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Abstract

Sorting is a fundamental algorithmic pre-processing technique which often allows to represent data
more compactly and, at the same time, speeds up search queries on it. In this paper, we focus
on the well-studied problem of sorting and indexing string sets. Since the introduction of suffix
trees in 1973, dozens of suffix sorting algorithms have been described in the literature. In 2017,
these techniques were extended to sets of strings described by means of finite automata: the theory
of Wheeler graphs [Gagie et al., TCS’17] introduced automata whose states can be totally-sorted
according to the co-lexicographic (co-lex in the following) order of the prefixes of words accepted by
the automaton. More recently, in [Cotumaccio, Prezza, SODA’21] it was shown how to extend these
ideas to arbitrary automata by means of partial co-lex orders. This work showed that a co-lex order
of minimum width (thus optimizing search query times) on deterministic finite automata (DFAs)
can be computed in O(m2 + n5/2) time, m being the number of transitions and n the number of
states of the input DFA.

In this paper, we exhibit new combinatorial properties of the minimum-width co-lex order of
DFAs and exploit them to design faster prefix sorting algorithms. In particular, we describe two
algorithms sorting arbitrary DFAs in O(mn) and O(n2 log n) time, respectively, and an algorithm
sorting acyclic DFAs in O(m log n) time. Within these running times, all algorithms compute
also a smallest chain partition of the partial order (required to index the DFA). We present an
experiment result to show that an optimized implementation of the O(n2 log n)-time algorithm
exhibits a nearly-linear behaviour on large deterministic pan-genomic graphs and is thus also of
practical interest.
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1 Introduction

In this paper, we study the problem of indexing string sets for pattern matching queries:
pre-process a set L ⊆ Σ∗ of strings from a finite alphabet Σ so that later we can efficiently
answer queries of the form “is a given query pattern P ∈ Σ∗ substring of some string in L?”.

Clearly, an algorithmic solution to this problem requires the set L to be representable in
finite space (even though L itself could contain an infinite number of strings); in this paper,
we focus on string sets described by finite state automata, that is, on regular languages.
Our results build on a successful line of previous research based on the following idea: after
sorting all prefixes Pref(L) of the strings in L in colexicograpic (co-lex for brevity) order1,
pattern matching queries translate to finding the strings in Pref(L) that are suffixed by
pattern string P . Being Pref(L) co-lex sorted, those strings form a range in co-lex order;
notice that, if the sorted Pref(L) is explicitly stored, such a range can be easily found by
binary search. Recall, however, that (due to limited available working space) we work with
a particular representation of L: a finite state automaton A. This requires re-formulating
the pattern matching problem on A. It is easy to see that pattern matching queries on L
translate to finding paths of A whose labels, when concatenated, form P . When using A to
index L, the main question becomes therefore “how does the total co-lex order on Pref(L)
map onto the states of A?”. In particular cases, such a mapping yields a total order among
A’s states. This happens, for example, when A is a path (i.e. a string; corresponding data
structures include the suffix tree [22], the suffix array [18, 13], and the FM-index [10]), a
finite set of disjoint paths (eBWT [19]), or a labeled arborescence (XBWT [9]). A total
order on the states of A is obtained even in particular cases where A may accept an infinite
language: this is the case, for example, of de Bruijn graphs (BOSS [2]) and Wheeler graphs
[11] (the latter generalize all the above classes of totally-sortable labeled graphs).

More recently, in [6, 5] it was shown that in the general case (arbitrary NFAs) the total
co-lex order on Pref(L) maps very naturally onto a family of partial co-lex orders among
the states of A. Such a family contains only one order for any given DFA, while NFAs may
admit multiple admissible co-lex orders. Letting p be the width of a smallest-width partial
order <A, it was shown that pattern matching queries on L can be solved in time Õ(p2) per
query character2. Note that this generalizes the total order case p = 1, where indeed queries
take Õ(1) time using the aforementioned solutions (e.g. indexes on strings and labeled trees).
Building the index of [6, 5] requires the computation of a smallest chain partition for the
co-lex order <A, i.e. a minimum-size partition C1, . . . , Cp of A’s states such that (Ci, <A)
is a total order for each i = 1, . . . , p (note that the index does not require the order <A
itself, just a chain partition). Letting n and m be the number of states and transitions of A,
respectively, [6] showed how to build such a chain partition in O(n5/2 + m2) time in the case
where A is a deterministic finite automaton (DFA). The work [5] presented a solution running
in Õ(m2) time w.h.p. In the general nondeterministic (NFA) case, the problem is known
to be NP-complete3, even though polynomial algorithms do exist for co-lex pre-orders [4]
(which still allow indexing and whose width is never larger than that of co-lex orders).

1 Historically, the lexicographic order of suffixes was used first; however, with finite state automata the
symmetric co-lex order of P ref(L) turns out to be more natural.

2 The notation Õ hides factors polylogarithmic in the size of A.
3 Hardness follows from hardness of the p = 1 case [12], while membership in NP follows from the fact

that the properties defining a co-lex order can be checked in polynomial time, given a candidate order.
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1.1 Our results
In this work, we focus on the problem of computing the smallest-width partial co-lex order
<A when the input is a DFA. On DFAs, <A has a very intuitive definition: letting u, v be
states of A, we have u <A v if and only if α < β for every α ∈ Iu and β ∈ Iv, where < denotes
the co-lex order among strings and Iu denotes the set of strings (in fact, a regular language)
labeling all paths from the source of A to u. We first observe that <A is completely specified
by pairs (inf Iu, sup Iu) over the co-lex sorted Pref(L): in fact, we prove that u <A v holds
if and only if sup Iu ≤ inf Iv. This allows finding a smallest chain decomposition of <A in
O(n) time through a solution of the interval partitioning problem, given that the co-lex ranks
of strings inf Iu and sup Iu are known for each state u. Observing that these strings can be
easily encoded with two pruned versions of the DFA A, this leaves the problem of computing
and sorting them – ideally, in Õ(m) time. We give three different solutions for this problem,
which could be of independent interest. The first two solutions work on arbitrary DFAs and
run in time O(mn) and O(n2 log n), respectively. The latter of these two solutions is based
on suffix doubling, the technique at the core of the first suffix array construction algorithm
[18], and is close to optimal on dense graphs. We show that an optimized implementation of
this algorithm exhibits a sub-quadratic behaviour on large deterministic pan-genomic graphs
(in fact, we experimentally observe a linearithmic running time). The third solution works on
acyclic DFAs, runs in O(m log n) time, and generalizes a well-known algorithm for building
the Burrows-Wheeler transform in an online fashion; in our case, we process the automaton’s
states in any topological order and, for each processed state u, compute inf Iu and sup Iu

using the results computed on the already-processed states.

2 Preliminaries

Notation [i, j], where i, j ∈ N, denotes the integer set {i, i + 1, . . . , j} (if i > j, then [i, j] = ∅).
Let Σ be a finite alphabet. A finite string α ∈ Σ∗ (or string of finite length) is a finite
concatenation of characters from Σ. The notation |α| indicates the length of the string α.
The symbol ϵ denotes the empty string. The notation α[i] denotes the i-th character from
the beginning of α; indices start from 1, so α[1] is the first character of α. Letting α, β ∈ Σ∗,
α · β (or simply αβ) denotes the concatenation of strings. The notation α[i..j] denotes
α[i] ·α[i+1] · . . . ·α[j]; if i > j, then α[i..j] is the empty string ϵ. The notation α ⊑ β, where
α, β ∈ Σ∗, indicates that α is a prefix of β, i.e. α = β[1..i] for some i ≤ |β|. An ω-string
β ∈ Σω (or infinite string / string of infinite length) is an infinite numerable concatenation of
characters from Σ. In this paper, we work with left-infinite ω-strings, meaning that β ∈ Σω

is constructed from the empty string ϵ by prepending an infinite number of characters to
it. In particular, the operation of appending a character a ∈ Σ at the end of a ω-string
α ∈ Σω is well-defined and yields the ω-string αa. The notation αω, where α ∈ Σ∗, denotes
the concatenation of an infinite (numerable) number of copies of string α.

▶ Definition 1. A Deterministic Finite-State Automaton (DFA) is a quintuple A =
(Q, Σ, δ, s, F ) where Q is the finite set of states, Σ is a finite alphabet, δ : Q × Σ → Q

is the transition function, s ∈ Q is the initial state, and F ⊆ Q is the set of final states.

As is customary, we extend the transition function to words α ∈ Σ∗ as follows: for a ∈ Σ,
α ∈ Σ∗, and q ∈ Q: δ(q, a ·α) = δ(δ(q, a), α) and δ(q, ϵ) = q. By δ−1(u), we denote the set of
states from which there exists a transition to u: i.e. δ−1(u) = {v ∈ Q : (∃a ∈ Σ)(δ(v, a) = u)}.

In the rest of the paper, n = |Q| denotes the number of states and m = |δ| = |{(u, v, a) ∈
Q×Q× Σ : δ(u, a) = v}| the number of transitions of the DFA under consideration.

CPM 2023
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Following [1], we use the following notation for the set of words reaching a given state:

▶ Definition 2. Let A = (Q, Σ, δ, s, F ) be a DFA. If q ∈ Q, let Iq be the set of words reaching
q from the initial state:

Iq = {α ∈ Σ∗ : q = δ(s, α)};

Iq is also called the regular language recognized by q.

The language L(A) recognized by A is defined as L(A) = ∪q∈F Iq.
The co-lexicographic (or co-lex) order of two strings α, β ∈ Σ∗ ∪ Σω is defined as follows.

(i) ϵ < α for every α ∈ Σ+ ∪ Σω, and (ii) if α = α′a and β = β′b (with a, b ∈ Σ and
α′, β′ ∈ Σ∗ ∪ Σω), α < β holds if and only if (a < b) ∨ (a = b ∧ α′ < β′). In this paper, the
symbols < and ≤ will be used to denote the total order between the alphabet’s characters,
the co-lexicographic order between strings/ω-strings, and the co-lex partial order among the
states of an automaton (Definition 3). The meaning of symbols < and ≤ will always be clear
from the context. In all cases, the symbol ≤ has the following meaning: x ≤ y if and only if
x < y or x = y (i.e. x < y or x and y are the same state, the same character, or the same
string, depending on the context).

Let A = (Q, Σ, δ, s, F ) be a DFA. We assume that s has no incoming edges; any automaton
can always be transformed into an equivalent automaton with this property. We also assume
that every state is reachable from the source: for every v ∈ Q, there exists α ∈ Σ∗ such that
δ(s, α) = v. Moreover, we assume input consistency: for every u, v, v′ ∈ Q and c, c′ ∈ Σ, if
δ(v, c) = δ(v′, c′) = u, then c = c′. We denote with λ(v) such a uniquely-defined character
and take λ(s) = # for the source s, where # /∈ Σ is such that # < c for every c ∈ Σ.
Note that input consistency is equivalent to working with state-labeled automata. Also this
assumption is not too restrictive, since any automaton can be converted into an equivalent
input-consistent automaton by just multiplying its size by a factor of |Σ|.

The following concepts can be defined more in general for NFAs (see [6]), but for the
purposes of this article it will be sufficient to introduce them just on DFAs:

▶ Definition 3. Let A = (Q, Σ, δ, s, F ) be a DFA. A co-lex order on A is a partial order ≤
on Q that satisfies the following two axioms:
1. (Axiom 1) For every u, v ∈ Q, if u < v, then λ(u) ≤ λ(v);
2. (Axiom 2) For every a ∈ Σ and u, v, u′, v′ ∈ Q, if u = δ(u′, a), v = δ(v′, a) and u < v,

then u′ ≤ v′.

The width of a partial order is the size of its largest antichain or, equivalently by Dilworth’s
theorem [7], the size of a smallest chain partition of the order.

▶ Definition 4. The co-lex width of a DFA A is the minimum width of a co-lex order on A:

width(A) = min{width(≤) : ≤ is a co-lex order on A}

On DFAs, the following co-lex order is of particular interest:

▶ Definition 5. Let A be a DFA. The relation <A over Q is defined by:

u <A v if and only if (∀α ∈ Iu)(∀β ∈ Iv) (α < β).

In fact, by [5, Lem. 1] the following holds:

▶ Lemma 6. If A is a DFA, then <A is a co-lex order on A and width(<A) = width(A).
The order <A is called the maximum co-lex order on A.
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Computing the smallest-width co-lex order is of interest because, as shown in [5, 6],
there exists a linear-space index over any DFA A answering subpath queries (find all the
states of A reached by a path labeled with a given query string P ) in time proportional
to width(A)2 time per query character. In fact, the index is even compressed and uses
log(width(A)) + log |Σ| + O(1) bits per transition of A. Building such an index requires
computing a smallest-size chain partition of <A. State-of-the art algorithms for this problem
run in time O(m2 + n5/2) [6] and Õ(m2) w.h.p. [5]. The goal of our paper is to improve
these bounds by exploiting a new characterization for <A, introduced in the next section.

3 A new characterization of the maximum co-lex order of a DFA

In this section, we give a new interval-based characterization of the maximum co-lex order
<A of a DFA. We show that this yields an O(n)-space representation for <A (observe that,
in general, a partial order requires O(n2) space to be represented) and that, given this
representation, one can compute a smallest chain partition of <A in linear O(n) time.

3.1 Infimum and supremum strings
Let u be a state of a DFA A = (Q, Σ, δ, s, F ). For the set Iu of strings recognized by u ∈ Q,
consider a (possibly infinite) string β such that β is a lower bound of Iu; i.e. β ≤ α for every
α ∈ Iu. Consider the co-lex largest string γ among such lower bounds of Iu. We call such a
string the infimum string of u, and denote it by inf Iu. Similarly, we define the supremum
string sup Iu of u as the least upper bound of Iu; see Figure 1 for an example.

▶ Definition 7 (Infimum and supremum strings). Let u ∈ Q be a state of a DFA A =
(Q, Σ, δ, s, F ). The infimum string inf Iu and the supremum string sup Iu are defined as:

inf Iu = γ ∈ Σ∗ ∪ Σω s.t. (∀β ∈ Σ∗ ∪ Σω s.t. (∀α ∈ Iu β ≤ α) β ≤ γ)
sup Iu = γ ∈ Σ∗ ∪ Σω s.t. (∀β ∈ Σ∗ ∪ Σω s.t. (∀α ∈ Iu α ≤ β) γ ≤ β)

a

b

a

a b
a

1 2 3 4 5

6 7 8 9

b

a

10

a

a
b a

b

b

i inf Ivi sup Ivi i inf Ivi sup Ivi

1 ϵ ϵ 6 b ab
2 a a 7 bb abb
3 aa abbaa 8 aaa abba
4 aab bω 9 aaab abbab
5 aaba bωa 10 aabaa abbaba

Figure 1 Example DFA with its infimum/supremum strings.

As a warm up, we make several observations on Iu, infimum, and supremum strings.

▶ Observation 8. Let A = (Q, Σ, δ, s, F ) be a DFA. For any u ∈ Q, the following hold:
1. For every α ∈ Iu, α is finite.
2. For any v(̸= u) ∈ Q, Iu ∩ Iv is the empty set.
3. For any finite suffix α ∈ Σ∗ of inf Iu (or sup Iu), there exists β ∈ Σ∗ such that βα ∈ Iu.
4. inf Iu ∈ Iu if and only if inf Iu is a finite string; similar for sup Iu.
5. Iu is a singleton if and only if inf Iu = sup Iu. In such a case, Iu = {inf Iu(= sup Iu)}

and inf Iu = sup Iu ∈ Iu is a finite string.
6. For v( ̸= u) ∈ Q, if inf Iu = inf Iv or inf Iu = sup Iv then inf Iu has infinite length; similar

for sup Iu.

CPM 2023
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Proof.
1. By definition of Iu.
2. By definition of DFA, for any string α, there exists only one state u such that δ(s, α) = u.
3. Let α be any finite suffix of inf Iu; the sup Iu case is analogous. We claim that there must

exist v ∈ Q such that δ(v, α) = u. This will prove our main claim, since for any string
β ∈ Iv, δ(s, β · α) = δ(δ(s, β), α)) = δ(v, α) = u by definition, so β · α ∈ Iu.
To prove the claim, assume by contradiction that there is no such v ∈ Q. Let α′ ∈ Σ∗

be the longest suffix of α such that there exists v′ ∈ Q such that δ(v′, α′) = u. Let
α′′ ∈ Σ∗ ∪ Σω and a ∈ Σ be a string and a symbol such that inf Iu = α′′ · a · α′. Let
b ∈ Σ be the smallest alphabet symbol that is greater than a. Note that such b must
exist; if not, every v′ must have an incoming transition labeled by a symbol a′(∈ Σ) ≤ a;
since a′ ≠ a (otherwise α′ would be longer), there exists a string in Iu suffixed by a′α′

which is co-lex smaller than inf Iu, which causes a contradiction. Then, for every such
v′ and every v′′ ∈ Q and c ∈ Σ such that δ(v′′, c) = v′, we have a < b ≤ c. Note that
inf Iu < b · α′ ≤ γ for every γ ∈ Iu, so inf Iu is not the greatest lower bound of Iu. This
is a contradiction with the definition of inf Iu.

4. (⇒) By definition of Iu.
(⇐) Let inf Iu be finite. Let us assume, by contradiction, that inf Iu /∈ Iu. Let α = a·inf Iu

where a ∈ Σ is the smallest symbol of the alphabet. We claim that (inf Iu <)α ≤ β for
every β ∈ Iu, which contradicts the definition of inf Iu. Consider a β ∈ Iu. Let k be the
length of the longest common suffix of β and inf Iu. If k < | inf Iu|, then obviously α < β

because prepending a symbol to inf Iu does not affect the relative co-lex order of inf Iu

and β. If k = | inf Iu|, then inf Iu is a suffix of β and | inf Iu|+ 1 ≤ |β| because inf Iu /∈ Iu.
Therefore after prepending the smallest symbol a to inf Iu, we still have a · inf Iu ≤ β.
To prove the other case for sup Iu, let sup Iu be finite and let us assume for a contradiction
that sup Iu /∈ Iu. From (3), there exists β ∈ Σ∗ such that βα ∈ Iu where α = sup Iu;
note that a string is a suffix of itself. Because δ(s, α) ̸= u, it holds β ̸= ϵ. However, then
we have sup Iu = α < βα ∈ Iu, which contradicts with the definition of sup Iu being an
upper bound of Iu.

5. (⇒) if Iu = {α}, then clearly inf Iu = α and sup Iu = α, so inf Iu = sup Iu.
(⇐) If inf Iu = sup Iu, then they are the same finite string. To see this, assume by
contradiction that inf Iu = sup Iu have infinite length. Then, for every α ∈ Iu, inf Iu <

α < sup Iu. Since inf Iu = sup Iu, no such α can exist thus Iu = ∅. This is a contradiction,
because it must hold Iu ̸= ∅ by the assumption that there always exists α ∈ Σ∗ such
that δ(s, α) = u (and, for the source s, Is = {ϵ}). Since inf Iu(= sup Iu) is a finite string,
inf Iu ∈ Iu by (4). In addition, inf Iu is the unique string in Iu because for every α ∈ Iu,
inf Iu ≤ α ≤ sup Iu and inf Iu = sup Iu, therefore inf Iu = α = sup Iu.

6. Immediate from Observations (2) and (4). ◀

To conclude the section, we prove a lemma showing that infimum and supremum strings
can always be expressed as a (possibly, infinite) concatenation of a constant number of
distinct strings whose length does not exceed the number of states. This lemma will be useful
later to bound the sorting depth of our algorithms computing <A.

▶ Lemma 9. For a DFA A = (Q, Σ, δ, s, F ) and a state u ∈ Q, let γ ∈ {inf Iu, sup Iu} be
either the infimum or the supremum string of Iu. Then,
1. If γ is finite, then |γ| < |Q|.
2. If γ has infinite length, then γ = βωα for some α, β ∈ Σ∗ such that |α|+ |β| < |Q|.
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Proof. Suppose |γ| ≥ |Q|. Let γ = γ′γ′′, where γ′′ is the length-|Q| suffix of γ. Consider
a sequence of states v1, v2, · · · , v|Q|+1 such that v|Q|+1 = u and δ(vk, γ′′[k]) = vk+1 for
1 ≤ k ≤ |Q|. Note that vi ̸= s for every 2 ≤ i ≤ |Q|+ 1 because the start state s does not
have an incoming transition. Then, there are at most |Q| − 1 distinct states among the |Q|
states v2, · · · , v|Q|+1 so by the pigeonhole principle there must be 2 ≤ i < j ≤ |Q|+ 1 such
that vi = vj . Let β′ = γ′γ′′[1..i− 1], β = γ′′[i..j − 1], and α = γ′′[j..|Q|]. Note that βα is a
proper suffix of γ′′ (proper because i ≥ 2), therefore |α|+ |β| = |βα| < |γ′′| = |Q|. Note also
that (by definition of β′, β, and α) γ = β′βα.

Let us assume γ = inf Iu; the other case γ = sup Iu is analogous. Note that γ = β′βα ≤
β′βkα for every k ≥ 0. To see this, observe that if γ is a finite string, then γ = β′βα ∈ Iu by
Observation 8.4. Since δ(s, β′) = vi, δ(vi, β) = vj = vi, and δ(vj(= vi), α) = v|Q|+1 = u, we
have β′βkα ∈ Iu for every k ≥ 0. By definition of inf Iu, γ = inf Iu ≤ β′βkα for every k ≥ 0.
On the other hand, if γ has infinite length, assume for a contradiction that there exists
k′ ≥ 0 such that β′βkα < β′βα = γ. Consider the length-(l + 1) suffix β′′α of β′βkα where l

is the length of the longest common suffix between β′βkα and γ; clearly, such a l is finite
and l ≥ |α| since α suffixes both strings. Then by Observation 8.3, there exists β′′′ ∈ Σ∗

such that β′′′β′′α ∈ Iu. However we have β′′′β′′α < β′βα = γ = inf Iu, which contradicts
the definition of inf Iu.

By plugging k = 0 into the inequality β′βα ≤ β′βkα above, we obtain β′βα ≤ β′α.
Equivalently (by removing the common suffix α) it holds β′β ≤ β′; but then, we can plug
again a common suffix βkα for any k ≥ 0 and obtain that β′βk+1α ≤ β′βkα for any k ≥ 0.
In particular, this implies that β′βkα ≤ β′βα = γ for any k ≥ 1.

Since in the previous two paragraphs we proved that γ ≤ β′βkα and β′βkα ≤ γ for any
k ≥ 1, we conclude that γ = β′βkα for any k ≥ 1, i.e. γ must be an ω-string of the form
γ = βωα. This proves claim (2). Claim (1) also follows since the assumption that γ is finite
and |γ| ≥ |Q| leads to γ = βωα (a contradiction to the finiteness of γ), hence its negation
(i.e. claim 1) must hold. ◀

3.2 O(n)-space representation of <A

Let K(A) = {inf Iu : u ∈ Q} ∪ {sup Iu : u ∈ Q} ⊆ Σ∗ ∪ Σω be the set of all infimum and
supremum strings of A. Let rank(α), for α ∈ K(A), denote the position of α in the total
order (K(A), <) (e.g. rank(α) = 1 for the co-lex smallest string α ∈ K(A), and so on).

Our new representation of <A is the set of n integer pairs {(rank(inf Iu), rank(sup Iu)) :
u ∈ Q} ⊆ [1, 2n] × [1, 2n] (note that |K(A)| ≤ 2n). With the next theorem, we show that
this set is indeed sufficient to reconstruct <A.

▶ Theorem 10. Let A = (Q, Σ, δ, s, F ) be a DFA. Then, for any u, v(̸= u) ∈ Q, u <A v if
and only if sup Iu ≤ inf Iv.

Proof. (⇒) To prove u <A v ⇒ sup Iu ≤ inf Iv for all u, v ∈ Q, assume by contradiction that
there exist u, v ∈ Q such that u <A v and inf Iv < sup Iu. We claim that, in this case, there
must exist α ∈ Iu, β ∈ Iv such that β < α. By Definition 5, this contradicts u <A v. First,
note that there must exist α ∈ Iu such that inf Iv < α, otherwise it would be sup Iu ≤ inf Iv.
We divide the proof by contradiction in the two cases (i) inf Iv is a finite string and (ii) inf Iv

has infinite length.
(i) If inf Iv is finite, then inf Iv ∈ Iv by Observation 8.4. Choosing β = inf Iv, we have

β = inf Iv(∈ Iv) < α. This contradicts u <A v.
(ii) If inf Iv has infinite length, then by Lemma 9 we can write it as inf Iv = γω

2 γ1 for
some strings γ1, γ2 ∈ Σ∗. Note that, for every k ≥ 0, there exists a string γ3 ∈ Σ∗
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such that γ3γk
2 γ1 ∈ Iv (by Observation 8.3 because γk

2 γ1 is a suffix of inf Iu). Choose
any integer k′ such that |γk′

2 γ1| > |α| (such an integer exists since α is finite). Since
inf Iv = γω

2 γ1 < α, we also have γ3γk′

2 γ1(= β ∈ Iv) < α. Again, this contradicts
u <A v.

(⇐) Let sup Iu ≤ inf Iv, and choose any α ∈ Iu and β ∈ Iv. We need to prove that α <A β.
By definition of sup Iu and inf Iv, we have α ≤ sup Iu ≤ inf Iv ≤ β. If sup Iu < inf Iv, then
α < β. If, on the other hand, sup Iu = inf Iv then both sup Iu and inf Iv must be infinite
strings by Observation 8.6. Since α and β are both finite, it must be the case that α ̸= sup Iu

and β ̸= inf Iv, therefore α < sup Iu = inf Iv < β. Since this holds for any α ∈ Iu and β ∈ Iv,
by definition of <A it holds α <A β. ◀

Equivalently, Theorem 10 shows that <A can be interpreted as a set of intervals on
the co-lex sorted Pref(L(A)). This characterization of <A will allow us to compute this
order faster than the state-of-the-art by (i) co-lex sorting the infimum and supremum strings
(Section 4), and (ii) computing a smallest chain partition for <A in linear time (Section 3.3).

3.3 Linear-time chain partitioning algorithm
In general, a partial order over n elements requires O(n2) space to be represented. Moreover,
the fastest general-purpose algorithms for computing the smallest chain partition of a
partial order run either in worst-case time O(n5/2) (see, for example, [6, Lem. 6.1]) or in
Õ(n2) time w.h.p. [16]. In this section we show that given the O(n)-space representation
S = {(rank(inf Iu), rank(sup Iu)) : u ∈ Q} of <A, from which the order can be represented
using intervals, we can compute a smallest chain partition of this order in optimal O(n) time.
It is known that the optimal solution of a smallest chain partition of interval orders can be
computed with a greedy method (see [14, Sec. 6.8]). Moreover, given the sorted intervals,
one can compute it in linear time [3]; for completeness here we give the details.

Based on Theorem 10, we now show a simple linear-time reduction from the smallest
chain partition problem (where the input order is represented as described in Section 3.2) to
the following problem:

▶ Definition 11 (Interval partitioning problem, cf. [15, Sec. 4.1]). Let {[s1, f1], . . . , [sn, fn]}
be a set of n activities that must be served (each) by a device. One device can handle at most
one activity at the same time. [si, fi] is an interval, where si and fi are the starting and
finishing time of activity i, respectively. Determine the minimum number of devices to serve
all the activities.

Let S = {a1 = (s1, f1), . . . , an = (sn, fn)} be an instance of the smallest chain partition
problem for <A (that is, a particular instance of <A). Our reduction from this instance to
an instance of the interval partitioning problem works as follows:
1. For each pair ai = (si, fi), with i ∈ [1..n], let s′

i = 2si + 1 and f ′
i = 2fi.

2. Return the set of intervals S′′ = {a′′
i }n

i=1, where a′′
i = [s′′

i = min (s′
i, f ′

i), f ′′
i = max (s′

i, f ′
i)]

The following Lemma shows that our reduction is correct:

▶ Lemma 12. Let (si, fi), (sj , fj) be two input pairs, with si ≤ sj without loss of generality.
Let moreover [s′′

i , f ′′
i ], [s′′

j , f ′′
j ] be the intervals into which the two pairs get transformed by

the above reduction. Then, fi ≤ sj if and only if f ′′
i < s′′

j (i.e. [s′′
i , f ′′

i ] and [s′′
j , f ′′

j ] do not
overlap).

Proof. We divide the proof into two cases: (Case 1) at least one of si = fi or sj = fj holds,
and (Case 2) both si < fi and sj < fj hold.
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(Case 1). First, we show that fi ̸= sj . Assume that si = fi (the other case sj = fj is
analogous). Let u be the state associated with the pair (si, fi), and v be the state associated
with the pair (sj , fj). By Observation 8.5, si = fi implies that inf Iu = sup Iu is a finite
string, and inf Iu = sup Iu ∈ Iu. If inf Iv is an infinite string, then clearly sup Iu ̸= inf Iv

(being sup Iu a finite string), i.e. fi ≠ sj . If, on the other hand, inf Iv is a finite string, then
by Observation 8.4 we have inf Iv ∈ Iv; since by Observation 8.2, we have Iu ∩ Iv = ∅, also
in this case we derive that sup Iu ̸= inf Iv, i.e. fi ̸= sj .

Knowing fi ̸= sj , we obtain that fi ≤ sj ⇔ fi < sj ⇔ fi + 1 ≤ sj . Note that, since
s′′

j = 2sj + 1 > 2sj (if sj ̸= fj) or s′′
j = 2fj = 2sj (if sj = fj), we have 2sj ≤ s′′

j . Similarly,
f ′′

i ≤ 2fi + 1. Hence 2si ≤ s′′
i < f ′′

i ≤ 2fi + 1 (note that s′′
i < f ′′

i always holds for any interval
in our reduction). Therefore, we have fi ≤ sj ⇒ fi + 1 ≤ sj ⇒ f ′′

i ≤ 2fi + 1 < 2(fi + 1) ≤
2sj ≤ s′′

j . For the other direction, note that 2fi ≤ f ′′
i and s′′

j ≤ 2sj + 1. Then, using these
inequalities we obtain: f ′′

i < s′′
j ⇒ 2fi ≤ f ′′

i < s′′
j ≤ 2sj + 1⇒ 2fi < 2sj + 1⇒ fi ≤ sj .

(Case 2). In this case, we have fi ≤ sj ⇒ f ′′
i = 2fi < 2sj + 1 = s′′

j ⇒ f ′′
i < s′′

j . For the
other direction, note that f ′′

i < s′′
j ⇒ 2fi = f ′′

i < s′′
j = 2sj + 1⇒ fi ≤ sj . ◀

By Lemma 12, we can now solve smallest chain partition problem for the particular order
<A by reducing it to an instance of the interval partitioning problem. Moreover, it is easy to
see that the reduction works in linear time so the linearity of our strategy relies on the cost of
the algorithm we use to solve the latter problem. We can use a greedy method (cf. [3, 8]) to
optimally solve the interval partitioning problem (namely, using the smallest possible number
of devices). The algorithm processes the intervals in non-decreasing order of starting times,
breaking ties arbitrarily. For each interval, we choose any idle device among the available
ones. We can keep track of the list of the available devices if the starting and finishing times
of the intervals are already sorted. If all devices are busy, we add a new device.

The above-sketched algorithm spends amortized constant time on every activity, plus the
time required to sort the input set of intervals. As said earlier, the elements of our input
pairs (i.e. before the reduction) are integer values in the range [1, 2n]. After the reduction,
this range gets expanded to [2, 4n + 1]. This allows us to radix-sort the intervals in O(n) time.
As a result, in our scenario we can solve the interval partition problem in O(n) time and, in
particular, find the smallest chain partition of <A given its ranked-pair representation in
linear time.

4 Co-lex sorting infimum/supremum strings

In this section, we present three algorithms to compute and sort the set containing all
infimum and supremum strings of a DFA. The first two algorithms sort the strings in such
a way that for every iteration the strings are co-lex sorted with respect to a longer suffix;
we present one simple solution that increases the suffix length by 1 at each iteration, and
one that doubles the suffix length at each iteration. The third algorithm is a generalization
of online BWT construction and is based on the online algorithm for sorting Wheeler DFA
presented in [1, Sec. 3.2]. This algorithm works only on acyclic DFAs but has a lower time
complexity than the former two solutions.

For ease of explanation, we consider only infimum strings since the supremum string case
is analogous. Indeed, one can easily compute and sort both infimum and supremum strings
at the same time by creating two copies of the input DFA and then running our algorithms
on the union of the two DFAs, extracting the infimum strings on one DFA and the supremum
strings on the other DFA while at the same time sorting the union of these two string sets.

CPM 2023



16:10 Faster Prefix-Sorting Algorithms for Deterministic Finite Automata

4.1 Simple O(mn)-time algorithm
Let us establish some notations before describing the algorithm. For a (possibly infinite)
string α and an integer k ≥ 0, we denote by sufk(α) the length-k suffix of α. When |α| < k,
we pad sufk(α) by prepending k − |α| copies of a special symbol # /∈ Σ, with # < c for all
c ∈ Σ; in this way, we guarantee that sufk(α) is always a string of length k and we do not
affect the co-lex order of such suffixes (which remains the same before and after the padding).

For state u ∈ Q and integer k ≥ 0, we denote by rankk(u) ∈ N the intermediate rank at
iteration k of u in the total order we are computing; this integer indicates the co-lex rank of
sufk(inf Iu) among {sufk(inf Iv) : v ∈ Q}. More formally, for u ∈ Q and k ≥ 0,

rank0(u) = 1
rankk(u) = |{sufk(inf Iv) : v ∈ Q ∧ sufk(inf Iv) ≤ sufk(inf Iu)}| for k > 0

Observe that two states are assigned the same rank if their corresponding length-k suffixes
are equal. The algorithm works by pruning transitions of the input automaton, i.e. by
removing, for every state u, transitions coming from a state with a non-minimum rank among
the predecessors of u. We denote by δk the (pruned) transition function at iteration k.

The algorithm works as follows. At iteration k ≥ 0, we perform the following operations:

1. Compute rankk+1. Sort the states {u ∈ Q} by their label λ(u) with ties broken by
rankk(v) for any v ∈ δ−1

k (u) (the step below will guarantee that all predecessors v of u

have the same rankk(v)).
2. Compute δk+1. For each u ∈ Q, keep only the transitions from the min-rank predecessors:

for v ∈ δ−1
k (u), v ∈ δ−1

k+1(u) iff rankk+1(v) = min{rankk+1(u′) : u′ ∈ δ−1
k (u)}.

As far as the running time of each iteration is concerned, computing rankk+1 can be
done in O(n) time by 2-pass radix sorting (that is, by incoming label and breaking ties by
any predecessor’s rank rankk). Computing δk+1 takes O(|δk|) = O(|δ|) = O(m) time. Hence,
each iteration takes O(m) time.

Since ∀k ≥ 0, ∀u ∈ Q, and ∀v ∈ δ−1
k (u) we have sufk+1(inf Iu) = sufk(inf Iv) · λ(u), it

is easy to see that the following invariant always holds at the beginning of iteration k: the
infimum strings are sorted with respect to the co-lex order of their length-k suffixes. This
invariant shows that the number of iterations we have to perform is exactly the length of
the suffixes that need to be sorted to obtain the correct co-lex order of the infimum strings.
We are left to find an upper bound to this length; observe that this is not a trivial problem,
since infimum strings may have infinite length.

Consider any two infimum strings α, β ∈ {inf Iu : u ∈ Q}. The upper bound above can be
computed by upper-bounding the length of the longest common suffix between α and β. If
any of the two strings is finite, then by Lemma 9 their longest common suffix does not exceed
length n. If both strings are infinite, then by Lemma 9 we can write them as α = αω

2 α1 and
β = βω

2 β1 and we can use the following:

▶ Lemma 13 (cf. [19]). For two infinite strings α = αω
2 α1 and β = βω

2 β1, where α1, β1 ∈ Σ∗

and α2, β2 ∈ Σ+, let α′ and β′ be their suffixes of length k = |α2|+ |β2|+ max{|α1|, |β1|}.
Then, α′ < β′ if and only if α < β.

Proof. Without loss of generality, let us assume |α1| ≤ |β1|. Moreover, note that without
loss of generality we can also assume that |α2| + |α1| > |β1|; if this does not hold, then
re-write α1 ← αk

2α1 for the only integer k > 0 such that |α1| ≤ |β1| < |α2|+ |α1| holds; after
the transformation, α can still be written as α = αω

2 α1.
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If α1 is not a suffix of β1, then clearly the longest common suffix between α and β is at
most |α1|, so the claim holds. Let us assume therefore that α1 is a suffix of β1, i.e. β1 = β′

1α1
for some β′

1 ∈ Σ∗. Since by assumption |α2|+ |α1| > |β1|, note that |α2| > |β′
1|. Similarly as

above, if β′
1 does not suffix α2 (i.e. β1 = β′

1α1 does not suffix α = αω
2 α1) then the longest

common suffix between α and β is at most |β1| and the claim holds, so let us assume that
β′

1 is a suffix of α2, i.e. α2 = α′
2β′

1 for some α′
2 ∈ Σ∗. Since αω

2 = (α′
2β′

1)ω = (β′
1α′

2)ωβ′
1, we

conclude that comparing co-lexicographically α = (β′
1α′

2)ωβ′
1α1 and β = βω

2 β′
1α1 reduces to

comparing (β′
1α′

2)ω and βω
2 . According to [19, Proposition 5], given any γ1, γ2 ∈ Σ+ it is

sufficient to compare the length-k′ suffixes of γω
1 and γω

2 to determine their co-lex order, where
k′ = |γ1|+ |γ2| − gcd(|γ1|, |γ2|). Our claim easily follows since |β′

1α′
2| = |α′

2β′
1| = |α2|. ◀

▶ Corollary 14. The co-lex order of the infimum and supremum strings of a DFA is the
same as the co-lex order of their length-(2n) suffixes.

Proof. By Lemma 9, we can represent two infimum/supremum strings α, β as α = αω
2 α1

and β = βω
2 β1. By the same lemma, each of |α1|, |α2|, |β1| and |β2|, as well as |α1|+ |α2|

and |β1|+ |β2|, are bounded by n. From Lemma 13, it is sufficient to compare the suffixes of
length at most |α2|+ |β2|+ max{|α1|, |β1|} = max{(|α1|+ |α2|) + |β2|, |α2|+ (|β1|+ |β2|)})
of α and β in order to discover their co-lex order. Therefore, 2n is a sufficient suffix length
for sorting all the infimum strings correctly. ◀

Putting everything together, we conclude:

▶ Lemma 15. The infimum and supremum strings of an input-consistent DFA A =
(Q, Σ, δ, s, F ) can be computed and sorted in O(mn) time, where n = |Q| is the number
of states and m = |δ| is the number of transitions.

Equivalently, the above lemma shows that the representation of <A of Section 3.2 can be
computed in O(mn) time. Plugging the linear-time chain partition algorithm of Section 3.3,
we obtain:

▶ Theorem 16. Given an input-consistent DFA A = (Q, Σ, δ, s, F ), we can compute a
minimum-size chain partition of <A in O(mn) time, where n = |Q| is the number of states
and m = |δ| is the number of transitions.

4.2 O(n2 log n)-time suffix doubling algorithm
Instead of increasing the length of the sorted suffixes only by 1 at every iteration, we can
double it via a generalization of the prefix doubling algorithm [18], the first suffix array
construction algorithm that appeared in the literature. Again, for simplicity we describe the
algorithm just for infimum strings; it is easy to modify it so that it computes and sorts the
union of all infimum and supremum strings.

Algorithm 1 describes our sorting procedure, which we explain in detail in the rest of
the section. At every iteration k ≥ 0, Algorithm 1 keeps the infimum strings sorted by
their length-2k suffixes. Suppose we already sorted the infimum strings with respect to their
length-2k suffixes. To enable the doubling procedure, we need to show how to compute the
length-2k+1 suffix of each inf Iu given as input the length-2k suffixes of each inf Iu, for all
u ∈ Q. Given that the infimum strings are sorted by their length-2k suffixes, for each u ∈ Q

we can achieve this goal by finding a state v ∈ Q such that

suf2k+1(inf Iu) = suf2k (inf Iv) · suf2k (inf Iu).
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Algorithm 1 Suffix doubling algorithm for sorting the infimum strings of a DFA.

Input: An input-consistent DFA A = (Q, Σ, δ, s, F )
Output: rank2k (u) for each u ∈ Q, with 2n ≤ 2k < 4n.

1 k ← 0;
2 for u ∈ Q do
3 rank2k (u)← λ(u);
4 Pk(u)← {v ∈ δ−1(u) :

(
∀v′ ∈ δ−1(u)

)(
λ(v) ≤ λ(v′)

)
};

5 while 2k < 2n do
6 for u ∈ Q do
7 au ← rank2k (u);
8 if Pk(u) = ∅ then
9 bu ← −∞;

10 else
11 Pick any v ∈ Pk(u);
12 bu ← rank2k (v);

13 Compute rank2k+1(·) by radix-sorting pairs (au, bu);
14 for u ∈ Q do
15 P̂k+1(u)←

⋃
v∈Pk(u) Pk(v);

16 Pk+1(u)← {v ∈ P̂k+1(u) :
(
∀v′ ∈ P̂k+1(u)

)(
rank2k+1(v) ≤ rank2k+1(v′)

)
};

17 k ← k + 1;
18 return rank2k (·)

We call such v an extender of u (at distance 2k). More formally, the set Pk(u) of all extenders
of u at distance 2k is defined as:

P0(u) = {v ∈ δ−1(u) : (∀v′ ∈ δ−1(u))(λ(v) ≤ λ(v′))}
Pk(u) = {v ∈ Q : δ(v, suf2k (inf Iu)) = u ∧ suf2k (inf Iv) ⊑ suf2k+1(inf Iu)} for k > 0

For u ∈ Q, let rank2k (u) be the co-lex rank of suf2k (inf Iu), as defined in the previous section.
Observe that, by definition, for every u ∈ Q and v1, v2 ∈ Pk(u), rank2k (v1) = rank2k (v2).

We implement a suffix doubling step as follows. Assume Pk(u) and rank2k (u) have been
computed for all u ∈ Q. We associate with u the pair (au, bu) where au = rank2k (u) and bu

is chosen as follows. If Pk(u) ̸= ∅, bu = rank2k (v) with any v ∈ Pk(u); otherwise, bu = −∞
is chosen4. Finally, we compute rank2k+1(·) by radix-sorting pairs (au, bu) in O(n) time.

After computing rank2k+1(·), we need to compute Pk+1(·) for the next doubling step.
For a state u ∈ Q, let P̂k+1(u) =

⋃
u′∈Pk(u) Pk(u′) be the union of the extender sets of u’s

extenders at distance 2k. Then, we claim that we can compute Pk+1(u) by removing all
non-minimum-rank states (i.e. non-minimum rank2k+1(·)) from P̂k+1(u). The correctness
of this procedure follows from the fact that Pk+1(u) can also be defined as the largest
subset of P̂k+1(u) such that, for every v ∈ Pk+1(u) and v̂ ∈ P̂k+1(u), rank2k+1(v) ≤
rank2k+1(v̂). To see this, first observe that Pk+1(u) ⊆ P̂k+1(u) because (i) v ∈ P̂k+1(u)

4 In this case, there are no more characters to be prepended to inf Iu (i.e. | inf Iu| < 2k). Since we
radix-sort pairs (au, bu), this choice is consistent with the fact that suf2k (inf Iu) is left-padded with
copies of symbol # in order to reach length 2k, with # < c for all c ∈ Σ (see definition of suf2k in the
previous section).
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Figure 2 The DFA that has a quadratic number of extenders: the σ = Θ(n) states in the
rightmost column (indicated with A) have σ = Θ(n) extenders each (indicated with B) at distance
2k, where k = 1.

if and only if δ(v, suf2k+1(inf Iu)) = u, and (ii) v ∈ Pk+1(u) ⇒ δ(v, suf2k+1(inf Iu)) = u.
Also, by the definition of Pk+1, suf2k+1(inf Iv) for v ∈ Pk+1(u) must not be greater than
suf2k+1(inf Iv̂) for any v̂ ∈ P̂k+1(u), which is equivalent to rank2k+1(v) ≤ rank2k+1(v̂);
otherwise, suf2k+1(inf Iv̂)·suf2k+1(inf Iu) < suf2k+1(inf Iv)·suf2k+1(inf Iu) = suf2k+2(inf Iu),
which contradicts the definition of inf Iu.

Since rank2k+1(v) has already been computed for all v ∈ Q and can thus be evaluated
in constant time, from the above characterization of Pk+1(u) we obtain that the time
required to compute this set is proportional to the time we spend to compute the union
P̂k+1(u) =

⋃
u′∈Pk(u) Pk(u′). Observe that, if there were repeated states among the sets

Pk(u′), for u′ ∈ Pk(u), then computing such a union could take time O(n2) (for every u ∈ Q),
leading to a cubic algorithm. Luckily, with the next lemma we show that this is not the case:
being the input automaton deterministic, those sets are pairwise disjoint and their union can
thus be computed by just concatenating them.

▶ Lemma 17. Let u ∈ Q be a state of a DFA, and let v1, v2( ̸= v1) ∈ Pk(u) be extenders of u

at distance 2k. Then Pk(v1) ∩ Pk(v2) = ∅.

Proof. Let v1, v2( ̸= v1) ∈ Pk(u) be extenders of the same state u ∈ Q at distance 2k. Let
α1 = suf2k (inf Iv1) and α2 = suf2k (inf Iv2). Assume, for a contradiction, that there exists
v′ ∈ Pk(v1)∩Pk(v2). By definition of Pk, since v′ ∈ Pk(v1), it holds δ(v′, α1) = v1. Similarly,
it also holds δ(v′, α2) = v2. Since v1, v2 ∈ Pk(u) are extenders of the same state u ∈ Q at
distance 2k, both α1 and α2 are equal to the length-2k prefix of suf2k+1(inf Iu), therefore
α1 = α2. Consequently, we have v1 = δ(v′, α1) = δ(v′, α2) = v2, i.e. reading a string α1 = α2
from a state v′ we reach two distinct states v1 ≠ v2. This is a contradiction with the fact
that the automaton is deterministic, so the claim Pk(v1) ∩ Pk(v2) = ∅ must be true. ◀

From Lemma 17, we can compute P̂k+1(u) in time proportional to its cardinality
|P̂k+1(u)| ≤ n. Since finding the minimum-rank states can be done in linear O(|P̂k+1(u)|)
time as well, the computation of Pk+1(u) takes time O(n) for each u ∈ Q. We conclude that
each iteration of the suffix doubling algorithm takes O(n2) time.

It is worth noting that, since we keep track of each set Pk(u), the running time of an
iteration is lower-bounded by the total number of extenders therein. In the worst case,
however, the total number of extenders at a single iteration could be truly quadratic even on
acyclic DFAs: see Figure 2; in this example, there are n = 4σ+2 states and σ2+2σ+1 = Θ(n2)
extenders at distance 2k for k = 1.

Putting all together, we have the following result for the suffix doubling algorithm
described in this section.
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▶ Lemma 18. The infimum and supremum strings of an input-consistent DFA A =
(Q, Σ, δ, s, F ) can be computed and sorted in O(n2 log n) time, where n = |Q| is the number
of states.

Equivalently, the above lemma shows that the representation of <A of Section 3.2 can be
computed in O(n2 log n) time. Plugging the linear-time chain partition algorithm of Section
3.3, we obtain:

▶ Theorem 19. Given an input-consistent DFA A = (Q, Σ, δ, s, F ), we can compute a
minimum-size chain partition of <A in O(n2 log n) time, where n = |Q| is the number of
states.

The suffix doubling algorithm in practice. Although every iteration of the suffix doubling
algorithm needs to keep track of O(n2) extenders per iteration in the worst case, we conjecture
that it is not likely to have a quadratic number of extenders on realistic datasets. To
demonstrate this, we conducted a brief experiment using a pan-genomic graph, which is
considered to be one of the most important real-world applications of our problem. We
downloaded the Chromosome 22 sequence of the GRCh38 human reference genome and
its variation data from 1000 Genome project [17]. This variation dataset contains a set of
substitutions, insertions and deletions appearing on the reference human genome sequence
collected from 2,548 samples. Using this dataset, we constructed a pan-genomic graph
using VG [21], then converted it into a DFA using the classical powerset construction
algorithm [20]. We ran an implementation of our suffix doubling algorithm to sort the
infimum and supremum strings and measured the number of extenders at each iteration.
The largest P̂k(u) and Pk(u) (extenders at distance 2k before/after filtering non-minimum-
rank states) during the procedure had cardinality 60 and 37, respectively, which might be
considered not negligible but quite small when compared to the DFA’s size (n=51,904,782,
m =53,049,316). In addition, the sum

∑
u∈Q |P̂k(u)| of the number of extender candidates

(the union of extenders before filtering non-minimum-rank states) at any fixed distance
2k was at most two times the number of edges, suggesting that in practice our algorithm
exhibits a linearithmic complexity on pan-genomic graphs. C++ source code is avaliable at:
https://github.com/regindex/DFA-suffix-doubling.

4.3 O(m log n)-time algorithm for acyclic DFAs
If the input DFA is acyclic, then we can sort the infimum strings more efficiently using the
algorithm described in [1, Sec. 3.2]. This algorithm processes the states of any acyclic Wheeler
DFA A (that is, width(A) = 1) and their incoming edges in any topological order u1, . . . , un

while updating <A in an online fashion; more precisely, as soon as step 1 ≤ i ≤ n has finished,
the algorithm has computed the total order <A of the set {u1, . . . , ui}. The basic idea is
to process the states in any topological order while maintaining a dynamic data structure
that stores the relative co-lex order of the states according to any representative of Iu (in
fact, [1] proves that on Wheeler DFAs, any string in Iu can be chosen as a representative of
the whole Iu to sort the automaton’s states). This is possible because, when ui ∈ Q is being
processed, the structure is able to check if rank(v) ≤ rank(uj) for any v ∈ δ−1(ui) and j < i,
where rank(v) denotes the position of v in the total order <A of the already-processed states
u1, . . . , ui−1 (and, by definition of topological order, rank(v) and rank(uj) have already
been computed in the previous steps). This information is sufficient to compute rank(ui)
among the sorted u1, . . . , ui.

https://github.com/regindex/DFA-suffix-doubling
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In our case (arbitrary acyclic DFAs), we use the above data structure as follows: after
topologically sorting A (in linear time) we process states in this order. When processing
state ui, assume that states u1, . . . , ui−1 have already been co-lex sorted according to their
strings inf Iu1 , . . . , inf Iui−1 using the data structure of [1, Section 3.2]. By scanning the
predecessors of ui, we find the min-rank state v∗ = arg minv∈δ−1(ui) rank(v) among them. At
this point, we insert state ui, as well as transition (labeled edge) (v∗, ui, λ(ui)), in the data
structure. Note that, since only (v∗, ui, λ(ui)) is inserted, the data structure of [1, Section
3.2] maintains a spanning tree of A rooted at the start state s. By construction, it is easy to
see that the unique path connecting s to ui in this spanning tree is labeled with string inf Iui

:
the spanning tree encodes the infimum strings. As a result, our sorting problem is equivalent
to sorting this spanning tree. It is known that a labeled tree is a special case of Wheeler
graphs (see [11]), so the computed co-lex node order of this spanning tree is precisely the
co-lex order of all infimum strings.

Since it is immediate to extend the idea to the union of all infimum and supremum strings,
taking into account the cost of each update of the data structure [1, Sec. 3.2], we obtain:

▶ Lemma 20. The infimum and supremum strings of an input-consistent acyclic DFA
A = (Q, Σ, δ, s, F ) can be computed and sorted in O(m log n) time where n = |Q| is the
number of states and m = |δ| is the number of transitions.

Proof. First of all, the data structure [1, Sec. 3.2] supports the following two operations
in O(log n) time5: (i) computing the relative rank of a state among those that are already
processed, and (ii) inserting a new edge (a state is inserted into the structure after all its
incoming edges have been inserted). As a result, finding v∗ = arg minv∈δ−1(ui) rank(v) takes
time O(|δ−1(ui)| · log n). After v∗ has been found, inserting the labeled edge (v∗, ui, λ(ui)),
as well as state ui, into the structure takes time O(log n). Overall, after all states have been
processed the cost of the above operations amounts to O(m log n) time. Since a topological
order of A can be computed in O(m) time, the total running time is O(m log n). ◀

Equivalently, the above lemma shows that the representation of <A of Section 3.2 can be
computed in O(m log n) time when A is acyclic. Plugging the linear-time chain partition
algorithm of Section 3.3, we obtain:

▶ Theorem 21. Given an input-consistent acyclic DFA A = (Q, Σ, δ, s, F ), we can compute
a minimum-size chain partition of <A in O(m log n) time, where n = |Q| is the number of
states and m = |δ| is the number of transitions.
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