/978-3-319-59826-0_3
http://dx.doi.org/10.1007/978-3-319-59826-0_3
https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
http://dx.doi.org/10.1145/3386369
http://dx.doi.org/10.1137/1.9781611973730.36
http://www.cambridge.org/gb/knowledge/isbn/item1172552/?site_locale=en_GB
http://dx.doi.org/10.1007/978-1-4613-0231-5_19
http://dx.doi.org/10.1016/0020-0190(94)00045-X
http://dx.doi.org/10.1016/0020-0190(94)00045-X
http://dx.doi.org/10.1016/0020-0190(94)00235-Q
http://dx.doi.org/10.1016/j.imavis.2012.08.012
http://dx.doi.org/10.1016/j.imavis.2012.08.012
http://dx.doi.org/10.1016/j.patrec.2015.04.013
http://dx.doi.org/10.1016/j.patrec.2015.04.013
http://dx.doi.org/10.1016/j.patcog.2014.01.018
http://dx.doi.org/10.7554/eLife.51971

	1 Introduction
	2 Internal Circular Pattern Matching and CyclicCovers in O(n log n) Time
	3 Quasi-Covers
	3.1 Quasi-Covers and Substring Complexity

	4 Solution to CyclicCovers Problem
	5 Solution to CyclicRoots Problem
	6 InternalCPM via PILLAR Model
	6.1 PILLAR Model
	6.2 Interval Chains and PairMatch problem
	6.3 Internal CPM

	7 Final Remarks

